KR20220137996A - 경로 구간 평가 방법 - Google Patents
경로 구간 평가 방법 Download PDFInfo
- Publication number
- KR20220137996A KR20220137996A KR1020227031930A KR20227031930A KR20220137996A KR 20220137996 A KR20220137996 A KR 20220137996A KR 1020227031930 A KR1020227031930 A KR 1020227031930A KR 20227031930 A KR20227031930 A KR 20227031930A KR 20220137996 A KR20220137996 A KR 20220137996A
- Authority
- KR
- South Korea
- Prior art keywords
- vehicle
- route
- landmark
- predefined
- driving
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 48
- 230000007613 environmental effect Effects 0.000 claims abstract description 24
- 101100400452 Caenorhabditis elegans map-2 gene Proteins 0.000 claims abstract description 7
- 238000001556 precipitation Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000012358 sourcing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0011—Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements for on-board computers
- G01C21/3626—Details of the output of route guidance instructions
- G01C21/3644—Landmark guidance, e.g. using POIs or conspicuous other objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements for on-board computers
- G01C21/3626—Details of the output of route guidance instructions
- G01C21/3658—Lane guidance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements for on-board computers
- G01C21/3679—Retrieval, searching and output of POI information, e.g. hotels, restaurants, shops, filling stations, parking facilities
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements for on-board computers
- G01C21/3691—Retrieval, searching and output of information related to real-time traffic, weather, or environmental conditions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3807—Creation or updating of map data characterised by the type of data
- G01C21/3811—Point data, e.g. Point of Interest [POI]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3807—Creation or updating of map data characterised by the type of data
- G01C21/3815—Road data
- G01C21/3822—Road feature data, e.g. slope data
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0055—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/53—Road markings, e.g. lane marker or crosswalk
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/20—Ambient conditions, e.g. wind or rain
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/20—Data confidence level
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/40—High definition maps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/45—External transmission of data to or from the vehicle
- B60W2556/50—External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
-
- G05D2201/0213—
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Ecology (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Medical Informatics (AREA)
- Evolutionary Computation (AREA)
- Game Theory and Decision Science (AREA)
- Artificial Intelligence (AREA)
- Human Computer Interaction (AREA)
- Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- Mathematical Physics (AREA)
- Navigation (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Traffic Control Systems (AREA)
Abstract
본 발명은 차량(8)의 자율 주행 적합성과 관련하여 디지털 지도(2)의 경로 구간(FS1부터 FS3까지)을 평가하는 방법에 관한 것으로, 이때 랜드마크 기반 차량 측위를 위한 랜드마크가 디지털 지도(2)에 저장되어 있다. 본 발명에 따르면 디지털 지도(2)의 각 경로 구간(FS1부터 FS3까지)에 대해 다음이 제시된다.
- 랜드마크의 공간 밀도가 산출된다.
- 랜드마크의 예상 검출 가능성은 사전 정의된 환경 조건에서 차량 센서 시스템(3)에 의해 산출된다.
- 산출된 랜드마크의 밀도 및 검출 가능성을 근거로 사전 정의된 작동 모드 및/또는 사전 정의된 주행 기동에 필요한 최소 정확도로 경로 구간(FS1부터 FS3까지)에서 차량(8)의 측위가 가능한지를 분류한다.
- 분류 결과는 경로 구간(FS1부터 FS3까지)에 할당된 경로 속성에 데이터 레코드로 저장되며, 이때 경로 속성은 어떤 사전 정의된 작동 모드 및/또는 주행 기동에 대해 어떤 사전 정의된 환경 조건에서 랜드마크 기반 차량 측위의 최소 정확도에 대한 요구사항을 충족하는지 지정한다.
- 랜드마크의 공간 밀도가 산출된다.
- 랜드마크의 예상 검출 가능성은 사전 정의된 환경 조건에서 차량 센서 시스템(3)에 의해 산출된다.
- 산출된 랜드마크의 밀도 및 검출 가능성을 근거로 사전 정의된 작동 모드 및/또는 사전 정의된 주행 기동에 필요한 최소 정확도로 경로 구간(FS1부터 FS3까지)에서 차량(8)의 측위가 가능한지를 분류한다.
- 분류 결과는 경로 구간(FS1부터 FS3까지)에 할당된 경로 속성에 데이터 레코드로 저장되며, 이때 경로 속성은 어떤 사전 정의된 작동 모드 및/또는 주행 기동에 대해 어떤 사전 정의된 환경 조건에서 랜드마크 기반 차량 측위의 최소 정확도에 대한 요구사항을 충족하는지 지정한다.
Description
본 발명은 청구항 제1항의 전제부에 따라 경로 구간을 평가하기 위한 방법에 관한 것이다.
본 발명은 또한 차량을 작동시키는 방법에 관한 것이다.
WO 2018/197255 A1에는 디지털 지도에 저장된 랜드마크를 이용하여 차량을 측위하는 차량의 완전 자율 주행 방법이 알려져 있다. 이때 완전 자율 주행은 이러한 주행이 승인된 경로 구간에서만 허용된다. 이러한 승인을 위해서는 전방 경로 구간에서 차량을 측위할 수 있는 측위 정확도가 해당 구간에 맞게 사전 정의된 요구 사항을 충족해야 한다. 이때 디지털 지도에 저장된 랜드마크의 공간 밀도를 근거로 전방 경로 구간의 측위 정확도가 예측된다.
