WO2021190840A1 - Verfahren zur bewertung von streckenabschnitten - Google Patents

Verfahren zur bewertung von streckenabschnitten Download PDF

Info

Publication number
WO2021190840A1
WO2021190840A1 PCT/EP2021/054201 EP2021054201W WO2021190840A1 WO 2021190840 A1 WO2021190840 A1 WO 2021190840A1 EP 2021054201 W EP2021054201 W EP 2021054201W WO 2021190840 A1 WO2021190840 A1 WO 2021190840A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
route
landmarks
lane
determined
Prior art date
Application number
PCT/EP2021/054201
Other languages
English (en)
French (fr)
Inventor
Andreas Heyl
Maximilian Muffert
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Priority to KR1020227031930A priority Critical patent/KR20220137996A/ko
Priority to CN202180024805.8A priority patent/CN115516276A/zh
Priority to JP2022558477A priority patent/JP7505020B2/ja
Priority to US17/914,511 priority patent/US20230135159A1/en
Publication of WO2021190840A1 publication Critical patent/WO2021190840A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0011Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3644Landmark guidance, e.g. using POIs or conspicuous other objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3658Lane guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3679Retrieval, searching and output of POI information, e.g. hotels, restaurants, shops, filling stations, parking facilities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3691Retrieval, searching and output of information related to real-time traffic, weather, or environmental conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3811Point data, e.g. Point of Interest [POI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • G01C21/3822Road feature data, e.g. slope data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/20Data confidence level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/40High definition maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data

