WO2021190041A1 - 源极驱动器、显示装置及其驱动方法 - Google Patents

源极驱动器、显示装置及其驱动方法 Download PDF

Info

Publication number
WO2021190041A1
WO2021190041A1 PCT/CN2020/140913 CN2020140913W WO2021190041A1 WO 2021190041 A1 WO2021190041 A1 WO 2021190041A1 CN 2020140913 W CN2020140913 W CN 2020140913W WO 2021190041 A1 WO2021190041 A1 WO 2021190041A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
output channel
display area
voltage
display
Prior art date
Application number
PCT/CN2020/140913
Other languages
English (en)
French (fr)
Inventor
徐枫程
张裕桦
周明忠
赵斌
张鑫
赵军
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/431,156 priority Critical patent/US20230138235A1/en
Publication of WO2021190041A1 publication Critical patent/WO2021190041A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0275Details of drivers for data electrodes, other than drivers for liquid crystal, plasma or OLED displays, not related to handling digital grey scale data or to communication of data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation

Definitions

  • This application relates to the field of display technology, and in particular to a source driver, a display device and a driving method thereof.
  • the resolution of the display device is also increasing, from HD (resolution 1280 ⁇ 720) to full HD (resolution 1920 ⁇ 1080), full HD (resolution 1920 ⁇ 1080) to Ultra HD (resolution 3840 ⁇ 2160), and then to 1G1D 8K (resolution 7680 ⁇ 4320).
  • HD resolution 1280 ⁇ 720
  • full HD resolution 1920 ⁇ 1080
  • Ultra HD resolution 3840 ⁇ 2160
  • 1G1D 8K resolution 7680 ⁇ 4320
  • the traditional technique is to compensate the output data delay (Output Data Delay Compensation, ODDC) method to solve, that is, the output channel on the source driver corresponding to the smaller impedance wire in the sector area delays the output data signal, so that the charging time of all pixels is the same.
  • ODDC Output Data Delay Compensation
  • the output data delay compensation method cannot solve the problem of uneven brightness in various display devices.
  • the purpose of this application is to provide a source driver, a display device, and a driving method thereof, so as to solve the display problem caused by the different sector impedance of the display device, and the source driver can be applied to a variety of different sector wire impedance distributions. Display device.
  • the present application provides a display device, the display device comprising a display panel and at least one source driver electrically connected to the display panel, the display panel having a display area and a display area outside the display area. At least one fan-shaped area, the display area includes a middle display area and a first display area and a second display area located on opposite sides of the middle display area, the display area of the display panel is provided with a plurality of sub-pixels, so Each of the sector areas of the display panel is provided with a plurality of wires, at least one of the source drivers includes a plurality of output channel groups, each of the output channel groups includes at least one output channel, and each of the output channels uses For outputting a data voltage, each of the wires is used to transmit the data voltage output by the output channel, part of the wires are electrically connected to the sub-pixels in the middle display area, and some of the wires are connected to the sub-pixels in the middle display area.
  • the sub-pixels in the first display area are electrically
  • At least one multi-level voltage compensation unit is provided in the plurality of output channel groups, and each of the multi-level voltage compensation units is used to output compensation voltages of N levels, where N is an integer greater than or equal to 2 ;
  • the output channel groups When at least one of the output channel groups is switched to the i-th gear of at least one of the multi-gear voltage compensation unit, it is switched to the output channel of the output channel group of the i-th gear.
  • the data voltages are all voltages output after compensating the compensation voltage value corresponding to the i-th gear, and the i is an integer greater than or equal to 1 and less than or equal to N.
  • the compensation voltages corresponding to the two adjacent levels have the same difference.
  • one of the multi-level voltage compensation units is provided in two adjacent output channel groups.
  • each of the multi-level voltage compensation units includes a ground terminal, a level input terminal, a plurality of voltage dividing units, and a plurality of level output terminals, and the plurality of voltage dividing units are connected in series. Between the ground terminal and the level input terminal, each level output terminal is arranged between two adjacent voltage dividing units.
  • a method for driving a display device comprising a display panel and at least one source driver electrically connected to the display panel, the display panel having a display area and at least one fan-shaped area located outside the display area,
  • the display area includes a middle display area and a first display area and a second display area located on opposite sides of the middle display area.
  • the display area of the display panel is provided with a plurality of sub-pixels.
  • Each of the sector areas is provided with a plurality of wires
  • at least one of the source drivers includes a plurality of output channel groups
  • each of the output channel groups includes at least one output channel
  • each of the output channels corresponds to one of the wires
  • Part of the wires are electrically connected to the sub-pixels of the middle display area
  • part of the wires are electrically connected to the sub-pixels of the first display area
  • some of the wires are electrically connected to the second display area.
  • the sub-pixels in the area are electrically connected
  • at least one multi-level voltage compensation unit is provided in the plurality of output channel groups
  • each of the multi-level voltage compensation units is used to output compensation voltages of N levels, so
  • the N is an integer greater than or equal to 2
  • the method includes the following steps:
  • At least one of the output channel groups is switched to the i-th gear of at least one of the multi-gear voltage compensation unit, where i is an integer greater than or equal to 1 and less than or equal to N;
  • the output channels in the plurality of output channel groups output data voltages
  • the plurality of the conductive lines of at least one of the sector areas transmit the data voltage to the plurality of the sub-pixels of the display panel, the sub-pixels and the display of the first display area of the display panel
  • the sub-pixels in the second display area of the panel and the sub-pixels in the middle display area of the display panel have the same charging voltage at the same time;
  • the data voltages output by the output channels in the output channel group switched to the i-th gear are all voltages output after compensating the compensation voltage value corresponding to the i-th gear.
  • the plurality of output channel groups of at least one of the source drivers are directed to the middle display area in the first display area and the second display area of the display panel.
  • the voltage compensation value corresponding to the gear shifted to at least one of the multi-gear voltage compensation units decreases.
  • the plurality of output channel groups of at least one of the source drivers are switched to at least in the direction in which the first display area of the display panel points to the second display area
  • the voltage compensation value corresponding to the gears of one of the multi-gear voltage compensation units decreases or increases.
  • one of the multi-level voltage compensation units is provided in two adjacent output channel groups.
  • each of the multi-level voltage compensation units includes a ground terminal, a level input terminal, a plurality of voltage dividing units, and a plurality of level output terminals, and a plurality of the voltage dividing units It is connected in series between the ground terminal and the level input terminal, and each level output terminal is arranged between two adjacent voltage dividing units.
  • a source driver of a display device comprising a display panel, the display panel is electrically connected to at least one of the source drivers, the display panel has a display area and a sector area located at the periphery of the display area, The display area includes a middle display area and a first display area and a second display area located on opposite sides of the middle display area.
  • the display area of the display panel is provided with a plurality of sub-pixels.
  • Each of the sector areas is provided with a plurality of wires
  • at least one of the source drivers includes a plurality of output channel groups
  • each of the output channel groups includes at least one output channel
  • each of the output channels is used to output a data voltage
  • Each wire is used to transmit the data voltage output by the output channel, some of the wires are electrically connected to the sub-pixels of the middle display area, and some of the wires are connected to all of the first display area.
  • the sub-pixels are electrically connected, and part of the wires are electrically connected with the sub-pixels in the second display area,
  • At least one multi-level voltage compensation unit is provided in the plurality of output channel groups, and each of the multi-level voltage compensation units is used to output compensation voltages of N levels, where N is an integer greater than or equal to 2 ;
  • the output channel groups When at least one of the output channel groups is switched to the i-th gear of at least one of the multi-gear voltage compensation unit, it is switched to the output channel of the output channel group of the i-th gear.
  • the data voltages are all voltages output after compensating the compensation voltage value corresponding to the i-th gear, and the i is an integer greater than or equal to 1 and less than or equal to N.
  • the present application provides a source driver, a display device and a driving method thereof.
  • the display device includes a display panel.
  • the display panel is electrically connected to at least one source driver.
  • the display panel has a display area and at least one sector outside the display area.
  • the area includes a middle display area and a first display area and a second display area located on opposite sides of the middle display area.
  • the display area of the display panel is provided with a plurality of sub-pixels, and each sector area of the display panel is provided with a plurality of wires, at least one
  • the source driver includes multiple output channel groups.
