WO2021190120A1 - 一种深海冷泉生态系统形成演化模拟系统及方法 - Google Patents

一种深海冷泉生态系统形成演化模拟系统及方法 Download PDF

Info

Publication number
WO2021190120A1
WO2021190120A1 PCT/CN2021/073897 CN2021073897W WO2021190120A1 WO 2021190120 A1 WO2021190120 A1 WO 2021190120A1 CN 2021073897 W CN2021073897 W CN 2021073897W WO 2021190120 A1 WO2021190120 A1 WO 2021190120A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulation
cold spring
ecosystem
pressure
interface
Prior art date
Application number
PCT/CN2021/073897
Other languages
English (en)
French (fr)
Inventor
张偲
冯景春
杨志峰
蔡宴朋
Original Assignee
南方海洋科学与工程广东省实验室(广州)
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方海洋科学与工程广东省实验室(广州), 广东工业大学 filed Critical 南方海洋科学与工程广东省实验室(广州)
Priority to US17/605,241 priority Critical patent/US20220198962A1/en
Publication of WO2021190120A1 publication Critical patent/WO2021190120A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/40Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for geology

Definitions

  • the invention relates to the technical field of marine biological resource development, and more specifically, to a system and method for simulating the formation and evolution of a deep-sea cold spring ecosystem.
  • a cold spring is a marine geological phenomenon in which fluids mainly composed of water, hydrocarbons, hydrogen sulfide, and fine-grained sediments overflow from the seabed by spewing or leaking under the seabed sedimentary interface, and produce a series of physical, chemical and Biological effects. At present, more than 900 active cold springs have been found on the edge of the global continent.
  • the temperature of the cold spring is basically the same as the temperature around the seafloor. Because the overflowing fluid is rich in methane, hydrogen sulfide and other components, it can provide rich nutrients to some bacteria and archaea that synthesize autotrophically.
  • Cold spring organisms such as tubular worms can co-exist on chemoautotrophic bacteria. Different cold spring organisms have different dependence on chemoautotrophic bacteria. According to the size of the dependence, the cold spring biome Order crustaceans, gastropods, sea anemones, etc.), potential obligate species (such as limpets, crabs, and gastropods, etc.), obligate species (clams, tubular worms, mussels, and fungus mats, etc.). Cold spring organisms have unique biodiversity and extremely high biological density, which provide unprecedented opportunities for discovering new microbial metabolism pathways, survival strategies and extreme life evolution.
  • the investigation and research of the cold spring ecosystem mainly uses deep-sea exploration and investigation equipment such as cable-controlled submersibles and remote-controlled submersibles.
  • deep-sea exploration and investigation equipment such as cable-controlled submersibles and remote-controlled submersibles.
  • the complexity of the deep-sea environment, and the limitations of detection equipment current investigations and studies on the cold spring ecosystem are limited to limited fragmented investigations and understandings, and the development of populations and ecosystems in different geographical types varies greatly.
  • There are still many unsolved mysteries in frontier scientific issues such as the community structure, population particularity, niche, food chain, life strategy, the connectivity of habitat patches, and the control factors of ecosystem development in the cold spring ecosystem.
  • the present invention is unable to carry out in-situ cold spring ecological environment remodeling simulation research, further expands the space and depth of cold spring ecological environment research, and provides a deep sea The formation and evolution simulation system and method of the cold spring ecosystem.
  • a simulation system for the formation and evolution of a deep-sea cold spring ecosystem including a high-pressure simulation cavity, in which the high-pressure simulation cavity is constructed by geological stratification, from top to bottom including units above the seabed interface, seabed interface ecosystem simulation units and units below the seabed interface;
  • the unit above the seabed interface is used to simulate the condition of the seabed water body;
  • the seabed interface ecosystem simulation unit is used to simulate the seabed interface and the deep-sea cold spring ecosystem;
  • the unit below the seabed interface is used to simulate the seabed distribution and the development process of the cold spring;
  • An environmental condition control device is provided on the high-voltage simulation cavity for system environmental condition control and data collection;
  • a sampling cabin is provided on the high-pressure simulation cavity for the placement and collection of samples of the deep-sea cold spring ecosystem
  • a submarine current injection system is provided on the high-pressure simulation chamber, and the submarine current injection system is used to inject deep sea water into the submarine interface ecosystem simulation unit to achieve the role of ocean current simulation;
  • the sampling cabin and the control end of the submarine flow injection system are electrically connected to the environmental condition control equipment.
  • a method for simulating the formation and evolution of a deep-sea cold spring ecosystem including the following steps:
  • S1 Fill the high-pressure simulation chamber according to the actual situation to prepare the chemical zoning of the seabed sediments to ensure that the thickness, distribution and pore parameters of the sediments are consistent or similar to the real seabed conditions;
  • S2 Inject sulfur-containing solutions or saturated oxygen solutions into different positions of the sediments to form an anaerobic oxidation or sub-oxygen oxidation state, and complete the construction of the chemical zoning simulation layer of the seabed sediment;
  • S3 Inject the required amount of seawater into the high-pressure simulation cavity, and construct the unit above the seabed interface to simulate the condition of the submarine water body; at the same time, control the environmental condition control equipment to ensure that the physical and chemical environmental parameters in the high-pressure simulation cavity conform to the environment of the real seabed cold spring development condition;
  • S4 Prepare the flow composition, fluid volume and injection preparation of the cold spring fluid source system according to the actual situation, prepare the pipeline distribution and morphological characteristics of the leakage path device, the medium filling in the pipeline and the flow rate adjustment element of the pipeline, and at the same time as needed Or partly open and close to simulate the development behavior of cold springs under different leakage modes, and provide carbon and energy sources for the submarine interface ecosystem simulation unit;
  • S5 Adjust the sediment morphology of the submarine interface ecosystem simulation unit through the sampling chamber to make it conform to the micro-topography state of the formation and evolution of the cold spring ecosystem; then release the cold spring organisms for secondary succession cultivation of the cold spring ecosystem, or directly do not release the organisms Carry out the primary succession culture process from microorganisms to macro organisms and the entire cold spring ecosystem after the development of the cold spring system, and observe and study the development process of the cold spring ecosystem;
  • S6 Open the submarine current injection system according to the actual situation to keep the resources inside the ocean current in the submarine interface ecosystem simulation unit stable; record the development behavior information of the cold spring organisms and ecosystems and the environment in real time during the whole process of the development of the cold spring ecosystem The changes in parameter indicators have completed the simulation of the cold spring ecosystem.
  • the simulation of the cold spring ecosystem is realized through the system, forming a unit above the seabed interface, a seabed interface ecosystem simulation unit, and a unit below the seabed interface, providing environmental conditions for the evolution of the cold spring ecosystem, and on this basis , Through the environmental condition control equipment, sampling cabin, and submarine flow injection system to simulate the primary and secondary succession of the ecological cold spring system, and reshape the formation environment of the system in situ, effectively shortening the cycle of field observation and research on the cold spring ecosystem .
  • the invention provides a system and method for simulating the formation and evolution of a deep-sea cold spring ecosystem, through which the simulation of the cold spring ecosystem is realized, forming a unit above the seabed interface, a seabed interface ecosystem simulation unit and a unit below the seabed interface, which are cold spring ecology
  • the evolution of the system provides environmental conditions, and on this basis, the primary succession and secondary succession of the ecological cold spring system are simulated through environmental condition control equipment, sampling cabins, and submarine current injection systems, and the formation environment of the system is reproduced in situ. It effectively shortens the cycle of field observation and research on cold spring ecosystems.
  • Figure 1 is a schematic diagram of the structure of the simulation system for the formation and evolution of the deep-sea cold spring ecosystem
  • Figure 2 is a schematic diagram of the circuit module connection of the formation and evolution simulation system of the deep-sea cold spring ecosystem
  • Figure 3 is a schematic flow diagram of the simulation method for the formation and evolution of the deep-sea cold spring ecosystem
  • High-pressure simulation chamber 2. Units above the seabed interface; 3. Units above the seabed interface ecosystem; 4. Units below the seabed interface; 41. Cold spring fluid source system; 411. High pressure gas source; 412. Gas pressurization device 413, gas injection device; 414, liquid injection device; 4141, sulfur-containing solution storage; 4142, saturated oxygen solution; 4143, injection pump; 4144, mass flow meter; 4145, controllable valve group; 415, air compressor 42. Leakage pathway device; 421. Pipeline; 422. Flow rate adjusting element; 423. Flow metering element; 43. Submarine sediment chemical zoning simulation layer; 431. Anaerobic oxidation zone; 432. Suboxygen oxidation zone; 433 5.
  • Oxygen-containing oxidation zone 5. Environmental condition control equipment; 51. Temperature control device; 52. Pressure detection device; 53, Gas-liquid circulation device; 54. Light source device; 55. Metering device; 56, Sampling device; 57. Treatment Terminal; 571, data collector; 572, central processing unit; 573, memory; 574, display; 6, sampling cabin; 61, pressure balance cabin; 62, pressure controller; 63, switch valve; 64, movable rail; 65 , Sampler; 7. Submarine flow injection system.
  • a simulation system for the formation and evolution of deep-sea cold spring ecosystems includes high-pressure simulation chamber 1. Geological layering is constructed in high-pressure simulation chamber 1, from top to bottom, including subsea interface unit 2 and subsea The interface ecosystem simulation unit 3 and the subsea interface unit 4; the subsea interface above the unit 2 is used to simulate the condition of the submarine water body; the subsea interface ecosystem simulation unit 3 is used to simulate the subsea interface and the deep sea cold spring ecosystem; Unit 4 below the seafloor interface is used to simulate the seafloor distribution and the development process of cold springs;
  • An environmental condition control device 5 is provided on the high-pressure simulation cavity 1 for system environmental condition control and data collection;
  • a sampling cabin 6 is provided on the high-pressure simulation cavity 1 for the placement and collection of samples of the deep-sea cold spring ecosystem;
  • a submarine current injection system 7 is provided on the high-pressure simulation chamber 1, and the submarine current injection system 7 is used to inject deep sea seawater into the submarine interface ecosystem simulation unit 3 to achieve the role of ocean current simulation;
  • the sampling cabin 6 and the control end of the submarine flow injection system 7 are electrically connected to the environmental condition control device 5.
  • the high-pressure simulation chamber 1 adopts a simulation structure combined with a spherical column.
  • the spherical part is 8 meters in diameter, and the columnar part is 15 meters in height and 5 meters in diameter, providing 50.24m 2 of space for the formation and evolution of the cold spring ecosystem.
  • the sampling cabin 6 is used to excavate the seabed interface to sort out the channel environment developed at the seabed interface to meet the requirements of cold spring fluids escaping from the underlying interface of the seabed.