또한, DE 10 2014 014 120 A1에서는 전방 주행 구간에서 차량의 자율 주행 방법을 공개한다. 차량의 자율 주행은 전방 주행 구간의 사전 정의된 구간 길이에 대해 차량에서 차량의 위치가 사전 정의된 한계값보다 더 나은 위치 정확도로 산출되는 것이 충족되고 경로에 관한 디지털 지도 데이터가 사전 정의된 한계값보다 더 나은 위치 정확도로 있는 경우에만 허용된다.
미공개된 DE 10 2019 007 861.6에서는 차량의 자율 주행을 위한 경로 승인 방법을 설명하며, 이때 차량 전방의 주행 구간은 자율 주행 중 차량의 랜드마크 기반 측위를 위해 사용되는 디지털 지도로 주행 구간을 따라 차량의 종방향 및 횡방향 측위 적합성과 관련하여 주행 구간의 경로에 따라 사전 정의된 요구 사항을 충족하는 랜드마크가 있음이 확인되는 경우에만 차량의 자율 주행을 위해 승인된다. 또한, 차량의 측위 정확도에 근거하여 경로 구간에 따라 자율 주행을 위해 차량의 최대 주행 속도가 사전 정의된다.
본 발명은 차량의 자율 주행에 대한 적합성과 관련하여 디지털 지도의 경로 구간을 평가하기 위한, 선행 기술에 비해 개선된 방법 및 차량 작동 방법을 제시하는 것을 목적으로 한다.
이 목적은 청구항 제1항에 명시된 특징을 갖는 경로 구간을 평가하는 방법 및 청구항 제9항에 명시된 특징을 갖는 차량 작동 방법을 통해 본 발명에 따라 달성된다.
본 발명의 바람직한 실시예는 종속항의 대상이다.
차량의 자율 주행 적합성과 관련하여 디지털 지도의 경로 구간을 평가하는 방법에서, 랜드마크 기반 차량 측위를 위한 랜드마크가 디지털 지도에 저장되어 있으며 랜드마크의 공간 밀도는 본 발명에 따라 디지털 지도의 각 경로 구간에 대해 산출된다. 또한, 경로 구간별로 특정 환경 조건에서 차량 센서 시스템에 의해 랜드마크의 예상 검출 가능성을 산출하고 산출된 밀도와 랜드마크의 검출 가능성을 근거로, 사전 정의된 작동 모드 및/또는 사전 정의된 주행 기동에 필요한 최소 정확도로 경로 구간에서 차량이 측위 가능한지 여부를 분류한다. 또한, 디지털 지도의 각 경로 구간에 대해 분류 결과는 경로 구간에 할당된 경로 속성에 데이터 레코드로 저장되며 이때 경로 속성은 어떤 사전 정의된 작동 모드 및/또는 주행 기동에서, 어떤 사전 정의된 환경 조건에서 랜드마크 기반 차량 측위의 최소 정확도에 대한 요구 사항을 충족하는지 제시한다.
차량, 예컨대 자율 주행 차량, 특히 고도 자율 주행 차량과 같은 차량의 지도 기반 측위 정확도는 적어도 부분적으로는, 사용 가능한 기준점의 수, 즉 검출 가능한 국부적인 환경에 있는 데이터 할당을 위한 랜드마크와 특징의 수에 따라 좌우된다. 그러나 랜드마크의 수가 적은 경우 이러한 랜드마크를 기반으로 하는 1차 측위 기능의 정확도는 산출된 차량 위치(pose)가 더 이상 정확하지 않고 차량 위치를 임시로 측정하려면 예컨대 주행 거리 측정 데이터를 기반으로 한 추측 항법과 같은 대체 방법을 사용하여야 하는 정도까지 떨어진다. 그러나 이러한 대체 방법은 일반적으로 지도 특징 기반 측위보다 정확도가 떨어지고 특히 중속에서 고속까지의 속도에서 자율 주행 차량과 같은 차량의 위치에서 높은 불확실성으로 빠르게 이어진다.
또한 특정 상황에서 차량의 성능을 현저히 저하시키는 문제나 제한이 발생한 후 자율 주행 차량은 수백 미터 떨어져 있을 수 있는 예컨대 갓길과 같은 안전한 장소에 도달하기 위해 최대 2분의 긴 구간을 자율 주행으로 이동해야 한다.
또한, 랜드마크가 갑자기 부족하면 지도 기반으로 산출된 차량 위치(pose) 및/또는 측위의 급격한 저하 또는 손실로 이어져 더 먼 안전한 장소에 도달하지 못할 위험이 있거나 예컨대 급제동을 수행하여 안전한 상태로 안전한 궤적을 따를 가능성이 제한될 위험이 있을 수 있다.
