WO2021190817A1 - Oléfines et alcanes ramifiés et leur procédé de préparation - Google Patents

Oléfines et alcanes ramifiés et leur procédé de préparation Download PDF

Info

Publication number
WO2021190817A1
WO2021190817A1 PCT/EP2021/053652 EP2021053652W WO2021190817A1 WO 2021190817 A1 WO2021190817 A1 WO 2021190817A1 EP 2021053652 W EP2021053652 W EP 2021053652W WO 2021190817 A1 WO2021190817 A1 WO 2021190817A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
branched
alkyl
olefins
chosen
Prior art date
Application number
PCT/EP2021/053652
Other languages
English (en)
Inventor
Serge Ratton
Marc Lemaire
Estelle METAY
Original Assignee
Global Bioenergies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP2020/072987 external-priority patent/WO2021032672A1/fr
Application filed by Global Bioenergies filed Critical Global Bioenergies
Publication of WO2021190817A1 publication Critical patent/WO2021190817A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/14Aliphatic saturated hydrocarbons with five to fifteen carbon atoms
    • C07C9/16Branched-chain hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/22Aliphatic saturated hydrocarbons with more than fifteen carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y

Definitions

  • TITLE Branched olefins and alkanes and their preparation process
  • the present invention relates to branched olefins or mixture of branched olefin isomers comprising n carbon atoms, n representing an odd number between 9 and 49 or a number n representing 10, 14, 18, 22, 26, 30, 32 , 34, 36, 40, 42, 44, 46, 50.
  • the present invention also relates to branched alkanes comprising at least one tert-butyl group and comprising n carbon atoms, n being between 9 and 50.
  • Branched alkanes comprising a large number of carbon atoms, especially 9 or more carbon atoms, preferably 16 or more carbon atoms, have various applications. They can in particular be used as ingredients in cosmetic formulations, in agrochemical formulations, as plasticizing additives, lubricants, etc. in formulations belonging to various other fields of application. Olefins, which allow access to many functionalized or non-functionalized alkanes, said alkanes then being able to be used in particular as ingredients in cosmetic formulations, in agrochemical formulations, as plasticizing additives, lubricants, (as alkylating agents, for example for access to alkylphenols) etc., are generally derived from fossil resources, in particular petroleum.
  • An objective of the present invention is therefore to provide higher branched alkanes, in particular comprising n carbon atoms, n representing an integer between 9 and 50.
  • Another objective of the present invention is also to provide higher branched olefins, in particular comprising n carbon atoms, n being between 9 and 50, preferably n representing an odd number between 9 and 49, preferably an odd number between between 9 and 35 or a number n represents 10, 14, 18, 22, 26, 30, 32, 34.
  • Another objective of the present invention is to provide such olefins and such alkanes having a lower level of impurities.
  • Another object of the present invention is also to provide a process for the preparation of such olefins and alkanes.
  • the present application relates to branched alkane compounds comprising at least one tert-butyl group and chosen from the following compounds:
  • R is H or CH 3 , OR CH 2 C (CH 3 ) 3 OR CH (CH 3 ) 2 OR CH 2 CH (CH 3 ) 2 ,
  • R 1 is H or an alkyl
  • R 2 is an alkyl
  • R 3 is H or an alkyl
  • R 4 is CH 3 OR C (CH 3 ) 3, the alkyls being linear or branched and chosen so that the total number of carbon atoms (n) of the compound of formula (I) is between 12 and 50, if R 1 and R 3 are H, R 2 can be linear alkyl provided that R and R 4 are CH 3 , or R 4 is CH 3 and R is CH 2 C (CH 3 ) 3 or CH (CH 3 ) 2 or CH 2 CH (CH 3 ) 2 at least two adjacent carbons of the group carries a hydrogen atom,
  • the present invention relates to branched alkane compounds comprising at least one tert-butyl group and chosen from the following compounds:
  • R 1 is H or an alkyl
  • R 2 is an alkyl
  • R 3 is H or an alkyl
  • R 4 is CH 3 OR C (CH 3 ) 3 the alkyls being linear or branched and chosen so that the total number of carbon atoms (n) of the compound of formula (I) is 12, 13, 14 , 15 or between 17 and 50, if R 1 and R 3 are H, R 2 can be linear alkyl provided that R and R 4 are CH 3 , or R 4 is CH 3 and R is CH 2 C (CH 3 ) 3 or CH (CH 3 ) 2 or CH 2 CH (CH 3 ) 2 at least two adjacent carbons of the group carries a hydrogen atom,
  • the present invention relates to branched alkane compounds comprising at least one tert-butyl group and chosen from the following compounds:
  • R 1 is H or an alkyl
  • R 2 is an alkyl
  • R 3 is H or an alkyl
  • R 4 is CH 3 OR C (CH 3 ) 3, the alkyls being linear or branched and chosen so that the total number of carbon atoms (n) of the compound of formula (I) is between 12 and 30, if R 1 and R 3 are H, R 2 can be linear alkyl provided that R and R 4 are CH 3 , or R 4 is CH 3 and R is CH 2 C (CH 3 ) 3 or CH (CH 3 ) 2 or CH 2 CH (CH 3 ) 2 at least two adjacent carbons of the group carries a hydrogen atom,
  • the present invention relates to branched alkane compounds comprising at least one tert-butyl group and chosen from the following compounds:
  • R is H or CH 3 , OR CH 2 C (CH 3 ) 3 OR CH (CH 3 ) 2 OR CH 2 CH (CH 3 ) 2 ,
  • R 1 is H or an alkyl
  • R 2 is an alkyl
  • R 3 is H or an alkyl
  • R 4 is CH 3 OR C (CH 3 ) 3 the alkyls being linear or branched and chosen so that the total number of carbon atoms (n) of the compound of formula (I) is 12, 13, 14, 15 or between 17 and 30, if R 1 and R 3 are H, R 2 can be linear alkyl provided that R and R 4 are CH 3 , or R 4 is CH 3 and R is CH 2 C (CH 3 ) 3 or CH (CH 3 ) 2 or CH 2 CH (CH 3 ) 2 at least two adjacent carbons of the group carries a hydrogen atom,
  • R 1 or R 2 is a C (CH 3 ) 3 group, an alkyl group comprising a C (CH 3 ) 3 group or a C (CH 3 ) 2 -alkyl group.
  • the present application also relates to branched olefins comprising at least one tert-butyl group and making it possible, by hydrogenation, to obtain the branched alkanes according to the invention.