  • the cold spring ecosystem is simulated through the system, forming the subsea interface unit 2, the subsea interface ecosystem simulation unit 3, and the subsea interface unit 4, which provide environmental conditions for the evolution of the cold spring ecosystem.
  • the primary and secondary succession of the ecological cold spring system are simulated through the environmental condition control equipment 5, the sampling cabin 6, and the submarine flow injection system 7. Field observation to study the cycle of cold spring ecosystem.
  • the subsea interface unit 4 includes a cold spring fluid source system 41, a leakage passage device 42, and a seabed sediment chemical zoning simulation layer 43; among them:
  • the cold spring fluid source system 41 includes a high-pressure gas source 411, a gas pressurization device 412, a gas injection device 413, and a liquid injection device 414; the output port of the high-pressure gas source 411 is connected through the gas pressurization device 412 input port;
  • the output port of the gas injection device 413 is connected to the input end of the leakage path device 42;
  • the output end of the leakage path device 42 is arranged at the bottom of the high-pressure simulation chamber 1;
  • the output port of the liquid injection device 414 is directly arranged at the bottom of the high-pressure simulation chamber 1;
  • the seabed sediment chemical zoning simulation layer 43 is arranged inside the high-pressure simulation chamber 1 to realize the chemical zoning simulation of the sediment below the seabed interface;
  • the high-pressure gas source 411, the gas pressurizing device 412, the gas injection device 413, the liquid injection device 414, and the control end of the leakage path device 42 are all electrically connected to the environmental condition control device 5.
  • an air compressor 415 is provided on the gas boosting device 412.
  • the cold spring fluid source system 41 mainly provides leakage sources such as methane gas, saturated methane solution, brine, petroleum, and gas-liquid mixed fluid to the high-pressure simulation chamber 1 according to actual needs; the leakage path device 42 is provided with fluid leakage according to actual needs.
  • the channel network mainly includes multiple distributed pipelines 421.
  • the material of the leakage channel can be transparent or opaque according to the research needs, and the pipeline 421 is filled with sediment to simulate the channel without cracks, or without filling the medium to simulate the The access of the fissure.
  • the morphological distribution of pipeline 421 can adopt vertical distribution, horizontal distribution, inclined distribution or combined distribution according to needs; the seabed sediment chemical zoning simulation layer 43 mainly realizes the chemical zoning simulation in the sediments below the seabed interface, and simulates the sediments.
  • the natural distribution from bottom to top from the anaerobic oxidation zone 431 and the sub-oxygen oxidation zone 432 to the submarine oxygen-containing oxidation zone 433 provides for the anaerobic oxidation and aerobic oxidation in the sediment layer after the cold spring fluid leaks and migrates to the sedimentary layer. environment.
  • the cold spring fluid source system 41 mainly includes a high-pressure methane storage, a gas booster pump, and an air compressor;
  • the leakage passage device 42 is designed as 14 visualized tubular passages evenly and vertically distributed, and a flow rate is designed on the pipeline 421
  • the material of the regulating element 422 and the flow metering element 423, and the pipeline 421 is designed to be pressure-resistant plexiglass, and no medium is filled in the pipeline 421 to simulate a leakage path with cracks.
  • the liquid injection device 414 includes a sulfur-containing solution storage 4141, a saturated oxygen solution 4142, an injection pump 4143, a mass flow meter 4144, and a controllable valve group 4145; among them:
  • the output ends of the sulfur-containing solution reservoir 4141 and the saturated oxygen solution 4142 are all connected to the inside of the high-pressure simulation chamber 1 through an injection pump 4143;
  • the mass flow meter 4144 and the controllable valve group 4145 are all set at the output port of the injection pump 4143;
  • the mass flow meter 4144 and the controllable valve group 4145 are electrically connected to the environmental condition control device 5.
  • the leakage passage device 42 includes uniformly or non-uniformly distributed pipelines 421, and each pipeline 421 is provided with a flow rate adjusting element 422, a flow metering element 423, and a flow observing element;
  • the adjustment element 422, the flow metering element 423, and the flow observation element are all controlled by the environmental condition control device 5.
  • the chemical zoning simulation layer 43 of the seabed sediment extends from the anaerobic oxidation zone 431, the suboxygen oxidation zone 432 to the oxygen-containing oxidation zone 433 from bottom to top.
  • a sulfate solution is injected into the lower anaerobic oxidation zone 431 to simulate the sulfate reduction zone to create the conditions of the anaerobic oxidation zone; saturated oxygen solution is injected above the anaerobic oxidation zone to create the environment of the suboxygen oxidation zone 432 .
  • the environmental condition control equipment 5 includes a temperature control device 51, a pressure detection device 52, a gas-liquid circulation device 53, a light source device 54, a metering device 55, a sampling device 56 and a processing terminal 57; among them:
  • control terminals of the gas-liquid circulation device 53, the light source device 54, the metering device 55, and the sampling device 56 are all electrically connected to the processing terminal 57;
  • One end of the gas-liquid circulation device 53 is set on the top of the high-pressure simulation chamber 1, and the other end is set on the cavity of the high-pressure simulation chamber 1, so as to realize the circulation of gas-liquid fluid in the unit 2 above the seabed interface;
  • the temperature control device 51 includes a number of temperature sensors and an annular wall temperature controller.
  • the temperature sensor 511 is evenly arranged in the high-pressure simulation chamber 1 in the geophysical layer.
  • the signal output terminal of the temperature sensor 511 is connected to the processing terminal 55.
  • the input terminal is electrically connected;
  • the annular wall temperature controller is wrapped on the outer wall of the high-voltage simulation chamber 1, and its control terminal is electrically connected to the output terminal of the processing terminal 55;
  • the pressure detection device 52 includes several pressure sensors, which are evenly arranged in the high-pressure simulation chamber 1 in the heterogeneous layers; the signal output end of the pressure sensor is electrically connected to the input end of the processing terminal 57;
  • the light source device 54 is a network of shadowless light source devices installed at the seabed interface ecosystem simulation unit 3, which provides light source device adjustments for observing the development behavior of cold spring fluid after escaping the seabed interface;
  • the metering device 55 includes a number of acoustic wave detectors, which are evenly arranged outside the heterogeneous stratification in the high-pressure simulation chamber 1 for monitoring the leakage rate and leakage flux of the leaking fluid;
  • the sampling device 56 includes sampling ports set at different positions of the subsea interface unit 2, the subsea interface ecosystem simulation unit 3, and the subsea interface unit 4 in the high-pressure simulation chamber 1, and the sampling device 56 is set at all locations.
  • the sampling port is used for sample collection;
  • the processing terminal 57 is electrically connected to the flow rate adjusting element 422, the flow metering element 423, and the flow observation element;
  • the processing terminal 57 is electrically connected to the sampling cabin 6 and the control terminal of the submarine flow injection system 7.
  • the temperature control device 51 and the gas-liquid circulation device 53 circulate and control the gas-liquid fluid in the unit 2 above the seabed interface to ensure the temperature in the high-pressure simulation chamber 1, the seabed and the chemical zone of sediments.
  • the distribution has been kept close to the in-situ conditions of the seabed; the gas-liquid circulation device 53 mainly includes multiple circulating pumps, heat exchange units, flow rate control elements, etc.
  • a water circulation jacket is wrapped outside the high-pressure simulation chamber 1, and the period is different.
  • the temperature sensors are evenly distributed to monitor the temperature changes in the system in real time; the pressure detection device 52 is used to monitor the pressure changes in the system in real time.
  • the pressure environment of the belt is similar to the in-situ conditions of the seabed; the processing terminal 57 uses the flow observation element, namely the ultra-high-definition camera system, to control the development process of cold springs and the evolution of bubbles and cold spring plumes in the seabed and the water environment above the seabed interface. State shooting and recording.
  • the flow observation element namely the ultra-high-definition camera system
  • the seawater temperature cannot be controlled only by the heat exchange of the water circulation jacket.
  • the sea water is pumped out of the high-pressure simulation cabin 1, and then flows back into the high-pressure simulation cabin 1 after achieving heat exchange and cooling in the heat exchange unit, so as to realize the cooling of the seawater in the high-pressure simulation cabin 1.
  • Such a cycle can quickly and uniformly cool the seawater in the high-pressure simulation cabin 1, and when it drops to the set expected setting value, the flow rate control element of the water-air circulation device 53 can control the flow rate of the seawater or close the water-air circulation. Device 53 flows in the pipeline.
  • an insulation layer is provided on the surface of the water circulation jacket of the high-pressure simulation cabin 1, and the two-layer structure wraps the high-pressure simulation cabin 1 in the middle to slow down the temperature exchange with the outside, and the water circulation jacket can realize fluid flow.
  • It uses a circulating pump to pump out the water inside, and then uses a refrigeration unit to cool down. After cooling, the pump returns to the water circulation jacket, which is equivalent to the heat exchange between the water circulation jacket and the outer wall of the high-pressure simulation cabin 1.
  • the heat generated under each original working condition can be carried out by the water circulation jacket, so as to keep the entire high-pressure simulation cabin 1 in a stable low temperature environment, and to better simulate the deep sea water environment.
  • real-time monitoring of the temperature in the high-pressure simulation cabin 1 is achieved through temperature sensors set at different levels, and the water-gas circulation device 53 and the flow rate of the fluid in the water-circulation jacket are controlled according to the detection results, so as to achieve high-pressure control. Stable control of temperature in simulation cabin 1.
  • a seawater refrigeration unit is also installed on the water-gas circulation device 53.
  • the temperature control process of the high-pressure simulation cabin 1 specifically includes the cooling phase, the pressurization phase and the heat preservation phase; among them:
  • the cooling phase includes:
  • the heat exchange unit After the heat exchange unit realizes heat exchange and cooling, it flows back into the high-pressure simulation cabin 1 to cool the seawater in the high-pressure simulation cabin 1 until the seawater temperature in the high-pressure simulation cabin 1 drops to the set value, and the cooling stage is completed;
  • the internal fluid of the water circulation jacket circulates under the action of the circulating pump, and the heat exchanger of the water circulation jacket coil and piping system continuously simulates the heat generated in the working condition of each element in the cabin 1
  • the replacement ensures that the high-pressure simulation cabin 1 is always in the preset temperature environment during the working period, and the temperature distribution in the entire simulation cabin is uniform.
  • the processing terminal 57 includes a data collector 571, a central processing unit 572, a memory 573, and a display 574; wherein:
  • the input end of the data collector 571 is electrically connected to the output end of the flow metering element 423, the flow observation element, the temperature control device 51, the pressure detection device 52, and the measurement device 55; the output end of the data collector 571 is connected to the central processing unit The input end of the device 572 is electrically connected;
