WO2021190821A1 - Verfahren und vorrichtung zur herstellung eines partikelverstärkten kompositwerkstoff-bauteils - Google Patents

Verfahren und vorrichtung zur herstellung eines partikelverstärkten kompositwerkstoff-bauteils Download PDF

Info

Publication number
WO2021190821A1
WO2021190821A1 PCT/EP2021/053750 EP2021053750W WO2021190821A1 WO 2021190821 A1 WO2021190821 A1 WO 2021190821A1 EP 2021053750 W EP2021053750 W EP 2021053750W WO 2021190821 A1 WO2021190821 A1 WO 2021190821A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
powder
binder
injection molding
unit
Prior art date
Application number
PCT/EP2021/053750
Other languages
English (en)
French (fr)
Inventor
Martin Wilhelm
Josef Arnold
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2021190821A1 publication Critical patent/WO2021190821A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys

Definitions

  • the present invention relates to a method and a device for producing a particle-reinforced composite material component in the form of a Me tallmatrix composite material by powder injection molding.
  • the field of application of the invention extends to a wide variety of applications in which metal matrix composite materials with an increased load-bearing capacity are to be used, preferably in automotive engineering.
  • metal matrix composites have so far been based on light metals such as aluminum, magnesium, titanium, but also copper. They are usually manufactured using casting technology, by introducing hard materials into the molten metal, infiltrating porous preforms and using metal powder pressing.
  • Infiltration is usually preferred when a dry three-dimensional reinforcement construct is present. This can be a semi-finished fiber product or some other open-pore construct. Furthermore, the matrix material must have a low melting point and a low melt viscosity. Therefore, the infiltration usually takes place in the production of high-strength metal matrix lightweight structures with a matrix made of aluminum or magnesium.
  • Liquid phase sintering differs from infiltration in that a low-melting phase is added to the powder pack or this is created during sintering through interactions between the reinforcement phase and the base material. These particles melt in the sintering process and compress the Powder pack.
  • the high-melting phase can partially go into solution. An at least two-phase structure is created.
  • liquid phase sintering and infiltration offer the advantage of a soft, ductile matrix.
  • a component that consists only of the hard metal or the ceramic is usually subject to a brittle material failure. This failure is difficult or impossible to predict and usually ends with a spontaneous failure of the component.
  • a composite material component in the form of a metal matrix composite material by injection molding which has improved material properties in terms of hardness, tensile strength while reducing the material density while maintaining the ductility and increasing the creep resistance Abrasion hardness distinguishes itself.
  • Claim 5 separately specifies a particle-reinforced composite material component.
  • the dependent claims which refer back in each case are directed to advantageous developments of the invention.
  • the invention includes the process engineering teaching that for the production of a particle-reinforced composite material component in the form of a metal matrix Composite material by powder injection molding, the following steps are carried out:
  • the step of granulating B can also include kneading for homogeneous distribution of the particles of the reinforcing powder in the binder-metal powder mixture in order to achieve optimal mixing of the components to be mixed.
  • MIM Metal Injection Molding
  • fine metal powder is mixed with an organic binder and then shaped on an injection molding machine.
  • the binder is then removed again and the component is sintered in an oven at a high temperature.
  • the result is a purely metallic component that combines the mechanical advantages of sintered components with the great variety of shapes of injection molding.
  • the particle-reinforced composite material component according to the invention can be produced using an existing powder injection molding system, which in this respect only needs to be operated specifically.
  • a non-metallic reinforcing powder according to the invention By adding a non-metallic reinforcing powder according to the invention to the base powder consisting of a stainless steel, the material properties of the base metal can be positively changed.
  • a stainless, austenitic chromium-nickel-molybdenum steel of the material group AISI 316 or AISI 316L is preferably used as the base metal.
  • the AISI 316 and AISI 316L standards describe rustproof, austenitic chromium-nickel-molybdenum steels that have good resistance to non-oxidizing acids and media containing chlorine. Due to the chemical composition, the material 316 and the material 316L are naturally corrosion-resistant metal alloys, the latter material being distinguished from the former material by a lower carbon content.
  • the alloy powder serving as reinforcing powder is preferably selected from a non-metal group, including titanium carbonitride, titanium carbide, titanium boride, boron carbide.
  • the organic binder-metal powder mixture contains 5 to 15% by volume of reinforcing powder in order to achieve a significant increase in hardness compared to using the pure basic metal.