  • the present application also relates to branched olefins comprising n carbon atoms, n representing an odd number between 9 and 49 or n represents 10, 14, 18, 22, 26, 30, 32, 34, 36, 40, 42, 44 , 46, 50.
  • the olefins according to the invention correspond to the following formula (I): (i)
  • R 5 , R 6 , R 7 and R 8 are chosen from H, alkyls, linear or branched, at least one of these alkyls being branched, comprising from 1 to 48 carbon atoms and the number total carbon atoms of formula (I) is equal to n, preferably at least one of the groups R 5 , R 6 , R 7 and R 8 is or comprises a tert-butyl group; with the proviso that: at least two of R 5 , R 6 , R 7 and R 8 is different from H; and R 5 and R 6 cannot simultaneously be H; and R 7 and R 8 cannot simultaneously be H.
  • the olefin comprises 1, 2 or 3 tert-butyl groups.
  • the olefin comprises n carbon atoms, n representing an odd number between 13 and 49 or n represents 14, 18, 22, 26, 30, 32, 34, 36, 40, 42, 44, 46, 50.
  • the olefin comprises n carbon atoms, n representing an odd number between 15 and 49 or n represents 14, 18, 22, 26, 30, 32, 34, 36, 40, 42, 44, 46, 50.
  • R 5 , R 6 , R 7 and R 8 is H.
  • R 5 , R 6 , R 7 and R 8 is H.
  • R 5 is H or linear or branched alkyl comprising from 1 to 15 carbon atoms
  • R 6 , R 7 and R 8 which are identical or different, are chosen from alkyls, linear or branched, comprising from 1 to 15 carbon atoms.
  • R 5 is H
  • R 6 is an alkyl, linear comprising from 1 to 15 carbon atoms
  • R 7 and R 8 are chosen from alkyls, linear or branched, comprising from 1 to 15 carbon atoms.
  • an alkyl group denotes a saturated, linear or branched aliphatic hydrocarbon group comprising, unless otherwise mentioned, from 1 to 48 carbon atoms.
  • a saturated, linear or branched aliphatic hydrocarbon group comprising, unless otherwise mentioned, from 1 to 48 carbon atoms.
  • the invention also relates to a composition comprising a mixture of these branched olefins.
  • the branched olefins according to the invention comprising an, n, even number of carbon atoms can be obtained by dimerization of a branched olefin comprising n / 2 carbon atoms.
  • the branched olefins according to the invention can be obtained by co-dimerization of lower olefins or by metathesis of lower olefins.
  • lower olefins is understood to mean olefins comprising less than n carbon atoms.
  • One of the 2 olefins involved preferably comes from a dimerization, trimerization, oligomerization of isobutene therefore having n x 4C and coming from a bioresources of plant origin.
  • the lower olefins used in the co-dimerization process can for example be of formula (II) and (III):
  • R 9 R 10 C CR 11 R 12 (II)
  • R 13 R 14 C CR 15 R 16 (III) the olefin (II) being an exo (terminal double bond) or endo (non-terminal double bond) olefin comprising 4t carbon atoms, t being an integer between 1 and 6 thus, in formulas (II) and (III)
  • R 11 and R 12 represent H and R 9 and R 10 , identical or different, represent an alkyl group, linear or branched, comprising from 1 to 12 carbon atoms;
  • R 9 , R 10 , R 11 and R 12 identical or different, represent a linear or branched alkyl group comprising from 1 to 12 carbon atoms;
  • R 9 represents H and R 10 , R 11 and R 12 , identical or different, represent a linear or branched alkyl group comprising from 1 to 12 carbon atoms;
  • R 13 , R 14 , R 15 and R 16 identical or different, represent an alkyl group, linear or branched, comprising from 1 to 12 carbon atoms; Where R 13 , R 15 and R 16 represent H and R 14 represents an alkyl group, linear or branched, comprising from 1 to 12 carbon atoms; Where
  • R 13 and R 14 represent H and R 15 and R 16 which are identical or different represent an alkyl group, linear or branched, comprising from 1 to 12 carbon atoms; or R 13 and R 15 represent H and R 14 and R 16 which are identical or different represent an alkyl group, linear or branched, comprising from 1 to 12 carbon atoms. the number of total carbon atoms of formula (II) being m and the number of total carbon atoms of formula (III) being p.
  • the metathesis process is carried out between an olefin comprising q carbon atoms and an olefin comprising r carbon atoms, q and r being integers chosen so that q + r is greater than n.
  • the metathesis reaction is at the origin of the loss of carbon atoms in the final compound (loss of at least two carbon atoms), the number of carbon atoms lost being a function of the olefins used. game and in particular the nature of the substituents of the two carbon atoms of the double bond.
  • the lower olefins used in the metathesis process can for example be of formula (IV) and (V):
  • R 17 R 18 C CR 19 R 20 (IV)
  • R 21 R 22 C CR 23 R 24 (V) the olefin (IV) being an exo (terminal double bond) or endo (non-terminal double bond) olefin comprising 4t carbon atoms, t being between 1 and 6 thus, in formulas (IV) and (V)
  • R 19 and R 20 represent H and R 17 and R 18 , identical or different, represent an alkyl group, linear or branched, comprising from 1 to 12 carbon atoms;
  • R 17 , R 18 , R 19 and R 20 identical or different, represent a linear or branched alkyl group comprising from 1 to 12 carbon atoms;
  • R 17 represents H and R 18 , R 19 and R 20 , identical or different, represent a linear or branched alkyl group comprising from 1 to 12 carbon atoms;
  • R 21 , R 22 , R 23 and R 24 identical or different, represent an alkyl group, linear or branched, comprising from 1 to 12 carbon atoms;
  • R 21 , R 23 and R 24 represent H and R 22 represents an alkyl group, linear or branched, comprising from 1 to 12 carbon atoms;
  • R 21 and R 22 represent H and R 23 and R 24 which are identical or different represent an alkyl group, linear or branched, comprising from 1 to 12 carbon atoms. the number of total carbon atoms of formula (IV) being q and the number of total carbon atoms of formula (V) being r.
  • the amount of catalyst used in the co-dimerization is between 1000 ppm and 10% by weight, preferably between 1000 ppm and 5% by weight, relative to the weight of the olefin.
  • the co-dimerization step is preferably carried out at a temperature between 30 and 250 ° C, preferably between 100 and 200 ° C.
  • At least one of the 2 olefins can be obtained from isobutene.
  • said isobutene is obtained from bioresources, in particular as described in application WO2012052427, for example from polysaccharides (sugars, starches, celluloses, etc.).