  • the central processing unit 572 is electrically connected to the memory 573 to realize information exchange;
  • the output terminal of the central processing unit 572 is electrically connected to the input terminal of the display 574 for displaying collected information.
  • the above submarine interface unit 2 is mainly a seawater system that simulates the bottom marine environment above the submarine interface, and the system needs to be filled with seawater that is consistent or similar to the actual bottom marine environment.
  • the seawater of this example is artificially adjusted with seawater with a salinity of about 3.4% based on the in-situ survey data.
  • the sampling cabin 6 includes a pressure balance cabin 61 installed on the high-pressure simulation cabin 1, and the pressure balance cabin 61 is provided with a pressure controller 62, an on-off valve 63 and a moving guide 64; A sampler 65 is provided on the moving guide 64;
  • the switch valve 63 is arranged at both ends of the pressure balance chamber 61;
  • the control ends of the pressure controller 62, the on-off valve 63, the moving guide 64 and the sampler 65 are all electrically connected to the environmental condition control unit 5;
  • the pressure balance cabin 61 is arranged on the seabed interface simulation unit 3, and the sampler 7 puts or collects samples for the seabed interface ecosystem simulation unit 3.
  • the sampler 65 can be a telescopic sampling arm of a guide rail, or a remote control robot.
  • the sampler 65 includes a connecting base, a rotating table, a clamping mechanism and a control circuit; wherein:
  • the sampler 65 is arranged on the moving guide 64 through the connecting base;
  • the rotating table is installed on the connecting base
  • the clamping mechanism is installed on the rotating table
  • connection base, the rotating table, and the control end of the clamping mechanism are all electrically connected to the control circuit;
  • the control circuit is electrically connected to the environmental condition control unit 5;
  • the moving guide rail 64 includes a guide rail body, a chain pushing device and a driving motor; wherein:
  • the connecting base is installed on the rail main body
  • the bottom of the guide rail body is arranged on the chain pushing device
  • the chain pushing device is driven by the driving motor
  • the control terminal of the driving motor is electrically connected to the environmental condition control unit 5.
  • both on-off valves 63 of the pressure balance chamber 61 are closed, then open the on-off valve 63 connected to the experimental environment, put the sample to be cultured on the sampler 65, and then close the on-off valve 63 connected to the experimental environment;
  • Pressurization is performed by the pressure controller 62. After the pressure is balanced, the switch valve 63 connected to the high-pressure simulation cabin 1 is opened to allow seawater to enter the pressure balance cabin 61, and the moving guide 64 is controlled to move the sampler 65 into the high-pressure simulation cabin 1. Place the sample to the designated location;
  • both on-off valves 63 of the pressure balance cabin 61 are closed, and then open the on-off valve 63 connected to the high-pressure simulation cabin 1 to allow seawater to enter the pressure balance cabin 61.
  • the sampler 65 is retracted into the pressure balance chamber 61, and the switch valve 63 connected to the high-pressure simulation chamber 1 is closed;
  • the pressure is reduced by the pressure controller 62, and after the pressure is balanced, the on-off valve 63 connected to the experimental environment is opened, and the sample is taken out into the experimental environment.
  • the control circuit drives the connecting base to slide on the moving guide rail to realize the horizontal movement of the sampler 65; the control circuit drives the rotating table, and the rotating table drives the clamping mechanism to rotate 360°, The multi-angle sampling of the sampler 65 is realized; the control circuit drives the clamping mechanism to perform clamping or sending-open actions to realize the clamping or placing of samples by sampling.
  • the sampler 65 can be retracted and moved freely in the pressure balance cabin 61 and the high-pressure simulation cabin 1, and can move freely in the high-pressure simulation cabin 1, and has 360 degrees of freedom for the samples in the high-pressure simulation cabin 1. Sampling function.
  • the sampler 65 can be equipped with lighting equipment to provide a light source for the sampler 65 to enter the high-pressure simulation cabin 1 for sampling, and provide conditions for the sampler 65 to perform accurate sampling operations.
  • the chain pushing device is driven to rotate by the drive motor, and the main body of the guide rail hinged to the chain pushing device will be pushed out or retracted.
  • the movable guide rail can be completely contained in the pressure balance chamber; when it is needed to put or collect When taking samples, the movable guide rail can be pushed out into the high-pressure simulation cabin 1 to ensure that the sampler 65 can reach all positions on the same horizontal line, which is convenient for placing or collecting samples.
  • the sampling cabin 6 mainly meets the requirements of putting cold spring organisms obtained in situ on the seabed into the marine environment in the system, taking out the cultivated cold spring organisms for simulation system research, and realizing the mining and sampling of seabed interface sediments and the seabed micro-landform environment. Correction adjustment and other functions.
  • the submarine stream injection system 7 includes several spouts, piping systems, injection pumps, regulating valves and seawater preparation systems; among them:
  • the spout is arranged at the seabed interface and is connected to the seawater preparation system through the pipeline system;
  • the injection pump set and the regulating valve are all arranged on the pipeline system;
  • the injection pump set, the regulating valve and the seawater preparation system are all electrically connected to the environmental condition control unit 5;
  • a controller is provided on the spout, and the controller is electrically connected to the environmental condition control unit 5 for controlling the range, spray area and spray direction of the spout.
  • the seawater preparation system includes a seawater storage tank, a heat exchanger group, a high-pressure seawater injection pump, a controllable valve group and a mass flow meter; among them:
  • the heat exchanger group is arranged on the seawater storage tank for heat conversion of seawater
  • the seawater storage tank is in communication with the pipeline system through a high-pressure seawater injection pump and a controllable valve group;
  • the mass flow meter is arranged at the outlet of the controllable valve group
  • the heat exchanger group, the high-pressure seawater injection pump, the controllable valve group, and the mass flow meter are all electrically connected to the environmental condition control unit 5.
  • the seawater preparation system deploys seawater of different components and different temperatures according to needs to simulate the need to generate bottom sea currents; the prepared seawater flow is injected into the system 7 through the injection pump set, and the flow rate of the seawater is controlled by the regulating valve Finally, the seawater is injected into the high-pressure simulation cabin 1 through the piping system through the nozzle to achieve the role of ocean current simulation.
  • the seawater storage tank is used to store seawater
  • the heat exchanger group is used to control the temperature of the seawater in the seawater storage tank
  • the high-pressure seawater injection pump is used to inject seawater into the pipeline system, and the flow is controlled by the controllable valve group.
  • the mass flow meter measures the amount of seawater injected, and transmits the measurement results to the environmental condition control unit.
  • the submarine current injection system 7 mainly simulates different submarine bottom current environments, reshapes the ocean current state around the cold spring ecosystem, and provides an ocean current environment for the material circulation and energy flow of the cold spring ecosystem.
  • a method for simulating the formation and evolution of a deep-sea cold spring ecosystem includes the following steps:
  • S1 Fill the high-pressure simulation chamber 1 according to the actual situation to prepare the chemical zoning of the seabed sediments to ensure that the thickness, distribution and pore parameters of the sediments are consistent or similar to the real seabed conditions;
  • S2 Inject sulfur-containing solutions or saturated oxygen solutions into different positions of the sediments to form an anaerobic oxidation or sub-oxygen oxidation state, and complete the construction of the chemical zoning simulation layer 43 of the seabed sediment;
  • S3 Inject the required amount of seawater into the high-pressure simulation chamber 1, and construct the unit 2 above the seabed interface for the simulation of the submarine water body; at the same time, control the environmental condition control equipment 5 to ensure that the physical and chemical environmental parameters in the high-pressure simulation chamber 1 conform to the real seabed Environmental conditions for cold spring development;
  • S4 Prepare the flow composition, fluid volume and injection preparation of the cold spring fluid source system 41 according to the actual situation, prepare the pipeline distribution and morphological characteristics of the leakage path device 42, the medium filling in the pipeline 421, and the flow rate adjustment element of the pipeline 421 422. Simultaneously or partially open and close according to needs, simulate the development behavior of cold springs under different leakage modes, and provide carbon and energy sources for the submarine interface ecosystem simulation unit 3;
  • S6 Open the submarine current injection system 7 according to the actual situation to keep the resources inside the ocean current in the submarine interface ecosystem simulation unit 3 stable; record the development behavior information of the cold spring organisms and ecosystems in real time during the whole process of the cold spring ecosystem development The changes in environmental parameters have completed the simulation of the formation and evolution of the cold spring ecosystem.
  • the sulfate solution and the mixed fluid of the iron-containing salt solution and the saturated oxygen solution are uniformly injected into the sedimentary layer 1.5 meters and 3 meters from the bottom of the spherical shape to ensure different chemical zoning The redox conditions.
  • the required amount of the overlying ocean water environment of the submarine interface ecosystem simulation unit is injected into the high-pressure simulation chamber 1, and the temperature control device 51, the pressure detection device 52, the submarine flow injection system 7 and other auxiliary units are used to ensure the high-pressure simulation chamber 1
  • the internal physical and chemical environmental parameters are in line with the environmental conditions for the formation and evolution of the real seabed cold spring ecosystem.
  • the passage system is designed to be vertically distributed, and the pipeline is not filled with medium to simulate the passage situation without cracks.
  • the flow rate adjustment of the pipeline and the preparation of the metering original are prepared.
  • the leakage passage device 42 can be opened and closed at the same time or partially as required to simulate the development behavior of cold springs in different leakage modes. After all environmental conditions are in place, turn on the opening system of the cold spring fluid source and open the leakage passage system at the same time.
  • the methane gas will gradually enter the leakage passage device 42 from the high-pressure gas source, and the chemical zoning layer of sediment will enter the submarine interface layer, which is a cold spring ecology.
  • the formation and evolution of the system provide a source of carbon and energy.
  • the sample chamber 6 is used to adjust the sediment morphology of the seafloor interface to make it conform to the micro-topography state of the formation and evolution of the cold spring ecosystem.
  • Put cold spring mussels, tubular worms, latent prawns and microbial mats obtained through in-situ investigations into the seabed interface through the sampling system to conduct secondary succession cultivation of the cold spring ecosystem and observe and study the development process of the cold spring ecosystem.
  • the development behavior information and environmental parameter changes of the cold spring organisms and ecosystems are recorded in real time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Technology (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Geology (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