  • Each output channel group includes at least one output channel.
  • Each output channel is used to output a data voltage.
  • Each wire is used to transmit the data voltage output by one output channel.
  • the sub-pixels in the display area are electrically connected, some of the wires are electrically connected to the sub-pixels in the first display area, and some of the wires are electrically connected to the sub-pixels in the second display area.
  • At least one multi-level voltage compensation unit is provided in a plurality of output channel groups.
  • Each multi-level voltage compensation unit is used to output compensation voltages of N levels, where N is an integer greater than or equal to 2; at least one output channel group is switched to the i-th level of at least one multi-level voltage compensation unit When the data voltage output by the output channel in the output channel group switched to the i-th gear is the voltage output after compensating the compensation voltage value corresponding to the i-th gear, i is greater than or equal to 1 and less than or equal to N Integer.
  • the at least one multi-level voltage compensation unit is used for Compensate the voltage of the output channel in at least one output channel group and output the data voltage to realize that multiple pixels in the display device have the same charging voltage at the same time, and improve the display panel.
  • the problem of insufficient pixel charging because the multi-level voltage compensation unit has multiple levels, the source driver can be adapted to display panels with different sector impedance distributions, so as to solve the problem of uneven display brightness caused by different sector wire impedances of different display panels.
  • the design of the gear position can also eliminate the difference caused by the impedance of the sector of different source drivers, and improve the picture quality of a large-size, high-resolution, and high-refresh display device.
  • FIG. 1 is a schematic diagram of a display device according to an embodiment of the application.
  • FIG. 2 is a schematic diagram of the impedance distribution of the wires in the sector area of the display panel shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a display device according to another embodiment of the application.
  • FIG. 4 is a schematic diagram of a multi-level voltage compensation unit in a source driver according to an embodiment of the application
  • FIG. 5 is a schematic diagram of a multi-level voltage compensation unit for compensating a display device with a V-shaped shift display
  • FIG. 6 is mostly a schematic diagram of compensation for a display device with an R-type shift display by a shift voltage compensation unit
  • FIG. 7 is a schematic diagram of a multi-level voltage compensation unit for compensating a display device with an L-shaped shift display
  • FIG. 8 is a schematic flowchart of a driving method of a display device according to an embodiment of the application.
  • FIG. 1 is a schematic diagram of a display device according to an embodiment of the application.
  • the display device includes a display panel 100 and at least one source driver 200. At least one source driver 200 is electrically connected to the display panel 100.
  • the source driver 200 is disposed on a flexible film, and the flexible film is bound to the display panel 100. It can be understood that the source driver 200 can also be directly bound to the display panel 100.
  • the display panel 100 is used for screen display.
  • the display panel 100 has a display area 100a and at least one fan-shaped area 100b located outside the display area 100a.
  • the display area 100a of the display panel 100 is provided with a plurality of sub-pixels, a plurality of data lines D, and a plurality of scan lines S.
  • a plurality of data lines D are arranged in parallel and arranged in a row direction, and a plurality of scan lines S are arranged in parallel and arranged in a column direction.
  • One sub-pixel is provided in an area where two adjacent data lines D and two adjacent scan lines S intersect.
  • the display area 100a includes a middle display area 100c, and a first display area 100d and a second display area 100e located on opposite sides of the middle display area 100c.
  • Each sector 100b of the display panel 100 is provided with a plurality of wires 1001, and each wire 1001 is connected to a data line D.
  • One end of each sub-pixel is connected to the data line D, the other end is connected to the scan line S, part of the wires 1001 is electrically connected to the sub-pixels in the middle display area 100c, part of the wires 1001 is electrically connected to the sub-pixels in the first display area 100d, and part of the wires 1001 is electrically connected to the sub-pixels of the second display area 100e.
  • FIG. 2 it is a schematic diagram of the impedance distribution of the wires in the sector area of the display panel shown in FIG. 1.
  • the abscissa in FIG. 2 is the position of the output channel on the source driver, and the ordinate is the impedance of the sector wire on the display panel corresponding to the output channel on the source driver.
  • the display device includes a source driver 200, and correspondingly, there is a fan-shaped area 100 b on the display panel 100. It can be seen from FIG. 2 that the source driver 200 includes 966 output channels.
  • the sector 100b is provided with 966 wires 1001, and each wire 1001 corresponds to one output channel, corresponding to the first output channel to the first output channel on the source driver 200.
  • the impedance of the sector 100b wire 1001 of the 483 output channel decreases, and the impedance of the sector wire 1001 corresponding to the 483rd output channel to the 966th output channel on the source driver 200 increases, and the sector 100b wire 1001 corresponding to the 483th output channel has the smallest impedance That is, the impedance of the wires 1001 on both sides of the sector region 100b is greater than the impedance of the wires 1001 in the middle of the sector region 100b, resulting in a large difference in impedance of the wires 1001 in the sector region 100b.
  • the data voltage transmitted through the conductor in the sector 100b with different impedances in the conventional technology has a difference in the charging voltage of the sub-pixels in the same time.
  • This is specifically embodied in the sub-pixels of the first display area 100d.
  • the charging state of the pixel, the sub-pixel of the second display area 100e, and the sub-pixel of the middle display area 100c are different.
  • the display panel is a three-gate display panel
  • multiple sub-pixels of the same color in the three-gate display panel are connected to the same scan line S
  • the red sub-pixels R, the green sub-pixels G, and the blue sub-pixels B is located in the same column and is respectively connected to two adjacent data lines D as a repeating unit.
  • the sub-pixels on the data line D (the sub-pixels of the first display area 100d and the second display area 100e) connected to the conductive lines 1001 on both sides of the sector area 100b are opposite to the sector area 100b.
  • the sub-pixels on the data line D (sub-pixels in the middle display area 100c) connected by the middle wire have insufficient charging, which causes color shifts on both sides of the panel when displaying a mixed color picture, that is, a V-shaped shift display problem occurs.
  • the sub-pixels in the first display area 100d and the second display area 100e are insufficiently charged with respect to the sub-pixels in the middle display area 100c, resulting in a V-type shift problem.
  • the first display area 100d, the second display area 100e, and the middle display area 100c all include multiple columns of sub-pixels.
  • FIG. 3 it is a schematic diagram of a display device according to another embodiment of the application.
  • the display device is an 8K high-resolution display device adopting a 1G1D architecture, and the display device includes a plurality of source drivers 200 and a display panel 100.
  • the sub-pixels in the same row are connected to the same scan line S
  • the sub-pixels in the same column are connected to the same data line D
  • the sub-pixels in the same row have red sub-pixels, green sub-pixels, and blue sub-pixels as repeating units.
  • Scan line S is connected.
  • three source drivers 200 are taken as an example, and the number of source drivers 200 is not limited to three.
  • the wires 1001 in one sector 100b are electrically connected to the sub-pixels in the first display area 100d, and the wires 1001 in the sector 100b are electrically connected to the sub-pixels in the second display area 100e. Connected, the wires 1001 of a sector 100b are electrically connected to the sub-pixels in the middle display area 100c.
  • the impedance distribution of the wires in each sector 100b is shown in Figure 2, that is, the wires on both sides of the sector have large impedances and the middle wires The impedance is small.
  • the first display area 100d, the second display area 100e, and the middle display area 100c all include multiple columns of sub-pixels.
  • the display area of the display panel 100 can also be divided into three or more, depending on the resolution and source of the display panel.
  • the number of output channels of the pole driver is determined. Since the display panel of the high-resolution display device has multiple sectors, the impedance of the wire 1001 of each sector 100b is different, and the wire impedance distributions of the multiple sector 100b are different from each other, and the source on the high-resolution display device There are a large number of drivers 200, and different source drivers 200 have charging differences, resulting in uneven brightness on one side of the display device when displaying, such as R-type shift display problems and L-type shift display problems, specifically, the first display area Obvious color shift appears in 100d or the second display area 100e.
  • the source driver 200 of the present application includes a plurality of Output channel group, each output channel group includes at least one output channel, each output channel is used to output a data voltage, each wire 1001 is used to transmit the data voltage output by one output channel, and at least A multi-gear voltage compensation unit 30.
  • Each multi-gear voltage compensation unit 30 is used to output compensation voltages of N gears, where N is an integer greater than or equal to 2.