랜드마크를 기반으로 하는 차량의 측위가 기본적으로 아직 충분한 정확도로 가능하더라도, 예컨대 ISO 26262에 따른 결과의 무결성은 낮을 수 있다. 즉, 일반적으로 이른바 자동차 안전 무결성 수준 B(줄여서 ASIL B)를 충족하고, ASIL D는 충족하지 않는 이른바 Pole과 같은 한 가지 유형의 기능만 있거나 또는 이른바 라이다(Lidar)와 같은 한 가지 유형의 센서 방식만 있는 경우 자율 주행 차량은 이러한 무결성 감소에 반응하고 성능도 저하될 수밖에 없다.
그러나 이 방법을 사용하면 자율 주행 차량 위치의 낮은 무결성 및/또는 높은 불확실성으로 이어질 수 있는 랜드마크 저밀도 경로 구간이 차량의 향후 경로를 위해 예컨대 선험적 지도 및/또는 동적 지도 데이터와 같은 지도 데이터의 평가나 환경 인식을 기반으로 예측될 수 있다. 이러한 랜드마크 저밀도 경로 구간이 차량 경로에 있는 경우 자율 주행 차량의 거동 및/또는 궤적은 측위 기능을 사용하여 적은 수의 랜드마크를 기반으로 더 안전한 자율 주행을 위해 충분히 정확하고 안전하며 중복된 차량 위치를 제공할 수 있도록 조정될 수 있다. 대안적으로 또는 추가적으로, 이 방법을 사용하면 차량의 충분히 정확하고 안전하며 중복된 위치를 제공하기 위해 안전 요구사항이 더 낮으면서 더 적은 랜드마크로 실행될 수 있는 조정 모드에서 차량을 작동할 수 있다.
즉, 차량의 자율 주행을 위한 디지털 지도의 경로 구간의 적합성을 예측함으로써, 자율 주행 차량은 위험한 이벤트 및/또는 심각한 상황이 발생할 수 있는 랜드마크의 밀도 및/또는 검출 가능성의 감소를 방지하여 점진적 또는 갑작스러운 위험한 측위 손실을 사전에 예방할 수 있다.
방법의 가능한 일 실시예에서, 예상 검출 가능성은 경로 구간에 있는 각 차선에 대해 및/또는 차선 내에 차량의 상이한 가로 오프셋에 대해 산출된다. 이를 통해 각 차선 및/또는 가로 오프셋에 대해 랜드마크의 검출 가능성을 정확하게 예측할 수 있으므로 자율 주행 차량에서 사용하면 안전 측면에서 최적화된 경로를 산출할 수 있다.
방법의 가능한 다른 일 실시예에서, 분류 결과와 해당 경로 속성을 사용하여 어떤 차선에서 및/또는 차량의 어떤 가로 오프셋에서 해당 작동 모드 및/또는 해당 주행 기동에 필요한 차량 측위의 최소 정확도를 준수할 수 있는지 제시된다. 이로 인해 자율 주행 차량에 사용하면 안전 측면에서 최적화된 경로를 산출할 수 있다.
방법의 가능한 다른 일 실시예에서, 분류 결과 및 연관된 경로 속성을 사용하여 어떤 차선 및/또는 차량의 어떤 가로 오프셋이 해당 작동 모드 및/또는 해당 주행 기동에 가장 적합한지를 제시한다. 이를 통해 차량이 목적지에 안전하게 도착할 확률이 가장 높은 작동 모드를 사전에 선택할 수 있다.
방법의 가능한 다른 일 실시예에서, 분류는 예컨대 이른바 백엔드 서버라고 하는 차량 외부의 중앙 처리 장치에서 실행된다. 이로 인해 한편으로 분류를 수행하기 위해 차량 자체에 추가 컴퓨팅 성능이 필요하지 않을 수 있다. 또한, 다수의 차량에 대한 분류를 중앙에서 효과적이고 비용 효율적으로 수행할 수 있다.
방법의 가능한 다른 일 실시예에서, 차량이 랜드마크를 통과하는 동안 랜드마크 및/또는 현재 환경 조건의 검출 가능성에 대한 정보가 수집된다. 이러한 방식으로 수집된 정보는 차량 자체에서 분산 처리되어 경로 구간을 분류하거나 분류를 수행하는 차량 외부의 적절한 중앙 처리 장치로 전송될 수 있다. 차량의 수가 많기 때문에 랜드마크의 검출 가능성에 관한 정보를 매우 신뢰할 수 있게 수집하여 분류의 신뢰도를 크게 높일 수 있다.
방법의 가능한 다른 일 실시예에서는 다음과 같은 환경 조건을 고려한다.
- 일광, 야간 또는 태양의 눈부심과 같은 광 조건
- 하루 중 시간
- 비, 강설 및 안개와 같은 강수 및/또는
- 반사율과 같은 주변 객체의 속성
이러한 환경 조건의 고려는 예컨대 변화하는 기상 조건으로 인해 검출에 부정적인 영향을 미치며 갑자기 발생할 수 있는 랜드마크의 밀도 및/또는 검출 가능성 감소로 인해 차량의 측위가 점진적으로 또는 갑작스럽게 위험하게 손실되는 것을 사전 예방적이고 미리 구현 가능한 방식으로 방지할 수 있다. 이렇게 하여 이러한 환경 조건에 맞게 조정된 경로 구간의 분류가 수행될 수 있다. 그 결과, 다양한 환경 조건에 맞게 다양한 분류가 수행될 수 있는데, 상황에 따라, 즉, 차량의 향후 주행 시 있을 수 있는 환경 조건에 따라 경로 계획에서 사용할 수 있는 다양한 분류가 수행될 수 있다.