一种深海冷泉生态系统形成演化模拟系统及方法,模拟系统包括高压模拟腔(1),在高压模拟腔(1)中进行地质分层构建,由上而下包括海底界面以上单元(2)、海底界面生态系统模拟单元(3)和海底界面以下单元(4);海底界面以上单元(2)用于海底水体情况的模拟;海底界面生态系统模拟单元(3)用于模拟海底界面及深海冷泉生态系统;海底界面以下单元(4)用于模拟海底分布及冷泉的发育过程。高压模拟腔(1)上设置有:环境条件控制设备(5),用于系统环境条件的控制及数据的采集;取样舱(6),用于深海冷泉生态系统样品的放置及采集;海底流注入系统(7),用于向海底界面生态系统模拟单元(3)注入深海海水或人工配置海水,达到洋流模拟的作用。取样舱(6)、海底流注入系统(7)控制端与环境条件控制设备(5)电性连接。实现冷泉生态系统的模拟,为冷泉生态系统的演化提供环境条件,对系统的形成环境进行原位重塑,缩短了野外观测研究冷泉生态系统的周期,可观测研究冷泉生态系统的形成和演化,抓住发育过程中关键特征点实时取样分析。

Description

一种深海冷泉生态系统形成演化模拟系统及方法 技术领域
本发明涉及海洋生物资源开发技术领域,更具体的,涉及一种深海冷泉生态系统形成演化模拟系统及方法。
背景技术
冷泉是在海底沉积界面之下的以水、碳氢化合物、硫化氢、细粒沉积物为主要成分的流体以喷涌或渗漏方式从海底溢出的海洋地质现象,并产生系列的物理、化学及生物作用。目前在全球大陆边缘已经发现有900多个活动冷泉。冷泉的温度与海底周围温度基本一致,由于溢出的流体富含甲烷、硫化氢等组分,能够给一些化能自养合成的细菌和古菌提供丰富的养分。给依靠化能自养的微生物提供了碳源和能量来源,从而供应冷泉生物群的食物和能量基础,并繁衍成独特的冷泉生态系统。冷泉生物如管状蠕虫可对化能自养菌共生存在,不同的冷泉生物对化能自养菌的依附性不同,根据依附性大小,冷泉生物群落可分为非转性种(如短尾亚目甲壳动物、腹足动物、海葵等)、潜在专性种(如帽贝、螃蟹、和腹足动物等)、专性种(蛤类、管状蠕虫、贻贝类和菌席等)。冷泉生物具有独特的生物多样性和极高的生物密度性,为发现新的微生物代谢途径,生存对策和极端生命演化提供了前所未有的机遇。
目前,冷泉生态系统的调查研究主要是运用深海探测调查装备如缆控潜器、遥控潜器等进行调查研究。然而由于海域环境的多样性、深海环境的复杂性和探测设备的局限性,当前关于冷泉生态系统的调查研究仅限于有限的片段性调查和认识,不同地域类型的种群和生态系统发育差别很大,冷泉生态系统的群落结构、种群特殊性、生态位、食物链、生命策略、生境斑块的联通性、生态系统发育控制因素等前沿科学问题尚有很多未解之谜。研究冷泉生态环境系统的控制因素及发育机制,亟需开展原位冷泉生态环境的重塑模拟研究,进一步拓展冷泉生态环境研究的空间和深度。目前,国内已有学者成功利用简易可移动性的压力系统培养了65株嗜压菌。构建了遗传操作系统的深海嗜压/耐压细菌和古菌7株,其中 国内有4株;利用高压培养系统和组学技术,解析极端生命代谢途径(如甲烷氧化古菌的厌氧甲烷氧化途径),为冷泉原位重塑实验模拟系统的可实现性提供了科学基础,但是仍然缺乏系统的培养冷泉生态的系统和方法进行冷泉生物的培养和生态系统的研究。
发明内容
本发明为克服现有缺乏系统的培养冷泉生态的系统和方法,存在无法对开展原位冷泉生态环境的重塑模拟研究,进一步拓展冷泉生态环境研究的空间和深度的技术缺陷,提供一种深海冷泉生态系统形成演化模拟系统及方法。
为解决上述技术问题,本发明的技术方案如下:
一种深海冷泉生态系统形成演化模拟系统,包括高压模拟腔,在高压模拟腔中进行地质分层构建,由上而下包括海底界面以上单元、海底界面生态系统模拟单元和海底界面以下单元;所述海底界面以上单元用于海底水体情况的模拟;所述海底界面生态系统模拟单元用于模拟海底界面及深海冷泉生态系统;所述海底界面以下单元用于模拟海底分布及冷泉的发育过程;
在所述高压模拟腔上设置有环境条件控制设备,用于系统环境条件的控制及数据的采集;
在所述高压模拟腔上设置有取样舱,用于深海冷泉生态系统样品的放置及采集;
在所述高压模拟腔上设置有海底流注入系统,所述海底流注入系统用于向海底界面生态系统模拟单元注入深海海水,达到洋流模拟的作用;
所述取样舱、海底流注入系统控制端与所述环境条件控制设备电性连接。
一种深海冷泉生态系统形成演化模拟方法,包括以下步骤:
S1:根据实际情况在高压模拟腔内填充准备海底沉积物化学分带,保证沉积物的厚度、分布及孔隙参数等与海底真实条件一致或相近;
S2:在沉积物不同位置分别注入含硫溶液或者饱和氧溶液,形成厌氧氧化或者次氧氧化状态,完成海底沉积物化学分带模拟层的构建;
S3:向高压模拟腔注入需要量的海水,构建海底界面以上单元用于海底水体情况的模拟;同时控制环境条件控制设备保证高压模拟腔内的物理、化学环境参数符合真实海底的冷泉发育的环境条件;
S4:根据实际情况准备冷泉流体源系统的流量组分、流体量以及注入准备, 准备泄漏通路装置的管路分布、形态特征、管路内的介质填充及管路的流速调节元件,根据需要同时或者部分启闭,模拟不同泄漏方式下的冷泉发育行为,为海底界面生态系统模拟单元提供碳源和能量源;
S5:通过取样舱调整海底界面生态系统模拟单元沉积物形态,使其符合冷泉生态系统形成演化的微地貌状态;再投放冷泉生物,进行冷泉生态系统的次生演替培养,或者不投放生物直接进行冷泉系统发育后从微生物到宏生物及整个冷泉生态系统的原生演替培养过程,观测研究冷泉生态系统的发育过程;
S6:根据实际情况打开海底流注入系统,保持海底界面生态系统模拟单元中洋流内部的资源稳定;在冷泉生态系统发育的全过程中实时记录冷泉生物及生态系统的各项发育行为信息和环境的参数指标变化情况,完成冷泉生态系统的模拟。
上述方案中,通过所述系统实现冷泉生态系统的模拟,形成了海底界面以上单元、海底界面生态系统模拟单元和海底界面以下单元,为冷泉生态系统的演化提供了环境条件,并在此基础上,通过环境条件控制设备、取样舱、海底流注入系统模拟生态冷泉系统原生演替和次生演替,对系统的形成环境进行了原位重塑,有效缩短了野外观测研究冷泉生态系统的周期。
上述方案中,相对于现有的海底观测调查手段不仅可以观测研究冷泉生态系统的形成和演化,还可以抓住发育过程中关键特征点实时取样分析,拓宽了冷泉生态系统研究的深度,不仅可以节约海底原位观测调查研究需要的巨额成本,有效避免研究计划受海洋恶劣风浪环境等不利条件的影响。
与现有技术相比,本发明技术方案的有益效果是:
本发明提供的一种深海冷泉生态系统形成演化模拟系统及方法,通过所述系统实现冷泉生态系统的模拟,形成了海底界面以上单元、海底界面生态系统模拟单元和海底界面以下单元,为冷泉生态系统的演化提供了环境条件,并在此基础上,通过环境条件控制设备、取样舱、海底流注入系统模拟生态冷泉系统原生演替和次生演替,对系统的形成环境进行了原位重塑,有效缩短了野外观测研究冷泉生态系统的周期,相对于现有的海底观测调查手段不仅可以观测研究冷泉生态系统的形成和演化,还可以抓住发育过程中关键特征点实时取样分析,拓宽了冷泉生态系统研究的深度,不仅可以节约海底原位观测调查研究需要的巨额成本,有效避免研究计划受海洋恶劣风浪环境等不利条件的影响。
附图说明
图1为深海冷泉生态系统形成演化模拟系统结构示意图;
图2为深海冷泉生态系统形成演化模拟系统电路模块连接示意图;
图3为深海冷泉生态系统形成演化模拟方法流程示意图;
其中:1、高压模拟腔;2、海底界面以上单元;3、海底界面生态系统模拟单元;4、海底界面以下单元;41、冷泉流体源系统;411、高压气源;412、气体增压装置;413、气体注入装置;414、液体注入装置;4141、含硫溶液储库;4142、饱和氧溶液;4143、注入泵;4144、质量流量计;4145、可控阀组;415、空气压缩机;42、泄漏通路装置;421、管路;422、流速调节元件;423、流动计量元件;43、海底沉积物化学分带模拟层;431、厌氧氧化带;432、次氧氧化带;433、含氧氧化带;5、环境条件控制设备;51、温度控制装置;52、压力检测装置;53、气液循环装置;54、光源装置;55、计量装置;56、取样装置;57、处理终端;571、数据采集器;572、中央处理器;573、存储器;574、显示器;6、取样舱;61、压力平衡舱;62、压力控制器;63、开关阀门;64、移动导轨;65、取样器;7、海底流注入系统。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
如图1、图2所示,一种深海冷泉生态系统形成演化模拟系统,包括高压模拟腔1,在高压模拟腔1中进行地质分层构建,由上而下包括海底界面以上单元2、海底界面生态系统模拟单元3和海底界面以下单元4;所述海底界面以上单元2用于海底水体情况的模拟;所述海底界面生态系统模拟单元3用于模拟海底界面及深海冷泉生态系统;所述海底界面以下单元4用于模拟海底分布及冷泉的发育过程;
在所述高压模拟腔1上设置有环境条件控制设备5,用于系统环境条件的控 制及数据的采集;
在所述高压模拟腔1上设置有取样舱6,用于深海冷泉生态系统样品的放置及采集;