  • the data voltages output by the output channels in the output channel group that is switched to the i-th gear are corresponding to the i-th gear.
  • the output voltage after the compensation voltage value, i is an integer greater than or equal to 1 and less than or equal to N.
  • the source driver of the present application groups the output channels in the source driver 200, so that the data voltage output by the output channels can be adjusted in units of groups to compensate the display panel 100 in sections, and is coordinated in multiple output channel groups At least one multi-gear voltage compensation unit 30 is provided, at least one output channel group is switched to the i-th gear of the at least one multi-gear voltage compensation unit 30, and the multi-gear voltage compensation unit 30 outputs the switch to the i-th gear.
  • the data voltage is output to solve the difference in the pixel charging of the display panel due to the impedance difference caused by the data voltage output by the output channels in the different output channel groups, so that
  • the sub-pixels in different areas on the display panel (the middle display area 100c and the first display area 100d and the second display area 100e on opposite sides of the middle display area 100c) have the same charging voltage at the same time, so as to prevent the display panel 100 from showing partial brightness and darkness.
  • the problem of unevenness is referred to solve the difference in the pixel charging of the display panel due to the impedance difference caused by the data voltage output by the output channels in the different output channel groups
  • the multi-level voltage compensation unit has multiple levels, the multi-level voltage compensation unit is not only suitable for solving the problem of insufficient charging of local pixels caused by the difference in the impedance of the conductors in the sector 100b of the display panel 100 on a single display panel, but also applicable For display panels with different sector impedance distributions, it can solve the problem that different source drivers have different charging capabilities.
  • each output channel group includes the same number of output channels.
  • the first output channel to the 12th output channel are regarded as an output channel group
  • the 13th output channel to the 24th output channel are regarded as an output channel group. And so on.
  • the number of output channels included in each output channel group may also be different.
  • the output channel grouping is based on the total number of output channels of all source drivers on a display panel.
  • the compensation voltages corresponding to two adjacent gears have the same difference, so as to simplify the design of the multi-gear voltage compensation unit.
  • the voltage compensation values corresponding to the N gears in the multi-gear voltage compensation unit 30 increase or decrease.
  • a multi-level voltage compensation unit 30 is provided in two adjacent output channel groups, so that after one of the output channel groups is switched to the multi-level voltage compensation unit 30, the two adjacent output channels The data voltage output by the output channels in the group is compensated for the difference in the charging of the sub-pixels on the display panel.
  • the gear design of any two multi-gear voltage compensation units 30 may be the same or different. It can be designed according to the impedance difference of the actual display panel, the impedance difference of the source driver itself, and the resolution of the display device. Specifically defined.
  • each multi-level voltage compensation unit 30 includes a larger number of compensation voltage levels, and the smaller the compensation voltage difference between two adjacent levels, the more conducive to the uneven display of light and dark on the display panel. Compensation is performed, but the more gears or the smaller the compensation voltage difference between adjacent gears, will increase the cost of the source driver.
  • each multi-level voltage compensation unit 30 includes a ground terminal GND, a level input terminal VDD, a plurality of voltage dividing units R, and a plurality of level output terminals, and the plurality of voltage dividing units R are connected in series. Between the ground terminal GND and the level input terminal VDD, each level output terminal is arranged between two adjacent voltage dividing units R. A plurality of level output terminals are drawn between two adjacent voltage dividing units R, so that the multi-level voltage division outputs the compensation voltage values of different levels. The voltage values of the multiple voltage dividing units R are the same.
  • the multi-speed voltage compensation unit 30 has 8 positions to describe the multi-speed voltage compensation unit, and the number of positions of the multi-speed voltage compensation unit 30 is not limited to 8 positions, as long as the multi-speed voltage compensation unit
  • the number of gears of 30 should be greater than or equal to 2, for example, 3 gears and 4 gears.
  • FIG. 4 it is a schematic diagram of a multi-level voltage compensation unit in a source driver according to an embodiment of the application.
  • the multi-gear voltage compensation unit 30 shown in Fig. 4 can output the compensation voltages of 8 different gears of ⁇ V0, ⁇ V1, ⁇ V2, ⁇ V3, ⁇ V4, ⁇ V5, ⁇ V6 and ⁇ V7, ⁇ V0, ⁇
  • the compensation voltage values corresponding to V1, ⁇ V2, ⁇ V3, ⁇ V4, ⁇ V5, ⁇ V6 and ⁇ V7 decrease gradually, and the difference between two adjacent gears is equal.
  • the level input terminal VDD is used to input a DC high level, and the level input terminal VDD is connected to the ground terminal GND.
  • the multiple voltage dividing units R are all resistors, and the corresponding resistance values of the multiple voltage dividing units R are equal.
  • the multiple voltage dividing units R are connected in series between the level input terminal VDD and the ground terminal GND.
  • a level output terminal is arranged between the units R to output a compensation voltage of one gear.
  • the multi-gear voltage compensation unit 30 further includes a selection unit 301 configured to output a compensation voltage value corresponding to one of the N gears to the output terminal O.
  • the selection unit 301 includes at least one switch unit connected to each level output terminal, and the switch unit controls whether a compensation voltage corresponding to a gear position of a level output terminal is output to the output terminal O under the action of a control signal.
  • the output channel group is connected to the output terminal O of the multi-gear voltage compensation unit 30, and the corresponding gear compensation voltage is compensated to the output channels in the output channel group by controlling the selection unit 301.
  • the design of the selection unit 301 takes 3 bits as an example, and each level output terminal is connected with three switches, and the selection unit 301 can control the output of one compensation voltage in 8 different gears.
  • the switch unit is a Metal Oxide Semiconductor (MOS) tube.
  • the total number of output channels of one source driver or multiple source drivers is 966 as an example. Most of the 966 output channels are divided into 1 group with 12 output channels, the 481th output channel to the 486th output channel
  • the compensation voltage value is the same, that is, the 481th output channel to the 486th output channel form an output channel group, and the voltage compensation scheme of the V-type shift display, the L-type shift display and the R-type shift display is performed by the multi-level voltage compensation unit.
  • FIG. 5 is a schematic diagram of a multi-level voltage compensation unit for compensating a display device with a V-shaped shift display. It can be seen from Figure 5 that there are 12 output channels as a group, the 1st output channel to the 12th output channel are an output channel group, the voltage of the 1st output channel to the 12th output channel is compensated by n ⁇ V, and the data voltage is outputted. After the voltage compensation (n-1) ⁇ V from the output channel to the 24th output channel, the data voltage is output. The difference between the compensation voltages of the two adjacent output channel groups is ⁇ V, and the voltage compensation value in the 483th output channel is 0. Corresponding to the shift in the voltage compensation value corresponding to the shift of the multi-shift voltage compensation unit 30 in the direction from the first display area 100d and the second display area 100e of the display panel to the middle display area 100c.
  • FIG. 6 is a schematic diagram of a display device with an R-type shift display performed by the multi-range voltage compensation unit
  • FIG. 7 is a diagram of a display device with an L-type shift display performed by the multi-range voltage compensation unit. Schematic diagram of compensation.
  • the compensation voltage value corresponding to the output channel group composed of the first output channel to the 12th output channel is n ⁇ V
  • the compensation voltage value corresponding to the output channel group composed of the 13th output channel to the 24th output channel is (n -1) ⁇ V
  • the compensation voltage value corresponding to the output channel group composed of the 954th output channel to the 966th output channel is 0, and the compensation voltage value decreases from the first output channel of the source driver 200 to the 966th output channel, corresponding In the direction in which the first display area 100d of the display panel 100 points to the second display area 100e, the voltage compensation value decreases corresponding to the shift of the multiple output channel groups to the at least one multi-shift voltage compensation unit 30.
  • the compensation voltage value of the output channel group composed of the first output channel to the 12th output channel is 0, and the compensation voltage value of the output channel group composed of the 954th output channel to the 966th output channel
  • the value is n ⁇ V, and the compensation voltage value increases from the first output channel of the source driver to the 966th output channel.
  • multiple output channels The group is switched to at least one gear of the multi-gear voltage compensation unit 30 corresponding to the increment of the voltage compensation value.
