WO2023173496A1 - 深海冷泉区膜生物反应器及在线式环境参数测量系统 - Google Patents

深海冷泉区膜生物反应器及在线式环境参数测量系统 Download PDF

Info

Publication number
WO2023173496A1
WO2023173496A1 PCT/CN2022/084122 CN2022084122W WO2023173496A1 WO 2023173496 A1 WO2023173496 A1 WO 2023173496A1 CN 2022084122 W CN2022084122 W CN 2022084122W WO 2023173496 A1 WO2023173496 A1 WO 2023173496A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
methane
cold spring
seawater
simulation chamber
Prior art date
Application number
PCT/CN2022/084122
Other languages
English (en)
French (fr)
Inventor
杨志峰
冯景春
张偲
王屹
钟松
蔡宴朋
Original Assignee
南方海洋科学与工程广东省实验室(广州)
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方海洋科学与工程广东省实验室(广州), 广东工业大学 filed Critical 南方海洋科学与工程广东省实验室(广州)
Publication of WO2023173496A1 publication Critical patent/WO2023173496A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/02Apparatus for enzymology or microbiology with agitation means; with heat exchange means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state

Definitions

  • the invention relates to the technical field of marine environmental ecological engineering, and in particular to a membrane bioreactor in a deep sea cold spring area and an online environmental parameter measurement system.
  • Cold seeps are fluid activities in which gases such as methane, hydrogen sulfide, and carbon dioxide under the seafloor leak and overflow into the seawater driven by geological structure or pressure changes.
  • the surrounding temperature of "cold springs” is generally 3-5°C, and they are mainly distributed in subduction zones and passive continental margins rich in organic matter.
  • Cold seeps transport dissolved and gaseous compounds upward, maintaining important chemosynthetic ecosystems in the deep sea.
  • AOM anaerobic oxidation of methane
  • archaea The anaerobic oxidation of methane (AOM) by archaea is the most important reaction, providing an important source of material for sulfur-related biogeochemistry and carbonate mineral precipitation in cold seep areas, and also provides resources for the growth of metazoans in the dark world. Important source of carbon and energy.
  • the "cold seep" ecosystem that relies on the action of AOM is an important window for studying the earth's deep biosphere, and it is also one of the important symbols for exploring natural gas hydrates.
  • the prior art discloses a deep-sea cold spring biological high-pressure temperature-controlled simulation cultivation device, which includes a mixing chamber, a high-pressure chamber, a high-pressure filter device and various valve bodies, which are connected by high-pressure pipelines.
  • a deep-sea high temperature or low temperature high hydrostatic pressure environment is achieved through a high-pressure pump and temperature control system.
  • enrichment, filtration, and fixation devices it solves the problem of cultivating, enriching, and fixing large organisms and microbial cells under high pressure.
  • Technical problem but it is not suitable for simulating the AOM process, and cannot simulate and monitor the growth process of biofilm and its environment during the action of AOM.
  • the present invention provides a deep sea cold spring area membrane bioreactor and an online environmental parameter measurement system, which realizes the biofilm growth characteristics of the methane anaerobic oxidation process in the cold spring area and the impact of environmental conditions.
  • the research provides an important foundation for the correct understanding of the deep-sea methane anaerobic oxidation process and environmental parameter measurement.
  • a deep sea cold spring zone membrane bioreactor including a control collection terminal, a sediment simulation chamber, a seawater simulation chamber, a sensor group, a pressure-resistant membrane biological component, an online pressure-maintaining biofilm sampling component, a resistivity measurement system, a pressure adjustment component and Ultrasonic observation component; wherein: the sediment simulation chamber is arranged below the seawater simulation chamber and is flange-connected with the seawater simulation chamber; both the sediment simulation chamber and the seawater simulation chamber are equipped with sensor groups, and the signal output end of the sensor group is connected to the The control collection terminal is electrically connected; the pressure-resistant membrane biological component is installed in the seawater simulation chamber for monitoring the formation of methanophage and sulfate-reducing bacteria biofilms in the seawater environment; the online pressure-maintaining biofilm sampling The component is arranged on the top of the seawater simulation chamber, and its control end is electrically connected to the control acquisition terminal, and is used to scrape biofilm samples from different positions on the pressure-resistant membrane biological component during the biofilm formation
  • the pressure adjustment component is connected to the seawater simulation chamber through a pipeline, and its control end is electrically connected to the control collection terminal to regulate the pressure inside the reactor and ensure the pressure inside the reactor is stable;
  • the ultrasonic probe of the ultrasonic observation component is installed in the seawater simulation chamber for monitoring changes in biofilm thickness on the pressure-resistant membrane biocomponent and outputting signals to the control acquisition terminal.
  • the membrane bioreactor in the deep sea cold seep area has a corrosion-resistant and pressure-resistant structure.
  • a membrane bioassembly in a high-pressure environment is constructed through a pressure-resistant membrane biological component, which is used for the growth of microorganisms in the deep sea cold seep area, and utilizes Ultrasonic observation component monitoring, online measurement of biofilm thickness changes on membrane components, and maintaining pressure under high pressure to obtain biofilm samples for sequencing analysis, enabling online monitoring of biofilms during the action of AOM, and realizing cold spring area Research on the biofilm growth characteristics of the methane anaerobic oxidation process and its impact on environmental conditions provides an important basis for the correct understanding of the deep-sea methane anaerobic oxidation process and environmental parameter measurement.
  • the sensor group includes a temperature sensor, a methane sensor and a pressure sensor; wherein: the temperature sensor is installed in the sediment simulation room and the seawater simulation room, and is used to monitor changes in the ambient temperature in the sediment simulation room and the seawater simulation room, Its signal output end is electrically connected to the control collection terminal; the methane sensor is installed in the seawater simulation room to monitor changes in methane concentration in the seawater simulation room, and its signal output end is electrically connected to the control collection terminal; The pressure sensor is installed in the seawater simulation chamber for monitoring changes in pressure within the reactor, and its signal output end is electrically connected to the control collection terminal.
  • the pressure-resistant membrane biological component is a porous membrane component made of sintered titanium alloy powder that is resistant to seawater corrosion and pressure, and is suspended in the seawater simulation chamber.
  • the online pressure-maintaining biofilm sampling element includes a retractable pressure-resistant cylinder, a sampling ring device and a pressure-maintaining device; wherein: the retractable pressure-resistant cylinder is arranged on the top of the seawater simulation chamber, and the sampling ring device is placed on the top of the seawater simulation chamber.
  • a pressure-maintaining device is fixedly connected to the outside of the telescopic pressure-resistant cylinder; the control end of the sampling loop device and the control end of the pressure-maintaining device are both electrically connected to the control collection terminal.
  • the sampling loop device is placed in the retractable pressure-resistant cylinder and is used to scrape biofilm samples from different positions on the pressure-resistant membrane biological component during the biofilm formation process for sequencing analysis.
  • the pressure maintaining device considering the pressure difference between the inside and outside of the reactor, first control the pressure maintaining device to close and automatically fill it with inert gas to make the pressure consistent with the inside of the reactor, and then open the valve built into the pressure maintaining device.
  • the sampling loop device is controlled to scrape biofilm samples at different positions on the pressure-resistant membrane biocomponent and remove the valve built into the pressure maintaining device. Finally, the valve built into the pressure maintaining device is closed, and the external valve of the pressure maintaining device is opened to complete the entire biofilm scraping process.
  • Membrane operation When it is necessary to scrape the biofilm, considering the pressure difference between the inside and outside of the reactor, first control the pressure maintaining device to close and automatically fill it with inert gas to make the pressure consistent with the inside of the reactor, and then open the valve built into the pressure maintaining device.
  • the sampling loop device is
  • the pressure adjustment component includes a PID valve and a gas-liquid storage tank; the gas-liquid storage tank is connected to the seawater simulation chamber through a pipeline; the PID valve is arranged on the pipeline and is electrically connected to the control collection terminal.
  • the PID valve is controlled by PID, which can effectively ensure the pressure stability in the reactor.
  • a gas-liquid storage tank with temperature and pressure monitoring functions is used to collect and measure the gas-liquid volume discharged from the reactor.
  • the ultrasonic observation component also includes a sound wave generator-oscilloscope; the ultrasonic probe signal output end is electrically connected to the sound wave generator-oscilloscope signal input end and the control acquisition terminal, which is configured to monitor the pressure-resistant membrane biological component changes in biofilm thickness.
  • the deep sea cold spring zone membrane bioreactor also includes a pressure-resistant visual window provided on the seawater simulation chamber and a double-valve piston sampler provided in the sediment simulation chamber and the seawater simulation chamber.
  • the pressure-resistant visual window is set up to facilitate the observation of the formation of biofilm. It is set up on both sides of the seawater simulation chamber. During the formation process of the biofilm, camera observation can be carried out through the pressure-resistant visual window.
  • Double-valve piston samplers are installed at different levels in the sediment simulation chamber and seawater simulation chamber, and are used to sample and analyze the chemical composition and concentration changes of the samples, as well as the thickness of the biofilm and the changes in microbial groups.
  • the deep sea cold spring zone membrane bioreactor also includes a water bath jacket arranged around the reactor, the control end of which is electrically connected to the control collection terminal.
  • the reactor uses a water bath jacket for a jacketed water bath.
  • a water bath jacket is arranged around the reactor, filled with circulating refrigerant, and an insulation layer is provided on the outer wall of the water bath jacket to ensure Low temperature environment in sediment simulation chamber and seawater simulation chamber.
  • control acquisition terminal is used to monitor the continuous changes of various environmental data during the methane leakage simulation process, as well as real-time acquisition, processing, storage and image output functions.
  • This solution also provides an online environmental parameter measurement system for deep sea cold seep area membrane bioreactor, including the deep sea cold seep area membrane bioreactor, a fluid supply unit and a pressurization system as described above; wherein: the fluid supply unit is used for Generate saturated methane fluid and inject it into the deep-sea cold spring area membrane bioreactor at a micro-flow rate; the deep-sea cold spring area membrane bioreactor simulates the biofilm growth process of the methane anaerobic oxidation process in the cold spring area and monitors changes in its environmental conditions situation; the membrane bioreactor in the deep sea cold spring zone and the fluid supply unit are all connected to the pressurization system to ensure that the internal environmental pressure of the simulated process system is stable and consistent; the fluid supply unit and the pressurization system are all connected to the control acquisition system The terminals are electrically connected to realize information interaction.
  • the fluid supply unit includes a pressure-resistant methane dissolving container, an injection pump, a low-temperature water bath container, a mechanical stirring device, a back-pressure valve, a microfluidic pump and a seawater culture medium configuration container; wherein: the methane dissolving container is placed at a low temperature In the water bath container, it is ensured that when the methane-containing fluid enters the membrane bioreactor in the deep sea cold spring area, it will not cause heat flow disturbance due to temperature difference and affect the simulation process; the methane dissolution container is equipped with a gas inlet, a liquid inlet and a liquid outlet; the methane dissolution container It is connected to the pressurizing unit through a gas inlet; the methane dissolution container is connected to the seawater culture medium configuration container and the injection pump in sequence through the liquid inlet; the methane dissolution container is connected to the microfluidic pump through the liquid outlet, and the microfluidic pump supplies water to the The membrane bioreactor in the deep sea cold
  • the methane dissolving container is placed in a low-temperature water bath container in order to make the system closer to the real seabed situation and comply with the characteristics of small temperature difference between the methane-containing fluid seeping into the leakage area and the surrounding environment medium.