在所述高压模拟腔1上设置有海底流注入系统7,所述海底流注入系统7用于向海底界面生态系统模拟单元3注入深海海水,达到洋流模拟的作用;
所述取样舱6、海底流注入系统7控制端与所述环境条件控制设备5电性连接。
在具体实施过程中,高压模拟腔1采用球柱相结合的模拟结构,球状部分尺寸为直径8米,柱状部分为高度15米,直径5米,为冷泉生态系统的形成演化提供50.24m 2的足够大的截面空间,以及与真实海底环境一致或者相近的海洋物理、海洋化学、海洋地质和海洋生物环境条件。同时,通过取样舱6在海底界面挖掘整理在海底界面满足冷泉流体从海底下伏界面逸出发育的通道环境。
在具体实施过程中,通过所述系统实现冷泉生态系统的模拟,形成了海底界面以上单元2、海底界面生态系统模拟单元3和海底界面以下单元4,为冷泉生态系统的演化提供了环境条件,并在此基础上,通过环境条件控制设备5、取样舱6、海底流注入系统7模拟生态冷泉系统原生演替和次生演替,对系统的形成环境进行了原位重塑,有效缩短了野外观测研究冷泉生态系统的周期。
在具体实施过程中,相对于现有的海底观测调查手段不仅可以观测研究冷泉生态系统的形成和演化,还可以抓住发育过程中关键特征点实时取样分析,拓宽了冷泉生态系统研究的深度,不仅可以节约海底原位观测调查研究需要的巨额成本,有效避免研究计划受海洋恶劣风浪环境等不利条件的影响。
更具体的,所述海底界面以下单元4包括冷泉流体源系统41、泄漏通路装置42和海底沉积物化学分带模拟层43;其中:
所述冷泉流体源系统41包括高压气源411、气体增压装置412、气体注入装置413和液体注入装置414;所述高压气源411输出口通过所述气体增压装置412输入口连接;
所述气体注入装置413输出口与所述泄漏通路装置42输入端连接;
所述泄漏通路装置42输出端设置在所述高压模拟腔1底部;
所述液体注入装置414输出口直接设置在所述高压模拟腔1底部;
所述海底沉积物化学分带模拟层43设置在所述高压模拟腔1内部,实现海 底界面以下沉积物的化学分带模拟;
所述高压气源411、气体增压装置412、气体注入装置413和液体注入装置414和泄漏通路装置42控制端均与所述环境条件控制设备5电性连接。
在具体实施过程中,在所述气体增压装置412上,设置由空气压缩机415。
在具体实施过程中,冷泉流体源系统41主要根据实际需要向高压模拟腔1提供甲烷气体、饱和甲烷溶液、盐水、石油、气液混合流体等泄漏源;泄漏通路装置42根据实际需要设置流体泄漏通路网,主要包括多根分布的管路421,泄漏通路的材料可根据研究需要采用透明或者不透明材质,并且在管路421内填充沉积物模拟不含裂隙的通路情况,或者不填充介质模拟含裂隙的通路情况。管路421的形态分布根据需要可采用垂直分布、水平分布、倾斜分布或组合分布形式;海底沉积物化学分带模拟层43主要实现海底界面以下沉积物中的化学分带模拟,模拟沉积物中自下而上从厌氧氧化带431、次氧氧化带432到海底含氧氧化带433的天然分布,为冷泉流体泄漏运移至沉积层后再沉积层中的厌氧氧化和需氧氧化提供环境。
在具体实施过程中,冷泉流体源系统41主要包括高压甲烷储库、气体增压泵、空气压缩机;泄漏通路装置42设计成14根均匀垂直分布的可视化管状通路,管路421上设计有流速调节元件422和流动计量元件423,管路421的材质设计为耐压有机玻璃,在管路421内不填充介质,以模拟含裂隙的泄漏通路情形。
更具体的,所述液体注入装置414包括含硫溶液储库4141、饱和氧溶液4142、注入泵4143、质量流量计4144和可控阀组4145;其中:
所述含硫溶液储库4141、饱和氧溶液4142输出端均通过注入泵4143连接到所述高压模拟腔1内部;
所述质量流量计4144、可控阀组4145均设置在所述注入泵4143输出口出;
所述质量流量计4144、可控阀组4145与所述环境条件控制设备5电性连接。
更具体的,所述泄漏通路装置42包括均匀或非均匀分布的管路421,所述的每根管路421上均设置有流速调节元件422、流动计量元件423和流动观测元件;所述流速调节元件422、流动计量元件423和流动观测元件均由所述环境条件控制设备5控制。
更具体的,所述海底沉积物化学分带模拟层43自下而上从厌氧氧化带431、次氧氧化带432到含氧氧化带433。
在具体实施过程中,在下层的厌氧氧化带431中注入硫酸盐溶液模拟硫酸盐还原带,营造厌氧氧化带的条件;厌氧氧化带上方注入饱和氧溶液,营造次氧氧化带432环境。
更具体的,所述环境条件控制设备5包括温度控制装置51、压力检测装置52、气液循环装置53、光源装置54、计量装置55、采样装置56和处理终端57;其中:
所述气液循环装置53、光源装置54、计量装置55、采样装置56控制端均与所述处理终端57电性连接;
所述气液循环装置53一端通口设置在所述高压模拟腔1顶部,另一端设置在高压模拟腔1腔体上,实现海底界面以上单元2内气液流体的循环;
所述温度控制装置51包括若干个温度传感器和环壁温度控制器,所述温度传感器511均匀地设置在高压模拟腔1内各地质分层中,温度传感器511信号输出端与所述处理终端55输入端电性连接;所述环壁温度控制器包裹在所述高压模拟腔1外壁,其控制端与所述处理终端55输出端电性连接;
所述压力检测装置52包括若干个压力传感器,所述压力传感器均匀地设置在高压模拟腔1内各地质分层中;所述压力传感器信号输出端与所述处理终端57输入端电性连接;
所述光源装置54为设置在海底界面生态系统模拟单元3出的无影光源装置网,为观测冷泉流体逸出海底界面以后的发育行为提供光源装置调节;
所述计量装置55包括若干个声波探测器,所述声波探测器均匀地布设在高压模拟腔1内各地质分层外部,用于监测泄漏流体的泄漏速率和泄漏通量;
所述采样装置56包括在所述高压模拟腔1中的海底界面以上单元2、海底界面生态系统模拟单元3和海底界面以下单元4的不同位置设置的采样口,所述采样装置56设置在所述采样口上,用于样本的采集;
所述处理终端57与所述流速调节元件422、流动计量元件423和流动观测元件电性连接;
所述处理终端57与所述取样舱6、海底流注入系统7控制端电性连接。
在具体实施过程中,温度控制装置51和气液循环装置53是通过对海底界面以上单元2内的气液流体进行循环和温度控制,保证高压模拟腔1内、海底及沉积物化学分带的温度分布一直保持与海底原位条件相近的状态;气液循环装置 53主要包括多台循环泵、换热机组,流速控制元件等,同时在高压模拟腔1外部包裹水循环夹套,并且周期不同层位均匀分布设温度传感器,实时监测系统内的温度变化;压力检测装置52用于实时监测系统内的压力变化,由处理终端57控制气液注入系统中,保持系统内的、海底及沉积物化学分带的压力环境与海底原位条件相近的状态;处理终端57通过流动观测元件,即超高清摄像系统等对冷泉发育过程以及气泡、冷泉羽流等在海底及海底界面以上的水体环境中的演化状态拍摄和记录。
在具体实施过程中,由于高压模拟舱1中海水量大,海水温度无法仅靠水循环夹套换热实现控制,此时利用水气循环装置53上安装的循环泵将高压模拟舱1内温度高的海水抽离高压模拟舱1,在换热机组中实现换热降温后流回高压模拟舱1中,实现对高压模拟舱1中海水的降温。如此循环,实现快速地将高压模拟舱1中的海水进行均匀地降温,降至设定预期设定值时,可通过水气循环装置53的流速控制元件控制海水流动的速度或关闭水气循环装置53流动管道。
在具体实施过程中,在高压模拟舱1的水循环夹套表面设置有保温层,两层结构将高压模拟舱1包裹在中间,使其与外界的温度交换减缓,水循环夹套能够实现流体的流动,其通过循环泵将里边的水抽出,之后采用制冷机组进行降温,降温之后泵回到水循环夹套中,相当于水循环夹套与高压模拟舱1的外壁实现热交换,当高压模拟舱1中各个原件工况状态下产生的热量能被水循环夹套带出,从而保持整个高压模拟舱1内一直处于稳定的低温环境,更好的模拟深海海水环境。
在具体实施过程中,通过设置在不同层位的温度传感器对高压模拟舱1内的温度实现实时的监控,根据检测结果控制水气循环装置53及水循环夹套内流体的流速,从而达到对高压模拟舱1内温度的稳定控制。
更具体的,在水气循环装置53上还安装有海水制冷机组。
在具体实施过程中,高压模拟舱1温度控制的过程具体为:包括降温阶段、增压阶段和保温阶段;其中:
降温阶段包括:
1)向高压模拟舱1内注入海水;
2)启动海水制冷机组并调节流速控制元件,通过循环泵将高压模拟舱1内温度高的海水抽离高压模拟舱1;
3)在换热机组实现换热降温后流回高压模拟舱1中,实现对高压模拟舱1中海水的降温,直至高压模拟舱1内海水温度降至设定值,完成降温阶段;
增压阶段:
当温度传感器监测到高压模拟舱1内海水温度达到设定值时,向高压模拟舱1内注入气体和液体,实现高压模拟舱1内的增压;
直至高压模拟舱1内压力达到设定值,完成增压阶段;
保温阶段:
当压力检测装置52监测到高压模拟舱1内压力达到设定值时,在水循环夹套表面敷设保温层;
启动制冷机组,水循环夹套内部流体在循环泵的作用下循环流动,通过水循环夹套的盘管和管路系统的换热器不断地将高压模拟舱1内各原件工况状态时产生的热量换走,保证了高压模拟舱1内在工作期内一直处于预设的温度环境,且整个模拟舱内温度分布均匀。
更具体的,所述处理终端57包括数据采集器571、中央处理器572、存储器573和显示器574;其中:
所述数据采集器571输入端与所述流动计量元件423、流动观测元件、温度控制装置51、压力检测装置52和计量装置55输出端电性连接;数据采集器571输出端与所述中央处理器572输入端电性连接;
所述中央处理器572与所述存储器573电性连接,实现信息交互;
所述中央处理器572输出端与所述显示器574输入端电性连接,用于采集信息的显示。
更具体的,海底界面以上单元2主要是模拟海底界面上部底层海洋环境的海水体系统,需要在系统中充填与实际底层海洋环境一致或者相近的海水。本实例的海水根据原位调查数据进行人工调制盐度为3.4%左右的海水。
实施例2
更具体的,所述取样舱6包括安装在所述高压模拟舱1上的压力平衡舱61,所述压力平衡舱61中设置有压力控制器62、开关阀门63和移动导轨64;在所述移动导轨64上设置有取样器65;
所述开关阀门63设置在所述压力平衡舱61两端;
所述压力控制器62、开关阀门63、移动导轨64和取样器65的控制端均与 所述环境条件控制单元5电性连接;
所述压力平衡舱61设置在所述海底界面模拟单元3上,由所述取样器7对海底界面生态系统模拟单元3进行样品的投放或采集。
在具体实施过程中,取样器65可以是导轨的伸缩取样臂,也可以是遥控机器人。
更具体的,所述取样器65包括连接底座、旋转台、夹持机构和控制电路;其中:
所述取样器65通过所述连接底座设置在所述移动导轨64上;
所述旋转台安装在所述连接底座上;
所述夹持机构安装在所述旋转台上;
所述连接底座、旋转台、夹持机构控制端均与所述控制电路电性连接;
所述控制电路与所述环境条件控制单元5电性连接;
更具体的,所述移动导轨64包括导轨主体、链条推动装置和驱动电机;其中:
所述连接底座安装在所述导轨主体上;
所述导轨主体底部设置在链条推动装置上;
所述链条推动装置通过所述驱动电机进行驱动;
所述驱动电机控制端与所述环境条件控制单元5电性连接。
在具体实施过程中,通过操作取样舱6中的压力控制器62、开关阀门63、移动导轨64、取样器65实现对海底界面生态系统模拟单元3样品的投放和采集,具体过程为:
投放样品时:
确保压力平衡舱61两个开关阀门63均已关闭,随后打开与实验环境连通的开关阀门63,将需要培养的样品放至取样器65上,随后关闭与实验环境连通的开关阀门63;
通过压力控制器62进行增压,待压力平衡后,打开与高压模拟舱1连通的开关阀门63,让海水进入压力平衡舱61中,控制移动导轨64将取样器65进入高压模拟舱1中,将样品投放至指定位置;
最后将取样器65收回压力平衡舱61中,关闭与高压模拟舱1连通的开关阀门63,完成样品的投放;
采集样本时:
确保压力平衡舱61两个开关阀门63均已关闭,随后打开与高压模拟舱1连通的开关阀门63,让海水进入压力平衡舱61中,待压力平衡后,控制移动导轨64将取样器65进入高压模拟舱1中,对需要取回的样品进行抓取;
随后将取样器65收回压力平衡舱61中,关闭与高压模拟舱1连通的开关阀门63;
通过压力控制器62进行降压,待压力平衡后,打开与实验环境连通的开关阀门63,将样品取出至实验环境中。
在具体实施过程中,在取样器65动作过程中,控制电路驱动连接底座在移动导轨上滑动,实现取样器65的水平移动;控制电路驱动旋转台,旋转台带动夹持机构作360°旋转,实现取样器65的多角度取样;控制电路驱动夹持机构做夹持或送开动作,实现取样取对样本的夹取或投放。
在具体实施过程中,取样器65可在压力平衡舱61与高压模拟舱1内自由收放移动,且在高压模拟舱1内可以自由移动,具有对高压模拟舱1内的样品具有360度自由取样功能,同时,取样器65上可搭载照明设备,为取样器65进入高压模拟舱1内取样提供光源,为取样器65进行精准取样操作提供条件。
在具体实施过程中,通过驱动电机驱动链条推动装置进行转动,铰接在链条推动装置的导轨主体将被推出或回缩,正常情况下移动导轨可以完全容纳在压力平衡舱内;当需要投放或采集样品时,可以将移动导轨推出至高压模拟舱1中,确保取样器65可以到达同一水平线上的所有位置,方便样品的投放或采集。
在具体实施过程中,取样舱6主要满足将海底原位取得的冷泉生物投放到系统内的海洋环境中,将培养的冷泉生物取出模拟系统研究以及实现海底界面沉积物挖掘取样和海底微地貌环境修正调节等功能。
实施例3
更具体的,所述海底流注入系统7包括若干喷口、管路系统、注入泵组、调节阀和海水制备系统;其中:
所述喷口设置在海底界面处,通过所述管路系统与所述海水制备系统连接;
所述注入泵组、调节阀均设置在所述管路系统上;
所述注入泵组、调节阀和海水制备系统均与所述环境条件控制单元5电性连接;
在所述喷口上设置有控制器,所述控制器与所述环境条件控制单元5电性连接,用于控制喷口的射程、喷洒面积和喷射方向。
其中,所述海水制备系统包括海水储罐、热交换机组、高压海水注入泵、可控阀组和质量流量计;其中:
所述热交换机组设置在所述海水储罐上,用于海水的热量转换;
所述海水储罐通过高压海水注入泵、可控阀组与所述管路系统连通;
所述质量流量计设置在所述可控阀组出口处;
所述热交换机组、高压海水注入泵、可控阀组、质量流量计均与所述环境条件控制单元5电性连接。
在具体实施过程中,海水制备系统根据需要调配不同组分和不同温度的海水用于模拟产生底层海流需要;通过注入泵组将制备好的海底流注入系统7中,通过调节阀控制海水的流量,最后将海水经管路系统,由喷口喷射入高压模拟舱1内,以达到洋流模拟的作用。
在具体实施过程中,海水储罐用于存储海水,热交换机组用于对海水储罐内海水进行温度控制,高压海水注入泵用于将海水注入管路系统中,由可控阀组进行流量的控制,同时,由质量流量计计量海水的注入量,并将计量结果传送至环境条件控制单元中。
在具体实施过程中,海底流注入系统7主要是模拟不同的海底底层流环境,重塑冷泉生态系统周围的洋流状态,为冷泉生态系统的物质循环和能量流动提供洋流环境。
实施例4
更具体的,如图3所示,一种深海冷泉生态系统形成演化模拟方法,包括以下步骤:
S1:根据实际情况在高压模拟腔1内填充准备海底沉积物化学分带,保证沉积物的厚度、分布及孔隙参数等与海底真实条件一致或相近;
S2:在沉积物不同位置分别注入含硫溶液或者饱和氧溶液,形成厌氧氧化或者次氧氧化状态,完成海底沉积物化学分带模拟层43的构建;
S3:向高压模拟腔1注入需要量的海水,构建海底界面以上单元2用于海底水体情况的模拟;同时控制环境条件控制设备5保证高压模拟腔1内的物理、化学环境参数符合真实海底的冷泉发育的环境条件;
S4:根据实际情况准备冷泉流体源系统41的流量组分、流体量以及注入准备,准备泄漏通路装置42的管路分布、形态特征、管路421内的介质填充及管路421的流速调节元件422,根据需要同时或者部分启闭,模拟不同泄漏方式下的冷泉发育行为,为海底界面生态系统模拟单元3提供碳源和能量源;
S5:通过取样舱6调整海底界面生态系统模拟单元3沉积物形态,使其符合冷泉生态系统形成演化的微地貌状态;再投放冷泉生物,进行冷泉生态系统的次生演替培养,或者不投放生物直接进行冷泉系统发育后从微生物到宏生物及整个冷泉生态系统的原生演替培养过程,观测研究冷泉生态系统的发育过程;
S6:根据实际情况打开海底流注入系统7,保持海底界面生态系统模拟单元3中洋流内部的资源稳定;在冷泉生态系统发育的全过程中实时记录冷泉生物及生态系统的各项发育行为信息和环境的参数指标变化情况,完成冷泉生态系统的形成演化模拟。
在具体实施过程中,首先在高压模拟腔1内分层填充准备海底界面以上单元2、海底界面生态系统模拟单元3和海底界面以下单元4;先根据实际情况在高压模拟腔1内充填厚度为4米的泥质粉砂质海底沉积物,同时在距球状底部1.5米和3米的沉积层位置分别均匀注入硫酸盐溶液和含铁盐溶液和饱和氧溶液的混合流体等保证不同化学分带的氧化还原条件。
然后,向高压模拟腔1内注入需要量的海底界面生态系统模拟单元的上覆海洋水体环境,并且通过温度控制装置51和压力检测装置52、海底流注入系统7等辅助单元保证高压模拟腔1内的物理、化学环境参数符合真实海底的冷泉生态系统形成演化的环境条件。
随后,根据实际情况准备甲烷高压气源及注入系统准备到位。然后根据实际情况准备泄漏通路装置42,如图1所示,通路系统设计为垂直分布形态,在管路内不填充介质模拟不含裂隙的通路情况,同时准备管路的流速调节和计量原件准备到位。泄漏通路装置42可以根据需要同时或者部分启闭,模拟不同泄漏模式下的冷泉发育行为。所有环境条件保证到位以后,打开冷泉流体源的开启系统,同时开启泄漏通路系统,甲烷气体将会从高压气源逐步进入泄漏通路装置42、沉积物化学分带层进入海底界面层,为冷泉生态系统的形成演化提供碳源和能量源。
然后,通过取样舱6调整海底界面沉积物形态,使其符合冷泉生态系统形成 演化的微地貌状态。在海底界面内通过装样取样系统投放原位调查获取的冷泉贻贝、管状蠕虫、潜锴虾和微生物菌席,进行冷泉生态系统的次生演替培养,观测研究冷泉生态系统的发育过程。在冷泉生态系统形成演化的全过程中实时记录冷泉生物及生态系统的的各项发育行为信息和环境参数指标变化情况。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (12)

