WO2021189668A1 - 基于排队消散时间的路口交通信号方案优化方法 - Google Patents

基于排队消散时间的路口交通信号方案优化方法 Download PDF

Info

Publication number
WO2021189668A1
WO2021189668A1 PCT/CN2020/095094 CN2020095094W WO2021189668A1 WO 2021189668 A1 WO2021189668 A1 WO 2021189668A1 CN 2020095094 W CN2020095094 W CN 2020095094W WO 2021189668 A1 WO2021189668 A1 WO 2021189668A1
Authority
WO
WIPO (PCT)
Prior art keywords
green
time
scheme
phase
traffic signal
Prior art date
Application number
PCT/CN2020/095094
Other languages
English (en)
French (fr)
Inventor
饶欢
李璐
周东
陈凝
吕伟韬
Original Assignee
江苏智通交通科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏智通交通科技有限公司 filed Critical 江苏智通交通科技有限公司
Publication of WO2021189668A1 publication Critical patent/WO2021189668A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals

Definitions

  • the invention relates to a method for optimizing intersection traffic signal schemes based on queuing dissipating time.
  • the optimal configuration of the traditional traffic signal control scheme is that the information control team or professional traffic police optimizes the timing based on the traffic flow information and actual traffic conditions on the basis of the dispatch plan and control period configuration. Facing the increasing demand for the intelligentization of urban traffic management, the development of artificial intelligence technology and the popularization of front-end detection equipment such as electric police, bayonet, and car inspector provide effective support for the intelligent and optimized configuration of intersection traffic signal schemes. There have been some researches on the intelligent optimization of traffic signal schemes.
  • Chinese patent application CN201811048116.7 proposes a multi-objective traffic signal scheme optimization configuration method based on intersection flow direction demand, which uses integer planning with traffic intersection flow direction demand as an index
  • Chinese patent application CN201810439951.7 proposes a method that uses intersection speed as the index. Parameters, based on multi-objective genetic algorithm optimization of intersection traffic signal plan
  • Chinese patent application CN201910920298.0 proposes a single intersection signal control method based on vehicle queuing dissipation time, which evaluates the intersection plan dissipation time under saturated and unsaturated conditions Analyze to optimize.
  • the green-hour demand in the optimal configuration of the traffic signal scheme is mainly divided into two categories, one is the use of traffic flow analysis and determination, and the other is the analysis of the vehicle speed at the intersection, and both are aimed at meeting the traffic flow.
  • the optimization of the intersection traffic signal scheme at this stage fails to consider the existence of the phase sequence scheme and the overlap phase situation, and most of the traditional four-phase phases are used to consider signal optimization.
  • the purpose of the present invention is to provide a method for optimizing intersection traffic signal schemes based on queuing dissipation time. Based on traffic flow, with intersection queuing dissipation time as the increase or decrease, the time required for the flow of each entrance to the green light is adjusted to ensure that it is The optimal solution for the required duration of the green light solves the problem that the prior art fails to take into account the situation of long empty time during the green light and lacks flexibility.
  • An optimization method for intersection traffic signal schemes based on queuing dissipating time. Based on the green hour demand, green light idle time and queuing dissipating time of the flow direction of each entrance, the queuing dissipating time is used as the increase or decrease to adjust and determine the actual flow direction of each entrance. Green hour demand; for the phase sequence plan to be selected, the green light duration of the phase phase under each group of phase sequence plans is calculated, and the optimal plan is determined based on the cycle duration, which specifically includes the following steps:
  • step S2 Corresponding the intersection traffic signal control scheme obtained in step S1 with the traffic flow information of the unit time period, analyze the traffic state and traffic demand in the unit time period, and solve the green hour demand and green light empty of the flow direction of each entrance. Duration of release and time for queuing to dissipate;
  • step S4 Based on the phase sequence information of the traffic signal control scheme in step S1 and the adjusted actual green-hour demand obtained in step S3, analyze each phase sequence scheme to determine the specific signal scheme under different phase sequence schemes, that is, the green light duration of each phase phase ;
  • step S5 Summarize the traffic signal schemes under each phase sequence scheme obtained in the scheme of step S4, select the scheme with the smallest period as the optimal scheme in the unit time period, and at the same time, perform cycle optimization and adjustment on the optimal scheme in the unit time period obtained , Get the final optimization plan.
  • the traffic signal control scheme includes basic phase information, phase sequence information, control period, and phase scheme; traffic flow information includes traffic flow in the direction of the entrance in each unit time period, vehicle queue length in the unit time period, and intersection Saturated headway.
  • step S2 the green hour demand, the green light idle time and the queue dissipation time of each inlet channel flow direction are solved, specifically,
  • step S21 Based on the traffic flow information obtained in step S1, the green hour demand for the flow direction of each entrance in a unit time period Solve, namely:
  • step S22 Compare the green-hour demand solved in step S21 with the traffic signal control scheme under the same unit time period, and determine the long idle time of the green light for each inlet flow direction in each unit time period, namely:
  • T ij represents the idle time of the green light in the flow direction of the i entrance channel j; Represents the green hour demand for the flow of i-inlet j in the n unit time period; g ij represents the green light time of the i-inlet j in the traffic signal control scheme;
  • the number of queued vehicles, ht represents the saturated headway.
  • step S3 the green-hour demand for the flow direction of each entrance in the traffic signal scheme in the unit time period is optimized and adjusted, and the adjusted actual green-hour demand is determined, specifically,
  • step S31 If there is a green light idle, that is, the green light idle time T ij >0, adjust the green hour demand according to the queue dissipation time to determine the actual green hour demand; otherwise, go to step S32;
  • the green light idle time is modified according to the queue dissipation time and the green light time in the traffic signal plan stage, so as to adjust and determine the actual green time demand;
  • step S31 the green hour demand is adjusted according to the queue dissipation time to obtain the actual green hour demand, which is specifically:
  • G ij represents the actual green-hour demand in the direction of entrance i after the adjustment
  • ⁇ and ⁇ are coefficients and are selected between [0, 1] according to the characteristics of the intersection traffic channelization and the intersection traffic signal plan, and ⁇ .