방법의 가능한 다른 일 실시예에서, 차량의 완전 자율 주행, 차량의 고도 자율 주행 및/또는 특정 속도 범위에서 차량 작동이 작동 모드로 사전 정의되고/되거나 차선 유지 기동, 차선 변경 기동, 추월 기동 및/또는 회전 기동이 주행 기동으로 사전 정의된다. 작동 모드 및/또는 주행 기동의 이러한 사전 정의는 경로 속성을 고려하여 차량의 안전한 주행 경로를 개별적으로 조정하여 산출할 수 있게 한다.
본 발명에 따른 차량 작동 방법에서, 특정 작동 모드 및/또는 주행 기동은 이전에 설명된 방법으로 산출된 경로 속성에 따라 허용되거나 차단되며 및/또는 자율 주행 중 따라야 하는 경로, 차선, 가로 오프셋 및/또는 주행 속도가 결정된다.
이 방법을 사용하면 자율 주행 차량 위치의 낮은 무결성 및/또는 높은 불확실성으로 이어질 수 있는 랜드마크 저밀도 경로 구간이 차량의 향후 경로를 위해 예컨대 선험적 지도 및/또는 동적 지도 데이터와 같은 지도 데이터의 평가와 환경 인식을 기반으로 예측될 수 있기 때문에 차량 주행의 안전성과 신뢰성을 높일 수 있다. 이 방법의 실행 시 자율 주행 차량의 거동 및/또는 궤적이 알려진 경로 속성에 맞게 간단한 방식으로 조정될 수 있기 때문에 소수의 랜드마크를 기반으로 안전한 자율 주행을 위한 차량의 충분히 정확하고 안전하며 중복된 위치가 측위 기능을 통해 제공될 수 있다. 대안적으로 또는 추가적으로, 이 방법을 사용하면 차량의 충분히 정확하고 안전하며 중복된 위치를 제공하기 위해 안전 요구사항이 더 낮으면서 더 적은 랜드마크로 실행될 수 있는 조정 모드에서 차량을 작동할 수 있다.
방법의 가능한 일 실시예에서, 경로 속성은 예컨대 이른바 백엔드 서버와 같은 중앙 처리 장치에 의해 차량에서 호출된다. 이로 인해 한편으로 분류를 수행하기 위해 차량 자체에 추가 컴퓨팅 성능이 필요하지 않을 수 있다. 또한, 다수의 차량에 대한 분류를 중앙에서 효과적이고 비용 효율적으로 수행할 수 있다. 다수의 차량을 사용하여 분류에 필요한 정보를 수집할 때, 중앙 처리 장치를 사용하여 각 차량에 대해 특히 정확하고 신뢰할 수 있는 경로 속성을 생성하고 제공할 수 있다.
본 발명의 예시적인 실시예는 도면을 참조하여 아래에서 더 상세히 설명한다.
도 1은 선행 기술에 따른 차량을 작동시키기 위한 장치의 개략적인 블록도를 도시한다.
도 2는 차량을 작동시키기 위한 장치의 개략적인 블록도를 도시한다.
도 3은 복수의 경로 구간이 있는 한 차량의 주행 구간의 개략적인 평면도를 도시한다.
서로 일치하는 부분들은 모든 도면에서 동일한 참조 기호를 붙인다.
도 1은 선행 기술에 따른 차량을 작동시키기 위한 장치의 개략적인 블록도를 도시한다.
도 2는 차량을 작동시키기 위한 장치의 개략적인 블록도를 도시한다.
도 3은 복수의 경로 구간이 있는 한 차량의 주행 구간의 개략적인 평면도를 도시한다.
서로 일치하는 부분들은 모든 도면에서 동일한 참조 기호를 붙인다.
도 1에서는 선행 기술에 따른 자율 주행, 특히 고도 자율 주행 차량을 작동하기 위한 장치(1)의 블록도를 도시한다.
장치(1)은 디지털 지도(2), 차량 센서 시스템(3), 측위 장치(4), 차량 환경의 모델을 생성하기 위한 모델링 유닛(5) 및 거동 계획 유닛(6)을 포함한다.
측위 장치(4)를 사용하여 차량은 예컨대 검출된 랜드마크 등 차량 센서 시스템(3)에 의해 수집된 환경 데이터 및/또는 지도에 저장된 랜드마크 등 디지털 지도(2)의 지도 데이터를 기반으로 차량의 위치를 측정한다.
이러한 측위의 결과로서 차량 위치는 차량 환경의 모델을 생성하는 모델링 유닛(5)으로 전송된다. 이 모델에 근거하여, 거동 계획 유닛(6)은 자율 주행 중 차량의 향후 거동을 계획한다.