  • the temperature setting of the methane dissolution container is consistent with the membrane bioreactor in the deep sea cold spring area, which is the actual temperature of the seabed, but its pressure must be monitored to determine the methane hydrate below this temperature.
  • the phase equilibrium pressure formed avoids the formation of methane hydrate in the methane dissolving vessel.
  • the boosting system includes an air compressor, a boosting pump, a gas storage tank, an adjustment valve and pipe valves; wherein: the boosting system communicates with the fluid supply unit, deep sea cold seep area membrane organisms through pipe valves
  • the gas inlet of the reactor is connected; the air compressor is connected to the input end of the gas storage tank through the booster pump; the output end of the gas storage tank is provided with an adjustment valve, and is connected to the pipe valve through the adjustment valve
  • the connection is used to inject gas with set flow rate and composition into the fluid supply unit and the deep-sea cold spring zone membrane bioreactor.
  • the above scheme has the ability to simulate the continuous process of methane leakage under in-situ temperature and pressure environmental conditions in the deep sea.
  • a membrane biocomponent By constructing a membrane biocomponent in a high-pressure environment, it is used for the growth of microorganisms in the deep-sea cold spring area.
  • Ultrasonic monitoring is used to measure the changes in biofilm thickness on the membrane module online, and biofilm samples are obtained under high pressure for sequencing analysis. , quantitatively study the characteristics of methane anaerobic oxidation in the cold spring area, and the impact of environmental parameters on the methane oxidation process.
  • this program simultaneously monitors the dissolution and occurrence of methane in the reactor during the leakage process.
  • the amount of phase transformation can be used to more accurately quantitatively study the anaerobic oxidation characteristics of methane in the cold spring area. It provides an important technical means for accurately understanding the biochemical transformation process and mechanism of methane release from the deep seabed.
  • the present invention proposes a deep-sea cold spring area membrane bioreactor and an online environmental parameter measurement system.
  • the dissolution and phase change of methane after entering the cold spring area to generate natural gas are monitored.
  • the hydrate content is more accurately measured for the methane content of AOM.
  • Figure 1 is a schematic structural diagram of the membrane bioreactor in the deep sea cold spring area according to the present invention
  • Figure 2 is a schematic structural diagram of the online environmental parameter measurement system according to the present invention.
  • Figure 3 is a schematic diagram of the electrical connection of the control acquisition terminal of the online environmental parameter measurement system according to the present invention.
  • This embodiment is a complete usage example with rich content.
  • a deep sea cold spring zone membrane bioreactor includes a control collection terminal 9, a sediment simulation chamber 1, a seawater simulation chamber 2, a sensor group 3, a pressure-resistant membrane biological component 4, and an online pressure maintaining Biofilm sampling element 5, resistivity measurement system 6, pressure adjustment component 7 and ultrasonic observation component 8; wherein: the sediment simulation chamber 1 is arranged below the seawater simulation chamber 2 and is flange-connected with the seawater simulation chamber 2; sediment A sensor group 3 is installed in both the simulation room 1 and the seawater simulation room 2. The signal output end of the sensor group 3 is electrically connected to the control acquisition terminal 9; the pressure-resistant membrane biological component 4 is provided in the seawater simulation room.
  • the online pressure-maintaining biofilm sampling element 5 is arranged on the top of the seawater simulation chamber 2, and its control end is electrically connected to the control collection terminal 9, using During the biofilm formation process, biofilm samples are scraped from different positions on the pressure-resistant membrane biological component 4 for sequencing analysis;
  • the resistivity measurement system 6 is set in the sediment simulation chamber 1, and its signal output terminal is connected to the
  • the control acquisition terminal 9 is electrically connected and is used to monitor and measure the saturation changes of methane hydrate formation in the sediment during the methane leakage simulation process;
  • the pressure adjustment component 7 is connected to the seawater simulation chamber 2 through a pipeline connection, its control end is electrically connected to the control acquisition terminal 9, which is used to regulate the pressure inside the reactor and ensure the pressure inside the reactor is stable;
  • the ultrasonic probe 81 of the ultrasonic observation component 8 is set in the seawater simulation chamber 2, It is used to monitor changes in biofilm thickness on the pressure-resistant membrane biological component 4 and output signals to the control
  • the sensor group 3 includes a temperature sensor 31, a methane sensor 32 and a pressure sensor 33; wherein: the temperature sensor 31 is provided in the sediment simulation chamber 1 and the seawater simulation chamber 2 for monitoring the sediment simulation chamber. 1. Changes in the ambient temperature in the seawater simulation chamber 2, the signal output end of which is electrically connected to the control acquisition terminal 9; the methane sensor 32 is provided in the seawater simulation chamber 2 for monitoring methane in the seawater simulation chamber 2 The change of concentration, its signal output end is electrically connected to the control acquisition terminal 9; the pressure sensor 33 is arranged in the seawater simulation chamber 2, used to monitor the change of pressure in the reactor, and its signal output end It is electrically connected to the control acquisition terminal 9.
  • the pressure-resistant membrane biological component 4 is a porous membrane component sintered from seawater corrosion-resistant and pressure-resistant titanium alloy powder, and is suspended in the seawater simulation chamber 2 .
  • the online pressure-maintaining biofilm sampling element 5 includes a retractable pressure-resistant cylinder, a sampling ring device and a pressure-maintaining device; wherein: the retractable pressure-resistant cylinder is arranged on the top of the seawater simulation chamber 2, and the sampling ring The device is placed in the telescopic pressure-resistant cylinder, and the pressure-maintaining device is fixedly connected to the outside of the telescopic pressure-resistant cylinder; the control end of the sampling loop device and the control end of the pressure-maintaining device are both electrically connected to the control collection terminal 9. sexual connection.
  • the sampling loop device is placed in the retractable pressure-resistant cylinder, and is used to scrape biofilm samples from different positions on the pressure-resistant membrane biological component 4 during the biofilm formation process for sequencing analysis.
  • the pressure maintaining device considering the pressure difference between the inside and outside of the reactor, first control the pressure maintaining device to close and automatically fill it with inert gas to make the pressure consistent with the inside of the reactor, and then open the valve built into the pressure maintaining device.
  • the sampling loop device is controlled to scrape biofilm samples at different positions on the pressure-resistant membrane biological component 4 and remove the valve built into the pressure maintaining device. Finally, the valve built into the pressure maintaining device is closed, and the external valve of the pressure maintaining device is opened to complete the entire scraping. Biofilm manipulation.
  • the pressure adjustment assembly 7 includes a PID valve 71 and a gas-liquid storage tank 72; the gas-liquid storage tank 72 is connected to the seawater simulation chamber 2 through a pipeline; the PID valve 71 is provided on the pipeline and connected to the The control acquisition terminal 9 is electrically connected.
  • the PID valve 71 can effectively ensure the pressure stability in the reactor through PID control.
  • the gas-liquid storage tank 72 with temperature and pressure monitoring functions is used to collect and measure the gas-liquid volume discharged from the reactor.
  • the ultrasonic observation component 8 also includes a sound wave generator-oscilloscope 82; the signal output end of the ultrasonic probe 81 is electrically connected to the signal input end of the sound wave generator-oscilloscope 82 and the control acquisition terminal 9.
  • the deep-sea cold spring membrane bioreactor 101 also includes a pressure-resistant visual window 21 provided on the seawater simulation chamber 2 and a double-valve piston sampling device provided in the sediment simulation chamber 1 and the seawater simulation chamber 2.
  • the pressure-resistant visual window 21 is set up to facilitate the observation of the formation of biofilm. It is provided on both the front and rear sides of the seawater simulation chamber. During the formation process of the biofilm, the pressure-resistant visual window 21 can be used to observe the formation of the biofilm. Carry out photographic observations.
  • the double-valve piston sampler 11 is installed at different positions in the sediment simulation chamber 1 and the seawater simulation chamber 2, and is used for sampling and analyzing the chemical composition and concentration changes of the samples, as well as the thickness of the biofilm and changes in the microbial groups.
  • the deep sea cold seep membrane bioreactor 101 also includes a water bath jacket 10 arranged around the reactor, the control end of which is electrically connected to the control collection terminal 9 .
  • the reactor uses a water bath jacket 10 for a jacketed water bath.
  • the water bath jacket 10 is arranged around the reactor, filled with circulating refrigerant, and the outer wall of the water bath jacket 10 is provided with The insulation layer is used to ensure the low temperature environment of the sediment simulation chamber 1 and the seawater simulation chamber 2.
  • control collection terminal 9 is used to monitor the continuous changes of various environmental data during the methane leakage simulation process, as well as real-time collection, processing, storage, image output and other functions.
  • the deep-sea cold spring area membrane bioreactor 101 is a corrosion-resistant and pressure-resistant structure.
  • the pressure-resistant membrane bio-assembly 4 is used to construct a membrane biological component in a high-pressure environment, which is used for the growth of microorganisms in the deep-sea cold spring area and uses ultrasonic observation components.
  • an online environmental parameter measurement system for deep sea cold seep membrane bioreactor including a deep sea cold seep membrane bioreactor 101 and a fluid supply unit. 102 and pressurization system 103; wherein: the fluid supply unit 102 is used to generate saturated methane fluid and inject it into the deep-sea cold seep membrane bioreactor 101 in a micro-flow rate; the deep-sea cold seep membrane bioreactor 101 simulates The biofilm growth process of the methane anaerobic oxidation process in the cold spring area and the transformation of its environmental conditions are monitored; the membrane bioreactor 101 and fluid supply unit 102 in the deep sea cold spring area are both connected to the pressurization system 103 to ensure the simulation process The internal environmental pressure of the system is stable and consistent; the fluid supply unit 102 and the boosting system 103 are electrically connected to the control acquisition terminal 9 to realize information interaction.
  • this embodiment can continuously simulate the methane leakage process under the in-situ temperature and pressure conditions of the deep sea in the open system mode.
  • Open system simulation helps discharge metabolic waste during the anaerobic oxidation of methane mediated by microorganisms, and helps improve the biochemical conversion efficiency of methane and the activity of microorganisms; and the boundary conditions are closer to those of seafloor methane in the real environment. leakage process.
  • this embodiment can quantitatively monitor and analyze the thickness, distribution, and microbial groups of the biofilm formed by microorganisms involved in methane oxidation during the methane leakage process in the cold seep area in real time, which is helpful to deeply reveal the biochemical transformation of methane in the deep sea cold seep area.
  • the microscopic mechanism and environmental control factors of the process provide important means for studying chemical energy synthesis projects involving deep-sea methane.
  • this embodiment proposes real-time online monitoring of the dissolution and phase transformation process of methane in the cold seep area, more accurately determines the methane content actually involved in the biochemical transformation process in the cold seep area, and provides important information for correctly understanding the methane source and sink mechanism of the ocean. basic means.
  • this embodiment proposes to simulate the deep seabed methane leakage process under an open system, which is closer to the real conditions.
  • the leaked environmental medium in the methane leakage process interacts with the surrounding fluid.
  • Characteristics of material exchange Compared with previous simulation studies on the deep-sea methane anaerobic oxidation process, this embodiment proposes real-time synchronous online monitoring of the total amount of methane, methane dissolution and phase transformation processes in the reactor, and more accurately determines the cold spring
  • the methane content in the area that actually participates in the biochemical transformation process provides an important basic means for correctly understanding the methane source and sink mechanism of the ocean; compared with previous studies on the anaerobic oxidation of methane in cold spring areas, this example proposes the use of pressure-resistant membrane biological components 4