  • optimum hardness for the applications according to the invention is achieved. Tests have shown that, starting from a base powder made of an AISI 316L stainless steel without the addition of reinforcing powder, a hardness of 131 VH occurs after sintering at 1255 ° C, whereas a proportion of 6% by volume of titanium carbide has a hardness of 160 VH results.
  • An addition of 12% by volume of reinforcing powder leads to much higher hardness values. Instead, it is also possible to use another of the reinforcing powders specified above, with which comparable results can be achieved. In addition, a significant increase in tensile strength can be observed.
  • the metallic properties of the base powder are largely retained as the base material.
  • the physical-mechanical properties of the base material are improved.
  • These reinforcing materials are almost in their original form in the composite, so they are at most minimally dissolved in the base material.
  • the reinforcing materials themselves usually testify to a brittle failure behavior, which is changed to a controlled failure due to the mostly ductile and soft matrix.
  • the requirements for hardness, strength and rigidity are met to a certain extent.
  • Other phenomena of composite materials and material composites are also desired. Some of these phenomena follow directly from the interaction of the individual constituent parts with one another, which lead to an increase in crack stability, a reduction in weight and an integration of material functions.
  • Fig. 1 is a schematic representation of a manufacturing process chain for the production of a particle-reinforced composite material component by powder injection molding
  • FIG. 2 is a schematic sectional illustration of the reinforcement mechanisms acting in the particle-reinforced composite material component
  • FIG 3 shows a schematic flow chart of the method steps for producing the particle-reinforced composite material component with a device according to claim 1.
  • an apparatus for producing a particle-reinforced composite material component 1 consists essentially of a mixer unit 2 for mixing a base powder 3 made of a stainless steel with a reinforcing powder 4 made of a non-metal.
  • the result is an organic binder / metal powder mixture 5 which, in this exemplary embodiment, contains 12% by volume of reinforcing powder 4.
  • the binder-metal powder mixture is granulated, which converts the different particle sizes contained in the organic binder-metal powder mixture into a pile of particles with narrow particle sizes.
  • the so homogenized granulated binder-metal powder mixture 5 is then fed to an injection molding unit 7 for injection molding in order to give the component to be produced the desired shape.
  • a debinding unit then ensures debinding of the injection-molded green body 9 made from the granulated binder-metal powder mixture.
  • the part 9 is removed from the injection molding unit 7 in order to remove the binder again in a preferably two-stage process. As a result, a green body 9 containing only the mixed components is produced.
  • the green body 9 is then sintered in a sintering unit 10 with the process parameters determined by the starting materials with regard to temperature and pressure, in order to form a solid, particle-reinforced composite material component 1 therefrom.
  • FIG. 2 the difference between a conventional composite material component 11 without particle reinforcement (left side) and a composite material component 1 according to the invention that is reinforced with particles (right side) is illustrated. While crack formation in the conventional composite material component 11 can continue unhindered in the material, the continuation in the fiction according to particle-reinforced composite material component 1 is hindered. This is because, thanks to the introduced particles of the reinforcing powder 4, there is a propagation deflection (a) of the crack 12, grain refinement (b) and dislocation (c).
  • the method for producing the particle-reinforced composite material component 1 comprises the following steps: First there is a mixing A of a base powder 3 made of a stainless steel with a reinforcing powder 4 made of a non-metal. By mixing A, an organic binder-metal powder mixture 5 is produced. The organic binder-metal powder mixture 5 is evened out by granulation B in order to bring it into shape by injection molding C by means of an injection molding unit 7. Subsequently, the resulting green body 9 is to be debindered D before the solid, particle-reinforced composite material component 1 is produced by sintering E of the green body 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung eines partikelverstärkten Kompositwerkstoff-Bauteils (1) in Form eines Metallmatrix- Verbundwerkstoffes durch Pulverspritzgießen, umfassend die folgenden Schritte: Mischen (A) eines Grundpulvers (3) aus einem Edelstahl mit einem Verstärkungspulver (4) aus einem Nichtmetall zur Erzeugung eines organischen Binder-Metallpulver-Gemisches (5); Granulieren (B) des Binder-Metallpulver-Gemisches (5); Spritzgießen (C) des granulierten Binder-Metallpulver-Gemisches (5); Entbindern (D) des spritzgegossenen, aus dem granulierten Binder-Metallpulver-Gemisch (5) hergestellten Grünkörpers (9); Sintern (E) des Grünkörpers (9) zur Erzeugung des festen, partikelverstärkten Kompositwerkstoff-Bauteils (1).