도 2는 도 3에 도시된 자율 주행, 특히 고도 자율 주행 차량(8)을 작동하기 위한 장치(7)의 가능한 일 실시예의 블록도를 도시한다. 장치(7)의 기본 기능은 도 1에 도시된 장치(1)의 기능에 일치한다.
차량(8)의 지도 기반 측위 정확도는 적어도 부분적으로는, 검출 가능한 국부적인 차량 환경에서 데이터 할당에 사용할 수 있는 랜드마크의 수와 특징에 따라 좌우된다. 그러나, 랜드마크의 수가 적은 경우 이러한 랜드마크를 기반으로 하고 측위 장치(4)에 의해 실행되는 1차 측위 기능의 정확도는 산출된 차량 위치가 더 이상 정확하지 않고 차량 위치를 임시로 측정하려면 예컨대 주행 거리 측정 데이터를 기반으로 한 추측 항법과 같은 대체 방법을 사용하여야 하는 정도까지 떨어진다. 그러나 이러한 대체 방법은 일반적으로 지도 특징 기반 측위보다 정확도가 떨어지며 특히 중속에서 고속까지의 속도에서 차량 위치를 결정할 때 높은 불확실성으로 빠르게 이어진다.
랜드마크 부족에는 예컨대 (선험적으로) 인식 가능한 랜드마크로 사용될 수 있는 건물, 전주 및/또는 차선 표시가 없는 지방도로와 같은 환경 특성으로 인해 발생하는 정적 원인이 있을 수 있다. 또한 랜드마크 부족에는 예컨대 랜드마크를 검출하는 차량 센서 시스템(3)의 성능을 제한하는 조건에서 비롯되는 동적 원인이 있을 수 있다. 예컨대, 눈부신 태양이나 눈과 같은 열악한 환경 조건, 또는 차량 센서 시스템(3)의 시야를 가리는 차량, 화물차, 버스와 같은 교통 시나리오 등이 그 원인일 수 있다.
이러한 문제를 해결하기 위해, 차량(8)의 자율 주행 적합성과 관련하여 랜드마크 기반 차량 측위를 위해 저장된 디지털 지도(2)에서 도 3에 보다 상세하게 도시된 경로 구간(FS1부터 FS3까지)이 평가되는 것이 제시된다.
이를 위해, 랜드마크의 공간 밀도 및 차량 센서 시스템(3)에 의한 랜드마크의 예상 검출 가능성은 지정된 환경 조건, 특히 특정 광 조건, 하루 중 시간, 강수량 및/또는 주변 객체의 특성에서 산출된다. 예상 검출 가능성은 특히 경로 구간(FS1부터 FS3까지)에 있는 각 차선에 대해 및/또는 차선 내에 차량(8)의 상이한 가로 오프셋에 대해 산출된다.
랜드마크의 공간 밀도는 예컨대 디지털 지도의 오프라인 분석을 통해 산출된다. 대안적으로 또는 추가적으로, 랜드마크의 공간 밀도는 차량(8), 측량 차량, 다른 자율 주행 차량(8)의 센서 데이터를 기반으로 이른바 크라우드 소싱이나 이른바 스웜 소스에 의해 산출되며, 이때 특정 경로나 차선을 따라 랜드마크 검출의 성능 및 리던던시와 관련하여 센서 데이터의 평가가 평가된다. 이때 검출 성능은 주행 방향 및/또는 주행한 차선에 따라 달라질 수 있다. 예컨대, 랜드마크의 검출 가능성 및/또는 현재 환경 조건에 관한 정보는 랜드마크를 통과하는 동안 복수의 차량(8)에 의해, 예컨대 한 차량군의 차량(8)에 의해 수집되고 도 3에서 더 자세히 도시된 차량 외부 중앙 처리 장치(9)로 전송된다.
중앙 처리 장치(9)를 통해 랜드마크의 산출된 밀도 및 검출 가능성에 근거하여 차량(8)이 사전 정의된 작동 모드 및/또는 사전 정의된 주행 기동에 필요한 최소 정확도로 경로 구간(FS1 ~ FS3)에서 측위 가능한지 분류된다. 이 경우, 예컨대 차량(8)의 완전 자율 주행, 차량(8)의 고도 자율 주행 및/또는 차량(8)의 특정 속도 범위에서 작동이 작동 모드로 사전 정의된다. 예컨대 차선 유지 기동, 차선 변경 기동, 추월 기동 및/또는 회전 기동은 주행 기동으로 사전 정의된다.
분류의 결과에서, 분류 결과는 경로 구간(FS1부터 FS3까지)에 할당된 경로 속성에 데이터 레코드로 저장되며, 이때 경로 속성은 어떤 사전 정의된 작동 모드 및/또는 주행 기동에서 어떤 사전 정의된 환경 조건에서 랜드마크 기반 차량 측위의 최소 정확도에 대한 요구 사항이 충족되는지 지정한다. 또한, 분류 결과 및 해당 경로 속성을 통해 예컨대 어떤 차선 및/또는 차량(8)의 어떤 가로 오프셋에서 해당 작동 모드 및/또는 해당 주행 기동에 필요한 차량 측위의 최소 정확도를 준수할 수 있는지 지정된다. 더욱이, 분류 결과 및 해당 경로 속성을 통해 또한 어떤 차선 및/또는 차량(8)의 어떤 가로 오프셋이 해당 작동 모드 및/또는 해당 주행 기동에 가장 적합한지를 지정할 수도 있다.