  • a membrane bioreactor in a high-pressure environment was constructed to improve the enrichment efficiency of the biofilm involved in the methane oxidation process.
  • this embodiment also proposes to conduct real-time online measurement and analysis of various environmental parameters during the biochemical conversion of methane to quantitatively understand the main control factors of the methane conversion process.
  • the fluid supply unit 102 includes a methane dissolution container 1021, an injection pump 1022, a low-temperature water bath container 1023, a mechanical stirring device 1024, a back pressure valve 1025, a microflow pump 1026 and a seawater culture medium configuration container 1027; wherein:
  • the methane dissolving container 1021 is placed in a low-temperature water bath container 1023 to ensure that when the methane-containing fluid enters the membrane bioreactor 101 in the deep sea cold spring area, it will not cause heat flow disturbance due to temperature differences and affect the simulation process;
  • the methane dissolving container 1021 is provided with gas inlet, liquid inlet and liquid outlet;
  • the methane dissolution container 1021 is connected to the pressurization unit 103 through the gas inlet;
  • the methane dissolution container 1021 is connected to the seawater culture medium configuration container 1027 and the injection pump 1022 in sequence through the liquid inlet;
  • the methane dissolution container 1021 is connected to the microfluidic pump
  • the methane dissolving container 1021 is placed in the low-temperature water bath container 1023, in order to make the system closer to the real seabed situation and meet the requirements of small temperature difference between the methane-containing fluid seeping into the leakage area and the surrounding environment medium.
  • the temperature setting of the methane dissolution container 1021 is consistent with the membrane bioreactor 101 in the deep sea cold spring area, which is the actual temperature of the seabed, but its pressure must be monitored to be lower than this temperature.
  • the phase equilibrium pressure of methane hydrate formation under the conditions prevents the formation of methane hydrate in the methane dissolution container 1021.
  • the boosting system 103 includes an air compressor, a boosting pump, a gas storage tank, an adjustment valve, and pipe valves; wherein: the boosting system 103 communicates with the fluid supply unit 102 and the fluid supply unit 102 through pipe valves.
  • the gas inlet of the membrane bioreactor 101 in the deep sea cold spring area is connected; the air compressor is connected to the input end of the gas storage tank through the booster pump; the output end of the gas storage tank is provided with an adjustment valve, and the adjustment valve Connected to the pipe valve, it is used to inject gas of a specific component into the fluid supply unit 102 and the deep sea cold seep membrane bioreactor 101 at a set flow rate.
  • the above scheme has the ability to simulate the continuous process of methane leakage under in-situ temperature and pressure environmental conditions in the deep sea.
  • a membrane biocomponent By constructing a membrane biocomponent in a high-pressure environment, it is used for the growth of microorganisms in the deep-sea cold spring area.
  • Ultrasonic monitoring is used to measure the changes in biofilm thickness on the membrane module online, and biofilm samples are obtained under high pressure for sequencing analysis. , combined with other chemical sensor measurements and real-time sampling test analysis, to quantitatively study the characteristics of methane anaerobic oxidation in the cold spring area and the impact of environmental parameters on the methane oxidation process.
  • this program simultaneously monitors the dissolution and occurrence of methane in the reactor during the leakage process.
  • the amount of phase transformation can be used to more accurately quantitatively study the anaerobic oxidation characteristics of methane in the cold spring area. It provides an important technical means for accurately understanding the biochemical transformation process and mechanism of methane release from the deep seabed.
  • an online environmental parameter measurement system for membrane bioreactors in deep sea cold seep areas is provided.
  • the deep sea cold seep area membrane bioreactor 101 is the core of this system.
  • This system mainly includes a fluid supply unit 102, a deep-sea cold spring membrane bioreactor 101, a pressurization system 103 and a control collection terminal 9.
  • the temperature difference between the methane-containing fluid seepage and the surrounding environment medium is small when it enters the leakage area.
  • the methane dissolving container 1021 involved in this system is placed in the low-temperature water bath container 1023 to ensure that when the methane-containing fluid enters the membrane bioreactor 101 in the deep sea cold spring area, a large temperature difference will not occur, causing heat flow disturbance.
  • the methane dissolution vessel 1021 is a pressure-resistant vessel, equipped with a second temperature sensor 10211 and a second pressure sensor 10212, and a mechanical stirring device 1024 is arranged on the top to enhance the solute dissolution in the reactor.
  • the temperature setting of the methane dissolving container 1021 is consistent with the methane dissolving container 101 and is the same as the actual temperature of the seabed.
  • the pressure of the methane dissolving container 1021 should be monitored to avoid the formation of methane hydrate in the methane dissolving container 1021 by monitoring the phase equilibrium pressure of methane hydrate formation below this temperature.
  • a back pressure valve 1025 is provided on the top of the methane dissolving container 1021 to ensure that the dissolving process is carried out under set pressure conditions.
  • the injection pump 1022 injects the microbial culture medium in the seawater culture medium configuration container 1027 into the methane dissolution container 1021 through the regulating valve.
  • the microfluidic pump 1026 injects the saturated methane fluid in the methane dissolving container 1021 into the membrane bioreactor 101 in the deep sea cold spring zone.
  • the membrane bioreactor 101 in the deep sea cold spring area mainly includes a sediment simulation chamber 1, a seawater simulation chamber 2, a water bath jacket 10 and other pressure-resistant membrane components.
  • the deep sea cold spring zone membrane bioreactor 101 is a corrosion-resistant and pressure-resistant structure with a diameter of 200mm and a height of 250mm. Its inlet is connected with the microfluidic pump 1026.
  • the membrane bioreactor 101 in the deep sea cold spring area mainly includes two parts: a sediment simulation chamber 1 with a lower height of 100mm and a seawater simulation chamber 2 with an upper height of 150mm. The two parts are connected by flanges.
  • the sediment simulation chamber 1 is provided with a resistivity measurement system 6 for monitoring and measuring the saturation changes of methane hydrate formation in the sediment during the methane leakage simulation process.
  • Both the sediment simulation chamber 1 and the seawater simulation chamber 2 are equipped with temperature sensors 31 to monitor changes in ambient temperature during the methane leakage simulation process.
  • a methane sensor 32 is provided in the seawater simulation chamber 2 for monitoring changes in methane concentration in the seawater simulation chamber 2 .
  • the seawater simulation chamber 2 is provided with a pressure-resistant membrane biological component 4 to monitor the formation of biofilms of methanophilic bacteria and sulfate-reducing bacteria in the seawater environment.
  • front and rear pressure-resistant viewing windows 21 are provided in the seawater environment part.
  • an online pressure-maintaining biofilm sampling element 5 is provided on the top of the deep-sea cold spring zone membrane bioreactor 101. This element places the sampling ring device in a retractable pressure-resistant cylinder, which is used in the pressure-resistant membrane bioreactor during the biofilm formation process. Biofilm samples were scraped from different locations on component 4 for sequencing analysis.
  • the pressure-resistant membrane bio-module 4 involved in this system is mainly a porous membrane module made of sintered titanium alloy powder that is resistant to seawater corrosion and pressure-resistant.
  • the height of the membrane module is 120mm and is suspended in the seawater environment of the membrane bioreactor 101 in the deep sea cold spring area. .
  • the outlet of the membrane bioreactor 101 in the deep sea cold spring zone is provided with a PID valve 71.
  • the PID valve 71 is used to regulate and control the pressure in the reactor to ensure stability.
  • the outlet of the deep-sea cold spring membrane bioreactor 101 is connected to a gas-liquid storage tank 72 monitored by a pressure sensor and a temperature sensor. This tank is used to collect and measure the gas-liquid volume discharged from the reactor.
  • the inlet and outlet of the gas and liquid storage tank 72 are opened at the same time to maintain a continuous leakage process.
  • the temperature control of the deep sea cold spring membrane bioreactor 101 adopts a jacketed water bath method, that is, a water bath jacket 10 is arranged around the reactor, filled with circulating refrigerant, and the water bath jacket The outer wall of 10 is provided with an insulation layer to ensure the low-temperature environment in the sediment simulation chamber 1 and the seawater simulation chamber 2.
  • the fluid supply unit 102 and the deep-sea cold seep membrane bioreactor 101 are both connected to the pressurizing system 103, which can be used to inject gas into the pressure-resistant containers of these two parts for pressurization.
  • the boosting system 103 involved in this system mainly consists of air compressors, booster pumps, gas storage tanks, pressure regulating valves, pipe valves and other accessories.
  • the environmental parameter measurement device involved in this system mainly includes a methane sensor 32 for monitoring changes in methane concentration in the reactor; a temperature sensor 31 to monitor temperature changes; a pressure sensor 33 to monitor pressure changes; an ultrasonic probe 81 and a sound wave generator-oscilloscope 82 for monitoring Changes in the thickness of the biofilm on the pressure-resistant membrane biological component 4; the resistivity measurement system 6 in the sedimentary layer monitors changes in the saturation of methane hydrate formed in the sedimentary layer during methane leakage.
  • the control acquisition terminal 9 involved in this example is used to monitor changes in various environmental data information during the methane leakage simulation process, as well as real-time acquisition, processing, storage, image output and other functions.
  • the main usage method of the system involved in this example mainly includes: first, assemble the deep sea cold seep area membrane bioreactor 101 from bottom up, and then fill it in 1 with actual deep sea sediments in the Haima cold seep area of the South my country Sea. Then, the seawater simulation chamber 2 is filled with actual deep-sea seawater sampled from the Haima Cold Seep area. Then the water bath jacket 10 is opened to keep the temperature in the leakage process reactor consistent with the temperature conditions at the bottom of the deep sea. Then, the pressurizing system 103 was opened, and nitrogen was injected into the membrane bioreactor 101 in the deep sea cold seep area where the leakage process was simulated, so that the pressure value in the reactor increased to 14 MPa.
  • the prepared nutrient solution is put into the seawater medium configuration container 1027 and the dissolved gas in the methane dissolution container 1021 is injected into the deep sea cold spring zone membrane bioreactor 101, and through constant pressure control, the pressure in the methane dissolution container 1021 is No more than 2MPa. Open the low-temperature water bath container 1023 of the methane dissolution container 1021 so that the temperature value in the methane dissolution container 1021 and the temperature in the deep sea cold spring zone membrane bioreactor 101 are 4°C. Then the mechanical stirring device 1024 is turned on.
  • the outlet of the methane dissolving container 1021, the microflow pump 1026, and the inlet and outlet of the deep sea cold spring membrane bioreactor 101 are opened in sequence, and the flow rate is 10 ml/min.
  • the saturated methane solution is continuously injected into the deep sea cold seep zone membrane bioreactor 101 at a speed of During the entire simulation process, through constant pressure control, the pressure condition in the leakage process simulation kettle was kept constant at 14MPa, consistent with the actual environmental conditions in the deep sea.
  • the liquid inlet channel and outlet of the membrane bioreactor 101 in the deep sea cold spring area are open, simulating the methane leakage process with material exchange with the surrounding environmental conditions.
  • changes in parameters such as temperature, pressure, resistivity, sound waves, and methane concentration in the membrane bioreactor 101 in the deep sea cold seep area were monitored in real time, and samples were taken through double-valve pistons at different locations in the seawater and sediment layer.
  • the device 11 takes samples and analyzes the chemical components and concentration changes of the samples, as well as the thickness of the biofilm and changes in microbial groups.
  • the biofilm growth characteristics in the membrane bioreactor during the methane leakage process and its environmental parameter control characteristics can be monitored in real time.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hydrology & Water Resources (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种深海冷泉区膜生物反应器,用于模拟冷泉区甲烷厌氧氧化过程的生物膜生长过程和监测其环境条件的变换情况;一种深海冷泉区膜生物反应在线式环境参数测量系统,包括用于生成饱和甲烷流体并微流量地注入到深海冷泉区膜生物反应器中的流体供应单元;增压系统用于保证模拟过程系统内部环境压力稳定一致。通过在反应器内构建膜生物组件,对AOM作用过程中的生物膜进行在线监测,并通过保压取样、测序分析,研究冷泉区甲烷厌氧氧化过程的生物膜生长特性及其环境条件影响。