  • step S32 the actual green hour demand is adjusted and determined, specifically,
  • step S32 If t ij >g ij , correct the idle time of the green light, even if And go to the next step S322, otherwise the green time demand will not be adjusted, and go to step S33;
  • step S322 if Then make And go to step S33; otherwise go to the next step S323;
  • step S323 if Then make And go to step S33; otherwise, go to the next step S324;
  • step S324 if Then make And go to step S33; otherwise, go to step S33 after the end;
  • ⁇ , ⁇ , and ⁇ are coefficients, and the values are between [0, 1] according to the traffic channelization characteristics of the intersection and the intersection traffic signal scheme, and ⁇ .
  • step S4 the green light duration of each phase stage is determined, specifically,
  • step S41 Determine whether there is an overlap phase in the phase sequence to be selected, if it exists, go to the next step, otherwise go to step S43;
  • the green duration of the phase is allocated, namely:
  • step S44 Summarize the green light duration of each stage obtained in step S41 Determine the total duration of the cycle, namely:
  • step S42 the period optimization adjustment is performed on the optimal solution within the obtained unit time period, specifically, if the period length of the optimal solution within the obtained unit time period is Greater than the maximum cycle max C of the traffic signal scheme at the intersection, according to the green light duration of each stage Perform proportional scaling, namely:
  • This kind of intersection traffic signal scheme optimization method based on queuing dissipating time, based on traffic flow, taking the queuing dissipating time of intersection as the increase or decrease, adjust the flow of each entrance to the green hour demand to ensure that the green hour demand is According to the actual demand, further solve the phase phase duration of each group of phase sequence schemes separately according to the phase sequence to be selected, so as to select the optimal scheme, which is more flexible.
  • This kind of intersection traffic signal scheme optimization method based on queuing and dissipating time, while solving the traffic flow demand for the green time of each entrance, the time and space of the flow to the green is used as the judgment index, and the queuing and dissipating time at the intersection is used as the increase or decrease. Effectively adjust the demand for green time to ensure that the flow of the entrance road to the green time can satisfy both vehicle traffic and there is no long-term green time and space release, and the green time demand is optimized.
  • This method solves the current model of analyzing green-hour demand based on traffic flow or queue length, and there is the problem of whether it is vacant for the time being if it only considers to meet the traffic demand.
  • This kind of intersection traffic signal plan optimization method based on queuing dissipation time, based on the phase sequence of the traffic signal plan of the original configuration, solves the green light duration of the phase phase under each group of phase sequence plans, and selects the optimal phase sequence and optimal configuration from it.
  • the time plan greatly improves the flexibility of the configuration of the traffic signal plan.
  • the optimal phase sequence can be selected for different control stages, which solves the current situation of the phase and phase sequence synchronization optimization in the current traffic signal plan.
  • the existing configuration flexibility is insufficient problem.
  • FIG. 1 is a schematic flowchart of a method for optimizing an intersection traffic signal scheme based on queue dissipation time according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of an embodiment for optimizing and adjusting the green light time requirements of the flow direction of each entrance in the traffic signal scheme in a unit time period.
  • An optimization method for intersection traffic signal schemes based on queuing dissipating time. Based on the green hour demand, green light idle time and queuing dissipating time of the flow direction of each entrance, the queuing dissipating time is used as the increase or decrease to adjust and determine the actual flow direction of each entrance. Green hour demand; for the phase sequence scheme to be selected, the green light duration of the phase phase under each group of phase sequence schemes is calculated, and the optimal scheme is determined based on the cycle time; as shown in Figure 1, it specifically includes the following steps:
  • the traffic signal control scheme includes basic phase information (basic phase refers to the phase that can pass through the intersection, including its minimum green light time, maximum green light time, and maximum period of time that the intersection can receive), phase sequence information (phase sequence scheme that can be implemented at the intersection, which can be used by the user Configuration determination), control period (signal plan dispatching plan and division of different control periods), phase plan (traffic signal plan under each control period, including phase phase traffic direction, green light duration at each stage, cycle duration, etc.).
  • basic phase information refers to the phase that can pass through the intersection, including its minimum green light time, maximum green light time, and maximum period of time that the intersection can receive
  • phase sequence information phase sequence scheme that can be implemented at the intersection, which can be used by the user Configuration determination
  • control period signal plan dispatching plan and division of different control periods
  • phase plan traffic signal plan under each control period, including phase phase phase traffic direction, green light duration at each stage, cycle duration, etc.
  • the traffic flow information includes the traffic flow in the direction of the entrance in each unit time period, the length of the vehicle queue in the unit time period, and the headway of the intersection when it is saturated.
  • the unit time period is selected according to the user’s need for the optimal timing of the intersection. Generally, 15min is selected.
  • the saturated headway is obtained based on the historical saturated headway obtained by the electronic police/smart bayonet device or based on the traffic channelization and traffic status of the intersection. Control expert settings.
  • step S2 Corresponding the intersection traffic signal control scheme obtained in step S1 with the traffic flow information of the unit time period, analyze the traffic state and traffic demand in the unit time period, and solve the green hour demand and green light empty of each entrance road flow direction. The length of time and the time for queuing to dissipate.