Definitions

  • the invention relates to a method for evaluating route sections according to the preamble of claim 1.
  • the invention also relates to a method for operating a vehicle.
  • a method for fully automated ferry operation of a vehicle is known from WO 2018/197255 A1, in which the vehicle is localized on the basis of landmarks that are stored in a digital map.
  • Fully automated ferry operations are only permitted on sections of the route that have been approved for such ferry operations. The prerequisite for this approval is that a localization accuracy with which the vehicle can be localized on a route section lying ahead meets specified requirements that are dependent on the respective route.
  • the localization accuracy for the route section ahead is predicted on the basis of a spatial density of the landmarks stored in the digital map.
  • DE 102014014 120 A1 discloses a method for autonomously operating a vehicle on a route ahead.
  • the autonomous operation of the vehicle is only permitted if it is fulfilled for a given length of the route ahead that a position of the vehicle in the vehicle is determined with a position accuracy that is better than a given limit value, and digital map data on the course of the road are available with a position accuracy that is better than a predetermined limit.
  • the as yet unpublished DE 102019 007861.6 describes a method for clearing a route for an automated ferry operation of a vehicle, with a route ahead of the vehicle for an automated ferry operation of the The vehicle is released when it is determined by means of a digital map, which is used for landmark-based localization of the vehicle during the automated ferry operation, that there are landmarks along the route which meet requirements with regard to their suitability for longitudinal and lateral localization of the vehicle, which are specified as a function of a course of the route. Furthermore, a maximum driving speed of the vehicle for the automated ferry operation is specified on the basis of a localization accuracy of the vehicle and depending on the route section.
  • the invention is based on the object of specifying a method, which is improved over the prior art, for evaluating route sections of a digital map with regard to their suitability for automated ferry operation of a vehicle and a method for operating a vehicle.
  • the object is achieved according to the invention by a method for evaluating route sections, which has the features specified in claim 1, and by a method for operating a vehicle, which has the features specified in claim 9.
  • a spatial density of landmarks is determined according to the invention for each route section of the digital map. Furthermore, for each route section, an expected recognizability of the landmarks is determined by a vehicle sensor system under specified environmental conditions, based on the determined density and recognizability of the landmarks, a classification is carried out to determine whether a vehicle on the route section is required for a specified operating mode and / or for a specified driving maneuver Minimum accuracy can be localized.
  • a classification result is stored as a data record in a route attribute assigned to the route section, the route attribute indicating for which of the specified operating modes and / or driving maneuvers under which of the specified environmental conditions requirements for the minimum accuracy of the landmark-based vehicle localization are met.
  • the accuracy of a map-based localization of a vehicle is at least partially dependent on a number of available landmarks, that is, landmarks, and features for data assignment in a local, detectable environment.
  • an automatically driving vehicle must automatically cover a longer distance of, for example, up to two minutes in order to reach a safe location, for example a hard shoulder several hundred meters away can be achieved.
  • the integrity for example according to ISO 26262
  • the integrity can be low. That is, if only one type of features, for example only so-called poles, or only one type of sensor modality, for example only one lidar, which typically meets a so-called Automotive Safety Integrity Level B, ASIL B for short, but not ASIL D, an automated vehicle must also react to such a reduction in integrity and reduce its performance.
  • route sections with a low density of landmarks which could lead to a high level of uncertainty and / or a low integrity of the pose of an automatically driving vehicle, can be used for future routes of the vehicle based on an evaluation of map data, for example a priori maps and / or dynamic map data, and an environmental perception can be predicted.
  • map data for example a priori maps and / or dynamic map data
  • an environmental perception can be predicted.
  • route sections with a low density of landmarks are on a route of a vehicle
  • a behavior and / or a trajectory of the automatically driving vehicle can be adapted in such a way that a sufficiently precise, safe and redundant pose of the vehicle for can provide safe automated operation based on a small number of landmarks.
  • the automated vehicle can proactively and in advance of a decrease in density and / or recognizability of the landmarks and a critical gradual or sudden loss of localization avoid the can lead to dangerous events and / or difficult situations.
  • the expected recognizability is determined for each lane present on the route section and / or for different transverse positions of the vehicle within a lane. This enables an exact prediction of the recognizability of the landmarks for each lane and / or transverse offset and thus, when used in an operation of an automated driving vehicle, a determination of a route that is optimized with regard to safety.
  • the classification result and the associated route attribute are used to specify in which lane and / or in which lateral position of the vehicle the minimum accuracy of the vehicle localization required for the respective operating mode and / or for the respective driving maneuver can be maintained. When used in an operation of an automatically driving vehicle, this also enables a route that has been optimized with regard to safety to be determined.
  • the classification result and the associated route attribute are used to indicate which lane and / or which lateral deposit of the vehicle is or is most suitable for the respective operating mode and / or the respective driving maneuver. This makes it possible for an operating mode to be selected in advance in which the vehicle is most likely to safely reach its destination.
  • the classification is carried out on a central processing unit external to the vehicle, for example a so-called backend server.
  • a central processing unit external to the vehicle, for example a so-called backend server.
  • this makes it possible that no additional computing power is required in the vehicle itself to carry out the classification.
  • the classification for a large number of vehicles can be carried out centrally and thus effectively and inexpensively.
  • information about the recognizability of the landmarks and / or current environmental conditions while vehicles are passing the landmarks are recorded.
  • the information recorded in this way can be processed decentrally in the vehicles themselves to classify the route sections or can be transmitted to a suitable central processing unit external to the vehicle, which carries out the classification. Due to the large number of vehicles, a very reliable acquisition of the information about the recognizability of the landmarks is possible, as a result of which the reliability of the classification can be significantly increased.
  • a fully automated ferry operation of a vehicle, a highly automated ferry operation of a vehicle and / or an operation of a vehicle in a certain speed range are specified as operating modes and / or lane keeping maneuvers, lane change maneuvers, overtaking maneuvers and / or turning maneuvers are specified as driving maneuvers.
  • This specification of the operating modes and / or driving maneuvers allows an individually adapted determination of a safe route for a vehicle, taking into account the route attributes.
  • the method can increase the safety and reliability of the operation of the vehicle, since route sections with a low density of landmarks, which could lead to a high level of uncertainty and / or a low integrity of the pose of an automatically driving vehicle, are based on future routes of the vehicle an evaluation of map data, for example a priori maps and / or dynamic map data, and a perception of the surroundings can be predicted.
  • map data for example a priori maps and / or dynamic map data
  • a perception of the surroundings can be predicted.
  • a behavior and / or a trajectory of the automatically driving vehicle can be adapted in a simple manner to the known route attributes so that, for example, a sufficiently precise, safe and redundant pose of the vehicle for a safe automated operation based on a small number of landmarks can be provided.
  • the route attributes are retrieved from the vehicle by a central processing unit, for example a so-called backend server.
  • a central processing unit for example a so-called backend server.
  • this makes it possible that no additional computing power is required in the vehicle itself to carry out the classification.
  • the classification for a large number of vehicles can be carried out centrally and thus effectively and inexpensively.
  • particularly precise and reliable route attributes can be generated and made available for each vehicle by means of the central processing unit.
  • FIG. 1 schematically shows a block diagram of a device for operating a vehicle according to the prior art
  • FIG. 2 schematically shows a block diagram of a device for operating a vehicle
  • FIG. 3 schematically shows a top view of a route of a vehicle with several route sections.
  • FIG. 1 shows a block diagram of a device 1 for operating an automated, in particular highly automated or autonomously driving vehicle according to the prior art.
  • the device 1 comprises a digital map 2, a vehicle sensor system 3, a localization unit 4, a modeling unit 5 for generating a model of a vehicle environment, and a behavior planning unit 6.
  • the localization unit 4 the vehicle is localized in its vehicle environment using environmental data acquired by means of the vehicle sensor system 3, for example acquired landmarks, and / or map data from the digital map 2, for example landmarks stored in the map.
  • a vehicle pose is transmitted to the modeling unit 5, which generates a model of the vehicle environment.
  • the behavior planning unit 6 plans future behavior of the vehicle during the automated ferry operation.
  • FIG. 2 shows a block diagram of a possible exemplary embodiment of a device 7 for operating an automated, in particular highly automated or autonomously driving vehicle 8 shown in FIG. 3.
  • a basic function of device 7 corresponds to a function of device 1 shown in FIG.
  • the accuracy of a map-based localization of a vehicle 8 is at least partially dependent on a number of available landmarks and features for data assignment in a local, detectable vehicle environment. If, however, there are only a small number of landmarks, the accuracy of a primary localization function based on these landmarks and carried out by means of the localization unit 4 decreases to a point at which the determined vehicle pose is no longer accurate enough and evasive methods, such as one based on odometry data dead reckoning, must be used to temporarily determine vehicle pose. However, these evasive methods are generally less precise than localization based on map feature corn and quickly lead to high uncertainties when determining the vehicle pose, especially at medium to high speeds.
  • a scarcity of landmarks can, for example, have static causes and results, for example, from properties of the environment, such as a country road without buildings, without masts and / or without lane markings, which can be used (a priori) as perceptible landmarks.
  • the scarcity of landmarks can, however, also have dynamic causes and in this case results, for example, from conditions that limit the performance of the vehicle sensor system 3 that detect the landmarks. This can include, for example, unfavorable environmental conditions, such as a Sun glare or snow, or traffic scenarios, such as vehicles, trucks or buses, which cover a field of view of the vehicle sensor system 3, be.
  • route sections FS1 to FS3 shown in more detail in FIG. 3, to be assessed in terms of their suitability for automated ferry operation of vehicle 8 in digital map 2 in which landmarks are stored for landmark-based vehicle localization.
  • a spatial density of landmarks and an expected recognizability of the landmarks are determined by the vehicle sensor system 3 under given ambient conditions, in particular given light conditions, times of day, precipitation and / or properties of surrounding objects.
  • the expected recognizability is determined in particular for each lane present on the route section FS1 to FS3 and / or for different transverse positions of the vehicle 8 within a lane.
  • the spatial density of the landmarks is determined, for example, by an offline analysis of the digital map. Alternatively or additionally, the spatial density of the landmarks is determined on the basis of sensor data from vehicle 8, from surveying vehicles, other automated vehicles 8, by so-called crowd sourcing or so-called swarm sources, with the sensor data being evaluated in terms of performance and Redundancy of a recognition of landmarks along a specific route or lane can be evaluated.
  • a performance can depend on a direction of travel and / or a lane being traveled on.
  • information about the recognizability of the landmarks and / or current environmental conditions while the landmarks are being passed is recorded by a plurality of vehicles 8, for example vehicles 8 of a vehicle fleet, and transmitted to a central processing unit 9 external to the vehicle, shown in more detail in FIG.
  • the central processing unit 9 uses the determined density and recognizability of the landmarks to classify whether a vehicle 8 can be localized on a route section FS1 to FS3 with a minimum accuracy required for a given operating mode and / or for a given driving maneuver.
  • the operating modes are, for example, a fully automated ferry operation of a vehicle 8, a highly automated ferry operation of a vehicle 8 and / or an operation of a vehicle 8 in a specific Speed range can be specified.
  • lane keeping maneuvers, lane change maneuvers, overtaking maneuvers and / or turning maneuvers are specified as driving maneuvers.
  • a classification result is stored as a data record in a route attribute assigned to the route section FS1 to FS3, the route attribute indicating for which of the specified operating modes and / or driving maneuvers under which of the specified environmental conditions requirements for the minimum accuracy of the landmark-based vehicle localization are met.
  • the classification result and the associated route attribute it is indicated, for example, in which lane and / or with which lateral deposit of the vehicle 8 the minimum accuracy of the vehicle localization required for the respective operating mode and / or for the respective driving maneuver can be maintained.
  • the classification result and the associated route attribute it can also be specified which lane and / or which lateral deposit of vehicle 8 is or is most suitable for the respective operating mode and / or the respective driving maneuver.
  • the classification can, for example, distinguish between the following route attributes:
  • Landmarks only available with a certain sensor modality.
  • route attributes can be extended in such a way that they also include and classify a probability of a low density of landmarks due to restrictions of the vehicle sensor system 3 as a function of certain environmental conditions, such as, for example, light conditions such as daylight, night, twilight;
  • Times of day such as driving towards a sunset, which can cause glare; Precipitation such as rain, snowfall and fog; and / or properties of surrounding objects, for example their reflectivity.
  • the route attributes are expanded to include a probability of insufficient landmarks due to restrictions of the vehicle sensor system 3 depending on traffic situations, for example due to occlusions due to tall vehicles, and / or special events, for example smoke due to forest fires. These route attributes are evaluated in the vehicle, for example, taking into account a current traffic situation and the events which are provided by the central processing unit 9 or are detected in advance by the vehicle sensor system 3.
  • the modeling unit 5 can thus generate an adapted model of the vehicle environment based on the knowledge of the route attributes and possibly further information from the digital map 2, the vehicle sensor system 3, the central processing unit 9 and / or by means of machine learning 10 and, if necessary, sends corresponding information for adaptation and Limitation of the operation of the vehicle 8 to the behavior planning unit 6.
  • the connections shown as interrupted represent interfaces which are used by the modeling unit 5 to predict the model.
  • FIG. 3 shows a top view of a route FS of a vehicle 8 with several route sections FS1 to FS3.
  • the vehicle 8 moves in a route section FS1 in a normal autonomous ferry operation in the direction of the route sections FS2, FS3. Due to the knowledge of the route attributes determined according to the description, it is already known before the route sections FS2, FS3 are reached that in route section FS3 There are restrictions for the automated ferry operation of the vehicle 8. For this purpose, the route attributes are called up by the vehicle 8, for example from the central processing unit 9.
  • the vehicle 8 can already restrict certain operating modes and / or driving maneuvers when it reaches the second route section FS2 and / or determine a route, lane, transverse deviation and / or driving speed to be maintained during the automated ferry operation so that when entering the third route section FS3 safe operation of the vehicle 8 is possible despite the low density of landmarks.
  • This can be carried out online or offline and checks the route attributes of the route sections FS1 to FS3 lying ahead and determines areas with a high probability of a low density of landmarks. If such an area, such as the route section FS3, is determined, the adaptation measures are triggered before this route section FS3 is reached.
  • the adaptation measures include, for example: an adaptation or reduction of a vehicle speed; a preference for a position within a lane (left, center, right); a preference for a particular lane on a multi-lane carriageway; a restriction of a vehicle behavior, for example an inhibition of more complex maneuvers, such as for example lane changes; a choice of another route; and or
  • adaptation measures can be triggered either directly by sending dedicated commands to the behavior planning unit 6 and / or indirectly by artificially changing quality or integrity information data, for example in an interface to the behavior planning unit 6, in order to trigger a tactical safety reaction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Artificial Intelligence (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Bewertung von Streckenabschnitten (FS1 bis FS3) einer digitalen Karte (2) hinsichtlich ihrer Eignung für einen automatisierten Fahrbetrieb eines Fahrzeugs (8), wobei in der digitalen Karte (2) Landmarken für eine landmarkenbasierte Fahrzeuglokalisierung hinterlegt sind. Erfindungsgemäß ist vorgesehen, dass für jeden Streckenabschnitt (FS1 bis FS3) der digitalen Karte (2) - eine räumliche Dichte von Landmarken ermittelt wird, - eine erwartete Erkennbarkeit der Landmarken durch eine Fahrzeugsensorik (3) bei vorgegebenen Umgebungsbedingungen ermittelt wird, - anhand der ermittelten Dichte und Erkennbarkeit der Landmarken eine Klassifizierung dahingehend durchgeführt wird, ob ein Fahrzeug (8) auf dem Streckenabschnitt (FS1 bis FS3) mit einer für eine vorgegebene Betriebsart und/oder für ein vorgegebenes Fahrmanöver geforderten Mindestgenauigkeit lokalisiert werden kann, und - ein Klassifizierungsergebnis als Datensatz in einem dem Streckenabschnitt (FS1 bis FS3) zugeordneten Streckenattribut hinterlegt wird, wobei das Streckenattribut angibt, für welche der vorgegebenen Betriebsarten und/oder Fahrmanöver bei welchen der vorgegebenen Umgebungsbedingungen Anforderungen an die Mindestgenauigkeit der landmarkenbasierten Fahrzeuglokalisierung erfüllt sind.