분류는 예컨대 다음 경로 속성을 구분할 수 있다.
- 기존 랜드마크의 수가 충분함
- 기존 랜드마크의 수가 충분하지 않음
- 특정 주행 기동을 위한 랜드마크의 밀도가 충분함
- 특정 주행 기동을 위한 랜드마크의 밀도가 충분하지 않음
- 특정 유형의 랜드마크 품질이 충분함
- 특정 유형의 랜드마크 품질이 충분하지 않음
- 특정 유형의 랜드마크만 사용할 수 있음
- 특정 센서 방식의 랜드마크만 사용할 수 있음
또한, 경로 속성은 다음과 같은 특정 환경 조건에 따라 차량 센서 시스템(3)의 한계로 인해 랜드마크의 밀도가 낮을 확률도 포함하여 분류하도록 확장될 수 있다.
- 일광, 야간, 황혼과 같은 광 조건
- 일몰 방향으로 주행할 때와 같이 눈이 부실 수 있는 하루 중 시간
- 비, 강설, 안개 등과 같은 강수
- 반사율과 같은 주변 객체의 속성
이러한 특징 및 환경 조건은 차선 구간(FS1부터 FS3)에 랜드마크의 수가 불충분할 가능성을 확인하기 위해 차량 센서 시스템(3)이나 여러 센서의 융합 및/또는 중앙 처리 장치(9)에서 제공되고/제공되거나 일출 및 일몰과 관련된 시간을 확인하여 수집할 수 있는 현재 환경 조건을 고려하여 차량(8)에서 평가될 수 있다.
가능한 일 실시예에서, 경로 속성은 교통 상황에 따라, 예컨대 높은 차량으로 인한 폐색 및/또는 예컨대 산불로 인한 연기 등 특별 이벤트로 인한 차량 센서 시스템(3)의 제한으로 인해 불충분한 랜드마크의 확률도 분류하도록 확대되었다. 이러한 경로 속성은 예컨대 중앙 처리 장치(9)에 의해 제공되거나 차량 센서 시스템(3)에 의해 미리 감지되는 이벤트 및 현재 교통 상황을 고려하여 차량에서 평가된다.
모델링 장치(5)는 따라서 경로 속성에 대한 지식 및 디지털 지도(2), 차량 센서 시스템(3), 중앙 처리 장치(9) 및/또는 머신 러닝(10)을 통한 추가 정보에 근거하여 차량 주변의 조정된 모델을 생성할 수 있고 필요한 경우 차량(8) 작동의 조정과 제한에 관한 해당 정보를 거동 계획 유닛(6)으로 전송한다. 중단된 것으로 도시된 연결은 모델 예측을 위한 모델링 유닛(5)에서 사용되는 인터페이스를 나타낸다.
도 3은 복수의 경로 구간(FS1부터 FS3까지)을 갖는 차량(8)의 주행 구간(FS)의 평면도를 도시한다.
이 경우, 차량(8)은 경로 구간(FS1)에서 통상의 자율 주행으로 경로 구간(FS2, FS3) 방향으로 움직인다. 설명에 따라 산출된 경로 속성의 지식에 근거하여, 경로 구간(FS2, FS3)에 도달하기 전에 경로 구간(FS3)에서 차량(8)의 자율 주행에 제한이 있음을 이미 알게 된다. 이를 위해 경로 속성은 차량(8)에서 예컨대 중앙 처리 장치(9)에서 호출된다.
이러한 지식에 기초하여, 차량(8)은 제2 경로 구간(FS2)에 도달할 때 특정 작동 모드 및/또는 주행 기동을 이미 제한할 수 있고/있거나 자율 주행 중에 따라야 할 경로, 차선, 가로 오프셋 및/또는 주행 속도를 결정하여 제3 경로 구간(FS3)에 진입할 때 랜드마크의 저밀도에도 불구하고 차량(8)의 안전한 운행이 가능하도록 할 수 있다. 이는 온라인 또는 오프라인으로 수행될 수 있으며, FS1부터 FS3까지 전방 경로 구간의 경로 속성을 확인하고 랜드마크 밀도가 낮을 확률이 높은 지역을 산출한다. 경로 구간 FS3과 같이 이러한 영역이 결정되면 이 경로 구간 FS3에 도달하기 전에 조정 조치가 트리거링된다.
조정 조치에는 예컨대 다음이 포함된다.
- 차량 속도의 조정 또는 감속
- 차선 내에서 위치 선호(왼쪽, 중앙, 오른쪽)
- 다중 차선 도로에서 특정 차선 선호
- 차량 거동의 제한, 예: 차선 변경과 같은 더 복잡한 기동의 억제
- 다른 주행 경로 선택
- 중앙 처리 장치에서 추가 정보 요청
이러한 조정 조치는 거동 계획 유닛(6)에 전용 명령을 전송함으로써 직접적으로 및/또는 전술적 안전 반응을 트리거링하기 위해 예컨대 거동 계획 유닛(6) 쪽 인터페이스에서 품질·무결성 정보 데이터를 인위적으로 변경함으로써 간접적으로 트리거링될 수 있다.