  • step S21 Based on the traffic flow information obtained in step S1, the green hour demand for the flow direction of each entrance in a unit time period Solve, namely:
  • step S22 Compare the green-hour demand solved in step S21 with the traffic signal control scheme under the same unit time period, and determine the long idle time of the green light for each inlet flow direction in each unit time period, namely:
  • T ij represents the idle time of the green light in the flow direction of the i entrance channel j; It represents the green-hour demand for the flow of i-inlet j in the n unit time period; g ij represents the green light time of the i-inlet j in the current traffic signal control scheme.
  • t ij represents the dissipating time of vehicles in the direction of the i entrance lane j
  • l ij represents the number of vehicles in the queue in the direction j of the i entrance lane
  • ht represents the saturated headway.
  • step S31 If there is a green light idle, that is, the green light idle time T ij >0, adjust the green light time requirement according to the queue dissipation time; otherwise, go to step S32;
  • step S31 the green light time requirement is adjusted according to the queue dissipation time, specifically,
  • G ij represents the adjusted green light time requirement in the direction of entrance i and j.
  • the ⁇ and ⁇ coefficients are selected between [0, 1] according to the traffic channelization characteristics of the intersection and the intersection traffic signal plan, and ⁇ ⁇ ; in general , ⁇ is preferably 0.2, and ⁇ is preferably 0.5.
  • the green light idle time is modified according to the queue dissipation time and the green light time in the traffic signal plan stage, so as to adjust and determine the actual green time demand, specifically,
  • step S322 If Then make And go to step S33; otherwise go to the next step S323;
  • step S32 If Then make And go to step S33; otherwise, go to step S33 after the end;
  • the coefficients of ⁇ , ⁇ , and ⁇ are selected between [0, 1] according to the traffic channelization characteristics of the intersection and the intersection traffic signal scheme, and ⁇ .
  • is preferably 0.2
  • is preferably 0.3
  • is preferably 0.5.
  • step S4 Based on the phase sequence information of the traffic signal control scheme in step S1 (the phase sequence scheme to be selected) and the green hour requirements adjusted in step S3, analyze each phase sequence scheme to determine the specific signal scheme under different phase sequence schemes, that is, each phase The duration of the green light for the phase.
  • step S41 Whether there is an overlap phase in the phase sequence to be selected, if yes, go to the next step, otherwise go to step S43;
  • phase 1 and phase 2 are overlap phases, and the flow direction of G 12 involves two phase phases (phase 1 and phase 2);
  • G ij represents the adjusted green hour demand of the flow direction of the i inlet channel j;
  • the green duration of the phase is allocated, namely:
  • G ij represents the actual green hour demand for the flow direction of the i inlet channel j after adjustment.
  • step S44 Summarize the green light duration of each stage obtained in step S41 Determine the total duration of the cycle, namely:
  • step S5 Summarize the traffic signal schemes under each phase sequence scheme obtained in the scheme of step S4, select the scheme with the smallest period as the optimal scheme in the unit time period, and at the same time, perform cycle optimization and adjustment on the optimal scheme in the unit time period obtained , Get the final optimization plan.
  • Periodic optimization adjustments are made to the optimal plan in the obtained unit time period, specifically, if the period length of the optimal plan in the obtained unit time period is adjusted >The maximum period max C of the traffic signal scheme at the intersection is based on the duration of the green light at each stage Perform proportional scaling, namely:
  • This kind of intersection traffic signal scheme optimization method based on queuing dissipating time, while calculating the traffic flow demand for the flow direction of each entrance, at the same time, the flow time to green time and space time is used as the judgment index, and the queuing dissipating time at the intersection is used as the increase or decrease for green time.
  • Time demand is effectively adjusted to ensure that when the inlet road flows to green, it can meet vehicle traffic and there is no long-term green time and space condition, and the green light time is optimized.
  • This method solves the problem of analyzing green-time demand based on traffic flow or queue length at this stage, and there is the problem of only considering whether to meet the traffic demand and whether it is vacant.
  • This kind of intersection traffic signal scheme optimization method based on queuing dissipation time, based on the phase sequence of the traffic signal scheme of the original configuration, solves the green light duration of the phase phase under each group of phase sequence schemes, and selects the optimal phase sequence and optimal timing scheme from them , which greatly improves the flexibility of traffic signal scheme configuration, can select the optimal phase sequence for different control stages, and solves the current situation of phase and phase sequence synchronization optimization in the current traffic signal scheme, and the existing problem of insufficient configuration flexibility.
  • intersection traffic signal scheme optimization method based on queuing dissipating time, considering the existence of overlapping phases of intersection signal schemes, for the phase sequence schemes with overlapping phases, the optimal phase phase is solved by using the minimum convexity programming model of the scheme.
  • the duration of the green light is the minimum convexity programming model of the scheme.
  • An intersection contains four entrances from the south, east, north, and west. Each entrance has three flow directions: turn left, go straight, and turn right.
  • the morning peak signal phase scheme is as follows, and the cycle length is 136 seconds.
  • step S1 read its traffic flow and queue length data information, and solve the green hour demand, green light idle time and queue dissipation time based on step S2, as shown in the following table :
  • step S3 adjust the flow direction of each entrance to the green hour demand, as shown in the following table, where no data is a right-turning vehicle, and its traffic flow is less and does not participate in consideration.
  • phase sequence information of the traffic signal control scheme in step S1 Based on the phase sequence information of the traffic signal control scheme in step S1, it can be seen that there are two groups of candidate phase sequences at the intersection: 1 go straight from north to south-turn left from north to south-go straight from east to west-turn left from east to west; Turn-east and west go straight-turn left and east.
  • step S4 Respectively optimize the green light duration according to step S4, in which the phase sequence 2 has overlapping phases, and solve it according to the minimum convexity programming model of the idle discharge plan, then the green light durations of the two phase sequence phase phases are as follows:
  • Phase sequence1 cycle duration 154s
  • Phase sequence 2 cycle duration 140s
  • the signal scheme of phase sequence 2 is selected. Because it is greater than the maximum period of 136 seconds, the scaling is performed.