Description

Beschreibung
Titel: Verfahren und Vorrichtung zur Herstellung eines partikelverstärkten Kom- positwerkstoff- Bauteils
Die vorliegende Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Her stellung eines partikelverstärkten Kompositwerkstoff-Bauteils in Form eines Me tallmatrix-Verbundwerkstoffes durch Pulverspritzgießen.
Das Einsatzgebiet der Erfindung erstreckt sich verschiedenste auf Anwendun gen, bei denen Metallmatrix-Verbundwerkstoffe mit einer erhöhten Belastbarkeit zum Einsatz kommen sollen, vorzugsweise in der Kraftfahrzeugtechnik.
Stand der Technik
Gemäß des allgemein bekannten Standes der Technik basieren Metallmatrix- Verbundwerkstoffe bislang auf Leichtmetallen, wie Aluminium, Magnesium, Titan, aber auch Kupfer. Die Herstellung erfolgt gewöhnlich über Gießtechnik, indem Hartstoffe in die Metallschmelze eingebracht werden, eine Infiltration von porö sen Vorformlingen stattfindet sowie durch Metallpulverpressen.
Die Infiltration wird gewöhnlich dann bevorzugt, wenn ein trockenes dreidimensi onales Verstärkungskonstrukt vorliegt. Dies kann ein Faserhalbzeug oder ein an deres offenporiges Konstrukt sein. Des Weiteren muss das Matrixmaterial einen niedrigen Schmelzpunkt sowie eine niedrige Viskosität der Schmelze aufweisen. Daher findet die Infiltration gewöhnlich bei der Herstellung von hochfesten Metall matrix-Leichtbaustrukturen mit einer Matrix aus Aluminium oder Magnesium statt.
Das Flüssigphasensintern unterscheidet sich insofern vom Infiltrieren, dass der Pulverpackung eine niedrigschmelzende Phase hinzugefügt ist oder diese beim Sintern durch Wechselwirkungen zwischen Verstärkungsphase und Grundmate rial entsteht. Diese Partikel schmelzen im Sinterprozess auf und verdichten die Pulverpackung. Hierbei kann die hochschmelzende Phase teilweise mit in Lö sung gehen. Es entsteht ein mindestens zwei-phasiges Gefüge.
Neben der einfach erzielbaren höheren Dichte, aufgrund der Eliminierung der Po rositäten, bietet das Flüssigphasensintern sowie das Infiltrieren den Vorteil einer weichen, duktilen Matrix. Ein Bauteil, welches nur aus dem Hartmetall oder der Keramik besteht, unterliegt für gewöhnlich einem spröden Materialversagen. Die ses Versagen ist nicht oder nur schwer vorhersehbar und endet zumeist mit ei nem spontanen Ausfall des Bauteils.
Bei dem hier interessierenden Feststoffphasensintern wird hingegen keine Kom ponente aufgeschmolzen, wodurch es im Bereich des Metallmatrix-Verbundwerk stoffes aktuell wenig Einsatz findet. Denn es ist technologisch schwieriger, eine Verdichtung zu erzielen und das Schrumpfen der Bauteile ist im Vergleich zur In filtration deutlich höher. Auch sind die meisten derzeit verfügbaren Metallmatrix- Verbundwerkstoffe faserverstärkt, wodurch es prozesstechnisch unmöglich ist, einen derartigen Werkstoff mittels Pulverspritzgießen zu erstellen. Denn die Fa sern würden hierbei brechen.
Vor diesem Hintergrund ist es die Aufgabe der vorliegenden Erfindung ein Kom- positwerkstoff- Bauteil in Form eines Metallmatrix- Verbundwerkstoffes durch Spritzgießen herzustellen, das sich durch verbesserte Materialeigenschaften hin sichtlich Härte, Zugfestigkeit bei Reduzierung der Materialdichte unter Beibehal tung der Duktilität mit Erhöhung der Kriechfestigkeit und Abriebhärte auszeich net.