Claims (10)
- 차량(8)의 자율 주행 적합성과 관련하여 디지털 지도(2)의 경로 구간(FS1부터 FS3까지)을 평가하는 방법으로서, 디지털 지도(2)에 랜드마크 기반 차량 측위를 위한 랜드마크가 저장되어 있으며
디지털 지도(2)의 각 경로 구간(FS1부터 FS3까지)에 대해
- 랜드마크의 공간 밀도가 산출되고,
- 랜드마크의 예상 검출 가능성은 사전 정의된 환경 조건에서 차량 센서 시스템(3)에 의해 산출되며,
- 산출된 랜드마크의 밀도 및 검출 가능성을 근거로 사전 정의된 작동 모드 및/또는 사전 정의된 주행 기동에 필요한 최소 정확도로 경로 구간(FS1부터 FS3까지)에서 차량(8)의 측위가 가능한지를 분류하고,
- 분류 결과는 경로 구간(FS1부터 FS3까지)에 할당된 경로 속성에 데이터 레코드로 저장되며, 이때 경로 속성은 어떤 사전 정의된 작동 모드 및/또는 주행 기동에 대해 어떤 사전 정의된 환경 조건에서 랜드마크 기반 차량 측위의 최소 정확도에 대한 요구사항을 충족하는지 지정하도록 제시하는 것을 특징으로 하는 방법. - 제1항에 있어서,
예상 검출 가능성이 경로 구간(FS1부터 FS3까지)에 있는 각 차선 및/또는 차선 내에 차량(8)의 상이한 가로 오프셋에 대해 산출되는 것을 특징으로 하는 방법. - 제2항에 있어서,
분류 결과 및 해당 경로 속성을 사용하여 어떤 차선 및/또는 차량(8)의 어떤 가로 오프셋에서 해당 작동 모드 및/또는 해당 주행 기동에 필요한 차량 측위의 최소 정확도를 준수할 수 있는지 제시하는 것을 특징으로 하는 방법. - 제2항 또는 제3항에 있어서,
분류 결과 및 해당 경로 속성을 사용하여 어떤 차선 및/또는 차량(8)의 어떤 가로 오프셋이 해당 작동 모드 및/또는 해당 주행 기동에 가장 적합한지를 제시하는 것을 특징으로 하는 방법. - 제1항 또는 제2 항에 있어서,
차량 외부 중앙 처리 장치(9)에서 분류가 수행되는 것을 특징으로 하는 방법. - 제1항 또는 제2 항에 있어서,
차량(8)이 랜드마크를 통과하는 동안 랜드마크의 검출 가능성 및/또는 현재 환경 조건에 관한 정보가 수집되는 것을 특징으로 하는 방법. - 제1항 또는 제2 항에 있어서,
광 조건, 하루 중 시간, 강수 및/또는 주변 객체의 속성이 환경 조건으로 고려되는 것을 특징으로 하는 방법. - 제1항 또는 제2 항에 있어서,
- 차량(8)의 완전 자율 주행, 차량(8)의 고도 자율 주행 및/또는 특정 속도 범위에서 차량(8)의 작동이 작동 모드로 사전 정의되고/정의되거나
- 차선 유지 기동, 차선 변경 기동, 추월 기동 및/또는 선회 기동이 주행 기동으로 사전 정의되는 것을 특징으로 하는 방법. - 차량(8) 작동 방법으로, 제1항 또는 제2 항에 따른 방법으로 산출된 경로 속성에 따라
- 특정 작동 모드 및/또는 주행 기동이 허용 또는 차단되고/되거나
- 자율 주행 중 따라야 할 경로, 차선, 가로 오프셋 및/또는 주행 속도가 결정되는 것을
특징으로 하는 차량 작동 방법. - 제9항에 있어서, 차량(8)에서 경로 속성이 중앙 처리 장치(9)에 의해 호출되는 차량 작동 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020108508.7A DE102020108508B3 (de) | 2020-03-27 | 2020-03-27 | Verfahren zur Bewertung von Streckenabschnitten |
DE102020108508.7 | 2020-03-27 | ||
PCT/EP2021/054201 WO2021190840A1 (de) | 2020-03-27 | 2021-02-19 | Verfahren zur bewertung von streckenabschnitten |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220137996A true KR20220137996A (ko) | 2022-10-12 |
Family
ID=74672349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227031930A KR20220137996A (ko) | 2020-03-27 | 2021-02-19 | 경로 구간 평가 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230135159A1 (ko) |
JP (1) | JP7505020B2 (ko) |
KR (1) | KR20220137996A (ko) |
CN (1) | CN115516276A (ko) |
DE (1) | DE102020108508B3 (ko) |
WO (1) | WO2021190840A1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12024204B2 (en) * | 2021-04-09 | 2024-07-02 | Direct Cursus Technology L.L.C | Method of and system for predicting a maneuver of an object |
DE102022111179A1 (de) | 2022-05-05 | 2023-11-09 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und vorrichtung zur erzeugung eines auf künstlicher intelligenz beruhenden prädiktors sowie dessen verwendung, und computerprogramm |
DE102022125086A1 (de) | 2022-09-29 | 2024-04-04 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und Vorrichtung zur Sperrung einer automatisierten Fahrfunktion eines Fahrzeugs |
DE102023107281A1 (de) | 2023-03-23 | 2024-09-26 | Cariad Se | Fahrerassistenzvorrichtung und Verfahren zum Bestimmen der Verfügbarkeit von autonomer Fahrfunktionalität |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014014120A1 (de) | 2014-09-24 | 2015-04-02 | Daimler Ag | Funktionsfreigabe einer hochautomatisierten Fahrfunktion |
DE102015220360A1 (de) | 2015-10-20 | 2017-04-20 | Robert Bosch Gmbh | Verfahren zur Auswahl einer optimierten Trajektorie |