  • the metathesis step is carried out by reacting the two olefins in the presence of a metathesis catalyst, in particular a catalyst chosen from catalysts known to those skilled in the art for metathesis, in particular ruthenium catalysts, in particular Grubbs catalysts.
  • a metathesis catalyst in particular a catalyst chosen from catalysts known to those skilled in the art for metathesis, in particular ruthenium catalysts, in particular Grubbs catalysts.
  • 2nd generation for example Benzylidene 1, 3-bis (2,4,6-trimethylphenyl) -2-imidazolidinylidene dichloro (tricyclohexyl- phosphine) ruthenium or (1, 3-dimesitylimidazolidine- 2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride.
  • the amount of catalyst is preferably between 50 ppm and 5% by weight of element Ru, preferably between 200 ppm and 1%, relative to the weight of olefin.
  • the reaction is preferably carried out at a temperature between 0 and 150 ° C, for example between 20 and 100 ° C.
  • the medium then undergoes a purification step, for example the medium reaction is dissolved in a solvent, for example toluene, then the mixture obtained is filtered, for example on neutral alumina.
  • the olefins according to the invention can be used for the formulation of cosmetic compositions, plasticizer compositions or alternatively lubricant compositions. Olefins can also be used as alkylating agents for example for access to alkylphenols.
  • the olefins of the invention can also be hydrogenated into corresponding alkanes or undergo reactions transforming them into functionalized alkanes, said alkanes which can be used in the formulation of cosmetic compositions, plasticizer compositions or alternatively lubricant compositions.
  • the branched alkanes of the invention can be advantageously used for the formulation of cosmetic compositions, plasticizer compositions or alternatively lubricant compositions.
  • the present application also relates to the use of branched alkanes according to the invention or mixture of branched alkanes according to the invention for the formulation of cosmetic compositions, plasticizer compositions or alternatively lubricant compositions.
  • the branched alkanes of the invention are obtained by hydrogenation of the corresponding olefins comprising a double bond, and in particular by hydrogenation of the olefins described above.
  • the hydrogenation step corresponds to bringing the olefin into contact with dihydrogen (H 2 ).
  • the hydrogenation step can be carried out in the presence of a hydrogenation catalyst chosen from metal derivatives such as Pd, Pt, Ni, in solution when they are put in the form of organometallic complexes or in supported form. on solids such as silica, alumina or carbon, and preferably Raney nickel.
  • a hydrogenation catalyst chosen from metal derivatives such as Pd, Pt, Ni, in solution when they are put in the form of organometallic complexes or in supported form. on solids such as silica, alumina or carbon, and preferably Raney nickel.
  • the hydrogenation step can be carried out without a solvent or in the presence of a solvent
  • the solvent can in particular be chosen from the alkanes which can separate from the branched alkanes obtained as a result of the hydrogenation by techniques known from a person skilled in the art, in particular isooctane, ethers, for example diisopropylether, dibutylether, or heavy alcohols, for example alcohols comprising more than 4 carbon atoms, for example octanol, decanol, dodecanol, isododecanol.
  • the solvents are bio-based solvents (derived from biological resources), in particular isododecanol derived from bio-based isododecene.
  • the hydrogenation step is preferably carried out at a temperature between 50 and 150 ° C, for example at 80 ° C.
  • the hydrogen is introduced by adjusting the pressure to a constant value between 1.013.10 e and 5.066.10 e Pa, for example 2.027.10 e Pa.
  • the hydrogenation step has a duration of between 2 and 6 hours, for example 3 hours.
  • the excess hydrogen can be removed by expansion and the reactor is purged three times with an inert gas, preferably nitrogen.
  • the catalyst if it is heterogeneous, can be recovered by filtration and can be recycled.
  • the reaction solvent can be separated by distillation and can be recycled.
  • continuous reactors can be used advantageously.
  • the branched alkanes according to the invention can be separated and purified by distillation.
  • the request relates more particularly to the following processes:
  • Example 1 Isooctene and octene metathesis
  • the alkanes are then obtained by hydrogenation of the olefins, according to the following process:
  • the stirred mixture is brought to a temperature of 80 ° C.
  • Hydrogen is introduced by adjusting the pressure to a constant value of 20 atmospheres.
  • the stirred reaction mixture is maintained at 50 ° C under constant pressure of hydrogen for a period of 3 hours.
  • the reaction medium is diluted in cyclohexane for analytical needs
  • the reaction medium is analyzed:
  • the branched alkane yield according to the invention is 100% of crude product, after purification by distillation, the yield is 95%.
  • the temperature continues to rise to 200 ° C.
  • the mixture is kept under stirring and at this temperature level for 3 hours.
  • the Montmorillonite catalyst is separated from the liquid phase by filtration.
  • the liquid phase is diluted in a cyclohexane solvent for the purposes of analysis.
  • the alkanes according to the invention are then obtained by hydrogenation of the olefins using the same process as that described in Example 1.
  • the branched alkane yield according to the invention is 100% of crude product, after purification by distillation, the yield is 95%.
  • Example 3 Obtaining C12 Alkanes
  • the alkanes according to the invention are then obtained by hydrogenation of the olefins using the same process as that described in Example 1.
  • the branched alkane yield according to the invention is 100% of crude product, after purification by distillation, the yield is 95%.
  • the branched alkane yield according to the invention is 100% of crude product, after purification by distillation, the yield is 95%.