Description

Verfahren zur Bewertung von Streckenabschnitten
Die Erfindung betrifft ein Verfahren zur Bewertung von Streckenabschnitten gemäß dem Oberbegriff des Anspruchs 1.
Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines Fahrzeugs.
Aus der WO 2018/197255 A1 ist ein Verfahren für einen vollautomatisierten Fährbetrieb eines Fahrzeugs bekannt, bei dem das Fahrzeug anhand von Landmarken, die in einer digitalen Karte hinterlegt sind, lokalisiert wird. Der vollautomatisierte Fährbetrieb wird dabei nur auf Streckenabschnitten zugelassen, die für einen solchen Fährbetrieb freigegeben sind. Voraussetzung für diese Freigabe ist, dass eine Lokalisierungsgenauigkeit, mit der das Fahrzeug auf einem vorausliegenden Streckenabschnitt lokalisiert werden kann, vorgegebene, vom jeweiligen Streckenverlauf abhängige Anforderungen erfüllt. Die Lokalisierungsgenauigkeit für den vorausliegenden Streckenabschnitt wird dabei anhand einer räumlichen Dichte der in der digitalen Karte hinterlegten Landmarken prädiziert.
Weiterhin ist aus der DE 102014014 120 A1 ein Verfahren zum autonomen Betreiben eines Fahrzeugs auf einer vorausliegenden Fahrstrecke bekannt. Der autonome Betrieb des Fahrzeugs wird nur dann zugelassen, wenn für eine vorgegebene Streckenlänge der vorausliegenden Fahrstrecke erfüllt ist, dass eine Position des Fahrzeugs im Fahrzeug mit einer Positionsgenauigkeit ermittelt, die besser als ein vorgegebener Grenzwert ist, und digitale Kartendaten zum Fahrbahnverlauf mit einer Positionsgenauigkeit vorliegen, die besser als ein vorgegebener Grenzwert ist.
Die noch nicht veröffentlichte DE 102019 007861.6 beschreibt ein Verfahren zur Freigabe einer Fahrstrecke für einen automatisierten Fährbetrieb eines Fahrzeugs, wobei eine dem Fahrzeug vorausliegende Fahrstrecke für einen automatisierten Fährbetrieb des Fahrzeugs dann freigegeben wird, wenn mittels einer digitalen Karte, die während des automatisierten Fährbetriebs zur landmarkenbasierten Lokalisierung des Fahrzeugs herangezogen wird, ermittelt wird, dass entlang der Fahrstrecke Landmarken vorhanden sind, welche hinsichtlich ihrer Eignung für eine Längs- und Querlokalisierung des Fahrzeugs Anforderungen erfüllen, die in Abhängigkeit eines Verlaufs der Fahrstrecke vorgegeben sind. Weiterhin wird anhand einer Lokalisierungsgenauigkeit des Fahrzeugs und in Abhängigkeit des Streckenabschnitts eine maximale Fahrgeschwindigkeit des Fahrzeugs für den automatisierten Fährbetrieb vorgegeben.
Der Erfindung liegt die Aufgabe zu Grunde, ein gegenüber dem Stand der Technik verbessertes Verfahren zur Bewertung von Streckenabschnitten einer digitalen Karte hinsichtlich ihrer Eignung für einen automatisierten Fährbetrieb eines Fahrzeugs sowie ein Verfahren zum Betrieb eines Fahrzeugs anzugeben.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Bewertung von Streckenabschnitten, welches die im Anspruch 1 angegebenen Merkmale aufweist, und durch ein Verfahren zum Betrieb eines Fahrzeugs, welches die im Anspruch 9 angegebenen Merkmale aufweist.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
In einem Verfahren zur Bewertung von Streckenabschnitten einer digitalen Karte hinsichtlich ihrer Eignung für einen automatisierten Fährbetrieb eines Fahrzeugs, wobei in der digitalen Karte Landmarken für eine landmarkenbasierte Fahrzeuglokalisierung hinterlegt sind, wird erfindungsgemäß für jeden Streckenabschnitt der digitalen Karte eine räumliche Dichte von Landmarken ermittelt. Weiterhin wird für jeden Streckenabschnitt eine erwartete Erkennbarkeit der Landmarken durch eine Fahrzeugsensorik bei vorgegebenen Umgebungsbedingungen ermittelt anhand der ermittelten Dichte und Erkennbarkeit der Landmarken eine Klassifizierung dahingehend durchgeführt, ob ein Fahrzeug auf dem Streckenabschnitt mit einer für eine vorgegebene Betriebsart und/oder für ein vorgegebenes Fahrmanöver geforderten Mindestgenauigkeit lokalisiert werden kann. Ferner wird für jeden Streckenabschnitt der digitalen Karte ein Klassifizierungsergebnis als Datensatz in einem dem Streckenabschnitt zugeordneten Streckenattribut hinterlegt, wobei das Streckenattribut angibt, für welche der vorgegebenen Betriebsarten und/oder Fahrmanöver bei welchen der vorgegebenen Umgebungsbedingungen Anforderungen an die Mindestgenauigkeit der landmarkenbasierten Fahrzeuglokalisierung erfüllt sind. Eine Genauigkeit einer kartenbasierten Lokalisierung eines Fahrzeugs, beispielsweise eines automatisiert, insbesondere hochautomatisiert oder autonom fahrenden Fahrzeugs, ist zumindest teilweise von einer Anzahl verfügbarer Orientierungspunkte, das heißt Landmarken, und Merkmale für eine Datenzuordnung in einer lokalen, erfassbaren Umgebung abhängig. Ist jedoch nur eine geringe Anzahl von Landmarken vorhanden, nimmt eine Genauigkeit einer auf diesen Landmarken basierenden primären Lokalisierungsfunktion bis zu einem Punkt ab, an dem eine ermittelte Fahrzeugpose nicht mehr genau genug ist und Ausweichmethoden, wie beispielsweise eine auf Odometrie- daten basierende Koppelnavigation, verwendet werden müssen, um vorübergehend die Fahrzeugpose zu bestimmen. Diese Ausweichmethoden sind jedoch in der Regel weniger genau als eine kartenmerkmaisbasierte Lokalisierung und führen schnell zu hohen Unsicherheiten bei der Pose eines Fahrzeugs, beispielsweise ein automatisiert fahrendes Fahrzeug, insbesondere bei mittleren bis hohen Geschwindigkeiten.
Weiterhin muss ein automatisiert fahrendes Fahrzeug in bestimmten Situationen nach Auftreten von Fehlern oder Einschränkungen, die eine Leistungsfähigkeit des Fahrzeug erheblich beeinträchtigen, eine längere Strecke von beispielsweise bis zu zwei Minuten automatisiert zurücklegen, um einen sicheren Ort, beispielsweise einen Seitenstreifen, welche mehrere hundert Meter entfernt sein kann, zu erreichen.
Ferner ist es möglich, dass eine plötzliche Knappheit von Landmarken zu einer schnellen Verschlechterung oder sogar zum Verlust der Lokalisierung und/oder einer kartenbasiert ermittelten Fahrzeugpose führen kann, so dass die Gefahr besteht, dass ein weiter entfernter sicherer Ort nicht erreicht werden kann oder dass Möglichkeiten begrenzt werden, einer sicheren Trajektorie in einen sicheren Zustand, beispielsweise durch Ausführung einer Vollbremsung, zu folgen.