DE102017004118B4 (de) | 2017-04-27 | 2024-10-17 | Mercedes-Benz Group AG | Verfahren zum Betrieb eines Fahrerassistenzsystems |
DE102018118220B4 (de) | 2018-07-27 | 2020-04-16 | Man Truck & Bus Se | Verfahren zur Schätzung der Lokalisierungsgüte bei der Eigenlokalisierung eines Fahrzeuges, Vorrichtung für die Durchführung von Verfahrensschritten des Verfahrens, Fahrzeug sowie Computerprogramm |
JP7067536B2 (ja) * | 2018-08-31 | 2022-05-16 | 株式会社デンソー | 車両制御装置、方法および記憶媒体 |
JP7156206B2 (ja) * | 2018-08-31 | 2022-10-19 | 株式会社デンソー | 地図システム、車両側装置、およびプログラム |
DE102019007861A1 (de) | 2019-11-13 | 2021-05-20 | Daimler Ag | Verfahren zur Freigabe einer Fahrstrecke |
-
2020
- 2020-03-27 DE DE102020108508.7A patent/DE102020108508B3/de active Active
-
2021
- 2021-02-19 KR KR1020227031930A patent/KR20220137996A/ko unknown
- 2021-02-19 JP JP2022558477A patent/JP7505020B2/ja active Active
- 2021-02-19 US US17/914,511 patent/US20230135159A1/en active Pending
- 2021-02-19 CN CN202180024805.8A patent/CN115516276A/zh active Pending
- 2021-02-19 WO PCT/EP2021/054201 patent/WO2021190840A1/de active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20230135159A1 (en) | 2023-05-04 |
CN115516276A (zh) | 2022-12-23 |
JP7505020B2 (ja) | 2024-06-24 |
DE102020108508B3 (de) | 2021-09-02 |
WO2021190840A1 (de) | 2021-09-30 |
JP2023520380A (ja) | 2023-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8160811B2 (en) | Method and system to estimate driving risk based on a hierarchical index of driving | |
JP6342822B2 (ja) | 自動運転システム、自動運転の方法及びコンピューティング装置 | |
KR20220137996A (ko) | 경로 구간 평가 방법 | |
US10962375B2 (en) | Method and device for evaluating the contents of a map | |
CN111415522A (zh) | 用于规划车辆轨迹的方法 | |
RU2742213C1 (ru) | Способ управления информацией о полосах движения, способ управления движением и устройство управления информацией о полосах движения | |
CN110487288A (zh) | 一种行车道路的估计方法以及行车道路估计系统 | |
EP3232285A1 (en) | Method and arrangement for monitoring and adapting the performance of a fusion system of an autonomous vehicle | |
US20180050694A1 (en) | Method and device for monitoring a setpoint trajectory to be traveled by a vehicle for being collision free | |
EP4101717A1 (en) | Method and system for identifying confidence level of autonomous driving system | |
Kim et al. | Automated complex urban driving based on enhanced environment representation with GPS/map, radar, lidar and vision | |
US10095238B2 (en) | Autonomous vehicle object detection | |
US12058552B2 (en) | Systems and methods for selecting locations to validate automated vehicle data transmission | |
US11142196B2 (en) | Lane detection method and system for a vehicle | |
US11852742B2 (en) | Method for generating a map of the surroundings of a vehicle | |
RU2660425C1 (ru) | Устройство вычисления маршрута движения | |
CN111984018A (zh) | 自动驾驶方法及装置 | |
CN111465972A (zh) | 用于计算交通工具传感器数据的错误概率的系统 | |
CN114274972A (zh) | 自主驾驶环境中的场景识别 | |
US11210941B2 (en) | Systems and methods for mitigating anomalies in lane change detection | |
CN116946127A (zh) | 用于识别本车辆变换或保持车道的方法、控制器及本车辆 | |
CN112985825A (zh) | 用于确定自动驾驶系统的乘坐稳定性的方法 | |
US11801856B2 (en) | Electronic control device and selection method | |
US20240166204A1 (en) | Vehicle Collision Threat Assessment | |
US20230290248A1 (en) | System and method for detecting traffic flow with heat map |