  • the multi-level voltage compensation unit 30 in the source driver of the present application can solve the problem of uneven display of the display device in combination with the data delay compensation method in the traditional technology. Since the display effect of the display device is related to the charging time of the pixel and also related to the charging voltage of the pixel, the source driver of this application has a data delay compensation function in the traditional source driver to make the charging time of the pixel the same.
  • the pole driver adopts the data delay compensation function, and the display device shows that there is still uneven brightness
  • the data voltage output by the output channel is used to improve the display device even after the data delay compensation function is used, there is still the problem of uneven brightness due to insufficient charging during display.
  • the present application also provides a driving method of a display device to solve the problem of the difference in the charging voltage of the sub-pixels of the display device in the same time due to the impedance difference of the traditional display device, and to avoid the problem of uneven brightness during display of the display device.
  • the display device includes a display panel and at least one source driver electrically connected to the display panel.
  • the display panel has a display area and at least one fan-shaped area outside the display area.
  • a display area and a second display area the display area of the display panel is provided with multiple sub-pixels, each sector area of the display panel is provided with multiple wires, at least one source driver includes multiple output channel groups, and each output channel group It includes at least one output channel, each output channel is electrically connected to a wire, some of the wires are electrically connected to the sub-pixels in the middle display area, some of the wires are electrically connected to the sub-pixels of the first display area, and some of the wires are electrically connected to the sub-pixels of the second display area.
  • the sub-pixels are electrically connected, and at least one multi-level voltage compensation unit is provided in the multiple output channel groups, and each multi-level voltage compensation unit is used to output compensation voltages of N levels, and N is an integer greater than or equal to 2.
  • FIG. 8 it is a schematic flowchart of a driving method of a display device according to an embodiment of the application, and the driving method includes the following steps:
  • At least one output channel group is switched to the i-th gear of at least one multi-stage voltage compensation unit, where i is an integer greater than or equal to 1 and less than or equal to N;
  • a plurality of wires in at least one sector area transmit data voltages to a plurality of sub-pixels of the display panel, the sub-pixels in the first display area of the display panel, the sub-pixels in the second display area of the display panel, and the sub-pixels in the middle display area of the display panel.
  • the charging voltage of the sub-pixels at the same time is the same;
  • the data voltages output by the output channels in the output channel group switched to the i-th gear are all voltages output after compensating the compensation voltage value corresponding to the i-th gear.
  • the multiple output channel groups of at least one source driver are switched to at least one in the direction in which the first display area and the second display area of the display panel point to the middle display area.
  • the voltage compensation value corresponding to the gears of the multi-gear voltage compensation unit decreases.
  • multiple output channel groups of at least one source driver point to the first display area of the display panel.
  • the voltage compensation value corresponding to the level of the at least one multi-level voltage compensation unit is decreased or increased.
  • the R-type shift or L-type shift display problem is that the unevenness of brightness and darkness of the display device from one side to the other side is increased.
  • the voltage compensation value also increases in the direction from one side to the other side.
  • a multi-level voltage compensation unit is provided in two adjacent output channel groups.