Selbst wenn eine auf Landmarken basierende Lokalisierung eines Fahrzeugs im Prinzip immer noch mit ausreichender Genauigkeit möglich ist, kann eine Integrität, beispielsweise gemäß ISO 26262, des Ergebnisses gering sein. Das heißt, wenn nur eine Art von Merkmalen, beispielsweise nur so genannte Poles, oder nur eine Art von Sensormodalität, beispielsweise nur ein Lidar, welches typischerweise einem so genannten Automotive Safety Integrity Level B, kurz ASIL B, genügt, nicht jedoch ASIL D, muss ein automatisiert fahrendes Fahrzeug auch auf eine solche Verringerung der Integrität reagieren und seine Leistungsfähigkeit verringern. Mittels des Verfahrens können jedoch Streckenabschnitte mit geringer Dichte von Landmarken, die zu einer hohen Unsicherheit und/oder einer geringen Integrität der Pose eines automatisiert fahrenden Fahrzeugs führen könnten, für zukünftige Fahrtrouten des Fahrzeugs basierend auf einer Auswertung von Kartendaten, beispielsweise a-priori Karten und/oder dynamischen Kartendaten, und einer Umgebungswahrnehmung vorhergesagt werden. Befinden sich solche Streckenabschnitte mit geringer Dichte von Landmarken auf einer Route eines Fahrzeugs, können bzw. kann ein Verhalten und/oder eine Trajektorie des automatisiert fahrenden Fahrzeugs derart angepasst werden, dass mittels einer Lokalisierungsfunktion weiterhin eine ausreichend genaue, sichere und redundante Pose des Fahrzeugs für einen sicheren automatisierten Betrieb basierend auf einer geringen Anzahl von Landmarken bereitstellen kann. Alternativ oder zusätzlich ist es mittels des Verfahrens möglich, das Fahrzeug in einem angepassten, beispielsweise herabgesetzten, Modus zu betreiben, in welchem Sicherheitsanforderungen für die Bereitstellung einer ausreichend genauen, sicheren und redundanten Pose des Fahrzeugs geringer sind und welcher mit weniger Landmarken ausgeführt werden kann.
Das heißt, durch eine Vorhersage einer Eignung der Streckenabschnitte einer digitalen Karte für einen automatisierten Fährbetrieb des Fahrzeugs kann das automatisierte Fahrzeug proaktiv und im Voraus auf eine Abnahme einer Dichte und/oder Erkennbarkeit der Landmarken und einen kritischen allmählichen oder plötzlichen Verlust der Lokalisierung vermeiden, der zu gefährlichen Ereignissen und/oder schwierigen Situationen führen kann.
In einer möglichen Ausgestaltung des Verfahrens wird die erwartete Erkennbarkeit für jede auf dem Streckenabschnitt vorhandene Fahrspur und/oder für unterschiedliche Querablagen des Fahrzeugs innerhalb einer Fahrspur ermittelt. Dies ermöglicht für jede Fahrspur und/oder Querablage eine genaue Vorhersage der Erkennbarkeit der Landmarken und somit bei Anwendung in einem Betrieb eines automatisiert fahrenden Fahrzeugs eine Ermittlung einer hinsichtlich einer Sicherheit optimierten Fahrtroute.
In einerweiteren möglichen Ausgestaltung des Verfahrens wird mittels des Klassifizierungsergebnisses und des zugehörigen Streckenattributs angegeben, auf welcher Fahrspur und/oder bei welcher Querablage des Fahrzeugs die für die jeweilige Betriebsart und/oder für das jeweilige Fahrmanöver geforderte Mindestgenauigkeit der Fahrzeuglokalisierung eingehalten werden kann. Auch dies ermöglicht bei Anwendung in einem Betrieb eines automatisiert fahrenden Fahrzeugs eine Ermittlung einer hinsichtlich einer Sicherheit optimierten Fahrtroute. In einerweiteren möglichen Ausgestaltung des Verfahrens wird mittels des Klassifizierungsergebnisses und des zugehörigen Streckenattributs angegeben, welche Fahrspur und/oder welche Querablage des Fahrzeugs für die jeweilige Betriebsart und/oder das jeweilige Fahrmanöver am geeignetsten sind oder ist. Dadurch ist es möglich, dass bereits im Voraus eine Betriebsart gewählt werden kann, in welcher eine Wahrscheinlichkeit einer sicheren Zielerreichung durch das Fahrzeug am größten ist.
In einerweiteren möglichen Ausgestaltung des Verfahrens wird die Klassifizierung auf einer fahrzeugexternen zentralen Recheneinheit, beispielsweise einem so genannten Backendserver, durchgeführt. Dies ermöglicht einerseits, dass im Fahrzeug selbst keine zusätzliche Rechenleistung zur Ausführung der Klassifizierung erforderlich ist. Weiterhin kann die Klassifizierung für eine Vielzahl von Fahrzeugen zentral und somit effektiv und kostengünstig durchgeführt werden.
In einerweiteren möglichen Ausgestaltung des Verfahrens werden Informationen über die Erkennbarkeit der Landmarken und/oder aktuelle Umgebungsbedingungen während eines Passierens der Landmarken von Fahrzeugen erfasst. Die so erfassten Informationen können dezentral in den Fahrzeugen selbst zur Klassifizierung der Streckenabschnitte verarbeitet werden oder an eine geeignete fahrzeugexterne zentrale Recheneinheit übermittelt werden, welche die Klassifizierung ausführt. Aufgrund einer großen Anzahl von Fahrzeugen ist eine sehr zuverlässige Erfassung der Informationen über die Erkennbarkeit der Landmarken möglich, wodurch eine Zuverlässigkeit der Klassifizierung signifikant erhöht werden kann.
In einerweiteren möglichen Ausgestaltung des Verfahrens werden als Umgebungsbedingungen
- Lichtverhältnisse, wie beispielsweise Tageslicht, Nacht oder Blendung durch Sonne,
- Tageszeiten,
- Niederschläge, wie beispielsweise Regen, Schneefall und Nebel und/oder
- Eigenschaften von Umgebungsobjekten, beispielsweise deren Reflektivität, berücksichtigt. Diese Berücksichtigung der Umgebungsbedingungen ermöglicht eine proaktive und im Voraus realisierbare Vermeidung eines kritischen allmählichen oder plötzlichen Verlusts der Lokalisierung des Fahrzeugs aufgrund einer Abnahme einer Dichte und/oder Erkennbarkeit der Landmarken, die beispielsweise auch aufgrund sich ändernder Wetterbedingungen mit nachteiligen Auswirkungen auf die Erfassung plötzlich auftreten kann. Somit kann eine an diese Umgebungsbedingungen angepasste Klassifizierung der Streckenabschnitte durchgeführt werden. Daraus folgend können für unterschiedliche Umgebungsbedingungen unterschiedliche Klassifizierungen durchgeführt werden, welche situationsbezogen, das heißt in Abhängigkeit bei einer späteren Fahrt eines Fahrzeugs vorliegenden Umgebungsbedingungen, bei dessen Routenplanung verwendet werden können.
In einerweiteren möglichen Ausgestaltung des Verfahrens werden als Betriebsarten ein vollautomatisierter Fährbetrieb eines Fahrzeugs, ein hochautomatisierter Fährbetrieb eines Fahrzeugs und/oder ein Betrieb eines Fahrzeugs in einem bestimmtem Geschwindigkeitsbereich vorgegeben und/oder als Fahrmanöver Spurhaltemanöver, Spurwechselmanöver, Überholmanöver und/oder Abbiegemanöver vorgegeben. Diese Vorgabe der Betriebsarten und/oder Fahrmanöver erlaubt eine individuell angepasste Ermittlung einer sicheren Fahrtroute für ein Fahrzeug unter Berücksichtigung der Streckenattribute.
In einem Verfahren zum Betrieb eines Fahrzeugs werden erfindungsgemäß in Abhängigkeit von in einem zuvor beschriebenen Verfahren ermittelten Streckenattributen bestimmte Betriebsarten und/oder Fahrmanöver zugelassen oder gesperrt und/oder es werden oder wird eine während eines automatisierten Fährbetriebs einzuhaltende Route, Fahrspur, Querablage und/oder Fahrgeschwindigkeit bestimmt.