Abstract

Oléfines et alcanes ramifiés et leur procédé de préparation La présente invention concerne des alcanes et oléfines ramifiés comprenant n atomes de carbone, n représentant un nombre compris entre 9 et 50.

Description

DESCRIPTION
TITRE : Oléfines et alcanes ramifiés et leur procédé de préparation
La présente invention concerne des oléfines ramifiées ou mélange d’isomères d’oléfines ramifiées comprenant n atomes de carbone, n représentant un nombre impair compris entre 9 et 49 ou un nombre n représente 10, 14, 18, 22, 26, 30, 32, 34, 36, 40, 42, 44, 46, 50.
La présente invention concerne également des alcanes ramifiés comprenant au moins un groupe tert-butyle et comprenant n atomes de carbone, n étant compris entre 9 et 50.
Les alcanes ramifiés comprenant un nombre important d’atomes de carbone, notamment 9 atomes de carbone ou plus, de préférence 16 atomes de carbone ou plus, ont des applications variées. Ils peuvent notamment être utilisés comme ingrédients dans des formulations cosmétiques, dans les formulations agrochimiques, comme additifs plastifiants, lubrifiants, etc... dans des formulations appartenant à divers autres domaines d’applications. Les oléfines, qui permettent un accès à de nombreux alcanes fonctionnalisés ou non, lesdits alcanes pouvant ensuite être utilisés notamment comme ingrédients dans des formulations cosmétiques, dans les formulations agrochimiques, comme additifs plastifiants, lubrifiants, (comme agents alkylants par exemple pour l’accès à des alkylphénols) etc., sont généralement issues de ressources fossiles, notamment pétrole.
En plus d’avoir un impact négatif sur l’environnement, l’utilisation de ressources fossiles, et notamment pétrole, aboutissent à des alcanes présentant des impuretés de type composés aromatiques.
L’utilisation de telles ressources est néfaste pour l’environnement.
Par ailleurs, afin de fournir des produits ayant des propriétés variées, il est indispensable de pouvoir fournir des oléfines présentant un nombre de carbone élevé, des oléfines asymétriques, des oléfines comprenant des groupes fonctionnels, etc.
Un objectif de la présente invention est par conséquent de fournir des alcanes ramifiés supérieurs, notamment comprenant n atomes de carbone, n représentant un entier compris entre 9 et 50. Un autre objectif de la présente invention est également de fournir des oléfines ramifiées supérieures, notamment comprenant n atomes de carbone, n étant compris entre 9 et 50, de préférence n représentant un nombre impair compris entre 9 et 49, de préférence un nombre impair compris entre 9 et 35 ou un nombre n représente 10, 14, 18, 22, 26, 30, 32, 34.
Un autre objectif de la présente invention est de fournir de telles oléfines et de tels alcanes présentant un taux d’impuretés moindre.
Un autre objectif de la présente invention est également de fournir un procédé pour la préparation de telles oléfines et alcanes.
D’autres objectifs encore apparaîtront à la lecture de la description de l’invention qui suit.
La présente demande concerne des composés alcanes ramifiés comprenant au moins un groupe tertio-butyle et choisi parmi les composés suivants :
Un composé de formule (I)
Figure imgf000003_0001
dans laquelle
R est H ou CH3, OU CH2C(CH3)3 OU CH(CH3)2 OU CH2CH(CH3)2,
R1 est H ou un alkyle R2 est un alkyle R3 est H ou un alkyle,
R4 est CH3 OU C(CH3)3 les alkyles étant linéaires ou ramifiés et choisis de façon à ce que le nombre total d’atomes de carbone (n) du composé de formule (I) est compris entre 12 et 50, si R1 et R3 sont H, R2 peut être un alkyle linéaire à la condition que R et R4 soient CH3, ou R4 est CH3 et R est CH2C(CH3)3 ou CH(CH3)2 ou CH2CH(CH3)2
Figure imgf000003_0002
au moins deux carbones adjacents du groupe porte un atome d’hydrogène,
- ou un composé choisi parmi : De préférence, la présente invention concerne des composés alcanes ramifiés comprenant au moins un groupe tertio-butyle et choisi parmi les composés suivants :
Un composé de formule (I)
Figure imgf000004_0001
dans laquelle R est H ou CH3, OU CH2C(CH3)3 OU CH(CH3)2 OU CH2CH(CH3)2,
R1 est H ou un alkyle R2 est un alkyle R3 est H ou un alkyle,
R4 est CH3 OU C(CH3)3 les alkyles étant linéaires ou ramifiés et choisis de façon à ce que le nombre total d’atomes de carbone (n) du composé de formule (I) est compris 12, 13, 14, 15 ou entre 17 et 50, si R1 et R3 sont H, R2 peut être un alkyle linéaire à la condition que R et R4 soient CH3, ou R4 est CH3 et R est CH2C(CH3)3 ou CH(CH3)2 ou CH2CH(CH3)2
Figure imgf000004_0002
au moins deux carbones adjacents du groupe porte un atome d’hydrogène,
- ou un composé choisi parmi : De préférence, la présente invention concerne des composés alcanes ramifiés comprenant au moins un groupe tertio-butyle et choisi parmi les composés suivants :
Un composé de formule (I)
Figure imgf000005_0001
dans laquelle R est H ou CH3, OU CH2C(CH3)3 OU CH(CH3)2 OU CH2CH(CH3)2,
R1 est H ou un alkyle R2 est un alkyle R3 est H ou un alkyle,
R4 est CH3 OU C(CH3)3 les alkyles étant linéaires ou ramifiés et choisis de façon à ce que le nombre total d’atomes de carbone (n) du composé de formule (I) est compris entre 12 et 30, si R1 et R3 sont H, R2 peut être un alkyle linéaire à la condition que R et R4 soient CH3, ou R4 est CH3 et R est CH2C(CH3)3 ou CH(CH3)2 ou CH2CH(CH3)2
Figure imgf000005_0002
au moins deux carbones adjacents du groupe porte un atome d’hydrogène,
- ou un composé choisi parmi : De préférence, la présente invention concerne des composés alcanes ramifiés comprenant au moins un groupe tertio-butyle et choisi parmi les composés suivants :
Un composé de formule (I)
Figure imgf000006_0001
dans laquelle
R est H ou CH3, OU CH2C(CH3)3 OU CH(CH3)2 OU CH2CH(CH3)2,
R1 est H ou un alkyle R2 est un alkyle R3 est H ou un alkyle, R4 est CH3 OU C(CH3)3 les alkyles étant linéaires ou ramifiés et choisis de façon à ce que le nombre total d’atomes de carbone (n) du composé de formule (I) est 12, 13, 14, 15 ou entre 17 et 30, si R1 et R3 sont H, R2 peut être un alkyle linéaire à la condition que R et R4 soient CH3, ou R4 est CH3 et R est CH2C(CH3)3 ou CH(CH3)2ou CH2CH(CH3)2 au moins deux carbones adjacents du groupe porte un atome d’hydrogène,
- ou un composé choisi parmi :
Figure imgf000007_0001
De préférence, au moins l’un de R1 ou R2 est un groupe C(CH3)3, un groupe alkyle comprenant un groupe C(CH3)3 ou un groupe C(CH3)2-alkyle.
Figure imgf000007_0002
Figure imgf000008_0001
Figure imgf000009_0001
Figure imgf000010_0001
La présente demande concerne également des oléfines ramifiées comprenant au moins un groupe tert-butyle et permettant par hydrogénation, d’obtenir les alcanes ramifiés selon l’invention.
La présente demande concerne également des oléfines ramifiées comprenant n atomes de carbone, n représentant un nombre impair compris entre 9 et 49 ou n représente 10, 14, 18, 22, 26, 30, 32, 34, 36, 40, 42, 44, 46, 50.
De préférence, les oléfines selon l’invention répondent à la formule (I) suivante :
Figure imgf000011_0001
(i)
R5, R6, R7 et R8, identiques ou différents, sont choisis parmi H, les alkyles, linéaires ou ramifiés, l’un au moins de ces alkyles étant ramifié, comprenant de 1 à 48 atomes de carbone et le nombre total d’atomes de carbone de la formule (I) est égale à n, de préférence l’un au moins des groupes R5, R6, R7 et R8 est ou comprend un groupe tert-butyle; sous réserve que : au moins deux de R5, R6, R7 et R8 est différent de H ; et R5 et R6 ne peuvent pas être simultanément H ; et R7 et R8 ne peuvent pas être simultanément H.
De préférence, l’oléfine comprend 1 , 2 ou 3 groupes tert-butyle.
De préférence l’oléfine comprend n atomes de carbone, n représentant un nombre impair compris entre 13 et 49 ou n représente 14, 18, 22, 26, 30, 32, 34, 36, 40, 42, 44, 46, 50.