Description

深海冷泉区膜生物反应器及在线式环境参数测量系统 技术领域
本发明涉及海洋环境生态工程技术领域,特别是涉及一种深海冷泉区膜生物反应器及在线式环境参数测量系统。
背景技术
近半个世纪发现海底冷泉以来,有关冷泉的资源与环境效益被全球广泛认知。“冷泉”是海底之下的甲烷、硫化氢和二氧化碳等气体在地质结构或压力变化情况驱动下,渗漏溢出海底进入海水的流体活动。“冷泉”周围温度一般在3-5℃,主要分布在俯冲带和富含有机质的被动大陆边缘。“冷泉”将溶解和气态化合物向上输送,维持着深海重要的化能合成生态系统。古菌的甲烷厌氧氧化作用(AOM)是最重要的反应,为冷泉区与硫相关的生物地球化学作用和碳酸盐矿物沉淀提供重要的物质来源,更为黑暗世界里后生动物的生长提供重要的碳源和能源。依赖AOM作用的“冷泉”生态系统是研究地球深部生物圈的重要窗口,同时也是探寻天然气水合物的重要标志之一。
目前,由于观测手段和保真研究手段等局限性,有关冷泉区AOM的作用机制尚不完全清楚,AOM作用增强与受限的环境条件作用不完善,尤其是深海古菌在AOM作用下形成生物膜的特性与微观机理不清晰,亟需对深海冷泉系统进行长周期模拟,在线测量AOM作用过程中生物膜的生长过程,及监测其环境参数变化情况。
现有技术公开了一种深海冷泉生物高压控温模拟培养装置,包括混合舱,高压舱,高压过滤器装置以及各种阀体,利用高压管路连接。在高压舱中,通过高压泵和温控系统实现深海高温或低温高静水压环境,同时经过富集过滤、固定装置,其虽然解决了高压下大型生物和微生物菌体的培养、富集、固定的技术问题,但其并不适用模拟AOM过程,无法对AOM作用过程中生物膜的生长过程及其环境进行模拟监测。
发明内容
本发明为了解决以上至少一种技术缺陷,提供一种深海冷泉区膜生物反应器 及在线式环境参数测量系统,实现了对冷泉区甲烷厌氧氧化过程的生物膜生长特性及其环境条件影响的研究,为正确认识深海甲烷厌氧氧化过程及环境参数测量提供是重要的基础。
为解决上述技术问题,本发明的技术方案如下:
一种深海冷泉区膜生物反应器,包括控制采集终端、沉积物模拟室、海水模拟室、传感器组、耐压膜生物组件、在线保压生物膜取样元件、电阻率测量系统、压力调整组件和超声观测组件;其中:所述沉积物模拟室设置在海水模拟室下方,与海水模拟室法兰连接;沉积物模拟室、海水模拟室内均设置有传感器组,所述传感器组信号输出端与所述控制采集终端电性连接;所述耐压膜生物组件设置在所述海水模拟室内,用于监测海水环境中噬甲烷菌和硫酸盐还原菌生物膜的形成;所述在线保压生物膜取样元件设置在所述海水模拟室顶部,其控制端与所述控制采集终端电性连接,用于生物膜形成过程时在所述耐压膜生物组件上不同位置刮取生物膜样品进行测序分析;所述电阻率测量系统设置在所述沉积物模拟室内,其信号输出端与所述控制采集终端电性连接,用于监测和计量甲烷渗漏模拟过程中,沉积物内甲烷水合物形成的饱和度变化情况;所述压力调整组件通过管道与所述海水模拟室连接,其控制端与所述控制采集终端电性连接,用于调控反应器内部的压力,保证反应器内压力稳定;所述超声观测组件的超声探头设置在海水模拟室内,用于监测所述耐压膜生物组件上的生物膜厚度变化情况,并将信号输出至所述控制采集终端。
上述方案中,所述深海冷泉区膜生物反应器为耐腐蚀和耐压结构,通过耐压膜生物组件构建了高压环境中的膜生物组件,用于深海冷泉区微生物的挂膜生长,并且利用超声观测组件监测,在线测量膜组件上的生物膜厚度变化情况,以及在高压情况下保压获取生物膜样品进行测序分析,实现对AOM作用过程中的生物膜进行在线监测,实现了对冷泉区甲烷厌氧氧化过程的生物膜生长特性及其环境条件影响的研究为正确认识深海甲烷厌氧氧化过程及环境参数测量提供是重要的基础。
其中,所述传感器组包括温度传感器、甲烷传感器和压力传感器;其中:所述温度传感器设置在沉积物模拟室、海水模拟室内,用于监测沉积物模拟室、海水模拟室内环境温度的变化情况,其信号输出端与所述控制采集终端电性连接;所述甲烷传感器设置在海水模拟室内,用于监测海水模拟室内甲烷浓度的变化情 况,其信号输出端与所述控制采集终端电性连接;所述压力传感器设置在所述海水模拟室内,用于监测反应器内压力的变化情况,其信号输出端与所述控制采集终端电性连接。
其中,所述耐压膜生物组件为采用耐海水腐蚀和耐压的钛合金粉末烧结而成的多孔膜组件,悬挂在所述海水模拟室内。
其中,所述在线保压生物膜取样元件包括可伸缩耐压筒、取样环装置和保压装置;其中:所述可伸缩耐压筒设置在所述海水模拟室顶部,取样环装置放置在所述可伸缩耐压筒内,保压装置固定套接在所述可伸缩耐压筒外部;所述取样环装置控制端、保压装置控制端均与所述控制采集终端电性连接。
上述方案中,取样环装置放置在所述可伸缩耐压筒内,用于生物膜形成过程中在耐压膜生物组件上不同位置刮取生物膜样品进行测序分析。当需要刮取生物膜时,考虑到反应器内外存在压力差的问题,先控制保压装置关闭并自动充满惰性气体,使其压力与反应器内部一致,然后将保压装置内置的阀门打开,控制取样环装置在耐压膜生物组件上不同位置刮取生物膜样品并抽离保压装置内置的阀门,最后关闭保压装置内置的阀门,打开保压装置外置阀门,完成整个刮取生物膜的操作。
其中,所述压力调整组件包括PID阀和气液存储罐;所述气液存储罐通过管道与所述海水模拟室连接;所述PID阀设置在管道上,与所述控制采集终端电性连接。
上述方案中,在整个模拟过程或者应用反应器的过程中,PID阀通过PID控制,可以有效保证反应器内的压力稳定。同时,具备温度和压力监控功能的气液存储罐,用于收集和计量从反应器内排出的气液体积。
其中,所述超声观测组件还包括声波发生器-示波器;所述超声探头信号输出端与所述声波发生器-示波器信号输入端、控制采集终端电连接,其设置用于监测耐压膜生物组件上的生物膜厚度变化。
其中,所述深海冷泉区膜生物反应器还包括开设在所述海水模拟室上的耐压可视窗和设置在沉积物模拟室、海水模拟室的双阀式活塞取样器。
上述方案中,耐压可视窗的设置是为了方便观察生物膜的形成情况,其在海水模拟室前后两侧均有设置,在生物膜的形成过程中,可以通过耐压可视窗进行摄像观察。双阀式活塞取样器设置在沉积物模拟室、海水模拟室不同层位,用于 取样分析样品的化学组分和浓度变化,及生物膜的厚度和微生物类群变化。
其中,所述深海冷泉区膜生物反应器还包括设置在反应器周围的水浴夹套,其控制端与所述控制采集终端电性连接。
上述方案中,为了方便视窗观测,该反应器采用水浴夹套进行夹套式水浴的方式,在反应器周围布置水浴夹套,填充循环制冷液,且水浴夹套的外壁设置保温层,来保证沉积物模拟室、海水模拟室的低温环境。
上述方案中,控制采集终端用于实现甲烷渗漏模拟过程中各项环境数据续不续变化的监控、以及实时采集、处理、存储和图像输出等功能。
上述方案中,反应器在应用模拟过程中,其进出口同时打开,保持连续渗漏过程,其可以模拟接近真实海底环境,在该条件下,研究甲烷渗漏的环境介质与周围环境有物质交换的情况。
本方案还提供一种深海冷泉区膜生物反应在线式环境参数测量系统,包括如上文所述的深海冷泉区膜生物反应器、流体供应单元和增压系统;其中:所述流体供应单元用于生成饱和甲烷流体并微流量地注入到所述深海冷泉区膜生物反应器中;所述深海冷泉区膜生物反应器模拟冷泉区甲烷厌氧氧化过程的生物膜生长过程和监测其环境条件的变换情况;所述深海冷泉区膜生物反应器、流体供应单元均与所述增压系统均相连,保证模拟过程系统内部环境压力稳定一致;所述流体供应单元、增压系统均与所述控制采集终端电性连接,实现信息交互。
其中,所述流体供应单元包括耐压的甲烷溶解容器、注入泵、低温水浴容器、机械搅拌装置、背压阀、微流泵和海水培养基配置容器;其中:所述甲烷溶解容器置于低温水浴容器中,保证含甲烷流体进入所述深海冷泉区膜生物反应器时不会由于温差引起热流扰动,对模拟过程产生影响;甲烷溶解容器设置有气体进口、液体进口和液体出口;甲烷溶解容器通过气体进口与所述增压单元相连;甲烷溶解容器通过液体进口与所述海水培养基配置容器、注入泵依次连接;甲烷溶解容器通过液体出口与微流泵连接,通过微流泵向所述深海冷泉区膜生物反应器微流量地注入饱和甲烷流体;所述甲烷溶解容器内部设置有第二温度传感器、第二压力传感器,用于监测甲烷溶解容器内部的温度及压力数据并发送至所述控制采集终端;所述机械搅拌装置配置在所述甲烷溶解容器顶部,用于增强甲烷溶解容器内的溶质溶解;所述背压阀设置在所述甲烷溶解容器顶部,用于保证甲烷溶解容器处于设定压力条件下完成溶解过程。
上述方案中,将甲烷溶解容器置于低温水浴容器中,还为了使得系统在更加接近真实的海底情况下,符合含甲烷流体渗流进入渗漏区时同周围环境介质温差较小的特点。
其中,在所述流体供应单元模拟过程中,甲烷溶解容器的温度设置同所述深海冷泉区膜生物反应器一致,同为海底实际温度,但其压力要监控低于该温度条件下甲烷水合物形成的相平衡压力,避免在甲烷溶解容器中形成甲烷水合物。
其中,所述增压系统包括空压机、增压泵、储气罐、调整阀及管阀件;其中:所述增压系统通过管阀件与所述流体供应单元、深海冷泉区膜生物反应器的气体进口连接;所述空压机通过所述增压泵与所述储气罐输入端连接;所述储气罐输出端上设置有调整阀,通过调整阀与所述管阀件连接,用于向流体供应单元、深海冷泉区膜生物反应器的注入设定流量和组分的气体。