  • the final scheme is as follows:
  • This kind of intersection traffic signal scheme optimization method based on queuing dissipating time, based on traffic flow, taking the queuing dissipating time at intersection as the increase or decrease, adjusts the demand for the green light time of each entrance to ensure that it is the optimal green light demand time Solution, and further solve the phase phase duration of each group of phase sequence schemes separately for the phase sequence to be selected, so as to select the optimal scheme, which is more flexible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明提供一种基于排队消散时间的路口交通信号方案优化方法,基于各进口道流向的绿时需求、绿灯空放时长和排队消散时间,以排队消散时间作为增减量,调整确定各进口道流向的实际绿时需求;针对待选相序方案对每一组相序方案下相位阶段绿灯时长计算,基于周期时长确定最优方案;本发明方法,对比传统绿时需求求解方案,能够对绿时需求有效调整,确保进口道流向绿时既能满足车辆通行又不存在长时间绿时空放情况,将绿时需求值达到最优;并考虑对比待选相序方案,选取最优相序和最优配时方案,大大提高了交通信号方案配置的灵活性,可为不同控制阶段选取出最优的信号控制方案。

Description

基于排队消散时间的路口交通信号方案优化方法 技术领域
本发明涉及一种基于排队消散时间的路口交通信号方案优化方法。
背景技术
传统交通信号控制方案优化配置是由信控团队或专业交警在调度计划和控制时段配置的基础上根据交通流信息和实际交通状况优化配时。面领着日益增长的城市交通管理智能化需求,人工智能技术的发展以及电警、卡口、车检器等前端检测设备的普及为路口交通信号方案智能化优化配置提供了有效支撑,针对路口交通信号方案的智能化优化已有一定的研究。
中国专利申请CN201811048116.7提出一种基于路口流向需求的多目标交通信号方案优化配置方法,其通过以交通路口各流向需求为指数进行整数规划;中国专利申请CN201810439951.7提出一种以路口速度为参数,基于多目标遗传算法的路口交通信号方案优化;中国专利申请CN201910920298.0提出一种基于车辆排队消散时间的单交叉口信号控制方法,通过对饱和和非饱和状态下的路口方案消散时间评估分析来优化。
综上,现阶段交通信号方案优化配置中的绿时需求主要分为两大类,一类是利用交通流量分析判定,另一类是以路口车辆速度进行分析,同时均以满足交通流量为目的,未能考虑到绿灯时长空放情况;另一方面,现阶段的路口交通信号方案优化未能考虑到相序方案和搭接相位情况的存在,大多数以传统四阶段相位来考虑信号优化。
上述问题是在基于排队消散时间的路口交通信号方案优化方法的设计过程中应当予以考虑并解决的问题。
发明内容
本发明的目的是提供一种基于排队消散时间的路口交通信号方案优化方法,以交通流量为基础,以路口排队消散时间为增减量,对各进口道流向绿灯时长需求进行调整,确保其为绿灯需求时长的最优解,解决现有技术中未能考虑到绿灯时长空放情况,且灵活性不足的问题。
本发明的技术解决方案是:
一种基于排队消散时间的路口交通信号方案优化方法,基于各进口道流向的绿时需求、绿灯空放时长和排队消散时间,以排队消散时间作为增减量,调整确定各进口道流向的实际绿时需求;针对待选相序方案对每一组相序方案下相位阶段绿灯时长计算,基于周期时长确定最优方案,具体包括以下步骤:
S1、获取路口渠化信息、交通信号控制方案和实时交通流信息;
S2、将步骤S1获得的路口交通信号控制方案和单位时间段的交通流信息相对应,对该单位时间段内的交通状态和交通需求进行分析,求解各进口道流向的绿时需求、绿灯空放时长和排队消散时间;
S3、对单位时间段下交通信号方案中各进口道流向的绿灯时长需求进行优化调整,确定调整后的实际绿时需求;
S4、基于步骤S1中交通信号控制方案相序信息,以及步骤S3所得调整后的实际绿时需求分别对各相序方案分析,确定不同相序方案下具体信号方案,即各相位阶段的绿灯时长;
S5、汇总步骤S4方案中得到的各相序方案下的交通信号方案,选择周期最小的方案为单位时间段内的最优方案,同时对所得单位时间段内的最优方案进行周期优化调整后,得到最终优化方案。
进一步地,步骤S1中,交通信号控制方案包括基础相位信息、相序信息、控制时段和相位方案;交通流信息包括各单位时间段内进口道方向交通流量、单位时间段内车辆排队长度以及路口饱和车头时距。
进一步地,步骤S2中,求解各进口道流向的绿时需求、绿灯空放时长和排队消散时间,具体为,
S21、基于步骤S1获取的交通流信息对单位时间段下各进口道流向的绿时需求
Figure PCTCN2020095094-appb-000001
求解,即:
Figure PCTCN2020095094-appb-000002
Figure PCTCN2020095094-appb-000003
式中,
Figure PCTCN2020095094-appb-000004
表示i进口道j流向的绿时需求;λ ij表示n单位时间段下i进口道j流向的交通绿信比;C表示交通信号方案的周期时长;Q ij表示i进口道j流向 的交通流量;ht表示饱和车头时距;
S22、将步骤S21求解的绿时需求与同单位时间段下交通信号控制方案对比,确定各单位时间段下各进口道流向的绿灯空放时间长,即:
Figure PCTCN2020095094-appb-000005
式中,T ij表示i进口道j流向的绿灯空放时长;
Figure PCTCN2020095094-appb-000006
表示n单位时间段下i进口道j流向的绿时需求;g ij表示交通信号控制方案中i进口道j流向的绿灯时长;
S23、基于对应的单位时间短下信号控制方案与交通流信息,确定各进口道流向的车辆排队消散时间。
进一步地,步骤S23中,确定各进口道流向的车辆排队消散时间:t ij=l ij*ht其中,t ij表示i进口道j方向的车辆排队消散时间,l ij表示i进口道j方向的排队车辆数目,ht表示饱和车头时距。
进一步地,步骤S3中,对单位时间段下交通信号方案中各进口道流向的绿时需求进行优化调整,确定调整后的实际绿时需求,具体为,
S31、若存在绿灯空放,即绿灯空放时长T ij>0,则根据排队消散时间对绿时需求进行调整,确定实际绿时需求;否则转到步骤S32;
S32、若绿灯空放时长小于等于零,根据排队消散时间和交通信号方案阶段绿灯时长对绿灯空放时长进行修成,从而调整确定实际绿时需求;
S33、基于步骤S31和步骤S32确定调整后的实际绿时需求G ij,读取交通信号控制方案基础相位信息中设定的i进口道j流向的最小绿灯时长g ij,比较确定调整后的实际绿时需求G ij:若G ij<g ij,则将最小绿灯时长作为调整后确定的实际绿时需求,即G ij=g ij,否则继续使用上述步骤计算得到的实际绿时需求。
进一步地,步骤S31中,根据排队消散时间对绿时需求进行调整,得到实际绿时需求,具体为,
S311、若T ij>0,则转到下一步骤S312;否则转到步骤S32;
S312、若t ij≥g ij,则使G ij=g ij,并转到步骤S33;否则转到下一步骤S313;
S313、若
Figure PCTCN2020095094-appb-000007
则使G ij=g ij-T ij*α,并转到步骤S33;否则转到下一步骤S314;
S314、若
Figure PCTCN2020095094-appb-000008
则使G ij=g ij-T ij*β,并转到步骤S33;否则直接结束后,转到步骤S33;
其中,G ij表示调整后i进口道j方向实际绿时需求,α和β分别为系数并根据路口交通渠化特性和路口交通信号方案在[0,1]之间取值,且α<β。
进一步地,步骤S32中,调整确定实际绿时需求,具体为,
S321、若t ij>g ij,则修正绿灯空放时长,即使
Figure PCTCN2020095094-appb-000009
并转到下一步骤S322,否则绿时需求不调整,并转到步骤S33;
S322、若
Figure PCTCN2020095094-appb-000010
则使
Figure PCTCN2020095094-appb-000011
并转到步骤S33;否则转到下一步骤S323;
S323、若
Figure PCTCN2020095094-appb-000012
则使
Figure PCTCN2020095094-appb-000013
并转到步骤S33;否则转到下一步骤S324;
S324、若
Figure PCTCN2020095094-appb-000014
则使
Figure PCTCN2020095094-appb-000015
并转到步骤S33;否则结束后,转到步骤S33;
其中,α、β、δ分别为系数并根据路口交通渠化特性和路口交通信号方案在[0,1]之间取值,且α<β<δ。
进一步地,步骤S4中,确定各相位阶段的绿灯时长,具体为,
S41、确定待选相序是否存在搭接相位,若存在则转到下一步骤,否则转到步骤S43;
S42、若调整后的实际绿时需求G ij满足搭接相位实施要求,则构建方案空放最小凸规划模型,求解出该控制时间段内各阶段最优绿灯时长
Figure PCTCN2020095094-appb-000016
否则剔除搭接相位,转到下一步骤;
S43、基于相序各阶段流向中的绿灯时长G ij最大值分配阶段绿时长,即:
Figure PCTCN2020095094-appb-000017
式中,
Figure PCTCN2020095094-appb-000018
表示第n套相序方案下m相位阶段内的绿灯时长;G ij表示调整后i进口道j流向的实际绿时需求;
S44、汇总步骤S41得到的各阶段绿灯时长
Figure PCTCN2020095094-appb-000019
确定周期总时长,即:
Figure PCTCN2020095094-appb-000020
式中,
Figure PCTCN2020095094-appb-000021
表示第n套相序方案的修正周期时长,
Figure PCTCN2020095094-appb-000022
表示第n套相序方案下m相位阶段内的绿灯时长。
进一步地,步骤S42中,对所得单位时间段内的最优方案进行周期优化调整,具体为,若所得单位时间段内的最优方案的周期时长
Figure PCTCN2020095094-appb-000023
大于路口交通信号方案最大周期max C,则根据各阶段绿灯时长
Figure PCTCN2020095094-appb-000024
进行等比缩放,即:
Figure PCTCN2020095094-appb-000025
本发明的有益效果是:
一、该种基于排队消散时间的路口交通信号方案优化方法,以交通流量为基础,以路口排队消散时间为增减量,对各进口道流向绿时需求进行调整,确保其为绿时需求为实际需求量,进一步针对待选相序分别求解出每一组相序方案中相位阶段时长,从而选取最优方案,更具有灵活性。
二、该种基于排队消散时间的路口交通信号方案优化方法,在对交通流量求解各进口道流向绿时需求的同时,以流向绿时空放时长作为判定指标,以路口排队消散时间作为增减量对绿时需求有效调整,确保进口道流向绿时既能满足车辆通行又不存在长时间绿时空放情况,将绿时需求到最优。该方法解决了现阶段根据交通流量或排队长度分析绿时需求的模式,存在仅考虑到满足交通通行需求,暂缺是否空放的问题。