Offenbarung der Erfindung
Die Aufgabe wird verfahrenstechnisch durch Anspruch 1 gelöst. Hinsichtlich einer Vorrichtung zur Durchführung des Verfahrens wird auf Anspruch 7 verwiesen.
Der Anspruch 5 gibt separat ein partikelverstärktes Kompositwerkstoff- Bauteil an. Jeweils rückbezogene abhängige Ansprüche sind auf vorteilhafte Weiterbildun gen der Erfindung gerichtet.
Die Erfindung schließt die verfahrenstechnische Lehre ein, dass zur Herstellung eines partikelverstärkten Kompositwerkstoff- Bauteils in Form eines Metallmatrix- Verbundwerkstoffes durch Pulverspritzgießen, die nachfolgenden Schritte ausge führt werden:
- Mischen A eines Grundpulvers aus einem Edelstahl mit einem Verstärkungspul ver aus einem Nichtmetall zur Erzeugung eines organischen Binder-Metallpulver- Gemisches,
- Granulieren B des Binder-Metallpulver-Gemisches zu einem sogenannten Feedstock;
- Spritzgießen C des granulierten Binder-Metallpulver-Gemisches;
- Entbindern D des spritzgegossenen, aus dem granulierten Binder-Metallpulver- Gemisch hergestellten Grünkörpers; und
- Sintern E des Grünkörpers zur Erzeugung des festen, partikelverstärkten Kom- positwerkstoff- Bauteils.
Ergänzend sei darauf hingewiesen, dass der Schritt des Granulierens B auch ein Kneten zum homogenen Verteilen der Partikel des Verstärkungspulvers im Bin- der-Metallpulver-Gemisch mit umfassen kann, um eine optimale Durchmischung der zu mischenden Komponenten zu erreichen.
Vorzugsweise wird das Pulverspritzgießen durch das so genannte MIM-Verfah- ren (MIM = Metal Injection Moulding) durchgeführt. Dabei handelt es sich um ein Urformverfahren zur Herstellung von metallischen Bauteilen komplexer Geomet rie, das seinen Ursprung in der Spritzgusstechnologie der Kunststoffe hat. Beim MIM-Verfahren wird feines Metallpulver mit einem organischen Binder vermischt und dann auf einer Spritzgussmaschine in Form gebracht. Anschließend wird der Binder wieder entfernt und das Bauteil bei hoher Temperatur in einem Ofen ge sintert. Als Ergebnis entsteht ein rein metallisches Bauteil, das die mechanischen Vorteile gesinterter Bauteile mit der großen Formgebungsvielfalt des Spritzgie ßens verbindet. Vorteilhafterweise kann das erfindungsgemäße partikelverstärkte Kompositwerkstoff- Bauteil unter Nutzung einer bestehenden Pulverspritzgieß- Anlage hergestellt werden, die insoweit lediglich speziell zu betreiben ist. Durch die erfindungsgemäße Zugabe eines nichtmetallischen Verstärkungspul vers zu dem aus einem Edelstahl bestehenden Grundpulver können die Werk stoffeigenschaften des Grundmetalls positiv verändert werden. Als Grundmetall kommt vorzugsweise ein nichtrostender, austenitischer Chrom-Nickel-Molybdän- Stahl der Werkstoffgruppe AISI 316 oder AISI 316L in Betracht. Die Norm AISI 316 und AISI 316L beschreibt nichtrostende, austenitische Chrom-Nickel-Molyb- dän-Stähle, die eine gute Beständigkeit in nichtoxidierenden Säuren und chlor haltigen Medien aufweisen. Aufgrund der chemischen Zusammensetzung sind das Material 316 und das Material 316L von Natur aus korrosionsbeständige Me talllegierungen, wobei sich das letztgenannte Material durch einen geringeren Kohlenstoffgehalt vom erstgenannten Material unterscheidet. Die analoge inter nationale Bezeichnung der Werkstoffe lautet 1.4401 bzw. 1.4404. In Verbindung hiermit ist das als Verstärkungspulver dienende Legierungspulver vorzugsweise ausgewählt aus einer Nichtmetall-Gruppe, umfassend Titancarbonitrid, Titancar- bid, Titanborid, Borcarbid.