上述方案在实现过程中,具备深海原位温度、压力环境条件下甲烷渗漏的连续过程模拟能力。通过构建高压环境中的膜生物组件,用于深海冷泉区微生物挂膜生长,并且利用超声监测,在线测量膜组件上的生物膜厚度变化,以及在高压情况下保压获取生物膜样品进行测序分析,定量研究冷泉区甲烷厌氧氧化的特性,以及环境参数对甲烷氧化过程的影响。相对于现有深海冷泉区研究甲烷生物化学转化过程模拟,忽略甲烷在高压、低温环境中的溶解以及相态转化等特点,本方案同时监测甲烷渗漏过程中,在反应器内的溶解和发生相态转化的量,更精确的定量研究冷泉区甲烷厌氧氧化特性。为准确认识深海底甲烷释放的生物化学转化过程及机理提供重要的技术手段。
与现有技术相比,本发明技术方案的有益效果是:
本发明提出了一种深海冷泉区膜生物反应器及在线式环境参数测量系统,为了定量研究AOM过程对深海甲烷渗漏量的利用效率,监测了甲烷进入冷泉区后溶解及发生相变生成天然气水合物的含量,较为精准的计量用于AOM的甲烷含量。通过在反应器内构建膜生物组件,对AOM作用过程中的生物膜进行在线监测,并通过保压取样、测序分析,研究冷泉区甲烷厌氧氧化过程的生物膜生长特性及其环境条件影响,为正确认识深海甲烷厌氧氧化过程,及环境参数测量提供重要的研究与测试方法。
附图说明
图1为本发明所述的深海冷泉区膜生物反应器结构示意图;
图2为本发明所述的在线式环境参数测量系统结构示意图;
图3为本发明所述的在线式环境参数测量系统控制采集终端电性连接示意图;
其中:1、沉积物模拟室;2、海水模拟室;21、耐压可视窗;3、传感器组;31、温度传感器;32、甲烷传感器;33、压力传感器;4、耐压膜生物组件;5、在线保压生物膜取样元件;6、电阻率测量系统;7、压力调整组件;71、PID阀;72、气液存储罐;8、超声观测组件;81、超声探头;82、声波发生器-示波器;9、控制采集终端;10、水浴夹套;11、双阀式活塞取样器;101、深海冷泉区膜生物反应器;102、流体供应单元;1021、甲烷溶解容器;10211、第二温度传感器;10212、第二压力传感器;1022、注入泵;1023、低温水浴容器;1024、机械搅拌装置;1025、背压阀;1026、微流泵;1027、海水培养基配置容器;103、增压系统。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
本实施例为完整的使用示例,内容较丰富
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
如图1、图3所示,一种深海冷泉区膜生物反应器,包括控制采集终端9、沉积物模拟室1、海水模拟室2、传感器组3、耐压膜生物组件4、在线保压生物膜取样元件5、电阻率测量系统6、压力调整组件7和超声观测组件8;其中:所述沉积物模拟室1设置在海水模拟室2下方,与海水模拟室2法兰连接;沉积物模拟室1、海水模拟室2内均设置有传感器组3,所述传感器组3信号输出端与所述控制采集终端9电性连接;所述耐压膜生物组件4设置在所述海水模拟室2内,用于监测海水环境中菌落生物膜的形成;所述在线保压生物膜取样元件5设置在所述海水模拟室2顶部,其控制端与所述控制采集终端9电性连接,用于生物膜形成过程时在所述耐压膜生物组件4上不同位置刮取生物膜样品进行测 序分析;所述电阻率测量系统6设置在所述沉积物模拟室1内,其信号输出端与所述控制采集终端9电性连接,用于监测和计量甲烷渗漏模拟过程中,沉积物内甲烷水合物形成的饱和度变化情况;所述压力调整组件7通过管道与所述海水模拟室2连接,其控制端与所述控制采集终端9电性连接,用于调控反应器内部的压力,保证反应器内压力稳定;所述超声观测组件8的超声探头81设置在海水模拟室2内,用于监测所述耐压膜生物组件4上的生物膜厚度变化情况,并将信号输出至所述控制采集终端9。
更具体的,所述传感器组3包括温度传感器31、甲烷传感器32和压力传感器33;其中:所述温度传感器31设置在沉积物模拟室1、海水模拟室2内,用于监测沉积物模拟室1、海水模拟室2内环境温度的变化情况,其信号输出端与所述控制采集终端9电性连接;所述甲烷传感器32设置在海水模拟室2内,用于监测海水模拟室2内甲烷浓度的变化情况,其信号输出端与所述控制采集终端9电性连接;所述压力传感器33设置在所述海水模拟室2内,用于监测反应器内压力的变化情况,其信号输出端与所述控制采集终端9电性连接。
更具体的,所述耐压膜生物组件4为采用耐海水腐蚀和耐压的钛合金粉末烧结而成的多孔膜组件,悬挂在所述海水模拟室2内。
更具体的,所述在线保压生物膜取样元件5包括可伸缩耐压筒、取样环装置和保压装置;其中:所述可伸缩耐压筒设置在所述海水模拟室2顶部,取样环装置放置在所述可伸缩耐压筒内,保压装置固定套接在所述可伸缩耐压筒外部;所述取样环装置控制端、保压装置控制端均与所述控制采集终端9电性连接。
在具体实施过程中,取样环装置放置在所述可伸缩耐压筒内,用于生物膜形成过程中在耐压膜生物组件4上不同位置刮取生物膜样品进行测序分析。当需要刮取生物膜时,考虑到反应器内外存在压力差的问题,先控制保压装置关闭并自动充满惰性气体,使其压力与反应器内部一致,然后将保压装置内置的阀门打开,控制取样环装置在耐压膜生物组件4上不同位置刮取生物膜样品并抽离保压装置内置的阀门,最后关闭保压装置内置的阀门,打开保压装置外置阀门,完成整个刮取生物膜的操作。
更具体的,所述压力调整组件7包括PID阀71和气液存储罐72;所述气液存储罐72通过管道与所述海水模拟室2连接;所述PID阀71设置在管道上,与所述控制采集终端9电性连接。
在整个模拟过程或者应用反应器的过程中,PID阀71通过PID控制,可以有效保证反应器内的压力稳定。同时,具备温度和压力监控功能的气液存储罐72,用于收集和计量从反应器内排出的气液体积。
更具体的,所述超声观测组件8还包括声波发生器-示波器82;所述超声探头81信号输出端与所述声波发生器-示波器82信号输入端、控制采集终端9电连接。
更具体的,所述深海冷泉区膜生物反应器101还包括开设在所述海水模拟室2上的耐压可视窗21和设置在沉积物模拟室1、海水模拟室2的双阀式活塞取样器11。
在具体实施过程中,耐压可视窗21的设置是为了方便观察生物膜的形成情况,其在海水模拟室前后两侧均有设置,在生物膜的形成过程中,可以通过耐压可视窗21进行摄像观察。双阀式活塞取样器11设置在沉积物模拟室1、海水模拟室2不同位置,用于取样分析样品的化学组分和浓度变化,及生物膜的厚度和微生物类群变化。
更具体的,所述深海冷泉区膜生物反应器101还包括设置在反应器周围的水浴夹套10,其控制端与所述控制采集终端9电性连接。
在具体实施过程中,为了方便视窗观测,该反应器采用水浴夹套10进行夹套式水浴的方式,在反应器周围布置水浴夹套10,填充循环制冷液,且水浴夹套10的外壁设置保温层,来保证沉积物模拟室1、海水模拟室2的低温环境。
在具体实施过程中,控制采集终端9用于实现甲烷渗漏模拟过程中各项环境数据续不续变化的监控、以及实时采集、处理、存储和图像输出等功能。
在具体实施过程中,反应器在应用模拟过程中,其进出口同时打开,保持连续渗漏过程,其可以模拟接近真实海底环境,在该条件下,研究甲烷渗漏的环境介质与周围环境有物质交换的情况。所述深海冷泉区膜生物反应器101为耐腐蚀和耐压结构,通过耐压膜生物组件4构建了高压环境中的膜生物组件,用于深海冷泉区微生物挂膜生长,并且利用超声观测组件监测,在线测量膜组件上的生物膜厚度变化情况,以及在高压情况下保压获取生物膜样品进行测序分析,实现对AOM作用过程中的生物膜进行在线监测,实现了对冷泉区甲烷厌氧氧化过程的生物膜生长特性及其环境条件影响的研究为正确认识深海甲烷厌氧氧化过程及环境参数测量提供是重要的基础。
实施例2
更具体的,在实施例1的基础上,如图2、图3所示,提出一种深海冷泉区膜生物反应在线式环境参数测量系统,包括深海冷泉区膜生物反应器101、流体供应单元102和增压系统103;其中:所述流体供应单元102用于生成饱和甲烷流体并微流量地注入到所述深海冷泉区膜生物反应器101中;所述深海冷泉区膜生物反应器101模拟冷泉区甲烷厌氧氧化过程的生物膜生长过程和监测其环境条件的变换情况;所述深海冷泉区膜生物反应器101、流体供应单元102均与所述增压系统103均相连,保证模拟过程系统内部环境压力稳定一致;所述流体供应单元102、增压系统103均与所述控制采集终端9电性连接,实现信息交互。
在具体实施过程中,本实施例可以在深海原位温度、压力条件下,在开放体系模式下,对甲烷渗漏过程进行连续模拟。开放体系模拟有助于微生物介导的甲烷厌氧氧化过程中的代谢废物排出,有助于提高甲烷的生物化学转化效率,和微生物的活性;且各项边界条件更接近于真实环境海底甲烷的渗漏过程。同时,本实施例可以对冷泉区甲烷渗漏过程中参与甲烷氧化的微生物形成的生物膜过程的厚度、分布、微生物类群实时定量监测、分析,有助于深刻揭示深海冷泉区甲烷的生物化学转化过程的微观机理和环境控制因素,为研究深海甲烷参与的化能合成工程提供重要的手段。并且,本实施例提出了对冷泉区甲烷的溶解和相态转化过程进行实时在线监测,更准确的核定冷泉区实际参与生物化学转化过程的甲烷含量,为正确认识海洋的甲烷源汇机制提供重要的基础手段。
相对于封闭式的甲烷渗漏过程模拟,在本实施例提出了在开放体系下,进行深海底甲烷渗漏过程模拟,更加接近真实条件下甲烷渗漏过程中渗漏的环境介质与周围流体有物质交换的特点;相对于以往深海甲烷厌氧氧化过程模拟研究,本实施例提出了对反应器内的甲烷总量、甲烷的溶解和相态转化过程进行实时同步在线监测,更准确的核定冷泉区实际参与生物化学转化过程的甲烷含量,为正确认识海洋的甲烷源汇机制提供重要的基础手段;相对于以往研究冷泉区甲烷厌氧氧化研究,本实施例提出了利用耐压膜生物组件4构建高压环境的膜生物反应器,提高参与甲烷氧化过程的生物膜的富集效率,并且提出了根据在线声波监测反演高压环境中膜组件上的生物膜厚度变化情况表征甲烷厌氧氧化效率。并且通过保压环境在线取样,分析膜组件上的微生物动态变化特性,为正确认识深海甲烷厌氧氧化过程提供先进的手段。