Mittels des Verfahrens können eine Sicherheit und Zuverlässigkeit des Betriebs des Fahrzeugs erhöht werden, da Streckenabschnitte mit geringer Dichte von Landmarken, die zu einer hohen Unsicherheit und/oder einer geringen Integrität der Pose eines automatisiert fahrenden Fahrzeugs führen könnten, für zukünftige Fahrtrouten des Fahrzeugs basierend auf einer Auswertung von Kartendaten, beispielsweise a-priori Karten und/oder dynamischen Kartendaten, und einer Umgebungswahrnehmung vorhergesagt werden können. Bei der Ausführung des Verfahrens können bzw. kann ein Verhalten und/oder eine Trajektorie des automatisiert fahrenden Fahrzeugs in einfacher Weise an die bekannten Streckenattribute angepasst werden, so dass beispielsweise mittels einer Lokalisierungsfunktion weiterhin eine ausreichend genaue, sichere und redundante Pose des Fahrzeugs für einen sicheren automatisierten Betrieb basierend auf einer geringen Anzahl von Landmarken bereitgestellt werden kann. Alternativ oder zusätzlich ist es mittels des Verfahrens möglich, das Fahrzeug in einem angepassten, beispielsweise herabgesetzten, Modus zu betreiben, in welchem
Sicherheitsanforderungen für die Bereitstellung einer ausreichend genauen, sicheren und redundanten Pose des Fahrzeugs geringer sind und welcher mit weniger Landmarken ausgeführt werden kann.
In einer möglichen Ausgestaltung des Verfahrens werden die Streckenattribute von dem Fahrzeug von einer zentralen Recheneinheit beispielsweise einem so genannten Backendserver, abgerufen. Dies ermöglicht einerseits, dass im Fahrzeug selbst keine zusätzliche Rechenleistung zur Ausführung der Klassifizierung erforderlich ist. Weiterhin kann die Klassifizierung für eine Vielzahl von Fahrzeugen zentral und somit effektiv und kostengünstig durchgeführt werden. Bei einer Erfassung der zur Klassifizierung erforderlichen Informationen mittels einer Vielzahl von Fahrzeugen können mittels der zentralen Recheneinheit für jedes Fahrzeug besonders exakte und zuverlässige Streckenattribute erzeugt und zu Verfügung gestellt werden.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand von Zeichnungen näher erläutert.
Dabei zeigen:
Fig. 1 schematisch ein Blockschaltbild einer Vorrichtung zum Betrieb eines Fahrzeugs gemäß dem Stand der Technik,
Fig. 2 schematisch ein Blockschaltbild einer Vorrichtung zum Betrieb eines Fahrzeugs und
Fig. 3 schematisch eine Draufsicht einer Fahrstrecke eines Fahrzeugs mit mehreren Streckenabschnitten.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
In Figur 1 ist ein Blockschaltbild einer Vorrichtung 1 zum Betrieb eines automatisiert, insbesondere hochautomatisiert oder autonom fahrenden Fahrzeugs gemäß dem Stand der Technik dargestellt.
Die Vorrichtung 1 umfasst eine digitale Karte 2, eine Fahrzeugsensorik 3, eine Lokalisierungseinheit 4, eine Modellierungseinheit 5 zur Erzeugung eines Modells einer Fahrzeugumgebung und eine Verhaltensplanungseinheit 6. Mittels der Lokalisierungseinheit 4 wird das Fahrzeug anhand von mittels der Fahrzeugsensorik 3 erfassten Umgebungsdaten, beispielsweise erfasster Landmarken, und/oder Kartendaten der digitalen Karte 2, beispielsweise in der Karte hinterlegter Landmarken, in seiner Fahrzeugumgebung lokalisiert.
Als Ergebnis dieser Lokalisierung wird eine Fahrzeugpose an die Modellierungseinheit 5 übertragen, welche ein Modell der Fahrzeugumgebung erzeugt. Anhand dieses Modells plant die Verhaltensplanungseinheit 6 ein zukünftiges Verhalten des Fahrzeugs während des automatisierten Fährbetriebs.
Figur 2 zeigt ein Blockschaltbild eines möglichen Ausführungsbeispiels einer Vorrichtung 7 zum Betrieb eines in Figur 3 dargestellten automatisiert, insbesondere hochautomatisiert oder autonom fahrenden Fahrzeugs 8. Eine Grundfunktion der Vorrichtung 7 entspricht einer Funktion der in Figur 1 dargestellten Vorrichtung 1.
Eine Genauigkeit einer kartenbasierten Lokalisierung eines Fahrzeugs 8 ist zumindest teilweise von einer Anzahl verfügbarer Landmarken und Merkmale für eine Datenzuordnung in einer lokalen, erfassbaren Fahrzeugumgebung abhängig. Ist jedoch nur eine geringe Anzahl von Landmarken vorhanden, nimmt eine Genauigkeit einer auf diesen Landmarken basierenden und mittels der Lokalisierungseinheit 4 ausgeführten primären Lokalisierungsfunktion bis zu einem Punkt ab, an dem die ermittelte Fahrzeugpose nicht mehr genau genug ist und Ausweichmethoden, wie beispielsweise eine auf Odometriedaten basierende Koppelnavigation, verwendet werden müssen, um vorübergehend die Fahrzeugpose zu bestimmen. Diese Ausweichmethoden sind jedoch in der Regel weniger genau als eine kartenmerkmaisbasierte Lokalisierung und führen schnell zu hohen Unsicherheiten bei der Ermittlung der Fahrzeugpose, insbesondere bei mittleren bis hohen Geschwindigkeiten.
Eine Knappheit von Landmarken kann beispielsweise statische Ursachen haben und resultiert hierbei beispielsweise aus Eigenschaften der Umgebung, wie zum Beispiel bei einer Landstraße ohne Gebäude, ohne Masten und/oder ohne Fahrspurmarkierungen, welche (a priori) als wahrnehmbare Landmarken verwendet werden können. Die Knappheit von Landmarken kann jedoch auch dynamische Ursachen haben und resultiert hierbei beispielsweise aus Bedingungen, die eine Leistungsfähigkeit der Fahrzeugsensorik 3, welche die Landmarken erfassen, einschränken. Dies können beispielsweise ungünstige Umgebungsbedingungen, wie zum Beispiel eine Sonnenblendung oder Schnee, oder Verkehrsszenarien, wie zum Beispiel Fahrzeuge, Lastwagen oder Busse, die ein Sichtfeld der Fahrzeugsensorik 3 verdecken, sein.
Um dieses Problem zu beheben, ist vorgesehen, dass in Figur 3 näher dargestellte Streckenabschnitte FS1 bis FS3 in der digitalen Karte 2, in welcher Landmarken für eine landmarkenbasierte Fahrzeuglokalisierung hinterlegt sind, hinsichtlich ihrer Eignung für einen automatisierten Fährbetrieb des Fahrzeugs 8 bewertet werden.
Hierzu werden eine räumliche Dichte von Landmarken und eine erwartete Erkennbarkeit der Landmarken durch die Fahrzeugsensorik 3 bei vorgegebenen Umgebungsbedingungen, insbesondere vorgegebenen Lichtverhältnissen, Tageszeiten, Niederschlägen und/oder Eigenschaften von Umgebungsobjekten, ermittelt. Die erwartete Erkennbarkeit wird insbesondere für jede auf dem Streckenabschnitt FS1 bis FS3 vorhandene Fahrspur und/oder für unterschiedliche Querablagen des Fahrzeugs 8 innerhalb einer Fahrspur ermittelt.
Die Ermittlung der räumlichen Dichte der Landmarken erfolgt beispielsweise durch eine Offline-Analyse der digitalen Karte. Alternativ oder zusätzlich erfolgt die Ermittlung der räumlichen Dichte der Landmarken anhand von Sensordaten des Fahrzeugs 8, von Vermessungsfahrzeugen, anderer automatisiert fahrender Fahrzeuge 8, durch so genanntes Crowd-Sourcing oder so genannte Schwarmquellen erfolgen, wobei hierbei beispielsweise eine Auswertung der Sensordaten hinsichtlich einer Leistung und Redundanz einer Erkennung von Landmarken entlang einer bestimmten Route oder Spur ausgewertet werden. Dabei kann eine Leistung von einer Fahrtrichtung und/oder einer befahrenen Spur abhängen. Beispielsweise werden Informationen über die Erkennbarkeit der Landmarken und/oder aktuelle Umgebungsbedingungen während eines Passierens der Landmarken von einer Mehrzahl von Fahrzeugen 8, beispielsweise Fahrzeugen 8 einer Fahrzeugflotte, erfasst und an eine in Figur 3 näher dargestellte fahrzeugexterne zentrale Recheneinheit 9 übermittelt.