  1. 一种深海冷泉生态系统形成演化模拟系统,其特征在于:包括高压模拟腔(1),在高压模拟腔(1)中进行地质分层构建,由上而下包括海底界面以上单元(2)、海底界面生态系统模拟单元(3)和海底界面以下单元(4);所述海底界面以上单元(2)用于海底水体情况的模拟;所述海底界面生态系统模拟单元(3)用于模拟海底界面及深海冷泉生态系统;所述海底界面以下单元(4)用于模拟海底分布及冷泉的发育过程;
    在所述高压模拟腔(1)上设置有环境条件控制设备(5),用于系统环境条件的控制及数据的采集;
    在所述高压模拟腔(1)上设置有取样舱(6),用于深海冷泉生态系统样品的放置及采集;
    在所述高压模拟腔(1)上设置有海底流注入系统(7),所述海底流注入系统(7)用于向海底界面生态系统模拟单元(3)注入深海海水或人工配置海水,达到洋流模拟的作用;
    所述取样舱(6)、海底流注入系统(7)控制端与所述环境条件控制设备(5)电性连接。
  2. 根据权利要求1所述的一种深海冷泉生态系统形成演化模拟系统,其特征在于:所述海底界面以下单元(4)包括冷泉流体源系统(41)、泄漏通路装置(42)和海底沉积物化学分带模拟层(43);其中:
    所述冷泉流体源系统(41)包括高压气源(411)、气体增压装置(412)、气体注入装置(413)和液体注入装置(414);所述高压气源(411)输出口通过所述气体增压装置(412)输入口连接;
    所述气体注入装置(413)输出口与所述泄漏通路装置(42)输入端连接;
    所述泄漏通路装置(42)输出端设置在所述高压模拟腔(1)底部;
    所述液体注入装置(414)输出口直接设置在所述高压模拟腔(1)底部;
    所述海底沉积物化学分带模拟层(43)设置在所述高压模拟腔(1)内部,实现海底界面以下沉积物的化学分带模拟;
    所述高压气源(411)、气体增压装置(412)、气体注入装置(413)和液体注入装置(414)和泄漏通路装置(42)控制端均与所述环境条件控制设备(5) 电性连接。
  3. 根据权利要求2所述的一种深海冷泉生态系统形成演化模拟系统,其特征在于:所述液体注入装置(414)包括含硫溶液储库(4141)、饱和氧溶液(4142)、注入泵(4143)、质量流量计(4144)和可控阀组(4145);其中:
    所述含硫溶液储库(4141)、饱和氧溶液(4142)输出端均通过注入泵(4143)连接到所述高压模拟腔(1)内部;
    所述质量流量计(4144)、可控阀组(4145)均设置在所述注入泵(4143)输出口出;
    所述质量流量计(4144)、可控阀组(4145)与所述环境条件控制设备(5)电性连接。
  4. 根据权利要求2所述的一种深海冷泉生态系统形成演化模拟系统,其特征在于:所述泄漏通路装置(42)包括均匀或非均匀分布的管路(421),所述的每根管路(421)上均设置有流速调节元件(422)、流动计量元件(423)和流动观测元件;所述流速调节元件(422)、流动计量元件(423)和流动观测元件均由所述环境条件控制设备(5)控制。
  5. 根据权利要求4所述的一种深海冷泉生态系统形成演化模拟系统,其特征在于:所述海底沉积物化学分带模拟层(43)自下而上从厌氧氧化带(431)、次氧氧化带(432)到含氧氧化带(433)。
  6. 根据权利要求5所述的一种深海冷泉生态系统形成演化模拟系统,其特征在于:所述环境条件控制设备(5)包括温度控制装置(51)、压力检测装置(52)、气液循环装置(53)、光源装置(54)、计量装置(55)、采样装置(56)和处理终端(57);其中:
    所述气液循环装置(53)、光源装置(54)、计量装置(55)、采样装置(56)控制端均与所述处理终端(57)电性连接;
    所述气液循环装置(53)一端通口设置在所述高压模拟腔(1)顶部,另一端设置在高压模拟腔(1)腔体上,实现海底界面以上单元(2)内气液流体的循环;
    所述温度控制装置(51)包括若干个温度传感器和环壁温度控制器,所述温度传感器(511)均匀地设置在高压模拟腔(1)内各地质分层中,温度传感器(511)信号输出端与所述处理终端(55)输入端电性连接;所述环壁温度控制器包裹在 所述高压模拟腔(1)外壁,其控制端与所述处理终端(55)输出端电性连接;
    所述压力检测装置(52)包括若干个压力传感器,所述压力传感器均匀地设置在高压模拟腔(1)内各地质分层中;所述压力传感器信号输出端与所述处理终端(57)输入端电性连接;
    所述光源装置(54)为设置在海底界面生态系统模拟单元(3)出的无影光源装置网,为观测冷泉流体逸出海底界面以后的发育行为提供光源装置调节;
    所述计量装置(55)包括若干个声波探测器,所述声波探测器均匀地布设在高压模拟腔(1)内各地质分层外部,用于监测泄漏流体的泄漏速率和泄漏通量;
    所述采样装置(56)包括在所述高压模拟腔(1)中的海底界面以上单元(2)、海底界面生态系统模拟单元(3)和海底界面以下单元(4)的不同位置设置的采样口,所述采样装置(56)设置在所述采样口上,用于样本的采集;
    所述处理终端(57)与所述流速调节元件(422)、流动计量元件(423)和流动观测元件电性连接;
    所述处理终端(57)与所述取样舱(6)、海底流注入系统(7)控制端电性连接。
  7. 根据权利要求6所述的一种深海冷泉生态系统形成演化模拟系统,其特征在于:所述处理终端(57)包括数据采集器(571)、中央处理器(572)、存储器(573)和显示器(574);其中:
    所述数据采集器(571)输入端与所述流动计量元件(423)、流动观测元件、温度控制装置(51)、压力检测装置(52)和计量装置(55)输出端电性连接;数据采集器(571)输出端与所述中央处理器(572)输入端电性连接;
    所述中央处理器(572)与所述存储器(573)电性连接,实现信息交互;
    所述中央处理器(572)输出端与所述显示器(574)输入端电性连接,用于采集信息的显示。
  8. 根据权利要求1~7任一项所述的一种深海冷泉生态系统形成演化模拟系统,其特征在于:所述取样舱(6)包括安装在所述高压模拟舱(1)上的压力平衡舱(61),所述压力平衡舱(61)中设置有压力控制器(62)、开关阀门(63)和移动导轨(64);在所述移动导轨(64)上设置有取样器(65);
    所述开关阀门(63)设置在所述压力平衡舱(61)两端;
    所述压力控制器(62)、开关阀门(63)、移动导轨(64)和取样器(65) 的控制端均与所述环境条件控制单元(5)电性连接;
    所述压力平衡舱(61)设置在所述海底界面模拟单元(3)上,由所述取样器(7)对海底界面生态系统模拟单元(3)进行样品的投放或采集。
  9. 根据权利要求8所述的一种深海冷泉生态系统形成演化模拟系统,其特征在于:所述取样器(65)包括连接底座、旋转台、夹持机构和控制电路;其中:
    所述取样器(65)通过所述连接底座设置在所述移动导轨(64)上;
    所述旋转台安装在所述连接底座上;
    所述夹持机构安装在所述旋转台上;
    所述连接底座、旋转台、夹持机构控制端均与所述控制电路电性连接;
    所述控制电路与所述环境条件控制单元(5)电性连接;
    其中,所述移动导轨(64)包括导轨主体、链条推动装置和驱动电机;其中:
    所述连接底座安装在所述导轨主体上;
    所述导轨主体底部设置在链条推动装置上;
    所述链条推动装置通过所述驱动电机进行驱动;
    所述驱动电机控制端与所述环境条件控制单元(5)电性连接。
  10. 根据权利要求8所述的一种深海冷泉生态系统形成演化模拟系统,其特征在于:所述海底流注入系统(7)包括若干喷口、管路系统、注入泵组、调节阀和海水制备系统;其中:
    所述喷口设置在海底界面处,通过所述管路系统与所述海水制备系统连接;
    所述注入泵组、调节阀均设置在所述管路系统上;
    所述注入泵组、调节阀和海水制备系统均与所述环境条件控制单元(5)电性连接;
    在所述喷口上设置有控制器,所述控制器与所述环境条件控制单元(5)电性连接,用于控制喷口的射程、喷洒面积和喷射方向。
  11. 根据权利要求10所述的一种深海冷泉生态系统形成演化模拟系统,其特征在于:所述海水制备系统包括海水储罐、热交换机组、高压海水注入泵、可控阀组和质量流量计;其中:
    所述热交换机组设置在所述海水储罐上,用于海水的热量转换;
    所述海水储罐通过高压海水注入泵、可控阀组与所述管路系统连通;
    所述质量流量计设置在所述可控阀组出口处;
    所述热交换机组、高压海水注入泵、可控阀组、质量流量计均与所述环境条件控制单元(5)电性连接。
  12. 一种深海冷泉生态系统形成演化模拟方法,其特征在于,包括以下步骤:
    S1:根据实际情况在高压模拟腔(1)内填充准备海底沉积物化学分带,保证沉积物的厚度、分布及孔隙参数等与海底真实条件一致或相近;
    S2:在沉积物不同位置分别注入含硫溶液或者饱和氧溶液,形成厌氧氧化或者次氧氧化状态,完成海底沉积物化学分带模拟层(43)的构建;
    S3:向高压模拟腔(1)注入需要量的海水,构建海底界面以上单元(2)用于海底水体情况的模拟;同时控制环境条件控制设备(5)保证高压模拟腔(1)内的物理、化学环境参数符合真实海底的冷泉发育的环境条件;
    S4:根据实际情况准备冷泉流体源系统(41)的流量组分、流体量以及注入准备,准备泄漏通路装置(42)的管路分布、形态特征、管路(421)内的介质填充及管路(421)的流速调节元件(422),根据需要同时或者部分启闭,模拟不同泄漏方式下的冷泉发育行为,为海底界面生态系统模拟单元(3)提供碳源和能量来源;
    S5:通过取样舱(6)调整海底界面生态系统模拟单元(3)沉积物形态,使其符合冷泉生态系统形成演化的微地貌状态;再投放冷泉生物,进行冷泉生态系统的次生演替培养,或者不投放生物直接进行冷泉系统发育后从微生物到宏生物及整个冷泉生态系统的原生演替培养过程,观测研究冷泉生态系统的发育过程;
    S6:根据实际情况打开海底流注入系统(7),保持海底界面生态系统模拟单元(3)中洋流内部的资源稳定;在冷泉生态系统发育的全过程中实时记录冷泉生物及生态系统的各项发育行为信息和环境的参数指标变化情况,完成冷泉生态系统的形成演化模拟。
PCT/CN2021/073897 2020-03-26 2021-01-27 一种深海冷泉生态系统形成演化模拟系统及方法 WO2021190120A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/605,241 US20220198962A1 (en) 2020-03-26 2021-01-27 System and method for simulating formation and evolution of a deep-sea cold seep ecosystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010224754.0 2020-03-26
CN202010224754.0A CN111477084B (zh) 2020-03-26 2020-03-26 一种深海冷泉生态系统形成演化模拟系统及方法