在具体实施过程中,本实施例还提出了在甲烷生物化学转化过程中,对各项环境参数进行实时在线测量分析,定量认识甲烷转化过程的主控因素。
更具体的,所述流体供应单元102包括甲烷溶解容器1021、注入泵1022、低温水浴容器1023、机械搅拌装置1024、背压阀1025、微流泵1026和海水培养基配置容器1027;其中:所述甲烷溶解容器1021置于低温水浴容器1023中,保证含甲烷流体进入所述深海冷泉区膜生物反应器101时不会由于温差引起热流扰动,对模拟过程产生影响;甲烷溶解容器1021设置有气体进口、液体进口和液体出口;甲烷溶解容器1021通过气体进口与所述增压单元103相连;甲烷溶解容器1021通过液体进口与所述海水培养基配置容器1027、注入泵1022依次连接;甲烷溶解容器1021通过液体出口与微流泵1026连接,通过微流泵1026向所述深海冷泉区膜生物反应器101微流量地注入饱和甲烷流体;所述甲烷溶解容器1021内部设置有第二温度传感器10211、第二压力传感器10212,用于监测甲烷溶解容器1021内部的温度及压力数据并发送至所述控制采集终端9;所述机械搅拌装置1024配置在所述甲烷溶解容器1021顶部,用于增强甲烷溶解容器1021内的溶质溶解;所述背压阀1025设置在所述甲烷溶解容器1021顶部,用于保证甲烷溶解容器1021处于设定压力条件下完成溶解过程。
在具体实施过程中,将甲烷溶解容器1021置于低温水浴容器1023中,还为了使得系统在更加接近真实的海底情况下,符合含甲烷流体渗流进入渗漏区时同周围环境介质温差较小的特点。
更具体的,在所述流体供应单元102模拟过程中,甲烷溶解容器1021的温度设置同所述深海冷泉区膜生物反应器101一致,同为海底实际温度,但其压力要监控低于该温度条件下甲烷水合物形成的相平衡压力,避免在甲烷溶解容器1021中形成甲烷水合物。
更具体的,所述增压系统103包括空压机、增压泵、储气罐、调整阀及管阀件;其中:所述增压系统103通过管阀件与所述流体供应单元102、深海冷泉区膜生物反应器101的气体进口连接;所述空压机通过所述增压泵与所述储气罐输入端连接;所述储气罐输出端上设置有调整阀,通过调整阀与所述管阀件连接,用于向流体供应单元102、深海冷泉区膜生物反应器101以设定流量注入特定组分的气体。
上述方案在实现过程中,具备深海原位温度、压力环境条件下甲烷渗漏的连 续过程模拟能力。通过构建高压环境中的膜生物组件,用于深海冷泉区微生物挂膜生长,并且利用超声监测,在线测量膜组件上的生物膜厚度变化,以及在高压情况下保压获取生物膜样品进行测序分析,结合其它化学传感器测量和实时取样测试分析,定量研究冷泉区甲烷厌氧氧化的特性,以及环境参数对甲烷氧化过程的影响。相对于现有深海冷泉区研究甲烷生物化学转化过程模拟,忽略甲烷在高压、低温环境中的溶解以及相态转化等特点,本方案同时监测甲烷渗漏过程中,在反应器内的溶解和发生相态转化的量,更精确的定量研究冷泉区甲烷厌氧氧化特性。为准确认识深海底甲烷释放的生物化学转化过程及机理提供重要的技术手段。
实施例3
在实施例2的基础上,为了更清晰地阐述本方案的实现过程,提供本实施例。
如图2、图3所示,一种深海冷泉区膜生物反应在线式环境参数测量系统,深海冷泉区膜生物反应器101是本系统的核心。本系统主要包括流体供应单元102、深海冷泉区膜生物反应器101、增压系统103和控制采集终端9。为了接近真实海底情况下,含甲烷流体渗流进入渗漏区时同周围环境介质温差较小的特点。本系统涉及的甲烷溶解容器1021放置于低温水浴容器1023中,保证含甲烷流体进入深海冷泉区膜生物反应器101时不发生较大的温差,引起热流扰动。甲烷溶解容器1021为耐压容器,配置有第二温度传感器10211和第二压力传感器10212,顶部配置有机械搅拌装置1024增强反应器内的溶质溶解。甲烷溶解容器1021的温度设置同甲烷溶解容器101一致,且与海底实际温度一样。甲烷溶解容器1021的压力要监控低于该温度条件下甲烷水合物形成的相平衡压力,避免在甲烷溶解容器1021中形成甲烷水合物。甲烷溶解容器1021的顶部设置有背压阀1025,保证在设定压力条件下,进行溶解过程。注入泵1022通过调节阀将海水培养基配置容器1027中的微生物培养基注入到甲烷溶解容器1021中。微流泵1026将甲烷溶解容器1021中饱和甲烷流体注入深海冷泉区膜生物反应器101内。
深海冷泉区膜生物反应器101主要包括沉积物模拟室1、海水模拟室2、水浴夹套10和其他耐压膜组件。深海冷泉区膜生物反应器101为耐腐蚀和耐压结构,直径200mm,高度250mm。其进口与微流泵1026相连接。深海冷泉区膜生物反应器101主要包括下部高度为100mm的沉积物模拟室1和上部高度为150mm的海水模拟室2两部分,两部分通过法兰连接。沉积物模拟室1内设置 有电阻率测量系统6,用于监测和计量甲烷渗漏模拟过程中,沉积物内甲烷水合物形成的饱和度变化情况。电阻率测量布点均匀分布为三层,每层设置有4×4=16个布点。沉积物模拟室1和海水模拟室2均设置有温度传感器31,监测甲烷渗漏模拟过程内的环境温度变化情况。海水模拟室2内设置有甲烷传感器32,用于监测海水模拟室2内的甲烷浓度变化。海水模拟室2内设置有耐压膜生物组件4,监测海水环境中嗜甲烷菌和硫酸盐还原菌生物膜的形成。为方便在生物膜的形成过程中进行摄像观察,在海水环境部分开设有前后耐压可视窗21。并且在深海冷泉区膜生物反应器101的顶部设置有在线保压生物膜取样元件5,该元件将取样环装置放置在可伸缩耐压筒内,用于生物膜形成过程时在耐压膜生物组件4上不同位置刮取生物膜样品用于进行测序分析。本系统涉及的耐压膜生物组件4主要是耐海水腐蚀和耐压的钛合金粉末烧结而成的多孔膜组件,膜组件高度为120mm,悬挂于深海冷泉区膜生物反应器101的海水环境中。深海冷泉区膜生物反应器101的出口设置有PID阀71,在整个甲烷渗漏模拟过程,通过PID阀71调控,保证釜内的压力稳定。深海冷泉区膜生物反应器101的出口与有压力传感器和温度传感器监控的气液存储罐72相连,该罐体用于收集和计量从反应器内排出的气液体积。在整个甲烷渗漏过程模拟中,气液存储罐72的进出口同时打开,保持连续渗漏过程,接近真实海底环境条件下,甲烷渗漏的环境介质与周围环境有物质交换的情况。为了方便耐压可视窗21观测,该深海冷泉区膜生物反应器101的温度控制采用夹套式水浴的方式,即在反应器的周围布置水浴夹套10,填充循环制冷液,且水浴夹套10的外壁设置保温层,来保证沉积物模拟室1和海水模拟室2内的低温环境。流体供应单元102、深海冷泉区膜生物反应器101都与增压系统103相连接,可用于向这两部分的耐压容器内注入气体增压。本系统涉及的增压系统103主要是主要包括空压机、增压泵、储气罐、调压阀及管阀件等配件组成。
本系统涉及的环境参数测量装置主要包括甲烷传感器32用于监测反应器内的甲烷浓度变化;温度传感器31监测温度变化;压力传感器33监测压力情况变化;超声探头81和声波发生器-示波器82监测耐压膜生物组件4上的生物膜厚度变化;沉积层内的电阻率测量系统6监测甲烷渗漏过程中沉积层内形成甲烷水合物的饱和度变化。
本实例涉及的控制采集终端9用于实现甲烷渗漏模拟过程中各项环境数据信 息变化的监控、以及实时采集、处理、存储和图像输出等功能。
本实例涉及的系统主要使用方法主要包括:首先,自下而上装配深海冷泉区膜生物反应器101,依次在1中填充我国南海海马冷泉区实际的深海沉积物。然后在海水模拟室2中填充好从海马冷泉区取样的实际深海海水。然后开启水浴夹套10,使得渗漏过程反应器内的温度保持与深海底部温度条件一致。然后打开增压系统103,向渗漏过程模拟的深海冷泉区膜生物反应器101内注入氮气,使反应器内的压力值增加至14MPa。然后向配置好的营养液装入海水培养基配置容器1027和甲烷溶解容器1021里面的溶解气体注入至深海冷泉区膜生物反应器101中,并且通过定压控制,使得甲烷溶解容器1021中的压力不超过2MPa。开启甲烷溶解容器1021的低温水浴容器1023,使得甲烷溶解容器1021中的温度值与深海冷泉区膜生物反应器101内的温度为4℃。然后开启机械搅拌装置1024,待甲烷溶解容器1021中的甲烷达到饱和时,依次打开甲烷溶解容器1021的出口、微流泵1026、深海冷泉区膜生物反应器101的进口和出口,以10ml/min的速度向深海冷泉区膜生物反应器101内连续注入饱和甲烷溶液。整个模拟过程中,通过定压控制,保持渗漏过程模拟釜内的压力条件恒定为14MPa,且与深海实际环境条件一致。在整个过程中,渗漏过程深海冷泉区膜生物反应器101的液体进入通道和出口都处于开启装置,模拟与周围环境条件有物质交换的甲烷渗漏过程。在甲烷渗漏过程模拟中,实时监测深海冷泉区膜生物反应器101内的温度、压力、电阻率、声波、甲烷浓度等参数的变化,并且在海水和沉积层不同位置通过双阀式活塞取样器11取样分析样品的化学组分和浓度变化,及生物膜的厚度和微生物类群变化。由此,可实时监测甲烷渗漏过程中膜生物反应器内的生物膜生长特性,及其环境参数调控特性。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化情况或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (13)