Mittels der zentralen Recheneinheit 9 wird anhand der ermittelten Dichte und Erkennbarkeit der Landmarken eine Klassifizierung dahingehend durchgeführt, ob ein Fahrzeug 8 auf einem Streckenabschnitt FS1 bis FS3 mit einer für eine vorgegebene Betriebsart und/oder für ein vorgegebenes Fahrmanöver geforderten Mindestgenauigkeit lokalisiert werden kann. Dabei werden als Betriebsarten beispielsweise ein vollautomatisierter Fährbetrieb eines Fahrzeugs 8, ein hochautomatisierter Fährbetrieb eines Fahrzeugs 8 und/oder ein Betrieb eines Fahrzeugs 8 in einem bestimmtem Geschwindigkeitsbereich vorgegeben werden. Als Fahrmanöver werden beispielsweise Spurhaltemanöver, Spurwechselmanöver, Überholmanöver und/oder Abbiegemanöver vorgegeben.
Im Ergebnis der Klassifizierung wird ein Klassifizierungsergebnis als Datensatz in einem dem Streckenabschnitt FS1 bis FS3 zugeordneten Streckenattribut hinterlegt, wobei das Streckenattribut angibt, für welche der vorgegebenen Betriebsarten und/oder Fahrmanöver bei welchen der vorgegebenen Umgebungsbedingungen Anforderungen an die Mindestgenauigkeit der landmarkenbasierten Fahrzeuglokalisierung erfüllt sind. Zusätzlich wird mittels des Klassifizierungsergebnisses und des zugehörigen Streckenattributs beispielsweise angegeben, auf welcher Fahrspur und/oder bei welcher Querablage des Fahrzeugs 8 die für die jeweilige Betriebsart und/oder für das jeweilige Fahrmanöver geforderte Mindestgenauigkeit der Fahrzeuglokalisierung eingehalten werden kann. Weiterhin kann zusätzlich mittels des Klassifizierungsergebnisses und des zugehörigen Streckenattributs angegeben werden, welche Fahrspur und/oder welche Querablage des Fahrzeugs 8 für die jeweilige Betriebsart und/oder das jeweilige Fahrmanöver am geeignetsten sind oder ist.
Die Klassifizierung kann beispielsweise zwischen folgenden Streckenattributen unterscheiden:
Anzahl vorhandener Landmarken ist ausreichend;
Anzahl vorhandener Landmarken ist nicht ausreichend;
Dichte von Landmarken für bestimmte Fahrmanöver ist ausreichend;
Dichte von Landmarken für bestimmte Fahrmanöver ist nicht ausreichend;
Qualität einer Landmarke eines bestimmten Typs ist ausreichend;
Qualität einer Landmarke eines bestimmten Typs ist nicht ausreichend;
Landmarken nur eines bestimmten Typs verfügbar;
Landmarken nur einer bestimmten Sensormodalität verfügbar.
Weiterhin können die Streckenattribute dahingehend erweitert werden, dass diese auch eine Wahrscheinlichkeit einer geringen Dichte von Landmarken aufgrund von Einschränkungen der Fahrzeugsensorik 3 in Abhängigkeit von bestimmten Umgebungsbedingungen umfassen und klassifizieren, wie zum Beispiel Lichtverhältnisse, wie beispielsweise Tageslicht, Nacht, Dämmerung;
Tageszeiten, wie zum Beispiel eine Fahrt in Richtung eines Sonnenuntergangs, was zu Blendungen führen kann; Niederschläge, wie beispielsweise Regen, Schneefall und Nebel; und/oder Eigenschaften von Umgebungsobjekten, beispielsweise deren Reflektivität.
Diese Merkmale bzw. Umgebungsbedingungen können dann im Fahrzeug 8 unter Berücksichtigung der aktuellen Umgebungsbedingungen ausgewertet werden, die entweder von der Fahrzeugsensorik 3 oder einer Fusion mehrerer Sensoriken und/oder von der zentralen Recheneinheit 9 bereitgestellt werden, und/oder durch Überprüfen einer Tageszeit in Bezug auf einen Sonnenaufgang und Sonnenuntergang erfasst werden können, um eine Möglichkeit einer unzureichenden Anzahl von Landmarken auf den Fahrspurabschnitten FS1 bis FS3 zu bestimmen.
Die Streckenattribute sind in einer möglichen Ausgestaltung dahingehend erweitert, dass auch eine Wahrscheinlichkeit unzureichender Landmarken aufgrund von Einschränkungen der Fahrzeugsensorik 3 in Abhängigkeit von Verkehrssituationen, beispielsweise aufgrund von Verdeckungen aufgrund hoher Fahrzeuge, und/oder besonderen Ereignissen, beispielsweise Rauch aufgrund von Waldbränden, zu klassifizieren. Diese Streckenattribute werden beispielsweise im Fahrzeug unter Berücksichtigung einer aktuellen Verkehrssituation und der Ereignisse, welche von der zentralen Recheneinheit 9 bereitgestellt oder von der Fahrzeugsensorik 3 vorausschauend erfasst werden, ausgewertet.
Die Modellierungseinheit 5 kann somit aufgrund der Kenntnis der Streckenattribute sowie gegebenenfalls weiterer Informationen aus der digitalen Karte 2, der Fahrzeugsensorik 3, der zentralen Recheneinheit 9 und/oder mittels maschinellem Lernen 10 ein angepasstes Modell der Fahrzeugumgebung erzeugen und sendet gegebenenfalls eine entsprechende Information zur Anpassung und Beschränkung des Betriebs des Fahrzeugs 8 an die Verhaltensplanungseinheit 6. Die unterbrochen dargestellten Verbindungen stellen Schnittstellen dar, welche von der Modellierungseinheit 5 zur Vorhersage des Modells verwendet werden.
In Figur 3 ist eine Draufsicht einer Fahrstrecke FS eines Fahrzeugs 8 mit mehreren Streckenabschnitten FS1 bis FS3 dargestellt.
Dabei bewegt sich das Fahrzeug 8 in einem Streckenabschnitt FS1 in einem normalen autonomen Fährbetrieb in Richtung der Streckenabschnitte FS2, FS3. Aufgrund der Kenntnis der gemäß der Beschreibung ermittelten Streckenattribute ist bereits vor Erreichen der Streckenabschnitte FS2, FS3 bekannt, dass in Streckenabschnitt FS3 Einschränkungen für den automatisierten Fährbetrieb des Fahrzeugs 8 vorliegen. Die Streckenattribute werden hierzu vom Fahrzeug 8 beispielsweise von der zentralen Recheneinheit 9 abgerufen.
Aufgrund dieser Kenntnis kann das Fahrzeug 8 bereits bei Erreichen des zweiten Streckenabschnitts FS2 bestimmte Betriebsarten und/oder Fahrmanöver derart beschränken und/oder eine während des automatisierten Fährbetriebs einzuhaltende Route, Fahrspur, Querablage und/oder Fahrgeschwindigkeit bestimmen, dass bei Eintritt in den dritten Streckenabschnitt FS3 trotz geringer Dichte an Landmarken ein sicherer Betrieb des Fahrzeugs 8 möglich ist. Diese kann online oder offline ausgeführt werden und überprüft die Streckenattribute der vorausliegenden Streckenabschnitte FS1 bis FS3 und ermittelt Gebiete mit einer hohen Wahrscheinlichkeit einer geringen Dichte von Landmarken. Wenn ein solcher Bereich, wie beispielsweise der Streckenabschnitt FS3, bestimmt wird, werden die Anpassungsmaßnahmen ausgelöst, bevor dieser Streckenabschnitt FS3 erreicht wird.
Die Anpassungsmaßnahmen umfassen beispielsweise: eine Anpassung oder Reduzierung einer Fahrzeuggeschwindigkeit; eine Bevorzugung einer Position innerhalb einer Fahrspur (links, mittig, rechts); eine Bevorzugung einer bestimmten Fahrspur auf einer mehrspurigen Fahrbahn; eine Einschränkung eines Fahrzeugverhaltens, zum Beispiel eine Hemmung komplexerer Manöver, wie zum Beispiel Spurwechsel; eine Wahl einer anderen Fahrtroute; und/oder
Anfordern zusätzliche Informationen von der zentralen Recheneinheit.
Eine Auslösung dieser Anpassungsmaßnahmen kann entweder direkt durch Senden dedizierter Befehle an die Verhaltensplanungseinheit 6 und/oder indirekt durch künstliche Veränderung von Qualitäts- oder Integritätsinformationsdaten, beispielsweise in einer Schnittstelle zu der Verhaltensplanungseinheit 6, um eine taktische Sicherheitsreaktion auszulösen, erfolgen.