De préférence l’oléfine comprend n atomes de carbone, n représentant un nombre impair compris entre 15 et 49 ou n représente 14, 18, 22, 26, 30, 32, 34, 36, 40, 42, 44, 46, 50.
De préférence, au plus deux de R5, R6, R7 et R8 est H.
De préférence, au plus un de R5, R6, R7 et R8 est H.
De préférence, dans les composés de formule (I), R5 est H ou alkyle linéaire ou ramifié comprenant de 1 à 15 atomes de carbone, et R6, R7 et R8, identiques ou différents, sont choisis parmi les alkyles, linéaires ou ramifiés, comprenant de 1 à 15 atomes de carbone.
De préférence, dans les composés de formule (I), R5 est H, R6 est un alkyle, linéaire comprenant de 1 à 15 atomes de carbone, R7 et R8, identiques ou différents, sont choisis parmi les alkyles, linéaires ou ramifiés, comprenant de 1 à 15 atomes de carbone.
Selon l’invention, un groupe alkyle désigne un groupe aliphatique hydrocarboné, saturé, linéaire ou ramifié comprenant, sauf mention contraire, de 1 à 48 atomes de carbone. A titre d’exemples, on peut citer les groupes méthyle, éthyle, n-propyle, isopropyle, butyle, isobutyle, tertbutyle, pentyle, undecényle, lauryle, palmyle.
L’invention concerne également une composition comprenant un mélange de ces oléfines ramifiées.
Les oléfines ramifiées selon l’invention comprenant un nombre, n, pair d’atomes de carbone peuvent être obtenues par dimérisation d’oléfine ramifiée comprenant n/2 atomes de carbone.
Les oléfines ramifiées selon l’invention peuvent être obtenues par co dimérisation d’oléfines inférieures ou par métathèse d’oléfines inférieures.
Dans le cadre de la présente invention, on entend par oléfines inférieures des oléfines comprenant moins de n atomes de carbone.
Une des 2 oléfines engagées provient, de préférence, d’une dimérisation, trimérisation, oligomérisation de l’isobutène donc possédant n x 4C et provenant d’une bioressources d’origine végétale.
Le procédé de co-dimérisation est mis en œuvre entre une oléfine comprenant m atomes de carbone et une oléfine comprenant p atomes de carbone, m et p étant des nombres entiers choisis de façon à ce que m+p=n.
Les oléfines inférieures mises en œuvre dans le procédé de co-dimérisation peuvent par exemple être de formule (II) et (III) :
R9R10C=CR11R12 (II) R13R14C=CR15R16 (III) l’oléfine (II) étant une oléfine exo (double liaison terminale) ou endo (double liaison non terminale) comprenant 4t atomes de carbone, t étant un nombre entier compris entre 1 et 6 ainsi, dans les formules (II) et (III)
R11 et R12 représentent H et R9 et R10, identiques ou différents, représentent un groupe alkyle, linéaire ou ramifié comprenant de 1 à 12 atomes de carbone ; ou
R9, R10, R11 et R12, identiques ou différents, représentent un groupe alkyle linéaire ou ramifié comprenant de 1 à 12 atomes de carbone ; ou
R9 représente H et R10, R11 et R12, identiques ou différents, représentent un groupe alkyle linéaire ou ramifié comprenant de 1 à 12 atomes de carbone;
R13, R14, R15 et R16, identiques ou différents représentent un groupe alkyle , linéaire ou ramifié, comprenant de 1 à 12 atomes de carbone ; ou R13, R15 et R16 représentent H et R14 représente un groupe alkyle , linéaire ou ramifié, comprenant de 1 à 12 atomes de carbone ; ou
R13 et R14 représentent H et R15 et R16 identiques ou différents représentent un groupe alkyle , linéaire ou ramifié, comprenant de 1 à 12 atomes de carbone ; ou R13 et R15 représentent H et R14 et R16 identiques ou différents représentent un groupe alkyle , linéaire ou ramifié, comprenant de 1 à 12 atomes de carbone. le nombre d’atomes de carbone total de la formule (II) étant m et le nombre d’atomes de carbone total de la formule (III) étant p.
Le procédé de métathèse est mis en œuvre entre une oléfine comprenant q atomes de carbone et une oléfine comprenant r atomes de carbone, q et r étant des nombres entiers choisis de façon à ce que q+r soit supérieur à n. En effet, la réaction de métathèse est à l’origine de la perte d’atomes de carbone dans le composé final (perte d’au moins deux atomes de carbone), le nombre d’atomes de carbone perdu étant fonction des oléfines mises en jeu et notamment de la nature des substituants des deux atomes de carbone de la double liaison.
Les oléfines inférieures mises en œuvre dans le procédé de métathèse peuvent par exemple être de formule (IV) et (V) :
R17R18C=CR19R20(IV) R21R22C=CR23R24 (V) l’oléfine (IV) étant une oléfine exo (double liaison terminale) ou endo (double liaison non terminale) comprenant 4t atomes de carbone, t étant compris entre 1 et 6 ainsi, dans les formules (IV) et (V)
R19 et R20 représentent H et R17 et R18, identiques ou différents, représentent un groupe alkyle, linéaire ou ramifié comprenant de 1 à 12 atomes de carbone ; ou
R17, R18, R19 et R20, identiques ou différents, représentent un groupe alkyle linéaire ou ramifié comprenant de 1 à 12 atomes de carbone ; ou
R17 représente H et R18, R19 et R20, identiques ou différents, représentent un groupe alkyle linéaire ou ramifié comprenant de 1 à 12 atomes de carbone;
R21, R22, R23 et R24, identiques ou différents représentent un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 12 atomes de carbone ; ou
R21, R23 et R24 représentent H et R22 représente un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 12 atomes de carbone ; ou
R21 et R22 représentent H et R23 et R24 identiques ou différents représentent un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 12 atomes de carbone. le nombre d’atomes de carbone total de la formule (IV) étant q et le nombre d’atomes de carbone total de la formule (V) étant r.
L’étape de co-dimérisation peut être réalisée en présence d’un catalyseur choisi parmi les acides de Bronsted en solution, par exemple H2S04, H3P04, HF, l’acide méthanesulfonique, l’acide triflique (CF3SO3H) ; les acides de Bronsted solides, par exemple résines organiques, argiles, zéolites, FI3P04 sur silice ; les acides de Lewis, par exemple ZnCI2, AICI3 ; les composés organométalliques, par exemple complexes Ni, mélanges de complexes de Ni et de Al ; les liquides ioniques, par exemple [BMIm][N(CF3S02)2] / HN(CF3S02)2 ; les argiles à structures lamellaires comme la Montmorillonite ; les résines organiques comme les amberlysts, les résines sulfoniques ; les composés organométalliques comme par exemple [LNiCFl2R25][AICI4] dans lequel L = PR26, R25 représente un alkyle, linéaire ou ramifié, comprenant 9 atomes de carbone et R26 représente un groupe -CH2-R25.
De préférence, la quantité de catalyseur mise en œuvre dans la co-dimérisation est comprise entre 1000 ppm et 10% en poids, de préférence entre 1000 ppm et 5% en poids, par rapport au poids d’oléfine.
L’étape de co-dimérisation est de préférence mise en œuvre à une température comprise entre 30 et 250°C, de préférence entre 100 et 200°C.
De façon particulièrement avantageuse, au moins l’une des 2 oléfines peut être obtenue à partir d’isobutène. De préférence, ledit isobutene est obtenu à partir de bioressources, notamment tel que décrit dans la demande WO2012052427, par exemple à partir de polysaccharides (sucres, amidons, celluloses, etc).
L’étape de métathèse est réalisée en faisant réagir les deux oléfines en présence d’un catalyseur de métathèse, notamment un catalyseur choisi parmi les catalyseurs connus par l’homme du métier pour la métathèse, notamment des catalyseurs au ruthénium notamment les catalyseurs de Grubbs de 2ème génération,, par exemple Benzylidene 1 ,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene dichloro(tricyclohexyl- phosphine)ruthenium ou (1 ,3-dimesitylimidazolidine- 2- ylidene)(tricyclohexylphosphine)benzylidene ruthénium dichloride. La quantité de catalyseur est de préférence comprise entre 50 ppm et 5% en poids d’élément Ru, de préférence entre 200 ppm et 1%, par rapport au poids d’oléfine. La réaction est mise en œuvre de préférence à une température comprise entre 0 et 150 °C, par exemple entre 20 et 100°C. Le milieu subit ensuite une étape de purification, par exemple le milieu réactionnel est dissout dans un solvant, par exemple toluène, puis le mélange obtenu est filtré, par exemple sur alumine neutre.