  1. 深海冷泉区膜生物反应器,包括控制采集终端(9);其特征在于,还包括沉积物模拟室(1)、海水模拟室(2)、传感器组(3)、耐压膜生物组件(4)、在线保压生物膜取样元件(5)、电阻率测量系统(6)、压力调整组件(7)和超声观测组件(8);其中:
    所述沉积物模拟室(1)设置在海水模拟室(2)下方,与海水模拟室(2)法兰连接;沉积物模拟室(1)、海水模拟室(2)内均设置有传感器组(3),所述传感器组(3)信号输出端与所述控制采集终端(9)电性连接;
    所述耐压膜生物组件(4)设置在所述海水模拟室(2)内,用于监测海水环境中菌落生物膜的形成;
    所述在线保压生物膜取样元件(5)设置在所述海水模拟室(2)顶部,其控制端与所述控制采集终端(9)电性连接,用于生物膜形成过程时在所述耐压膜生物组件(4)上不同位置刮取生物膜样品进行测序分析;
    所述电阻率测量系统(6)设置在所述沉积物模拟室(1)内,其信号输出端与所述控制采集终端(9)电性连接,用于监测和计量甲烷渗漏模拟过程中,沉积物内甲烷水合物形成的饱和度变化情况;
    所述压力调整组件(7)通过管道与所述海水模拟室(2)连接,其控制端与所述控制采集终端(9)电性连接,用于调控反应器内部的压力,保证反应器内压力稳定;
    所述超声观测组件(8)的超声探头(81)设置在海水模拟室(2)内,用于监测所述耐压膜生物组件(4)上的生物膜厚度变化情况,并将信号输出至所述控制采集终端(9)。
  2. 根据权利要求1所述的深海冷泉区膜生物反应器,其特征在于,所述传感器组(3)包括温度传感器(31)、甲烷传感器(32)和压力传感器(33);其中:
    所述温度传感器(31)设置在沉积物模拟室(1)、海水模拟室(2)内,用于监测沉积物模拟室(1)、海水模拟室(2)内环境温度的变化情况,其信号输出端与所述控制采集终端(9)电性连接;
    所述甲烷传感器(32)设置在海水模拟室(2)内,用于监测海水模拟室(2) 内甲烷浓度的变化情况,其信号输出端与所述控制采集终端(9)电性连接;
    所述压力传感器(33)设置在所述海水模拟室(2)内,用于监测反应器内压力的变化情况,其信号输出端与所述控制采集终端(9)电性连接。
  3. 根据权利要求1所述的深海冷泉区膜生物反应器,其特征在于,所述耐压膜生物组件(4)为采用耐海水腐蚀和耐压的钛合金粉末烧结而成的多孔膜组件,悬挂在所述海水模拟室(2)内。
  4. 根据权利要求3所述的深海冷泉区膜生物反应器,其特征在于,所述在线保压生物膜取样元件(5)包括可伸缩耐压筒、取样环装置和保压装置;其中:
    所述可伸缩耐压筒设置在所述海水模拟室(2)顶部,取样环装置放置在所述可伸缩耐压筒内,保压装置固定套接在所述可伸缩耐压筒外部;
    所述取样环装置控制端、保压装置控制端均与所述控制采集终端(9)电性连接。
  5. 根据权利要求1所述的深海冷泉区膜生物反应器,其特征在于,所述压力调整组件(7)包括PID阀(71)和气液存储罐(72);所述气液存储罐(72)通过管道与所述海水模拟室(2)连接;所述PID阀(71)设置在管道上,与所述控制采集终端(9)电性连接。
  6. 根据权利要求1所述的深海冷泉区膜生物反应器,其特征在于,所述超声观测组件(8)还包括声波发生器-示波器(82);所述超声探头(81)信号输出端与所述声波发生器-示波器(82)信号输入端、控制采集终端(9)电连接。
  7. 根据权利要求1~6任一项所述的深海冷泉区膜生物反应器,其特征在于,还包括开设在所述海水模拟室(2)上的耐压可视窗(21)。
  8. 根据权利要求7所述的深海冷泉区膜生物反应器,其特征在于,还包括设置在沉积物模拟室(1)、海水模拟室(2)的双阀式活塞取样器(11)。
  9. 根据权利要求7所述的深海冷泉区膜生物反应器,其特征在于,还包括设置在反应器周围的水浴夹套(10),其控制端与所述控制采集终端(9)电性连接。
  10. 深海冷泉区膜生物反应在线式环境参数测量系统,其特征在于,包括如权利要求1~9所述的深海冷泉区膜生物反应器(101)、流体供应单元(102)和增压系统(103);其中:
    所述流体供应单元(102)用于生成饱和甲烷流体并微流量地注入到所述深 海冷泉区膜生物反应器(101)中;
    所述深海冷泉区膜生物反应器(101)模拟冷泉区甲烷厌氧氧化过程的生物膜生长过程和监测其环境条件的变换情况;
    所述深海冷泉区膜生物反应器(101)、流体供应单元(102)均与所述增压系统(103)均相连,保证模拟过程系统内部环境压力稳定一致;
    所述流体供应单元(102)、增压系统(103)均与所述控制采集终端(9)电性连接,实现信息交互。
  11. 根据权利要求10所述的深海冷泉区膜生物反应在线式环境参数测量系统,其特征在于,所述流体供应单元(102)包括甲烷溶解容器(1021)、注入泵(1022)、低温水浴容器(1023)、机械搅拌装置(1024)、背压阀(1025)、微流泵(1026)和海水培养基配置容器(1027);其中:
    所述甲烷溶解容器(1021)置于低温水浴容器(1023)中,保证含甲烷流体进入所述深海冷泉区膜生物反应器(101)时不会由于温差引起热流扰动,对模拟过程产生影响;甲烷溶解容器(1021)设置有气体进口、液体进口和液体出口;甲烷溶解容器(1021)通过气体进口与所述增压单元(103)相连;甲烷溶解容器(1021)通过液体进口与所述海水培养基配置容器(1027)、注入泵(1022)依次连接;甲烷溶解容器(1021)通过液体出口与微流泵(1026)连接,通过微流泵(1026)向所述深海冷泉区膜生物反应器(101)微流量地注入饱和甲烷流体;
    所述甲烷溶解容器(1021)内部设置有第二温度传感器(10211)、第二压力传感器(10212),用于监测甲烷溶解容器(1021)内部的温度及压力数据并发送至所述控制采集终端(9);
    所述机械搅拌装置(1024)配置在所述甲烷溶解容器(1021)顶部,用于增强甲烷溶解容器(1021)内的溶质溶解;
    所述背压阀(1025)设置在所述甲烷溶解容器(1021)顶部,用于保证甲烷溶解容器(1021)处于设定压力条件下完成溶解过程。
  12. 根据权利要求11所述的深海冷泉区膜生物反应在线式环境参数测量系统,其特征在于,在所述流体供应单元(102)模拟过程中,甲烷溶解容器(1021)的温度设置同所述深海冷泉区膜生物反应器(101)一致,同为海底实际温度,但其压力要监控低于该温度条件下甲烷水合物形成的相平衡压力,避免在甲烷溶 解容器(1021)中形成甲烷水合物。
  13. 根据权利要求11或12所述的深海冷泉区膜生物反应在线式环境参数测量系统,其特征在于,所述增压系统(103)包括空压机、增压泵、储气罐、调整阀及管阀件;其中:
    所述增压系统(103)通过管阀件与所述流体供应单元(102)、深海冷泉区膜生物反应器(101)的气体进口连接;所述空压机通过所述增压泵与所述储气罐输入端连接;所述储气罐输出端上设置有调整阀,通过调整阀与所述管阀件连接,用于向流体供应单元(102)、深海冷泉区膜生物反应器(101)的注入特定的气体。
PCT/CN2022/084122 2022-03-15 2022-03-30 深海冷泉区膜生物反应器及在线式环境参数测量系统 WO2023173496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210251231.4A CN114317259B (zh) 2022-03-15 2022-03-15 深海冷泉区膜生物反应器及在线式环境参数测量系统
CN202210251231.4 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023173496A1 true WO2023173496A1 (zh) 2023-09-21