Publications (1)

Publication Number Publication Date
WO2021190120A1 true WO2021190120A1 (zh) 2021-09-30

Family

ID=71749338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073897 WO2021190120A1 (zh) 2020-03-26 2021-01-27 一种深海冷泉生态系统形成演化模拟系统及方法

Country Status (3)

Country Link
US (1) US20220198962A1 (zh)
CN (1) CN111477084B (zh)
WO (1) WO2021190120A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117647418A (zh) * 2024-01-28 2024-03-05 浙江大学海南研究院 一种甲烷渗漏区冷泉喷口颗粒碳采样器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477084B (zh) * 2020-03-26 2021-09-28 南方海洋科学与工程广东省实验室(广州) 一种深海冷泉生态系统形成演化模拟系统及方法
CN112314509B (zh) * 2020-12-17 2024-05-28 中国科学院深海科学与工程研究所 深海宏生物保真培养装置及培养方法
CN114062487B (zh) * 2021-11-19 2023-12-12 自然资源部第二海洋研究所 一种海底热液羽状流声学探测模拟装置与方法
CN114292725A (zh) * 2021-11-25 2022-04-08 浙江大学滨海产业技术研究院 原位培养甲烷氧化菌并保压取样装置及其检测系统和方法
CN114202451A (zh) * 2021-12-16 2022-03-18 华侨大学 服务生态系统的演化分析方法、装置、设备和存储介质
CN114540178B (zh) * 2021-12-28 2022-11-15 南方海洋科学与工程广东省实验室(广州) 一种用于深海沉积物微生物培养实验的智能注液装置
CN114317249A (zh) * 2022-03-15 2022-04-12 南方海洋科学与工程广东省实验室(广州) 一种海洋原位环境单细胞高通量分选装置及方法
CN114350508B (zh) * 2022-03-17 2022-07-12 南方海洋科学与工程广东省实验室(广州) 高压环境海洋微生物富集培养与重力式分离装置
CN114350509B (zh) * 2022-03-17 2022-11-04 南方海洋科学与工程广东省实验室(广州) 高压环境生物富集与喷洒式固体分离培养装置
CN114708780B (zh) * 2022-05-12 2023-02-24 青岛海洋地质研究所 一种泥火山形成的物理模拟实验装置及其方法
CN115182705B (zh) * 2022-07-27 2024-03-22 广东中煤江南工程勘测设计有限公司 一种海底冷泉开采装置及方法
CN116235729A (zh) * 2023-02-21 2023-06-09 四川大学华西医院 一种用于模拟深地复合环境的生命实验舱及使用方法
CN117406283B (zh) * 2023-12-15 2024-02-27 青岛海洋地质研究所 针对大范围海域中海底冷泉的声学多频联用识别方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810376A (zh) * 2005-11-17 2006-08-02 中国海洋大学 热液羽状体扩散模拟实验装置
CN102352735A (zh) * 2011-06-29 2012-02-15 中国科学院广州能源研究所 一种天然气水合物三维实验装置及三维模拟实验方法
CN103540521A (zh) * 2013-09-30 2014-01-29 上海交通大学 深海冷泉模拟及低温高压微生物培养系统
KR101357697B1 (ko) * 2013-01-22 2014-02-06 신규태 과학교재용 잠수 탐사선
CN204614346U (zh) * 2015-03-19 2015-09-02 青岛海洋地质研究所 海底烃类渗漏模拟实验装置
CN108760720A (zh) * 2018-08-23 2018-11-06 中国科学院海洋研究所 一种深海极端环境模拟系统
CN109211520A (zh) * 2018-10-17 2019-01-15 国家海洋局第海洋研究所 海底麻坑形成过程模拟装置及模拟方法
CN208676143U (zh) * 2018-08-06 2019-04-02 湖南科技大学 深海冷泉微小生物采集与保真存储装置
CN110188488A (zh) * 2019-06-03 2019-08-30 中国石油大学(华东) 一种海底天然气水合物露头及周边环境的仿真方法和系统
CN111477084A (zh) * 2020-03-26 2020-07-31 南方海洋科学与工程广东省实验室(广州) 一种深海冷泉生态系统形成演化模拟系统及方法
CN111551390A (zh) * 2020-03-26 2020-08-18 广东工业大学 具有原位取样装置的高压海底模拟系统及其控制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2438090B2 (es) * 2012-07-13 2015-07-21 Universidad De Cadiz Sistema de inyección de CO2 para estudios ecotoxicológicos
CN103776498B (zh) * 2014-02-07 2016-06-01 中国科学院南海海洋研究所 一种用于使海底冷泉渗漏气泡均匀破碎装置
CN103791966B (zh) * 2014-02-07 2016-06-29 三亚深海科学与工程研究所 海底冷泉天然气渗漏气泡破碎装置
CN103927921B (zh) * 2014-04-15 2016-03-16 吉林大学 微生物作用下的水合物多功能模拟实验系统
CN104405345B (zh) * 2014-10-20 2017-01-18 中国科学院广州能源研究所 一种可渗透边界层天然气水合物开采模拟实验装置
CN204389197U (zh) * 2015-01-29 2015-06-10 河海大学 一种寒区冻土层渗渠集水模拟装置
CN105115480A (zh) * 2015-08-14 2015-12-02 青岛海洋地质研究所 海底热液冷泉观测方法及观测系统
CN105548438B (zh) * 2016-01-26 2017-03-22 青岛海洋地质研究所 天然气水合物释放气体的连续高压氧化实验装置和方法
CN106448319A (zh) * 2016-09-30 2017-02-22 广东海洋大学 海洋观测实验教学装置
CN206774076U (zh) * 2017-04-10 2017-12-19 吉林大学 甲烷渗漏条件下生物地球化学作用模拟实验系统
CN106935120B (zh) * 2017-04-10 2019-08-30 吉林大学 甲烷渗漏条件下生物地球化学作用模拟实验系统
CN107930537A (zh) * 2017-11-15 2018-04-20 中国科学院广州能源研究所 一种模拟海底甲烷渗漏导致早期成岩作用的反应装置及方法
CN208098019U (zh) * 2017-11-15 2018-11-16 中国科学院广州能源研究所 一种模拟海底甲烷渗漏导致早期成岩作用的反应装置
US20190368978A1 (en) * 2018-03-14 2019-12-05 Richard P. Sheryll Underwater Sampling Method and Apparatus
CN209024535U (zh) * 2018-05-30 2019-06-25 中国科学院广州能源研究所 一种模拟海底冷泉区甲烷厌氧氧化过程导致自生矿物沉淀的反应装置
CN110749470A (zh) * 2019-11-26 2020-02-04 四川大学 一种保压舱压力补偿方法及结构

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810376A (zh) * 2005-11-17 2006-08-02 中国海洋大学 热液羽状体扩散模拟实验装置
CN102352735A (zh) * 2011-06-29 2012-02-15 中国科学院广州能源研究所 一种天然气水合物三维实验装置及三维模拟实验方法
KR101357697B1 (ko) * 2013-01-22 2014-02-06 신규태 과학교재용 잠수 탐사선
CN103540521A (zh) * 2013-09-30 2014-01-29 上海交通大学 深海冷泉模拟及低温高压微生物培养系统
CN204614346U (zh) * 2015-03-19 2015-09-02 青岛海洋地质研究所 海底烃类渗漏模拟实验装置
CN208676143U (zh) * 2018-08-06 2019-04-02 湖南科技大学 深海冷泉微小生物采集与保真存储装置
CN108760720A (zh) * 2018-08-23 2018-11-06 中国科学院海洋研究所 一种深海极端环境模拟系统
CN109211520A (zh) * 2018-10-17 2019-01-15 国家海洋局第海洋研究所 海底麻坑形成过程模拟装置及模拟方法
CN110188488A (zh) * 2019-06-03 2019-08-30 中国石油大学(华东) 一种海底天然气水合物露头及周边环境的仿真方法和系统
CN111477084A (zh) * 2020-03-26 2020-07-31 南方海洋科学与工程广东省实验室(广州) 一种深海冷泉生态系统形成演化模拟系统及方法
CN111551390A (zh) * 2020-03-26 2020-08-18 广东工业大学 具有原位取样装置的高压海底模拟系统及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117647418A (zh) * 2024-01-28 2024-03-05 浙江大学海南研究院 一种甲烷渗漏区冷泉喷口颗粒碳采样器

Also Published As

Publication number Publication date
CN111477084A (zh) 2020-07-31
US20220198962A1 (en) 2022-06-23
CN111477084B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2021190120A1 (zh) 一种深海冷泉生态系统形成演化模拟系统及方法
CN111551671B (zh) 天然气水合物分解甲烷泄漏及冷泉生态模拟系统与方法
CN111551390B (zh) 具有原位取样装置的高压海底模拟系统及其控制方法
WO2022148193A1 (zh) 模拟高温高压下流体驱替的微观可视化实验装置及方法
CN111551672B (zh) 天然气水合物开采甲烷泄漏模拟系统及方法
CN113051710B (zh) 一种深海沉积环境烷烃氧化过程定量模拟系统及方法
CN112858628B (zh) 一种模拟高温高压条件下流体驱替的微观可视化实验装置
CN102162779B (zh) 一种用于天然气水合物原位生成与分解的三轴试验装置
CN111894529B (zh) 可燃冰开采泄漏模拟及环境参数定量反演的系统与方法
CN102012246A (zh) 一种测量海底冷泉天然气渗漏原位流量速率变化的测量装置
WO2023173495A1 (zh) 高压环境海洋微生物富集培养与重力式分离装置
CN113549544B (zh) 一种海底甲烷渗漏区原位微生物定期富集培养装置和方法
JP2020201236A (ja) 堆積物の構造変化の可視化実験装置及びシミュレーション方法
CN112964833A (zh) 一种深海可燃冰上覆多界面环境原位模拟系统及实现方法
CN115753310B (zh) 深海保压保温微生物采集过滤固定培养的系统及方法
CN113984428B (zh) 快开式便携培养装置及其深海沉积层原位空间模拟方法
CN114060024A (zh) 深海多相环境原位多维保真模拟与测试装置
CN110398397A (zh) 高坝深库分层水样多维保真采集与水质监测人工智能装置
WO2023173496A1 (zh) 深海冷泉区膜生物反应器及在线式环境参数测量系统
CN116201523B (zh) 精确控制温压环境的天然气水合物开采超重力模拟装置
CN111489627B (zh) 模拟海洋冷泉发育的系统及其实现方法
Ge et al. A large-scale experimental simulator for natural gas hydrate recovery and its experimental applications
WO2023173486A1 (zh) 一种海洋原位环境单细胞高通量分选装置及方法
CN109211520A (zh) 海底麻坑形成过程模拟装置及模拟方法
WO2019144445A1 (zh) 海洋温跃层的海底溢油行为的实验模拟设备及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775764

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21775764

Country of ref document: EP

Kind code of ref document: A1