  • each multi-level voltage compensation unit includes a ground terminal, a level input terminal, multiple voltage dividing units, and multiple level output terminals.
  • the multiple voltage dividing units are connected in series to the ground terminal and the electrical Between the flat input terminals, each level output terminal is arranged between two adjacent voltage divider units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本申请提供一种源极驱动器、显示装置及其驱动方法,通过将至少一个源极驱动器的多个输出通道分为多组,至少一个源极驱动器的多个输出通道组内设置至少一个多档位电压补偿单元,至少一个多档位电压补偿单元对至少一个输出通道组中的输出通道的电压补偿后输出数据电压,以实现显示装置中的多个像素在相同时间的充电电压相同。

Description

源极驱动器、显示装置及其驱动方法 技术领域
本申请涉及显示技术领域,尤其涉及一种源极驱动器、显示装置及其驱动方法。
背景技术
目前,随着显示装置的尺寸不断增大的同时,显示装置的解析度也在不断增加,由高清(分辨率1280×720)到全高清(分辨率1920×1080),全高清(分辨率1920×1080)到超高清(分辨率3840×2160),再到1G1D 8K(分辨率7680× 4320)。在显示装置需要满足大尺寸、高解析度及高刷新率的需求下,显示装置充电时间越来越短,显示装置不同区域的像素会由于显示装置扇形区(Fanout Area)的导线阻抗不同而出现充电差异,显示时出现明暗不均(Mura)的问题。
针对显示装置扇形区的导线阻抗不同导致显示的问题,传统技术是通过输出数据延时补偿(Output Data Delay Compensation,ODDC)的方法以解决,即源极驱动器上与扇形区阻抗较小导线对应的输出通道延时输出数据信号,以使所有像素的充电时间相同。然而,由于显示装置的扇形区的不同区域的导线阻抗分布具有差异性,输出数据延时补偿的方法无法解决各种不同显示装置出现的明暗不均问题。
技术问题
本申请的目的在于提供一种源极驱动器、显示装置及其驱动方法,以解决显示装置由于扇形区阻抗不同导致的显示问题,且源极驱动器能适用于各种具有不同扇形区导线阻抗分布的显示装置。
技术解决方案
为实现上述目的,本申请提供一种显示装置,所述显示装置包括显示面板和与所述显示面板电连接的至少一个源极驱动器,所述显示面板具有显示区和位于所述显示区外的至少一个扇形区,所述显示区包括中间显示区以及位于所述中间显示区相对两侧的第一显示区和第二显示区,所述显示面板的所述显示区设置有多个子像素,所述显示面板的每个所述扇形区设置有多条导线,至少一个所述源极驱动器包括多个输出通道组,每个所述输出通道组包括至少一个输出通道,每个所述输出通道用于输出一个数据电压,每个所述导线用于传输一个所述输出通道输出的所述数据电压,部分所述导线与所述中间显示区的所述子像素电连接,部分所述导线与所述第一显示区的所述子像素电连接,部分所述导线与所述第二显示区的所述子像素电连接,
多个所述输出通道组内设置有至少一个多档位电压补偿单元,每个所述多档位电压补偿单元用于输出N个档位的补偿电压,所述N为大于或等于2的整数;
至少一个所述输出通道组切换至至少一个所述多档位电压补偿单元的第i个档位时,切换至所述第i个档位的所述输出通道组中的所述输出通道输出的数据电压均为补偿所述第i个档位对应的补偿电压值后输出的电压,所述i为大于或等于1且小于或等于N的整数。
在上述显示装置中,同一个所述多档位电压补偿单元中,相邻两个所述档位对应的补偿电压的差值均相等。
在上述显示装置中,相邻两个所述输出通道组内设置一个所述多档位电压补偿单元。
在上述显示装置中,每个所述多档位电压补偿单元包括一个接地端、一个电平输入端、多个分压单元以及多个电平输出端,多个所述分压单元串接在所述接地端和所述电平输入端之间,每个所述电平输出端设置在相邻两个所述分压单元之间。
一种显示装置的驱动方法,所述显示装置包括显示面板及与所述显示面板电连接的至少一个源极驱动器,所述显示面板具有显示区和位于所述显示区外的至少一个扇形区,所述显示区包括中间显示区以及位于所述中间显示区相对两侧的第一显示区和第二显示区,所述显示面板的所述显示区设置有多个子像素,所述显示面板的每个所述扇形区设置有多个导线,至少一个所述源极驱动器包括多个输出通道组,每个所述输出通道组包括至少一个输出通道,每个所述输出通道与一个所述导线对应电连接,部分所述导线与所述中间显示区的所述子像素电连接,部分所述导线与所述第一显示区的所述子像素电连接,部分所述导线与所述第二显示区的所述子像素电连接,多个所述输出通道组内设置有至少一个多档位电压补偿单元,每个所述多档位电压补偿单元用于输出N个档位的补偿电压,所述N为大于或等于2的整数,所述方法包括如下步骤:
至少一个所述输出通道组切换至至少一个所述多档位电压补偿单元的第i个档位,所述i为大于或等于1且小于或等于N的整数;
多个所述输出通道组中的所述输出通道输出数据电压;
至少一个所述扇形区的多个所述导线传输所述数据电压至所述显示面板的多个所述子像素,所述显示面板的所述第一显示区的所述子像素、所述显示面板的所述第二显示区的所述子像素以及所述显示面板的所述中间显示区的所述子像素在相同时间的充电电压相同;
其中,切换至所述第i个档位的所述输出通道组中的所述输出通道输出的数据电压均为补偿所述第i个档位对应的补偿电压值后输出的电压。
在上述显示装置的驱动方法中,至少一个所述源极驱动器的多个所述输出通道组在所述显示面板的所述第一显示区和所述第二显示区指向所述中间显示区的方向上,切换至至少一个所述多档位电压补偿单元的档位对应的电压补偿值递减。
在上述显示装置的驱动方法中,至少一个所述源极驱动器的多个所述输出通道组在所述显示面板的所述第一显示区指向所述第二显示区的方向上,切换至至少一个所述多档位电压补偿单元的档位对应的电压补偿值递减或递增。
在上述显示装置的驱动方法中,相邻两个所述输出通道组内设置一个所述多档位电压补偿单元。
在上述显示装置的驱动方法中,每个所述多档位电压补偿单元包括一个接地端、一个电平输入端、多个分压单元以及多个电平输出端,多个所述分压单元串接在所述接地端和所述电平输入端之间,每个所述电平输出端设置在相邻两个所述分压单元之间。
一种显示装置的源极驱动器,所述显示装置包括显示面板,所述显示面板与至少一个所述源极驱动器电连接,所述显示面板具有显示区和位于所述显示区外围的扇形区,所述显示区包括中间显示区以及位于所述中间显示区相对两侧的第一显示区和第二显示区,所述显示面板的所述显示区设置有多个子像素,所述显示面板的每个所述扇形区设置有多条导线,至少一个所述源极驱动器包括多个输出通道组,每个所述输出通道组包括至少一个输出通道,每个所述输出通道用于输出一个数据电压,每个导线用于传输一个所述输出通道输出的所述数据电压,部分所述导线与所述中间显示区的所述子像素电连接,部分所述导线与所述第一显示区的所述子像素电连接,部分所述导线与所述第二显示区的所述子像素电连接,
多个所述输出通道组内设置有至少一个多档位电压补偿单元,每个所述多档位电压补偿单元用于输出N个档位的补偿电压,所述N为大于或等于2的整数;
至少一个所述输出通道组切换至至少一个所述多档位电压补偿单元的第i个档位时,切换至所述第i个档位的所述输出通道组中的所述输出通道输出的数据电压均为补偿所述第i个档位对应的补偿电压值后输出的电压,所述i为大于或等于1且小于或等于N的整数。
有益效果
本申请提供一种源极驱动器、显示装置及其驱动方法,显示装置包括显示面板,显示面板与至少一个源极驱动器电连接,显示面板具有显示区和位于显示区外的至少一个扇形区,显示区包括中间显示区以及位于中间显示区相对两侧的第一显示区和第二显示区,显示面板的显示区设置有多个子像素,显示面板的每个扇形区设置有多条导线,至少一个源极驱动器包括多个输出通道组,每个输出通道组包括至少一个输出通道,每个输出通道用于输出一个数据电压,每个导线用于传输一个输出通道输出的数据电压,部分导线与中间显示区的子像素电连接,部分导线与第一显示区的子像素电连接,部分导线与第二显示区的子像素电连接,多个输出通道组内设置有至少一个多档位电压补偿单元,每个多档位电压补偿单元用于输出N个档位的补偿电压,N为大于或等于2的整数;至少一个输出通道组切换至至少一个多档位电压补偿单元的第i个档位时,切换至第i个档位的输出通道组中的输出通道输出的数据电压为补偿第i个档位对应的补偿电压值后输出的电压,i为大于或等于1且小于或等于N的整数。通过将至少一个源极驱动器的多个输出通道分为多组,且至少一个源极驱动器的多个输出通道组内设置至少一个多档位电压补偿单元,至少一个多档位电压补偿单元用于对至少一个输出通道组中的输出通道的电压补偿后输出数据电压,以实现显示装置中的多个像素在相同时间的充电电压相同,改善显示面板由于显示面板内扇形区导线阻抗不同而出现局部像素充电不足的问题。由于多档位电压补偿单元具有多个档位,使得源极驱动器可以适应于具有不同扇形区阻抗分布的显示面板,以解决不同显示面板的扇形区导线阻抗不同导致显示明暗不均问题,而且多档位的设计也可以消除不同源极驱动器自身扇形区阻抗导致的差异性,提升大尺寸、高解析度以及高刷新率的显示装置的画质。
附图说明
图1为本申请一实施例显示装置的示意图;
图2为图1所示显示面板扇形区导线的阻抗分布示意图;
图3为本申请另一实施例显示装置的示意图;
图4为本申请实施例源极驱动器中多档位电压补偿单元的示意图;
图5为多档位电压补偿单元对存在V型shift显示的显示装置进行补偿的示意图;
图6多为档位电压补偿单元对存在R型shift显示的显示装置进行补偿的示意图;
图7为多档位电压补偿单元对存在L型shift显示的显示装置进行补偿的示意图;