Gemäß einer bevorzugten Ausführungsform der Erfindung enthält das organi sche Binder-Metallpulver-Gemisch 5 bis 15 Vol.-% Verstärkungspulver, um eine signifikante Härtesteigerung gegenüber einer Verwendung des reinen Grundme talls zu erzielen. In einem bevorzugten Bereich von 6 bis 12 Vol.-% Verstär kungspulver wird eine optimale Härte für die erfindungsgegenständlichen Anwen dungen erzielt. Denn Versuche haben ergeben, dass ausgehend von einem Grundpulver aus einem AISI 316L Edelstahl ohne Zusatz von Verstärkungspulver nach dem Sintern bei 1255°C eine Härte von 131 VH auftritt, wohingegen ein An teil von 6 Vol.-% an Titancarbid eine Härte von 160 VH ergibt. Eine Zugabe von 12 Vol.-% an Verstärkungspulver führt zu weitaus höheren Härtewerten. Es kann stattdessen auch ein anderes der vorstehend angegebenen Verstärkungspulver verwendet werden, mit dem vergleichbare Resultate erzielbar sind. Außerdem ist eine signifikante Steigerung der Zugfestigkeit zu beobachten.
Trotz Zugabe des nichtmetallischen Verstärkungspulvers bleiben die metalli schen Eigenschaften des Grundpulvers als Grundmaterial weitestgehend erhal ten. Es werden jedoch die physikalisch-mechanischen Eigenschaften des Grund werkstoffes verbessert. Diese Verstärkungsstoffe liegen im Verbund nahezu in ihrer Ausgangsform vor, sind also im Grundwerkstoff höchstens minimal gelöst. Im Kompositwerkstoff- Bauteil werden die hierauf einwirkenden Kräfte auf die Ver stärkungsstoffe übertragen, um höhere Werte an Zugfestigkeit, Steifigkeit, Ver schleiß und Härte zu erreichen. Dabei zeugen die Verstärkungsstoffe selbst meist von einem spröden Versagensverhalten, welches aufgrund der meist dukti leren und weichen Matrix zu einem kontrollierten Versagen hin verändert wird. Je nach Volumengehalt des Verstärkungsstoffes werden die Forderungen an Härte, Festigkeit und Steifigkeit in gewissem Maße erfüllt. Häufig sind auch andere Phä nomene von Verbundwerkstoffen und Werkstoffverbunden gewünscht. Einige dieser Phänomene folgen direkt aus der Wechselwirkung der einzelnen Bestand teile zueinander, welche zu einer Erhöhung der Rissstabilität, Verringerung des Gewichts sowie einer Integration von Werkstofffunktionen führen.
Detailbeschreibung anhand der Zeichnung
Weitere die Erfindung verbessernde Maßnahmen werden nachstehend gemein sam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfin dung anhand der Figuren näher dargestellt. Es zeigt:
Fig. 1 eine schematische Darstellung einer fertigungstechnischen Prozess kette zur Herstellung eines partikelverstärkten Kompositwerkstoff- Bauteils durch Pulverspritzgießen,
Fig. 2 eine schematische Schnittdarstellung der im partikelverstärkten Kompo sitwerkstoff- Bauteil wirkenden Verstärkungsmechanismen,