三、该种基于排队消散时间的路口交通信号方案优化方法,基于原始配置的交通信号方案相位顺序,对每组相序方案下相位阶段绿灯时长进行求解,从中选取最优相序和最优配时方案,大大提高了交通信号方案配置的灵活性,可为不同控制阶段选取出最优的相序,解决了现阶段交通信号方案中相位相序同步优化的现状,存在的配置灵活性不足的问题。
附图说明
图1是本发明实施例基于排队消散时间的路口交通信号方案优化方法的流程示意图。
图2是实施例对单位时间段下交通信号方案中各进口道流向的绿灯时长需求进行优化调整的说明示意图。
具体实施方式
下面结合附图详细说明本发明的优选实施例。
实施例
一种基于排队消散时间的路口交通信号方案优化方法,基于各进口道流向的绿时需求、绿灯空放时长和排队消散时间,以排队消散时间作为增减量,调整确定各进口道流向的实际绿时需求;针对待选相序方案对每一组相序方案下相位阶段绿灯时长计算,基于周期时长确定最优方案;如图1,具体包括以下步骤,
S1.获取路口渠化信息、交通信号控制方案和实时交通流信息。
交通信号控制方案包括基础相位信息(基础相位指路口可通行的相位,包括其最小绿灯时间、最大绿灯时间、路口可接收最大周期时长)、相序信息(路口可实行的相位顺序方案,可由用户配置确定)、控制时段(信号方案调度计划和不同控制时间段的划分)、相位方案(各控制时段下的交通信号方案,包括阶段相位通行方向、各阶段绿灯时长、周期时长等)。
交通流信息包括各单位时间段内进口道方向交通流量、单位时间段内车辆排队长度以及路口饱和车头时距。
单位时间段根据用户对路口优化配时的需要选取,一般情况下选取15min,饱和车头时距基于电子警察/智能卡口设备求解的历史饱和车头时距获取或基于路口交通渠化和交通状态由信控专家设定。
S2.将步骤S1获得的路口交通信号控制方案和单位时间段的交通流信息相对应,对该单位时间段内的交通状态和交通需求进行分析,求解各进口道流向的绿时需求、绿灯空放时长和排队消散时间。
S21.基于步骤S1获取的交通流信息对单位时间段下各进口道流向的绿时需求
Figure PCTCN2020095094-appb-000026
求解,即:
Figure PCTCN2020095094-appb-000027
Figure PCTCN2020095094-appb-000028
式中,
Figure PCTCN2020095094-appb-000029
表示i进口道j流向的绿时需求;λ ij表示n单位时间段下i进口道j流向的交通绿信比;C表示交通信号方案的周期时长;Q ij表示i进口道j流向的交通流量;ht表示饱和车头时距;i表示进口道,以一个十字路口为例则包括东、南、西、北四个进口道;j表示流向,包括在左转、直行、右转;
S22.将步骤S21求解的绿时需求与同单位时间段下交通信号控制方案对比,确定各单位时间段下各进口道流向的绿灯空放时间长,即:
Figure PCTCN2020095094-appb-000030
式中,T ij表示i进口道j流向的绿灯空放时长;
Figure PCTCN2020095094-appb-000031
表示n单位时间段下i进口道j流向的绿时需求;g ij表示现阶段交通信号控制方案中i进口道j流向的绿灯时长。
S23.基于对应的单位时间短下信号控制方案与交通流信息,确定各进口道流向的车辆排队消散时间,优选由车辆排队长度和饱和车头时距确定,即:
t ij=l ij*ht
式中,t ij表示i进口道j方向的车辆排队消散时间;l ij表示i进口道j方向的排队车辆数目;ht表示饱和车头时距。
S3.对单位时间段下交通信号方案中各进口道流向的绿时需求进行优化调整,确定各进口道流向的实际绿时需求,如图2。
S31.若存在绿灯空放,即绿灯空放时长T ij>0,则根据排队消散时间对绿灯时长需求进行调整;否则转到S32步骤;
步骤S31中,根据排队消散时间对绿灯时长需求进行调整,具体为,
S311.若T ij>0,则转到下一步骤S312;否则转到步骤S32;
S312.若t ij≥g ij,则使G ij=g ij,并转到步骤S33;否则转到下一步骤S313;
S313.若
Figure PCTCN2020095094-appb-000032
则使G ij=g ij-T ij*α,并转到步骤S33;否则转到下一 步骤S314;
S314.若
Figure PCTCN2020095094-appb-000033
则使G ij=g ij-T ij*β,并转到步骤S33;否则直接结束后,转到步骤S33;
其中,G ij表示调整后i进口道j方向绿灯时长需求,α和β系数根据路口交通渠化特性和路口交通信号方案在[0,1]之间取值,且α<β;一般情况下,α优选0.2,β优选0.5。
S32.若绿灯空放时长小于等于零,根据排队消散时间和交通信号方案阶段绿灯时长对绿灯空放时长进行修成,从而调整确定实际绿时需求,具体为,
S321.若t ij>g ij,则修正绿灯空放时间,即使
Figure PCTCN2020095094-appb-000034
并转到下一步骤S322,否则绿灯时长需求不调整,并转到步骤S33;
S322.若
Figure PCTCN2020095094-appb-000035
则使
Figure PCTCN2020095094-appb-000036
并转到步骤S33;否则转到下一步骤S323;
S323.若
Figure PCTCN2020095094-appb-000037
则使
Figure PCTCN2020095094-appb-000038
并转到步骤S33;否则转到下一步骤S324;
S324.若
Figure PCTCN2020095094-appb-000039
则使
Figure PCTCN2020095094-appb-000040
并转到步骤S33;否则结束后,转到步骤S33;
其中α、β、δ系数根据路口交通渠化特性和路口交通信号方案在[0,1]之间取值,且α<β<δ。一般情况下,α优选0.2,β优选0.3,δ优选0.5。