图8为本申请实施例显示装置的驱动方法的流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,其为本申请一实施例显示装置的示意图。显示装置包括显示面板100及至少一个源极驱动器200。至少一个源极驱动器200与显示面板100电连接。源极驱动器200设置于柔性薄膜上,柔性薄膜绑定于显示面板100上。可以理解的是,源极驱动器200也可以直接绑定于显示面板100上。
显示面板100用于进行画面显示。显示面板100具有显示区100a和位于显示区100a外的至少一个扇形区100b。显示面板100的显示区100a设置有多个子像素、多个数据线D以及多个扫描线S。多个数据线D平行设置且沿行方向排布,多个扫描线S平行设置且沿列方向排布。相邻两个数据线D和相邻两个扫描线S交叉的区域中设置有一个子像素。显示区100a包括中间显示区100c以及位于中间显示区100c相对两侧的第一显示区100d以及第二显示区100e。显示面板100的每个扇形区100b设置有多个导线1001,每个导线1001与一个数据线D连接。每个子像素的一端与数据线D连接,另一端与扫描线S连接,部分导线1001与中间显示区100c的子像素电连接,部分导线1001与第一显示区100d的子像素电连接,部分导线1001与第二显示区100e的子像素电连接。
如图2所示,其为图1所示显示面板扇形区导线的阻抗分布示意图。图2中的横坐标为源极驱动器上的输出通道的位置,纵坐标为对应源极驱动器上输出通道的显示面板上扇形区导线的阻抗。由图1可知,显示装置包括一个源极驱动器200,对应地,显示面板100上有一个扇形区100b。由图2可知,该源极驱动器200包括966个输出通道,对应地,扇形区100b设置有966个导线1001,每一个导线1001对应一个输出通道,对应源极驱动器200上第1输出通道至第483输出通道的扇形区100b导线1001的阻抗递减,对应源极驱动器200上第483输出通道至第966输出通道的扇形区导线的阻抗递增,对应第483输出通道的扇形区100b导线1001的阻抗最小,即扇形区100b两侧的导线1001阻抗大于扇形区100b中间导线1001的阻抗,导致扇形区100b的导线1001阻抗差异较大。由于扇形区100b导线1001阻抗具有差异,导致传统技术中经过具有不同阻抗扇形区100b导线传输的数据电压在相同时间内对子像素的充电电压存在差异,具体体现为,第一显示区100d的子像素、第二显示区100e的子像素以及中间显示区100c的子像素充电状态存在差异。
如图1所示,显示面板为三栅型显示面板时,三栅型显示面板中多个同一颜色子像素与同一条扫描线S连接,红色子像素R、绿色子像素G以及蓝色子像素B位于同一列且作为一个重复单元分别与相邻两个数据线D连接。传统技术中,对于三栅型显示面板,与扇形区100b两侧导线1001连接的数据线D上的子像素(第一显示区100d和第二显示区100e的子像素)相对于与扇形区100b中间导线连接的数据线D上的子像素(中间显示区100c的子像素)存在充电不足的问题,导致显示混色画面时面板两侧有色偏产生,即出现V型shift显示问题。具体为,第一显示区100d和第二显示区100e的子像素相对于中间显示区100c的子像素存在充电不足导致V型shift问题。第一显示区100d、第二显示区100e、中间显示区100c均包括多列子像素。
如图3所示,其为本申请另一实施例显示装置的示意图。显示装置为采用1G1D 架构的8K高解析度的显示装置,显示装置包括多个源极驱动器200以及一个显示面板100。显示面板100中同一行子像素与同一条扫描线S连接,同一列子像素与同一数据线D连接,同一行子像素中以红色子像素、绿色子像素以及蓝色子像素为重复单元依次与同一扫描线S连接。为了便于描述,以源极驱动器200为三个为例,而源极驱动器200的数目不局限于3个。显示面板100上有三个扇形区100b,一个扇形区100b中的导线1001与第一显示区100d中的子像素电连接,一个扇形区100b中的导线1001与第二显示区100e中的子像素电连接,一个扇形区100b的导线1001与中间显示区100c中的子像素电连接,每个扇形区100b中的导线的阻抗分布状况如图2所示,即扇形区两侧导线阻抗大而中间导线阻抗小。第一显示区100d、第二显示区100e、中间显示区100c均包括多列子像素,在其他实施例中,还可将显示面板100的显示区域分成三个以上,根据显示面板的分辨率及源极驱动器的输出通道数确定。由于高解析度显示装置的显示面板存在多个扇形区,每个扇形区100b的导线1001阻抗存在差异,多个扇形区100b的导线阻抗分布互相存在差异,且高解析度显示装置上的源极驱动器200数目较多,不同源极驱动器200存在充电差异,导致显示装置显示时会出现单侧明暗不均的问题,例如R型shift显示问题和L型shift显示问题,具体为,第一显示区100d或第二显示区100e出现明显色偏。
对于显示装置由于显示面板100扇形区100b导线阻抗存在差异以及多个源极驱动器200存在充电能力差异问题导致显示面板出现充电不足导致的明暗显示不均的问题,本申请源极驱动器200包括多个输出通道组,每个输出通道组包括至少一个输出通道,每个输出通道用于输出一个数据电压,每个导线1001用于传输一个输出通道输出的数据电压,多个输出通道组内设置有至少一个多档位电压补偿单元30,每个多档位电压补偿单元30用于输出N个档位的补偿电压,N为大于或等于2的整数。至少一个输出通道组切换至至少一个多档位电压补偿单元30的第i档位时,切换至第i档位的输出通道组中的输出通道输出的数据电压均为补偿第i个档位对应的补偿电压值后输出的电压,i为大于或等于1且小于或等于N的整数。
本申请源极驱动器通过对源极驱动器200中的输出通道进行分组,以便于将输出通道输出的数据电压以组为单元进行调整以对显示面板100进行分区补偿,且配合在多个输出通道组内设置至少一个多档位电压补偿单元30,至少一个输出通道组切换至至少一个多档位电压补偿单元30的第i档位,多档位电压补偿单元30对切换至第i档位的输出通道组中所有输出通道中的电压补偿第i个档位对应的补偿电压值后输出数据电压,以解决不同输出通道组中输出通道输出的数据电压由于阻抗差异导致显示面板的像素充电差异,使得显示面板上不同区域(中间显示区100c以及中间显示区100c相对两侧的第一显示区100d和第二显示区100e)的子像素在相同时间的充电电压相同,避免显示面板100显示出现局部明暗不均的问题。另外,由于多档位电压补偿单元具有多个档位,使得多档位电压补偿单元不仅适应于解决单个显示面板由于显示面板100扇形区100b导线阻抗差异导致的局部像素充电不足问题,还能适用于具有不同扇形区阻抗分布的显示面板,且能解决不同源极驱动器自身存在充电能力差异的问题。
在本实施例中,每个输出通道组包括输出通道的数目相同,例如以第1输出通道至第12输出通道为一个输出通道组,第13输出通道至第24输出通道为一个输出通道组,依次类推。在其他实施例中,每个输出通道组包括输出通道的数目也可以不同。输出通道分组是以一个显示面板上所有源极驱动器的输出通道的总数进行分组。
在本实施例中,同一个多档位电压补偿单元30中,相邻两个档位对应的补偿电压的差值均相等,以简化多档位电压补偿单元的设计。多档位电压补偿单元30中的N个档位对应的电压补偿值递增或递减。
在本实施例中,相邻两个输出通道组内设置有一个多档位电压补偿单元30,以便于其中一个输出通道组切换至多档位电压补偿单元30后,可以对相邻两个输出通道组中输出通道输出的数据电压在显示面板上的子像素充电存在的差异进行补偿。任意两个多档位电压补偿单元30的档位设计可以相同,也可以不相同,可以根据实际显示面板的阻抗差异、源极驱动器自身的阻抗差异以及显示装置的解析度进行设计,本申请不作具体地限定。
需要说明的是,每个多档位电压补偿单元30输出的补偿电压的档位数目、每个档位对应的电压补偿值以及源极驱动器200中输出通道组的数目主要与扇形区100b导线阻抗的差异相关。输出通道组的数目越多,越有利于对显示面板出现的明暗显示不均问题进行分区补偿,然而输出通道组的数目越多,会导致源极驱动器的成本越高。每个多档位电压补偿单元30包括的补偿电压档位数目越多,且相邻两个档位之间的补偿电压差值越小,则越有利于对显示面板出现的明暗显示不均问题进行补偿,然而档位越多或相邻档位之间的补偿电压差值越小,会增加源极驱动器的成本。
在本实施例中,每个多档位电压补偿单元30包括一个接地端GND、一个电平输入端VDD、多个分压单元R以及多个电平输出端,多个分压单元R串接在接地端GND和电平输入端VDD之间,每个电平输出端设置在相邻两个分压单元R之间。通过在相邻两个分压单元R之间引出多个电平输出端以使得多档位电压分压输出不同档位的补偿电压值。多个分压单元R的电压值相同。
以下以多档位电压补偿单元30具有8个档位对多档位电压补偿单元进行描述,而多档位电压补偿单元30的档位数目不限于8个档位,只要多档位电压补偿单元30的档位数目大于或等于2即可,例如3个档位,4个档位。
如图4所示,其为本申请实施例源极驱动器中多档位电压补偿单元的示意图。图4所示多档位电压补偿单元30可以输出△V0、△V1、△V2、△V3、△V4、△V5、△V6以及△V7 这8个不同档位的补偿电压,△V0、△V1、△V2、△V3、△V4、△V5、△V6以及△V7对应的补偿电压数值递减,相邻两个档位之间的差值相等。电平输入端VDD用于输入直流高电平,电平输入端VDD与接地端GND连接。多个分压单元R均为电阻,多个分压单元R对应的电阻值相等,多个分压单元R串接在电平输入端VDD和接地端GND之间,在相邻两个分压单元R之间设置有一个电平输出端以输出一个档位的补偿电压。
多档位电压补偿单元30还包括选择单元301,选择单元301用于将N个档位中一个档位对应的补偿电压值输出至输出端O。选择单元301包括与每个电平输出端连接的至少一个开关单元,开关单元在控制信号的作用下控制一个电平输出端对应档位的补偿电压是否输出至输出端O。输出通道组连接至多档位电压补偿单元30的输出端O,通过控制选择单元301以使得对应档位补偿电压补偿至输出通道组内的输出通道。例如,选择单元301的设计以3个bit为例,每个电平输出端连接三个开关,选择单元301可以控制8个不同档位中的一个补偿电压输出。开关单元为金属氧化半导体(Metal Oxide Semiconductor,MOS)管。