Fig. 3 einen schematischen Ablaufplan der Verfahrensschritte zur Herstellung des partikelverstärkten Kompositwerkstoff- Bauteils mit einer Vorrichtung gemäß Anspruch 1.
Gemäß Fig. 1 besteht eine Vorrichtung zur Herstellung eines partikelverstärkten Kompositwerkstoff- Bauteils 1 im Wesentlichen aus einer Mischereinheit 2 zum Mischen eines Grundpulvers 3 aus einem Edelstahl mit einem Verstärkungspul ver 4 aus einem Nichtmetall. Es entsteht ein organisches Binder-Metallpulver- Gemisch 5, welches bei diesem Ausführungsbeispiel 12 Vol.-% an Verstärkungs pulver 4 enthält. In einer nachfolgenden Granuliereinheit 6 erfolgt ein Granulieren des Binder-Me- tallpulver-Gemisches, welches die im organischen Binder-Metallpulver-Gemisch enthaltenen verschiedenen Partikelgrößen in ein Haufwerk mit Partikeln enger Partikelgröße umwandelt.
Das so vergleichmäßigte granulierte Binder-Metallpulver-Gemisch 5 wird an schließend einer Spritzgießeinheit 7 zum Spritzgießen zugeführt, um dem herzu stellenden Bauteil die gewünschte Form zu verleihen. Dies erfolgt durch einen Extruder, welcher das granulierte Binder-Metallpulver-Gemisch unter Einhaltung der beim Pulverspritzgießen üblichen Prozessparameter in eine Bauteilform überführt.
Anschließend sorgt eine Entbindereinheit zum Entbindern des spritzgegossenen, aus dem granulierten Binder-Metallpulver-Gemisch hergestellten Grünkörper 9. Zum Entbindern wird das Teil 9 aus der Spritzgießeinheit 7 entnommen, um den Binder in einem vorzugsweise zweistufigen Prozess wieder zu entfernen. Im Er gebnis dessen entsteht ein nur die Mischkomponenten enthaltener Grünkörper 9.
Der Grünkörper 9 wird anschließend in einer Sintereinheit 10 bei den durch die Ausgangsmaterialien bestimmten Prozessparameter hinsichtlich Temperatur und Druck gesintert, um hieraus einen festen, partikelverstärkten Kompositwerkstoff- Bauteil 1 zu bilden.
In der Fig. 2 ist der Unterschied zwischen einem herkömmlichen Kompositwerk- stoff-Bauteil 11 ohne Partikelverstärkung (linksseitig) sowie einem erfindungsge mäß partikelverstärkten Kompositwerkstoff- Bauteil 1 (rechtsseitig) illustriert. Während sich eine Rissbildung bei dem herkömmlichen Kompositwerkstoff- Bau teil 11 ungehindert im Material fortsetzen kann, ist die Fortsetzung im erfindungs gemäß partikelverstärkten Kompositwerkstoff- Bauteil 1 behindert. Denn dank der eingebrachten Partikel des Verstärkungspulvers 4 kommt es zu einer Ausbrei- tungsumlenkung (a) des Risses 12, zu einer Kornfeinung (b) sowie Versetzung (c).
Gemäß Fig. 3 umfasst das Verfahren zur Herstellung des erfindungsgemäß parti kelverstärkten Kompositwerkstoff- Bauteils 1 die folgenden Schritte: Zunächst erfolgt ein Mischen A eines Grundpulvers 3 aus einem Edelstahl mit ei nem Verstärkungspulver 4 aus einem Nichtmetall. Es wird durch das Mischen A ein organisches Binder-Metallpulver-Gemisch 5 erzeugt. Das organische Binder- Metallpulver-Gemisch 5 wird durch Granulieren B vergleichmäßigt, um dieses per Spritzgießen C mittels Spritzgießeinheit 7 in Form zu bringen. Anschließend ist der hieraus entstandene Grünkörper 9 zu entbindern D, ehe durch Sintern E des Grünkörpers 9 das feste, partikelverstärkte Kompositwerkstoff- Bauteil 1 entsteht.