S33.基于步骤S31和步骤S32确定调整后的实际绿时需求G ij,读取交通信号控制方案基础相位信息中设定的i进口道j流向的最小绿灯时长g ij,比较确定调整后的实际绿时需求G ij:若G ij<g ij,则将最小绿灯时长作为调整后确定的实际绿时需求,即G ij=g ij,否则继续使用上述步骤计算得到的实际绿时需求。
S4.基于步骤S1中交通信号控制方案的相序信息(待选相序方案)以及步骤S3调整的绿时需求分别对各相序方案分析,确定不同相序方案下具体信号方案,即各相位阶段的绿灯时长。
S41.待选相序是否存在搭接相位,若存在则转到下一步骤,否则转到步骤S43;
S42.若调整后的绿时需求G ij满足搭接相位实施要求,则构建方案空放最小凸规划模型,求解出该控制时间段内各阶段最优绿灯时长
Figure PCTCN2020095094-appb-000041
否则剔除搭接相位,转到下一步骤;
具体来说:
Figure PCTCN2020095094-appb-000042
Figure PCTCN2020095094-appb-000043
式中,阶段1和阶段2为搭接相位,G 12流向涉及到两个相位阶段(阶段1和阶段2);
Figure PCTCN2020095094-appb-000044
表示第n套相序方案下m相位阶段内的绿灯时长,其中
Figure PCTCN2020095094-appb-000045
分别表示第n套相序方案的第一阶段和第二阶段;G ij表示调整后的i进口道j流向的绿时需求;
S43.基于相序各阶段流向中的绿灯时长G ij最大值分配阶段绿时长,即:
Figure PCTCN2020095094-appb-000046
式中,
Figure PCTCN2020095094-appb-000047
表示第n套相序方案下m相位阶段内的绿灯时长;G ij表示调整后i进口道j流向的实际绿时需求。
S44.汇总S41步骤得到的各阶段绿灯时长
Figure PCTCN2020095094-appb-000048
确定周期总时长,即:
Figure PCTCN2020095094-appb-000049
式中,
Figure PCTCN2020095094-appb-000050
表示第n套相序方案的修正周期时长,
Figure PCTCN2020095094-appb-000051
表示第n套相序方案下m相位阶段内的绿灯时长。
S5、汇总步骤S4方案中得到的各相序方案下的交通信号方案,选择周期最小的方案为单位时间段内的最优方案,同时对所得单位时间段内的最优方案进行周期优化调整后,得到最终优化方案。
对所得单位时间段内的最优方案进行周期优化调整,具体为,若对所得单位 时间段内的最优方案的周期时长
Figure PCTCN2020095094-appb-000052
>路口交通信号方案最大周期max C,则根据各阶段绿灯时长
Figure PCTCN2020095094-appb-000053
进行等比缩放,即:
Figure PCTCN2020095094-appb-000054
该种基于排队消散时间的路口交通信号方案优化方法,在对交通流量求解各进口道流向绿时需求的同时,以流向绿时空放时长作为判定指标,以路口排队消散时间作为增减量对绿时需求有效调整,确保进口道流向绿时既能满足车辆通行又不存在长时间绿时空放情况,将绿灯时间长达到最优。该方法解决了现阶段根据交通流量或排队长度分析绿时需求的模式,存在仅考虑到满足交通通行需求暂缺是否空放的问题。
该种基于排队消散时间的路口交通信号方案优化方法,基于原始配置的交通信号方案相位顺序,对每组相序方案下相位阶段绿灯时长进行求解,从中选取最优相序和最优配时方案,大大提高了交通信号方案配置的灵活性,可为不同控制阶段选取出最优的相序,解决了现阶段交通信号方案中相位相序同步优化的现状,存在的配置灵活性不足的问题。
该种基于排队消散时间的路口交通信号方案优化方法,考虑到路口信号方案搭接相位的存在,对于存在搭接相位的相序方案,采用方案空放最小凸规划模型求解出最优的相位阶段绿灯时长。
实施例的一个具体示例说明如下:
某十字路口,其包含东南西北四个进口道,各进口道含有左转、直行、右转三个流向,其早高峰信号相位方案如下,周期时长为136秒。
Figure PCTCN2020095094-appb-000055
选取某一单位时间段(15min)为案例,基于步骤S1,读取其交通流量和排队长度数据信息,基于步骤S2求解出绿时需求、绿灯空放时长和排队消散时间,具体如下表所示:
Figure PCTCN2020095094-appb-000056
Figure PCTCN2020095094-appb-000057
根据步骤S3调整各进口道流向绿时需求,具体如下表所示,其中无数据均为右转车辆,其交通流量较少不参与考虑。
进口道 方向 调整绿时需求(s)
26
28.4
 
27
41
 
43
40
西  
西 25.9
西 43.3
基于S1步骤交通信号控制方案的相序信息可知路口共有两组待选相序分别为:①南北直行-南北左转-东西直行-东西左转;②南北直行-南直行/左转-南北左转-东西直行-东西左转。
分别按照步骤S4对其绿灯时长优化,其中相序②存在搭接相位,按照方案空放最小凸规划模型求解,则两组相序相位阶段绿灯时长如下:
相序①:周期时长154s
Figure PCTCN2020095094-appb-000058
相序②:周期时长140s
Figure PCTCN2020095094-appb-000059
因此选取相序②的信号方案,因其大于周期时长最大值136秒,则进行等比缩放,最终方案如下:
南北直行 南直行/左转 南北左转 东西直行 东西左转
28 14 26 42 26
该种基于排队消散时间的路口交通信号方案优化方法,以交通流量为基础,以路口排队消散时间为增减量,对各进口道流向绿灯时长需求进行调整,确保其为绿灯需求时长的最优解,进一步针对待选相序分别求解出每一组相序方案中相位阶段时长,从而选取最优方案,更具有灵活性。