以下以一个源极驱动器或多个源极驱动器的输出通道的总个数为966为例,966个输出通道中大部分以12个输出通道分为1组,第481输出通道至第486输出通道的补偿电压值相同,即第481输出通道至第486输出通道构成一个输出通道组,以多档位电压补偿单元对V型shift显示、L型shift显示以及R型shift显示进行电压补偿的方案进行详述。
请参阅图5,其为多档位电压补偿单元对存在V型shift显示的显示装置进行补偿的示意图。由图5可知,输出通道以12个为一组,第1输出通道至第12输出通道为一个输出通道组,第1输出通道至第12输出通道中的电压补偿nΔV后输出数据电压,第13输出通道至第24输出通道中的电压补偿(n-1)ΔV后输出数据电压,相邻两个输出通道组补偿电压的差值为ΔV,第483输出通道中的电压补偿值为0。对应于在显示面板的第一显示区100d和第二显示区100e至中间显示区100c的方向上,切换至多档位电压补偿单元30的档位对应的电压补偿值递减。
请参阅图6以及图7,图6为多档位电压补偿单元对存在R型shift 显示的显示装置进行补偿的示意图,图7为多档位电压补偿单元对存在L型shift 显示的显示装置进行补偿的示意图。对于存在R型shift 显示问题的显示装置,第1输出通道至第12输出通道组成的输出通道组对应的补偿电压值为nΔV,第13输出通道至第24输出通道组成的输出通道组对应的补偿电压值为(n-1)ΔV,第954输出通道至第966输出通道组成的输出通道组对应的补偿电压值为0,补偿电压值从源极驱动器200第1输出通道至第966输出通道的方向上递减,对应在显示面板100的第一显示区100d指向第二显示区100e的方向上,多个输出通道组切换至至少一个多档位电压补偿单元30的档位对应电压补偿值递减。对于存在L型shift的显示问题的显示装置,第1输出通道至第12输出通道组成的输出通道组的补偿电压值为0,第954输出通道至第966输出通道组成的输出通道组的补偿电压值为nΔV,补偿电压值从源极驱动器第1输出通道至第966输出通道的方向上递增,对应在显示面板100的第一显示区100d指向第二显示区100e的方向上,多个输出通道组切换至至少一个多档位电压补偿单元30的档位对应电压补偿值递增。
此外,本申请源极驱动器中的多档位电压补偿单元30可以结合传统技术中的数据延时补偿的方法解决显示装置存在显示不均的问题。由于显示装置的显示效果与像素的充电时间相关,也与像素的充电电压相关,本申请源极驱动器在传统源极驱动器具有数据延时补偿功能以使像素的充电时间相同的情况下,在源极驱动器采用数据延时补偿功能后,显示装置显示仍然存在明暗不均的情况下,将源极驱动器中的输出通道组切换至多档位电压补偿单元30的档位并进行调试,调整源极驱动器输出通道输出的数据电压,以改善显示装置即使采用数据延时补偿功能后仍然存在显示时由于充电不足导致的明暗不均问题。
本申请还提供一种显示装置的驱动方法,以解决传统显示装置由于阻抗差异导致显示装置的子像素在相同时间内的充电电压存在差异的问题,避免显示装置显示时出现明暗不均的问题。显示装置包括显示面板及与显示面板电连接的至少一个源极驱动器,显示面板具有显示区和位于显示区外的至少一个扇形区,显示区包括中间显示区以及位于中间显示区相对两侧的第一显示区和第二显示区,显示面板的显示区设置有多个子像素,显示面板的每个扇形区设置有多个导线,至少一个源极驱动器包括多个输出通道组,每个输出通道组包括至少一个输出通道,每个输出通道与一个导线对应电连接,部分导线与中间显示区的子像素电连接,部分导线与第一显示区的子像素电连接,部分导线与第二显示区的子像素电连接,多个输出通道组内设置有至少一个多档位电压补偿单元,每个多档位电压补偿单元用于输出N个档位的补偿电压,N为大于或等于2的整数。如图8所示,其为本申请实施例显示装置的驱动方法的流程示意图,驱动方法包括如下步骤:
S100:至少一个输出通道组切换至至少一个多档位电压补偿单元的第i个档位,i为大于或等于1且小于或等于N的整数;
S101:多个输出通道组中的输出通道输出数据电压;
S102:至少一个扇形区的多个导线传输数据电压至显示面板的多个子像素,显示面板的第一显示区的子像素、显示面板的第二显示区的子像素以及显示面板的中间显示区的子像素在相同时间的充电电压相同;
其中,切换至第i个档位的输出通道组中的输出通道输出的数据电压均为补偿第i个档位对应的补偿电压值后输出的电压。
为了解决传统显示装置显示时出现V型shift显示问题,至少一个源极驱动器的多个输出通道组在显示面板的第一显示区和第二显示区指向中间显示区的方向上,切换至至少一个多档位电压补偿单元的档位对应的电压补偿值递减。
为了解决传统高解析度显示装置(例如1G1D 架构 8K显示装置)显示时出现R型shift或L型shift显示问题,至少一个源极驱动器的多个输出通道组在显示面板的第一显示区指向第二显示区的方向上,切换至至少一个多档位电压补偿单元的档位对应的电压补偿值递减或递增。其中,R型shift或L型shift显示问题为显示装置的一侧指向另一侧的明暗不均现象增强,对应地,电压补偿值也从一侧指向另一侧的方向上递增。
在本实施例中,相邻两个输出通道组内设置一个多档位电压补偿单元。
在本实施例中,每个多档位电压补偿单元包括一个接地端、一个电平输入端、多个分压单元以及多个电平输出端,多个分压单元串接在接地端和电平输入端之间,每个电平输出端设置在相邻两个分压单元之间。
以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (15)

  1. 一种显示装置,其中,所述显示装置包括显示面板和与所述显示面板电连接的至少一个源极驱动器,所述显示面板具有显示区和位于所述显示区外的至少一个扇形区,所述显示区包括中间显示区以及位于所述中间显示区相对两侧的第一显示区和第二显示区,所述显示面板的所述显示区设置有多个子像素,所述显示面板的每个所述扇形区设置有多条导线,至少一个所述源极驱动器包括多个输出通道组,每个所述输出通道组包括至少一个输出通道,每个所述输出通道用于输出一个数据电压,每个所述导线用于传输一个所述输出通道输出的所述数据电压,部分所述导线与所述中间显示区的所述子像素电连接,部分所述导线与所述第一显示区的所述子像素电连接,部分所述导线与所述第二显示区的所述子像素电连接,
    多个所述输出通道组内设置有至少一个多档位电压补偿单元,每个所述多档位电压补偿单元用于输出N个档位的补偿电压,所述N为大于或等于2的整数;
    至少一个所述输出通道组切换至至少一个所述多档位电压补偿单元的第i个档位时,切换至所述第i个档位的所述输出通道组中的所述输出通道输出的数据电压均为补偿所述第i个档位对应的补偿电压值后输出的电压,所述i为大于或等于1且小于或等于N的整数。
  2. 根据权利要求1所述的显示装置,其中,同一个所述多档位电压补偿单元中,相邻两个所述档位对应的补偿电压的差值均相等。
  3. 根据权利要求1所述的显示装置,其中,相邻两个所述输出通道组内设置一个所述多档位电压补偿单元。
  4. 根据权利要求1所述的显示装置,其中,每个所述多档位电压补偿单元包括一个接地端、一个电平输入端、多个分压单元以及多个电平输出端,多个所述分压单元串接在所述接地端和所述电平输入端之间,每个所述电平输出端设置在相邻两个所述分压单元之间。
  5. 一种显示装置的驱动方法,其中,所述显示装置包括显示面板及与所述显示面板电连接的至少一个源极驱动器,所述显示面板具有显示区和位于所述显示区外的至少一个扇形区,所述显示区包括中间显示区以及位于所述中间显示区相对两侧的第一显示区和第二显示区,所述显示面板的所述显示区设置有多个子像素,所述显示面板的每个所述扇形区设置有多个导线,至少一个所述源极驱动器包括多个输出通道组,每个所述输出通道组包括至少一个输出通道,每个所述输出通道与一个所述导线对应电连接,部分所述导线与所述中间显示区的所述子像素电连接,部分所述导线与所述第一显示区的所述子像素电连接,部分所述导线与所述第二显示区的所述子像素电连接,多个所述输出通道组内设置有至少一个多档位电压补偿单元,每个所述多档位电压补偿单元用于输出N个档位的补偿电压,所述N为大于或等于2的整数,所述方法包括如下步骤:
    至少一个所述输出通道组切换至至少一个所述多档位电压补偿单元的第i个档位,所述i为大于或等于1且小于或等于N的整数;
    多个所述输出通道组中的所述输出通道输出数据电压;
    至少一个所述扇形区的多个所述导线传输所述数据电压至所述显示面板的多个所述子像素,所述显示面板的所述第一显示区的所述子像素、所述显示面板的所述第二显示区的所述子像素以及所述显示面板的所述中间显示区的所述子像素在相同时间的充电电压相同;
    其中,切换至所述第i个档位的所述输出通道组中的所述输出通道输出的数据电压均为补偿所述第i个档位对应的补偿电压值后输出的电压。
  6. 根据权利要求5所述显示装置的驱动方法,其中,至少一个所述源极驱动器的多个所述输出通道组在所述显示面板的第一显示区和所述第二显示区指向中间显示区的方向上,切换至至少一个所述多档位电压补偿单元的档位对应的电压补偿值递减。
  7. 根据权利要求5所述显示装置的驱动方法,其中,至少一个所述源极驱动器的多个所述输出通道组在所述显示面板的所述第一显示区指向所述第二显示区的方向上,切换至至少一个所述多档位电压补偿单元的档位对应的电压补偿值递减或递增。
  8. 根据权利要求5所述显示装置的驱动方法,其中,相邻两个所述输出通道组内设置一个所述多档位电压补偿单元。
  9. 根据权利要求5所述显示装置的驱动方法,其中,每个所述多档位电压补偿单元包括一个接地端、一个电平输入端、多个分压单元以及多个电平输出端,多个所述分压单元串接在所述接地端和所述电平输入端之间,每个所述电平输出端设置在相邻两个所述分压单元之间。
  10. 一种源极驱动器,其中,至少一个所述源极驱动器包括多个输出通道组,每个所述输出通道组包括至少一个输出通道,每个所述输出通道用于输出一个数据电压,
    多个所述输出通道组内设置有至少一个多档位电压补偿单元,每个所述多档位电压补偿单元用于输出N个档位的补偿电压,所述N为大于或等于2的整数;
    至少一个所述输出通道组切换至至少一个所述多档位电压补偿单元的第i个档位时,切换至所述第i个档位的所述输出通道组中的所述输出通道输出的数据电压均为补偿所述第i个档位对应的补偿电压值后输出的电压,所述i为大于或等于1且小于或等于N的整数。