Claims

Ansprüche
1. Verfahren zur Herstellung eines partikelverstärkten Kompositwerkstoff- Bauteils (1) in Form eines Metallmatrix-Verbundwerkstoffes durch Pulverspritz gießen, umfassend die folgenden Schritte:
- Mischen (A) eines Grundpulvers (3) aus einem Edelstahl mit einem Verstär kungspulver (4) aus einem Nichtmetall zur Erzeugung eines organischen Binder- Metallpulver-Gemisches (5),
- Granulieren (B) des Binder-Metallpulver-Gemisches (5) zu einem Feedstock,
- Spritzgießen (C) des granulierten Binder-Metallpulver-Gemisches (5),
- Entbindern (D) des spritzgegossenen, aus dem granulierten Binder-Metallpul- ver-Gemisch (5) hergestellten Grünkörpers (9),
- Sintern (E) des Grünkörpers (9) zur Erzeugung des festen, partikelverstärkten Kompositwerkstoff- Bauteils (1).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Granulierens (B) ein Kneten zum homoge nen Verteilen der Partikel des Verstärkungspulvers (4) im Binder-Metallpulver- Gemisch (5) mit umfasst.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Spritzgießen (C) durch das MIM (Metal In- jection Molding)-Verfahren durchgeführt wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass beim Mischen (A) 5 bis 15 Vol.-%, vorzugs weise 6 bis 12 Vol.-%, Verstärkungspulver (4) zum Grundpulver (3) hinzugege ben wird.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein Grundpulver (3) aus einem nichtrostenden, austenitischen Chrom-Nickel-Molybdän-Stahl der Werkstoffgruppe AISI 316 oder AISI 316L oder aus Kupfer oder einer Kupferlegierung gewählt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass ein Verstärkungspulver (4) gewählt wird aus ei ner Nichtmetall-Gruppe, umfassend: Titancarbonitrid (TiCN), Titancarbid (TiC), Titanborid (Ti B2), Borcarbid (B4C).
7. Vorrichtung zur Durchführung des Verfahren nach einem der vorstehen den Ansprüche 1 bis 6, umfassend:
- eine Mischereinheit (2) zum Mischen (A) eines Grundpulvers (3) aus einem Edelstahl mit einem Verstärkungspulver (4) aus einem Nichtmetall zur Erzeugung eines organischen Binder-Metallpulver-Gemisches (5),
- eine Granuliereinheit (6) zum Granulieren (B) des Binder-Metallpulver-Gemi- sches (5) zu einem Feedstock,
- eine Spritzgießeinheit (7) zum Spritzgießen (C) des granulierten Binder-Metall- pulver-Gemisches (5),
- eine Entbindereinheit (8) zum Entbindern (D) des spritzgegossenen, aus dem granulierten Binder-Metallpulver-Gemisch (5) hergestellten Grünkörpers (9),
- eine Sintereinheit (10) zum Sintern (D) des Grünkörpers (9) zur Erzeugung des festen, partikelverstärkten Kompositwerkstoff- Bauteils (1).
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Mischereinheit (2), die Granuliereinheit (6), die Spritzgießeinheit (7), die Entbindereinheit (8) und die Sintereinheit (10) aufei nanderfolgend als MIM- Prozesskette angeordnet sind.
PCT/EP2021/053750 2020-03-27 2021-02-16 Verfahren und vorrichtung zur herstellung eines partikelverstärkten kompositwerkstoff-bauteils WO2021190821A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020204031.1 2020-03-27
DE102020204031.1A DE102020204031A1 (de) 2020-03-27 2020-03-27 Verfahren und Vorrichtung zur Herstellung eines partikelverstärkten Kompositwerkstoff-Bauteils

Publications (1)

Publication Number Publication Date
WO2021190821A1 true WO2021190821A1 (de) 2021-09-30

Family

ID=74668831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/053750 WO2021190821A1 (de) 2020-03-27 2021-02-16 Verfahren und vorrichtung zur herstellung eines partikelverstärkten kompositwerkstoff-bauteils

Country Status (2)

Country Link
DE (1) DE102020204031A1 (de)
WO (1) WO2021190821A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210974A (zh) * 2021-12-17 2022-03-22 武汉苏泊尔炊具有限公司 炊具及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19711642A1 (de) * 1997-03-20 1998-09-24 Nwm De Kruithoorn Bv Verfahren zur Herstellung eines Stahl-Matrix-Verbundwerkstoffes sowie Verbundwerkstoff, hergestellt nach einem derartigen Verfahren
DE112011102581A5 (de) * 2010-08-02 2013-05-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Bauteilen, die endformnah aus einer dispersionsverstärkten Eisen- oder Nickelbasislegierung gebildet sind
CN108380889A (zh) * 2018-03-12 2018-08-10 淮海工学院 TiC/316L复合材料及其制备方法
CN110153430A (zh) * 2019-06-11 2019-08-23 上海富驰高科技股份有限公司 一种增强型316l不锈钢金属注射成型工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19711642A1 (de) * 1997-03-20 1998-09-24 Nwm De Kruithoorn Bv Verfahren zur Herstellung eines Stahl-Matrix-Verbundwerkstoffes sowie Verbundwerkstoff, hergestellt nach einem derartigen Verfahren
DE112011102581A5 (de) * 2010-08-02 2013-05-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Bauteilen, die endformnah aus einer dispersionsverstärkten Eisen- oder Nickelbasislegierung gebildet sind
CN108380889A (zh) * 2018-03-12 2018-08-10 淮海工学院 TiC/316L复合材料及其制备方法
CN110153430A (zh) * 2019-06-11 2019-08-23 上海富驰高科技股份有限公司 一种增强型316l不锈钢金属注射成型工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LOH N H ET AL: "Production of metal matrix composite part by powder injection molding", JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, ELSEVIER, NL, vol. 108, 1 January 2001 (2001-01-01), pages 398 - 407, XP002656883, ISSN: 0924-0136 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210974A (zh) * 2021-12-17 2022-03-22 武汉苏泊尔炊具有限公司 炊具及其制造方法
CN114210974B (zh) * 2021-12-17 2023-11-03 武汉苏泊尔炊具有限公司 炊具及其制造方法