Les oléfines selon l’invention peuvent être utilisées pour la formulation de compositions cosmétiques, de compositions de plastifiants ou encore de compositions de lubrifiants. Les oléfines peuvent également être utilisées comme agents alkylants par exemple pour l’accès à des alkylphénols.
Les oléfines de l’invention peuvent également être hydrogénées en alcanes correspondants ou subir des réactions les transformant en alcanes fonctionnalisés, ledits alcanes pouvant être utilisés dans pour la formulation de compositions cosmétiques, de compositions de plastifiants ou encore de compositions de lubrifiants.
Les alcanes ramifiés de l’invention peuvent être de façon avantageuse utilisés pour la formulation de compositions cosmétiques, des compositions de plastifiants ou encore des compositions de lubrifiants.
La présente demande concerne également l’utilisation des alcanes ramifiés selon l’invention ou mélange d’alcanes ramifiés selon l’invention pour la formulation de compositions cosmétiques, de compositions de plastifiants ou encore de compositions de lubrifiants.
Les alcanes ramifiés de l’invention sont obtenus pas hydrogénation des oléfines correspondantes comprenant une double liaison, et notamment par hydrogénation des oléfines décrites ci-dessus.
L’étape d’hydrogénation correspond à la mise en présence de l’oléfine avec du dihydrogène (H2).
L’étape d’hydrogénation peut être mise en œuvre en présence d’un catalyseur d’hydrogénation choisi parmi les dérivés de métaux tels que Pd, Pt, Ni, en solution lorsqu’ils sont mis sous forme de complexes organométalliques ou sous forme supportée sur des solides tels silice, alumine ou carbone, et de préférence le nickel de Raney. L’étape d’hydrogénation peut être mise en œuvre sans solvant ou en présence d’un solvant, le solvant peut notamment être choisis parmi les alcanes qui peuvent se séparer des alcanes ramifiés obtenus des suites de l’hydrogénation par des techniques connus de l’homme du métier, notamment isooctane, des éthers, par exemple diisopropyléther, dibutyléther, ou des alcools lourds, par exemple des alcools comprenant plus de 4 atomes de carbone, par exemple octanol, décanol, dodécanol, isododécanol. De préférence, les solvants sont des solvants biosourcés (issus de ressources biologiques), notamment isododécanol issu de l’isododécène biosourcé.
L’étape d’hydrogénation est de préférence mise en œuvre à une température comprise entre 50 et 150°C, par exemple à 80°C.
Lors de l’étape d’hydrogénation, l’hydrogène est introduit en réglant la pression à une valeur constante comprise entre 1 ,013.10e et 5,066.10e Pa, par exemple 2,027.10e Pa.
De préférence, l’étape d’hydrogénation a une durée comprise entre 2 et 6 heures, par exemple 3 heures.
A la fin de l’étape d’hydrogénation, l’excès d’hydrogène peut être éliminé par détente et le réacteur est purgé par trois fois avec un gaz inerte, de préférence azote.
Le catalyseur, s’il est hétérogène peut être récupéré par filtration et peut être recyclé. Le solvant de la réaction peut être séparé par distillation et peut être recyclé. De plus des réacteurs continus peuvent être mis en œuvre avantageusement.
Si nécessaire, les alcanes ramifiés selon l’invention peuvent être séparés et purifiés par distillation.
La demande vise plus particulièrement les procédés suivants :
Figure imgf000019_0001
Figure imgf000020_0001
La présente demande va maintenant être décrite à l’aide des exemples ci- dessous.
Exemple 1 : Métathèse isooctène et octène
Dans un shlenk sont ajoutés successivement 18.5 mmol d’isooctène (2.1 mL) 4 mmol d’octène (0.45 mL) et (1,3-dimesitylimidazolidine- 2- ylidene)(tricyclohexylphosphine)benzylidene ruthénium dichloride (68 mg, 0.08 mmol). La solution est chauffée à 55°C et régulièrement dégazée. Après 40h, 0.3 mL de éthyl vinyl éther sont ajoutés. Le produit est dissout dans le toluène (50 mL) puis filtré sur de l’alumine neutre. 42% de produit (oléfine en C14) sont obtenus après évaporation du solvant.
Un procédé identique peut être mis en œuvre pour les réactions suivantes :
Figure imgf000022_0001
Avec R=CH3
Les alcanes sont ensuite obtenus par hydrogénation des oléfines, selon le procédé suivant :
Après 3 purges sous courant d’azote, on charge dans un réacteur d’hydrogénation (agitation et tenue à la pression) :
100 g d’oléfine
- 5 g catalyseur Ni Raney 50 g d’isooctane
On porte le mélange agité à une température de 80°C.
On introduit l’hydrogène en réglant la pression à une valeur constante de 20 atmosphères.
On maintient le mélange réactionnel agité, à 50°C, sous pression constante d’hydrogène durant une durée de 3 heures.
En fin de réaction, l’excès d’hydrogène est éliminé par détente et le ciel du réacteur est purgé par 3 fois avec de l’azote.
Le milieu réactionnel est dilué dans le cyclohexane pour des besoins analytiques
Le milieu réactionnel est analysé :
La conversion de l’oléfine est de 100%
Le rendement en alcane ramifié selon l’invention est de 100% en produit brut, après purification par distillation, le rendement est de 95%.
Exemple 2 : Co-dimérisation
On charge dans un autoclave agité, fermé et mis sous atmosphère inerte :
- 100 g d’isooctène
- 100 g de n-octène
- 10g de Montmorillonite
- 5g d’isooctane On chauffe progressivement et la co-dimérisation commence vers 150°C.
On continue à augmenter la température jusqu’à 200°C.
On maintient le mélange sous agitation et à ce palier de température pendant 3 heures.
On refroidit le mélange réactionnel jusqu’à la température ambiante
On sépare le catalyseur Montmorillonite de la phase liquide par filtration.
La phase liquide est diluée dans un solvant cyclohexane pour les besoins de l’analyse.
La conversion est comprise entre 70 et 95%. Les rendements en hexadodécène, produits de co-dimérisation de l’isooctène avec le n octène sont compris entre 50 et 90%. Un procédé identique peut être mis en œuvre pour les réactions suivantes :
Figure imgf000024_0001
Les alcanes selon l’invention sont ensuite obtenus par hydrogénation des oléfines en mettant en œuvre le même procédé que celui décrit à l’exemple 1.
Le rendement en alcane ramifié selon l’invention est de 100% en produit brut, après purification par distillation, le rendement est de 95%. Exemple 3 : Obtention d’alcanes en C12
Les procédés de l’invention (co-dimérisation et métathèse) peuvent être mis en œuvre pour obtenir des oléfines comprenant 12 atomes de carbone, selon par exemple les schémas réactionnels suivants :
Figure imgf000025_0001
Endo 1 Exo
Les alcanes selon l’invention sont ensuite obtenus par hydrogénation des oléfines en mettant en œuvre le même procédé que celui décrit à l’exemple 1.
Le rendement en alcane ramifié selon l’invention est de 100% en produit brut, après purification par distillation, le rendement est de 95%.
En suivant le même procédé, les réactions suivantes peuvent être mises en œuvre :
Figure imgf000026_0001
5
Figure imgf000028_0001
Figure imgf000029_0001
Les alcanes selon l’invention sont ensuite obtenus par hydrogénation des oléfines en mettant en œuvre le même procédé que celui décrit à l’exemple 1.
Le rendement en alcane ramifié selon l’invention est de 100% en produit brut, après purification par distillation, le rendement est de 95%.