Family

ID=81033977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084122 WO2023173496A1 (zh) 2022-03-15 2022-03-30 深海冷泉区膜生物反应器及在线式环境参数测量系统

Country Status (2)

Country Link
CN (1) CN114317259B (zh)
WO (1) WO2023173496A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117007763A (zh) * 2023-10-07 2023-11-07 山东深海海洋科技有限公司 环境友好型海水水质监测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540522A (zh) * 2013-09-30 2014-01-29 上海交通大学 深海热液模拟及高温高压微生物培养系统
CN106336004A (zh) * 2016-11-09 2017-01-18 南京大学 一种快速匹配废水和填料挂膜的装置及方法
CN209024535U (zh) * 2018-05-30 2019-06-25 中国科学院广州能源研究所 一种模拟海底冷泉区甲烷厌氧氧化过程导致自生矿物沉淀的反应装置
US20190309256A1 (en) * 2016-12-14 2019-10-10 Syddansk Universitet Membrane bioreactor for biological upgrading of biogas and conversion of co2 to methane
CN110591893A (zh) * 2019-09-30 2019-12-20 浙江经贸职业技术学院 一种深海微生物取样培养设备
CN111551671A (zh) * 2020-03-26 2020-08-18 广东工业大学 天然气水合物分解甲烷泄漏及冷泉生态模拟系统与方法
CN112964833A (zh) * 2021-02-20 2021-06-15 广东工业大学 一种深海可燃冰上覆多界面环境原位模拟系统及实现方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103275868B (zh) * 2013-05-22 2015-01-07 北京工业大学 一种基于间歇式膜生物反应器富集反硝化型甲烷厌氧氧化菌的装置和方法
US10280393B2 (en) * 2014-02-28 2019-05-07 Carnegie Institution Of Washington High pressure bioreactor
CN104403940A (zh) * 2014-11-21 2015-03-11 浙江大学 一种海洋亚硝酸盐型甲烷厌氧氧化微生物培养装置及方法
CN204939483U (zh) * 2015-09-18 2016-01-06 南京信息工程大学 一种硝酸盐依赖型甲烷厌氧氧化古菌富集装置
CN111894529B (zh) * 2020-07-02 2022-07-26 广东工业大学 可燃冰开采泄漏模拟及环境参数定量反演的系统与方法
CN113051710B (zh) * 2021-02-20 2022-06-24 广东工业大学 一种深海沉积环境烷烃氧化过程定量模拟系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540522A (zh) * 2013-09-30 2014-01-29 上海交通大学 深海热液模拟及高温高压微生物培养系统
CN106336004A (zh) * 2016-11-09 2017-01-18 南京大学 一种快速匹配废水和填料挂膜的装置及方法
US20190309256A1 (en) * 2016-12-14 2019-10-10 Syddansk Universitet Membrane bioreactor for biological upgrading of biogas and conversion of co2 to methane
CN209024535U (zh) * 2018-05-30 2019-06-25 中国科学院广州能源研究所 一种模拟海底冷泉区甲烷厌氧氧化过程导致自生矿物沉淀的反应装置
CN110591893A (zh) * 2019-09-30 2019-12-20 浙江经贸职业技术学院 一种深海微生物取样培养设备
CN111551671A (zh) * 2020-03-26 2020-08-18 广东工业大学 天然气水合物分解甲烷泄漏及冷泉生态模拟系统与方法
CN112964833A (zh) * 2021-02-20 2021-06-15 广东工业大学 一种深海可燃冰上覆多界面环境原位模拟系统及实现方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117007763A (zh) * 2023-10-07 2023-11-07 山东深海海洋科技有限公司 环境友好型海水水质监测装置
CN117007763B (zh) * 2023-10-07 2023-12-15 山东深海海洋科技有限公司 环境友好型海水水质监测装置

Also Published As

Publication number Publication date
CN114317259A (zh) 2022-04-12
CN114317259B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2021190120A1 (zh) 一种深海冷泉生态系统形成演化模拟系统及方法
CN111551671B (zh) 天然气水合物分解甲烷泄漏及冷泉生态模拟系统与方法
CN106935120A (zh) 甲烷渗漏条件下生物地球化学作用模拟实验系统
Pauss et al. Hydrogen monitoring in anaerobic sludge bed reactors at various hydraulic regimes and loading rates
WO2023173496A1 (zh) 深海冷泉区膜生物反应器及在线式环境参数测量系统
CN112033882A (zh) 一种海洋潮汐区微生物腐蚀的试验方法及装置
CN113549544B (zh) 一种海底甲烷渗漏区原位微生物定期富集培养装置和方法
CN114060024A (zh) 深海多相环境原位多维保真模拟与测试装置
CN111445771A (zh) 海底洋流模拟装置及其控制方法
CN109030603B (zh) 一种微观生物污损的实时原位电化学监测方法
WO2023173486A1 (zh) 一种海洋原位环境单细胞高通量分选装置及方法
CN202382976U (zh) 一种轻量便携式无动力隔氧取样器
CN112255385B (zh) 原位连续长期测定高浊度水体中温室气体浓度的系统和方法、应用
Strobel et al. Experimental and numerical investigation of microbial growth in two-phase saturated porous media at the pore-scale
Song et al. Dynamics of gas distribution in batch-scale fermentation experiments: The unpredictive distribution of biogas between headspace and gas collection device
US20140206033A1 (en) Methods and apparatus for analysis of aquatic chemical and/or biological systems
CN114577995B (zh) 深海甲烷渗漏区连续式过程模拟装置与甲烷循环表征方法
Chan et al. Aqueous mesocosm techniques enabling the real-time measurement of the chemical and isotopic kinetics of dissolved methane and carbon dioxide
Silva et al. Underwater measurements of carbon dioxide evolution in marine plant communities: A new method
CN219194971U (zh) 一种高压控温在线培养观测样品台
CN216946971U (zh) 海底沉积物厌氧产气培养罐及其培养装置
CN110361159B (zh) 一种三水箱型循环利用piv示踪粒子水的装置
CN115418313A (zh) 一种高压控温在线培养观测样品台
CN108344849B (zh) 一种长距离取水动态试验系统
CN108802336B (zh) 一种用于测定湿地净化氮污染效率和氮循环的稳态培养设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18019826

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931525

Country of ref document: EP

Kind code of ref document: A1