Also Published As

Publication number Publication date
DE102020204031A1 (de) 2021-09-30

Similar Documents

Publication Publication Date Title
DE3740547C2 (de) Verfahren zum Herstellen von Extruderschnecken und damit hergestellte Extruderschnecken
DE602004012147T2 (de) Hybridhartmetall-verbundwerkstoffe
DE602004008192T2 (de) Rohes oder granuliertes Pulver zur Herstellung von Sinterkörpern, und Sinterkörper
DE69303417T2 (de) Metallmatrixverbundwerkstoff auf Aluminiumbasis
WO2000049192A1 (de) Verfahren zur herstellung eines metall-matrix-verbundwerkstoffs und eine vorrichtung zur durchführung dieses verfahrens
DE3882397T2 (de) Flugasche enthaltende metallische Verbundwerkstoffe und Verfahren zu ihrer Herstellung.
EP2185738B1 (de) Herstellung von legierungen auf basis von titanuluminiden
DE102011012142B3 (de) Aluminium-Matrixverbundwerkstoff, Halbzeug aus dem Aluminium-Matrixverbundwerkstoff und Verfahren zu dessen Herstellung
WO2015086290A1 (de) Verfahren zur herstellung eines pyrolitiche kohlenschichte/kohlenfasern verbundbauteils
DE102011120988A1 (de) Flächiges Halbzeug aus einer Aluminiummatrixverbundlegierung mit Borcarbid-Partikeln zur Herstellung einer mit Borcarbid-Partikeln angereicherten Platte und Herstellungsverfahren
DE69028550T2 (de) Herstellung von sinterverbundwerkstoffen
DE68924703T2 (de) Mit Siliziumkarbid verstärkter Verbundwerkstoff aus einer Aluminiumlegierung.
WO2021190821A1 (de) Verfahren und vorrichtung zur herstellung eines partikelverstärkten kompositwerkstoff-bauteils
DE68916515T2 (de) Verfahren zur Herstellung von Verbundmaterial mit einer Metallmatrix mit kontrollierter Verstärkungsphase.
EP3411171B1 (de) Verfahren zum schichtweisen herstellen eines dreidimensionalen hartmetall-körpers
DE10120172C1 (de) Herstellung von Bauteilen durch Metallformspritzen (MIM)
EP1281459B1 (de) Verfahren zum Thixospritzgiessen zur Herstellung von Metallteilen
DE10352453A1 (de) Verfahren zur Herstellung von Metall-Matrix-Verbundwerkstoffen
DE68924678T2 (de) Stahllegierungspulver für Spritzgussverfahren, seine Verbindungen und ein Verfahren zur Herstellung von Sinterteilen daraus.
WO2017178289A1 (de) Verfahren zur pulvermetallurgischen herstellung von bauteilen aus titan oder titanlegierungen
DE3782697T2 (de) Verbundmaterial einer zn-al-legierung, die mit silicium-karbid-pulver verfestigt ist.
EP1611980A1 (de) Verfahren zur Herstellung eines Kornfeinungsmittels für metallische Werkstoffe, Kornfeinungsmittel und Metall- oder Metallegierungswerkstoff
DE69530129T2 (de) Hochfeste gesinterte legierung und verfahren zu deren herstellung
EP1835044A1 (de) Bauteil auf der Basis eines Hybridwerkstoffes
DE2929812C2 (de) Rad für Kraftfahrzeuge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21706526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21706526

Country of ref document: EP

Kind code of ref document: A1