Claims

REVENDICATIONS
1. Composés alcanes ramifiés comprenant au moins un groupe tertio-butyle et choisi parmi les composés suivants : Un composé de formule (I)
Figure imgf000031_0001
dans laquelle
R est H ou CH3, OU, CH2C(CH3)3 OU CH(CH3)2 OU CH2CH(CH3)2, R1 est H ou un alkyle
R2 est un alkyle R3 est H ou un alkyle,
R4 est CH3 OU C(CH3)3 les alkyles étant linéaires ou ramifiés et choisis de façon à ce que le nombre total d’atomes de carbone (n) du composé de formule (I) est compris entre 12 et 50, si R1 et R3 sont H, R2 peut être un alkyle linéaire à la condition que R et R4 soient CH3, ou R4 est CH3 et R est CH2C(CH3)3 ou CH(CH3)2 ou CH2CH(CH3)2
Figure imgf000031_0002
au moins deux carbones adjacents du groupe porte un atome d’hydrogène,
- ou un composé choisi parmi :
Figure imgf000032_0001
2. Composés alcanes ramifiés selon la revendication
Figure imgf000032_0002
choisi parmi les composés suivants :
Un composé de formule (I)
Figure imgf000032_0003
dans laquelle
R est H ou CH3, OU, CH2C(CH3)3 OU CH(CH3)2 OU CH2CH(CH3)2,
R1 est H ou un alkyle R2 est un alkyle R3 est H ou un alkyle, R4 est CH3 OU C(CH3)3 les alkyles étant linéaires ou ramifiés et choisis de façon à ce que le nombre total d’atomes de carbone (n) du composé de formule (I) est compris entre 12 et 30, si R1 et R3 sont H, R2 peut être un alkyle linéaire à la condition que R et R4 soient CH3, ou R4 est CH3 et R est CH2C(CH3)3 ou CH(CH3)2 ou CH2CH(CH3)2 au moins deux carbones adjacents du groupe porte un atome d’hydrogène,
- ou un composé choisi parmi :
Figure imgf000033_0001
3. Composé selon la revendication 1 ou 2 dans lequel au moins l’un de R1 ou R2 est un groupe C(CH3)3, un groupe alkyle comprenant un groupe C(CH3)3 ou un groupe C(CH3)2-alkyle.
4. Composé selon la revendication 1 , 2 ou 3, choisi parmi
Figure imgf000033_0002
Figure imgf000034_0001
Figure imgf000036_0001
1
Figure imgf000036_0002
Figure imgf000037_0001
6. Utilisation des composés selon l’une quelconque des revendications 1 à
5, pour la formulation de compositions cosmétiques, de compositions de plastifiants ou encore de compositions de lubrifiants.
7. Procédé d’obtention d’un alcane ramifié selon l’une quelconque des revendications 1 à 5 comprenant une étape d’hydrogénation d’une oléfine correspondante.
8. Procédé selon la revendication 7, dans lequel l’oléfine correspondante est obtenue par dimérisation d’oléfine comprenant n/2 atomes de carbone, par co-dimérisation ou par métathèse.
9. Procédé selon la revendication 8 dans lequel au moins une des oléfines mises en œuvre dans la dimérisation, la co-dimérisation ou la métathèse est obtenue à partir de bioressources, notamment de butène.
PCT/EP2021/053652 2020-03-27 2021-02-15 Oléfines et alcanes ramifiés et leur procédé de préparation WO2021190817A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR2003014A FR3108606A1 (fr) 2020-03-27 2020-03-27 Oléfines ramifiées et leur procédé de préparation
FRFR2003014 2020-03-27
EPPCT/EP2020/072987 2020-08-17
PCT/EP2020/072987 WO2021032672A1 (fr) 2019-08-16 2020-08-17 Alcanes ramifiés et leur procédé de préparation