  11. 根据权利要求10所述的源极驱动器,其中,同一个所述多档位电压补偿单元中,相邻两个所述档位对应的补偿电压的差值均相等。
  12. 根据权利要求10所述的源极驱动器,其中,相邻两个所述输出通道组内设置一个所述多档位电压补偿单元。
  13. 根据权利要求10所述的源极驱动器,其中,多个所述输出通道组内设置有多个所述多档位电压补偿单元,每个所述输出通道组包括多个输出数据电压的所述输出通道。
  14. 根据权利要求10所述的源极驱动器,其中,每个所述多档位电压补偿单元包括一个接地端、一个电平输入端、多个分压单元以及多个电平输出端,多个所述分压单元串接在所述接地端和所述电平输入端之间,每个所述电平输出端设置在相邻两个所述分压单元之间。
  15. 根据权利要求14所述的源极驱动器,其中,多个所述分压单元均为电阻。
PCT/CN2020/140913 2020-03-22 2020-12-29 源极驱动器、显示装置及其驱动方法 WO2021190041A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/431,156 US20230138235A1 (en) 2020-03-22 2020-12-29 Source driver, display device and driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010204852.8 2020-03-22
CN202010204852.8A CN111091778A (zh) 2020-03-22 2020-03-22 源极驱动器、显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2021190041A1 true WO2021190041A1 (zh) 2021-09-30

Family

ID=70400601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140913 WO2021190041A1 (zh) 2020-03-22 2020-12-29 源极驱动器、显示装置及其驱动方法

Country Status (3)

Country Link
US (1) US20230138235A1 (zh)
CN (2) CN111091778A (zh)
WO (1) WO2021190041A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446218A (zh) * 2022-03-21 2022-05-06 昆山国显光电有限公司 显示面板和显示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111091778A (zh) * 2020-03-22 2020-05-01 深圳市华星光电半导体显示技术有限公司 源极驱动器、显示装置及其驱动方法
CN112562600B (zh) 2020-12-01 2021-12-03 Tcl华星光电技术有限公司 显示装置及其驱动方法
CN112669783B (zh) * 2020-12-29 2023-01-10 Tcl华星光电技术有限公司 一种数据信号调节电路和显示装置
CN115527496A (zh) * 2022-10-08 2022-12-27 厦门天马显示科技有限公司 一种显示面板的驱动补偿方法、补偿系统和显示设备
CN116434715A (zh) * 2023-04-27 2023-07-14 惠科股份有限公司 显示装置的驱动方法和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080024863A (ko) * 2006-09-15 2008-03-19 삼성전자주식회사 액정 표시 장치 및 그 구동 회로
CN106157913A (zh) * 2016-08-31 2016-11-23 深圳市华星光电技术有限公司 一种液晶显示器的栅极开启电压产生装置
CN106652940A (zh) * 2016-12-20 2017-05-10 深圳市华星光电技术有限公司 一种栅极驱动电路和液晶面板
CN107123401A (zh) * 2017-04-19 2017-09-01 惠科股份有限公司 显示器及电子设备
CN111091778A (zh) * 2020-03-22 2020-05-01 深圳市华星光电半导体显示技术有限公司 源极驱动器、显示装置及其驱动方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120033622A (ko) * 2010-09-30 2012-04-09 삼성전자주식회사 표시 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
CN104021751B (zh) * 2014-06-16 2016-08-17 上海中航光电子有限公司 降低显示屏闪烁不均的方法及装置、显示屏和显示装置
US10410599B2 (en) * 2015-08-13 2019-09-10 Samsung Electronics Co., Ltd. Source driver integrated circuit for ompensating for display fan-out and display system including the same
CN105388646B (zh) * 2015-12-14 2019-02-12 深圳市华星光电技术有限公司 液晶显示屏及液晶显示屏的色偏补偿方法
KR102489295B1 (ko) * 2018-09-11 2023-01-16 엘지디스플레이 주식회사 유기발광표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080024863A (ko) * 2006-09-15 2008-03-19 삼성전자주식회사 액정 표시 장치 및 그 구동 회로
CN106157913A (zh) * 2016-08-31 2016-11-23 深圳市华星光电技术有限公司 一种液晶显示器的栅极开启电压产生装置
CN106652940A (zh) * 2016-12-20 2017-05-10 深圳市华星光电技术有限公司 一种栅极驱动电路和液晶面板
CN107123401A (zh) * 2017-04-19 2017-09-01 惠科股份有限公司 显示器及电子设备
CN111091778A (zh) * 2020-03-22 2020-05-01 深圳市华星光电半导体显示技术有限公司 源极驱动器、显示装置及其驱动方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446218A (zh) * 2022-03-21 2022-05-06 昆山国显光电有限公司 显示面板和显示装置
CN114446218B (zh) * 2022-03-21 2024-01-30 昆山国显光电有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
CN111091778A (zh) 2020-05-01
US20230138235A1 (en) 2023-05-04
CN212587197U (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2021190041A1 (zh) 源极驱动器、显示装置及其驱动方法
US8654069B2 (en) Display device
US7868860B2 (en) Liquid crystal display device
CN101944337B (zh) 液晶显示器
TWI433120B (zh) 源極驅動器
CN111696460B (zh) 一种显示面板及其测试方法、显示装置
CN113376912B (zh) 阵列基板及显示面板
US20150161927A1 (en) Driving apparatus with 1:2 mux for 2-column inversion scheme
US20100002021A1 (en) Display panel driving method and display apparatus
US20060125765A1 (en) Image display method and image display apparatus
CN102110400B (zh) 双栅极线显示装置的测试结构及线缺陷测试方法
US11074886B2 (en) Multiplexing circuit
WO2018196085A1 (zh) 数据驱动电路与显示面板
CN105788549A (zh) 像素驱动结构、驱动方法及显示装置
CN100424735C (zh) 时分显示板驱动方法和设备
CN108154861A (zh) 一种削角电压产生电路及液晶显示装置
CN108279523A (zh) 显示面板和显示装置
WO2022252265A1 (zh) 显示面板和电子设备
CN109427250A (zh) 显示面板及显示装置
US20240105112A1 (en) Display substrate and display apparatus
CN115576444A (zh) 触控显示面板
CN103149762B (zh) 阵列基板、显示装置及其控制方法
US20240038190A1 (en) Display panel
CN108564887B (zh) 一种显示面板及显示装置
CN114664227A (zh) 驱动电路及驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926501

Country of ref document: EP

Kind code of ref document: A1