Claims

Patentansprüche
1. Verfahren zur Bewertung von Streckenabschnitten (FS1 bis FS3) einer digitalen Karte (2) hinsichtlich ihrer Eignung für einen automatisierten Fährbetrieb eines Fahrzeugs (8), wobei in der digitalen Karte (2) Landmarken für eine landmarkenbasierte Fahrzeuglokalisierung hinterlegt sind, dadurch gekennzeichnet, dass für jeden Streckenabschnitt (FS1 bis FS3) der digitalen Karte (2)
- eine räumliche Dichte von Landmarken ermittelt wird,
- eine erwartete Erkennbarkeit der Landmarken durch eine Fahrzeugsensorik (3) bei vorgegebenen Umgebungsbedingungen ermittelt wird,
- anhand der ermittelten Dichte und Erkennbarkeit der Landmarken eine Klassifizierung dahingehend durchgeführt wird, ob ein Fahrzeug (8) auf dem Streckenabschnitt (FS1 bis FS3) mit einer für eine vorgegebene Betriebsart und/oder für ein vorgegebenes Fahrmanöver geforderten Mindestgenauigkeit lokalisiert werden kann, und
- ein Klassifizierungsergebnis als Datensatz in einem dem Streckenabschnitt (FS1 bis FS3) zugeordneten Streckenattribut hinterlegt wird, wobei das Streckenattribut angibt, für welche der vorgegebenen Betriebsarten und/oder Fahrmanöver bei welchen der vorgegebenen Umgebungsbedingungen Anforderungen an die Mindestgenauigkeit der landmarkenbasierten Fahrzeuglokalisierung erfüllt sind.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erwartete Erkennbarkeit für jede auf dem Streckenabschnitt (FS1 bis FS3) vorhandene Fahrspur und/oder für unterschiedliche Querablagen des Fahrzeugs (8) innerhalb einer Fahrspur ermittelt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass mittels des Klassifizierungsergebnisses und des zugehörigen Streckenattributs angegeben wird, auf welcher Fahrspur und/oder bei welcher Querablage des Fahrzeugs (8) die für die jeweilige Betriebsart und/oder für das jeweilige Fahrmanöver geforderte Mindestgenauigkeit der Fahrzeuglokalisierung eingehalten werden kann.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass mittels des Klassifizierungsergebnisses und des zugehörigen Streckenattributs angegeben wird, welche Fahrspur und/oder welche Querablage des Fahrzeugs (8) für die jeweilige Betriebsart und/oder das jeweilige Fahrmanöver am geeignetsten sind oder ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Klassifizierung auf einer fahrzeugexternen zentralen Recheneinheit (9) durchgeführt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Informationen über die Erkennbarkeit der Landmarken und/oder aktuelle Umgebungsbedingungen während eines Passierens der Landmarken von Fahrzeugen (8) erfasst werden.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Umgebungsbedingungen Lichtverhältnisse, Tageszeiten, Niederschläge und/oder Eigenschaften von Umgebungsobjekten berücksichtigt werden.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- als Betriebsarten ein vollautomatisierter Fährbetrieb eines Fahrzeugs (8), ein hochautomatisierter Fährbetrieb eines Fahrzeugs (8) und/oder ein Betrieb eines Fahrzeugs (8) in einem bestimmtem Geschwindigkeitsbereich vorgegeben werden und/oder
- als Fahrmanöver Spurhaltemanöver, Spurwechselmanöver, Überholmanöver und/oder Abbiegemanöver vorgegeben werden.
9. Verfahren zum Betrieb eines Fahrzeugs (8), wobei in Abhängigkeit von in einem Verfahren nach einem der vorhergehenden Ansprüche ermittelten Streckenattributen
- bestimmte Betriebsarten und/oder Fahrmanöver zugelassen oder gesperrt werden und/oder
- eine während eines automatisierten Fährbetriebs einzuhaltende Route, Fahrspur, Querablage und/oder Fahrgeschwindigkeit bestimmt werden bzw. wird.
10. Verfahren nach Anspruch 9, wobei die Streckenattribute von dem Fahrzeug (8) von einer zentralen Recheneinheit (9) abgerufen werden.
PCT/EP2021/054201 2020-03-27 2021-02-19 Verfahren zur bewertung von streckenabschnitten WO2021190840A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227031930A KR20220137996A (ko) 2020-03-27 2021-02-19 경로 구간 평가 방법
CN202180024805.8A CN115516276A (zh) 2020-03-27 2021-02-19 路段评估方法
JP2022558477A JP7505020B2 (ja) 2020-03-27 2021-02-19 経路区間評価方法及び車両操作方法
US17/914,511 US20230135159A1 (en) 2020-03-27 2021-02-19 Method for evaluating route sections