Publications (1)

Publication Number Publication Date
WO2021190817A1 true WO2021190817A1 (fr) 2021-09-30

Family

ID=70978182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/053652 WO2021190817A1 (fr) 2020-03-27 2021-02-15 Oléfines et alcanes ramifiés et leur procédé de préparation

Country Status (2)

Country Link
FR (1) FR3108606A1 (fr)
WO (1) WO2021190817A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012052427A1 (fr) 2010-10-19 2012-04-26 Global Bioenergies Production d'alcènes par conversion enzymatique combinée d'acides 3-hydroxyalcanoïques
WO2013160292A1 (fr) * 2012-04-27 2013-10-31 Universiteit Van Amsterdam Procédé pour la séparation de mélanges comprenant des alcanes à chaîne droite et ramifiés par adsorption sur zif-77

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808115A (en) * 1996-03-08 1998-09-15 University Of Georgia Research Foundation Carbodiimide-promoted epoxidation of olefins
US9714387B2 (en) * 2014-06-05 2017-07-25 Alliance For Sustainable Energy, Llc Catalysts and methods for converting carbonaceous materials to fuels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012052427A1 (fr) 2010-10-19 2012-04-26 Global Bioenergies Production d'alcènes par conversion enzymatique combinée d'acides 3-hydroxyalcanoïques
WO2013160292A1 (fr) * 2012-04-27 2013-10-31 Universiteit Van Amsterdam Procédé pour la séparation de mélanges comprenant des alcanes à chaîne droite et ramifiés par adsorption sur zif-77

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BROWN S H ET AL: "Making mercury-photosensitised dehydrodimerisation into an organic synthetic method: vapour pressure selectivity and the behaviour of functionalised substrates", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, US, vol. 111, no. 8, 12 April 1989 (1989-04-12), pages 2935 - 2946, XP002274699, ISSN: 0002-7863, DOI: 10.1021/JA00190A031 *
CHANG Y C ET AL: "Probing the microwave degradation mechanism of phenol-containing polymeric compounds by sample pretreatment and GC-MS analysis", ANALYTICA CHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 526, no. 2, 22 November 2004 (2004-11-22), pages 121 - 129, XP004991685, ISSN: 0003-2670, DOI: 10.1016/J.ACA.2004.09.084 *
ORG J ET AL: "Reactivity of TRi-tert-BUTYLETHYENE", 1 January 1972 (1972-01-01), pages 4151 - 4156, XP055795761, Retrieved from the Internet <URL:www.reaxys.com> [retrieved on 20210415] *
TANCRBDE PIERRE ET AL: "Thermodynamic Effects of Orientation Order in Chain-molecule Mixtures Part 3.-Heats of Mixing of Dimethylsiloxanes with Normal and Branched Alkanes", 1 January 1974 (1974-01-01), XP055795780, Retrieved from the Internet <URL:www.reaxys.com> [retrieved on 20210415] *
TORTELLA G.R. ET AL: "Natural wastes rich in terpenes and their relevance in the matrix of an on-farm biopurification system for the biodegradation of atrazine", INTERNATIONAL BIODETERIORATION & BIODEGRADATION, vol. 85, 1 November 2013 (2013-11-01), Amsterdam , NL, pages 8 - 15, XP055795749, ISSN: 0964-8305, DOI: 10.1016/j.ibiod.2013.06.003 *

Also Published As

Publication number Publication date
FR3108606A1 (fr) 2021-10-01

Similar Documents

Publication Publication Date Title
EP0135441B1 (fr) Procédé amélioré de synthèse du butène-1 par dimérisation de l&#39;éthylène
US8609923B2 (en) Olefin oligomer composition
WO2017072026A1 (fr) Composition catalytique a base de nickel en presence d&#39;un activateur specifique et son utilisation dans un procede d&#39;oligomerisation des olefines
WO2015181358A1 (fr) Polyoléfines lubrifiantes de basse viscosité
EP0012685A1 (fr) Nouvelle composition catalytique et sa mise en oeuvre pour l&#39;oligomérisation des oléfines
EP0024971B1 (fr) Carboxylates de nickel, leur préparation, leur utilisation dans une composition catalytique, utilisation de cette composition pour l&#39;oligomérisation de mono-oléfines
WO2010121591A1 (fr) Procédé de préparation d&#39;hydrocarbures à partir d&#39;alcools gras et utilisation d&#39;hydrocarbures ainsi préparés
WO2021190817A1 (fr) Oléfines et alcanes ramifiés et leur procédé de préparation
WO2021032672A1 (fr) Alcanes ramifiés et leur procédé de préparation
WO2021191465A1 (fr) Oléfines ramifiées fonctionnalisées et leur procédé de préparation
FR3099928A1 (fr) Alcanes ramifiés et leur procédé de préparation
EP4013735A1 (fr) Composes carbonyles, leurs procedes de preparation et leurs utilisations
FR2843110A1 (fr) Procede d&#39;isomerisation d&#39;olefines
FR2983091A1 (fr) Composition catalytique et procede pour la dimerisation selective de l&#39;isobutene
WO2019102152A1 (fr) Procede de preparation de trimeres de 1-decene
WO2021032675A2 (fr) Composés estérifiés ou éthérifiés, leurs procédés de préparation et leurs utilisations
EP2599543A1 (fr) Composition catalytique contenant une fonction acide et procédé pour la dimérisation sélective de l&#39;isobutène
US6897325B2 (en) Method of producing branched fatty substances
EP0009429B1 (fr) Nouveaux composés undécadiènes fonctionnalisés comportant un substituant du type méthylène et leur procédé de fabrication
EP0196253A1 (fr) Système catalytique, son procédé de préparation et son application à la fabrication d&#39;aldéhydes
FR3087773A1 (fr) Nouveau compose a base d’aluminium
FR2464241A1 (fr) Procede de production d&#39;alcool butylique tertiaire
WO2022171871A1 (fr) Alkylphénols, leurs procédés de préparation et leurs utilisations
FR3108327A1 (fr) Procédé de fabrication de para-eugénol et/ou d’ortho-eugénol
FR3077820A1 (fr) Procede de preparation d&#39;isoidide et/ou d&#39;isomannide a partir d&#39;isosorbide sans solvant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21705513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21705513

Country of ref document: EP

Kind code of ref document: A1