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020108508.7A DE102020108508B3 (de) 2020-03-27 2020-03-27 Verfahren zur Bewertung von Streckenabschnitten
DE102020108508.7 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021190840A1 true WO2021190840A1 (de) 2021-09-30

Family

ID=74672349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/054201 WO2021190840A1 (de) 2020-03-27 2021-02-19 Verfahren zur bewertung von streckenabschnitten

Country Status (6)

Country Link
US (1) US20230135159A1 (de)
JP (1) JP7505020B2 (de)
KR (1) KR20220137996A (de)
CN (1) CN115516276A (de)
DE (1) DE102020108508B3 (de)
WO (1) WO2021190840A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12024204B2 (en) * 2021-04-09 2024-07-02 Direct Cursus Technology L.L.C Method of and system for predicting a maneuver of an object
DE102022111179A1 (de) 2022-05-05 2023-11-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren und vorrichtung zur erzeugung eines auf künstlicher intelligenz beruhenden prädiktors sowie dessen verwendung, und computerprogramm
DE102022125086A1 (de) 2022-09-29 2024-04-04 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Sperrung einer automatisierten Fahrfunktion eines Fahrzeugs
DE102023107281A1 (de) 2023-03-23 2024-09-26 Cariad Se Fahrerassistenzvorrichtung und Verfahren zum Bestimmen der Verfügbarkeit von autonomer Fahrfunktionalität

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014120A1 (de) 2014-09-24 2015-04-02 Daimler Ag Funktionsfreigabe einer hochautomatisierten Fahrfunktion
DE102017004118A1 (de) * 2017-04-27 2018-10-31 Daimler Ag Verfahren zum Betrieb eines Fahrerassistenzsystems
DE102018118220A1 (de) * 2018-07-27 2020-01-30 Man Truck & Bus Se Verfahren zur Schätzung der Lokalisierungsgüte bei der Eigenlokalisierung eines Fahrzeuges, Vorrichtung für die Durchführung von Verfahrensschritten des Verfahrens, Fahrzeug sowie Computerprogramm

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015220360A1 (de) 2015-10-20 2017-04-20 Robert Bosch Gmbh Verfahren zur Auswahl einer optimierten Trajektorie
JP7067536B2 (ja) 2018-08-31 2022-05-16 株式会社デンソー 車両制御装置、方法および記憶媒体
JP7156206B2 (ja) 2018-08-31 2022-10-19 株式会社デンソー 地図システム、車両側装置、およびプログラム
DE102019007861A1 (de) 2019-11-13 2021-05-20 Daimler Ag Verfahren zur Freigabe einer Fahrstrecke

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014120A1 (de) 2014-09-24 2015-04-02 Daimler Ag Funktionsfreigabe einer hochautomatisierten Fahrfunktion
DE102017004118A1 (de) * 2017-04-27 2018-10-31 Daimler Ag Verfahren zum Betrieb eines Fahrerassistenzsystems
WO2018197255A1 (de) 2017-04-27 2018-11-01 Daimler Ag Verfahren zum betrieb eines fahrerassistenzsystems und fahrzeug mit einem zur durchführung des verfahrens eingerichtetem fahrerassistenzsystem
DE102018118220A1 (de) * 2018-07-27 2020-01-30 Man Truck & Bus Se Verfahren zur Schätzung der Lokalisierungsgüte bei der Eigenlokalisierung eines Fahrzeuges, Vorrichtung für die Durchführung von Verfahrensschritten des Verfahrens, Fahrzeug sowie Computerprogramm

Also Published As

Publication number Publication date
JP2023520380A (ja) 2023-05-17
CN115516276A (zh) 2022-12-23
KR20220137996A (ko) 2022-10-12
JP7505020B2 (ja) 2024-06-24
DE102020108508B3 (de) 2021-09-02
US20230135159A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
DE102020108508B3 (de) Verfahren zur Bewertung von Streckenabschnitten
DE102015111535B4 (de) Algorithmus zur genauen Krümmungsschätzung für die Bahnplanung von autonom fahrenden Fahrzeugen
DE102018115813A1 (de) Verfahren und systeme zum lokalisieren eines fahrzeugs
EP3491339B1 (de) Verfahren, vorrichtung und computerlesbares speichermedium mit instruktionen zur bestimmung der lateralen position eines fahrzeuges relativ zu den fahrstreifen einer fahrbahn
EP3160813A2 (de) Verfahren zur erstellung eines umfeldmodells eines fahrzeugs
DE102014118079A1 (de) Erlernen des autonomen Fahrverhaltens
DE102020128433A1 (de) Simulation eines autonomen Fahrzeugs zur Verbesserung der Sicherheit und Zuverlässigkeit eines autonomen Fahrzeugs
DE102019214628A1 (de) Validierung von Umfelderfassung mittels Satelitenbildern und SAR-Radardaten
DE102008041679A1 (de) Vorrichtung und Verfahren zur erinnerungsbasierten Umfelderkennung
DE102018100487A1 (de) Objektverfolgung durch unüberwachtes lernen
DE102017129501A1 (de) Autonome Kraftfahrzeug-Objekterkennung
DE102020117340A1 (de) Verfahren zur Umgebungserfassung mit wenigstens zwei unabhängigen bildgebenden Umgebungserfassungssensoren, Vorrichtung zur Durchführung des Verfahrens, Fahrzeug sowie entsprechend ausgelegtes Computerprogramm
DE102018214971A1 (de) Verfahren zur Erstellung einer Karte eines Umfelds eines Fahrzeugs
DE102021000792A1 (de) Verfahren zum Betrieb eines Fahrzeuges
DE102016220581A1 (de) Verfahren und vorrichtung zur bestimmung eines umfeldmodells
DE102023100061A1 (de) Fahrzeugsysteme und zugehörige verfahren mit autonomer höflichkeitsvermeidung
DE102022124247A1 (de) Assistenzsystem mit Modul zur Bestimmung des Führers für automatisierte Fahrzeuge in einer zusammenführenden Trajektorie
DE102021124736A1 (de) Verfahren und Vorrichtung zur Ermittlung einer Positions-Hypothese
DE102017218932B4 (de) Verfahren zur Bewertung einer Trajektorie eines Fortbewegungsmittels
DE102020122356A1 (de) Standortbasierter fahrzeugbetrieb
DE102021108040A1 (de) Verwalten der energie elektronischer einrichtungen in einem fahrzeug
DE102019131446A1 (de) Verfahren zur Erfassung von Umgebungsinformationen für autonom betriebene Fahrzeuge
DE102018213521A1 (de) Verfahren zum Betreiben eines automatisierten Fahrzeugs
DE102022117732B3 (de) Verfahren zur Ausgabe einer Navigationsanweisung in einem Kraftfahrzeug zum Ansteuern einer Haltemöglichkeit sowie Kraftfahrzeug
WO2023186457A1 (de) Verfahren zur verfügbarkeitsvorhersage einer merkmalbasierten lokalisierung eines fahrzeugs und verfahren zum steuern eines fahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21706933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227031930

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022558477

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21706933

Country of ref document: EP

Kind code of ref document: A1