Claims (9)

  1. 一种基于排队消散时间的路口交通信号方案优化方法,其特征在于:基于各进口道流向的绿时需求、绿灯空放时长和排队消散时间,以排队消散时间作为增减量,调整确定各进口道流向的实际绿时需求;针对待选相序方案对每一组相序方案下相位阶段绿灯时长计算,基于周期时长确定最优方案,具体包括以下步骤:
    S1、获取路口渠化信息、交通信号控制方案和实时交通流信息;
    S2、将步骤S1获得的路口交通信号控制方案和单位时间段的交通流信息相对应,对该单位时间段内的交通状态和交通需求进行分析,求解各进口道流向的绿时需求、绿灯空放时长和排队消散时间;
    S3、对单位时间段下交通信号方案中各进口道流向的绿灯时长需求进行优化调整,确定调整后的实际绿时需求;
    S4、基于步骤S1中交通信号控制方案相序信息,以及步骤S3所得调整后的实际绿时需求分别对各相序方案分析,确定不同相序方案下具体信号方案,即各相位阶段的绿灯时长;
    S5、汇总步骤S4方案中得到的各相序方案下的交通信号方案,选择周期最小的方案为单位时间段内的最优方案,同时对所得单位时间段内的最优方案进行周期优化调整后,得到最终优化方案。
  2. 如权利要求1所述的基于排队消散时间的路口交通信号方案优化方法,其特征在于:步骤S1中,交通信号控制方案包括基础相位信息、相序信息、控制时段和相位方案;交通流信息包括各单位时间段内进口道方向交通流量、单位时间段内车辆排队长度以及路口饱和车头时距。
  3. 如权利要求1所述的基于排队消散时间的路口交通信号方案优化方法,其特征在于:步骤S2中,求解各进口道流向的绿时需求、绿灯空放时长和排队消散时间,具体为,
    S21、基于步骤S1获取的交通流信息对单位时间段下各进口道流向的绿时需求
    Figure PCTCN2020095094-appb-100001
    求解,即:
    Figure PCTCN2020095094-appb-100002
    Figure PCTCN2020095094-appb-100003
    式中,
    Figure PCTCN2020095094-appb-100004
    表示i进口道j流向的绿时需求;λ ij表示n单位时间段下i进口道j流向的交通绿信比;C表示交通信号方案的周期时长;Q ij表示i进口道j流向的交通流量;ht表示饱和车头时距;
    S22、将步骤S21求解的绿时需求与同单位时间段下交通信号控制方案对比,确定各单位时间段下各进口道流向的绿灯空放时间长,即:
    Figure PCTCN2020095094-appb-100005
    式中,T ij表示i进口道j流向的绿灯空放时长;
    Figure PCTCN2020095094-appb-100006
    表示n单位时间段下i进口道j流向的绿时需求;g ij表示交通信号控制方案中i进口道j流向的绿灯时长;
    S23、基于对应的单位时间短下信号控制方案与交通流信息,确定各进口道流向的车辆排队消散时间。
  4. 如权利要求1所述的基于排队消散时间的路口交通信号方案优化方法,其特征在于:步骤S23中,确定各进口道流向的车辆排队消散时间:t ij=l ij*ht其中,t ij表示i进口道j方向的车辆排队消散时间,l ij表示i进口道j方向的排队车辆数目,ht表示饱和车头时距。
  5. 如权利要求1-4任一项所述的基于排队消散时间的路口交通信号方案优化方法,其特征在于:步骤S3中,对单位时间段下交通信号方案中各进口道流向的绿时需求进行优化调整,确定调整后的实际绿时需求,具体为,
    S31、若存在绿灯空放,即绿灯空放时长T ij>0,则根据排队消散时间对绿时需求进行调整,确定实际绿时需求;否则转到步骤S32;
    S32、若绿灯空放时长小于等于零,根据排队消散时间和交通信号方案阶段绿灯时长对绿灯空放时长进行修成,从而调整确定实际绿时需求;
    S33、基于步骤S31和步骤S32确定调整后的实际绿时需求G ij,读取交通信号控制方案基础相位信息中设定的i进口道j流向的最小绿灯时长g ij,比较确定 调整后的实际绿时需求G ij:若G ij<g ij,则将最小绿灯时长作为调整后确定的实际绿时需求,即G ij=g ij,否则继续使用上述步骤计算得到的实际绿时需求。
  6. 如权利要求5所述的基于排队消散时间的路口交通信号方案优化方法,其特征在于:步骤S31中,根据排队消散时间对绿时需求进行调整,得到实际绿时需求,具体为,
    S311、若T ij>0,则转到下一步骤S312;否则转到步骤S32;
    S312、若t ij≥g ij,则使G ij=g ij,并转到步骤S33;否则转到下一步骤S313;
    S313、若
    Figure PCTCN2020095094-appb-100007
    则使G ij=g ij-T ij*α,并转到步骤S33;否则转到下一步骤S314;
    S314、若
    Figure PCTCN2020095094-appb-100008
    则使G ij=g ij-T ij*β,并转到步骤S33;否则直接结束后,转到步骤S33;
    其中,G ij表示调整后i进口道j方向实际绿时需求,α和β分别为系数并根据路口交通渠化特性和路口交通信号方案在[0,1]之间取值,且α<β。
  7. 如权利要求5所述的基于排队消散时间的路口交通信号方案优化方法,其特征在于:步骤S32中,调整确定实际绿时需求,具体为,
    S321、若t ij>g ij,则修正绿灯空放时长,即使
    Figure PCTCN2020095094-appb-100009
    并转到下一步骤S322,否则绿时需求不调整,并转到步骤S33;
    S322、若
    Figure PCTCN2020095094-appb-100010
    则使
    Figure PCTCN2020095094-appb-100011
    并转到步骤S33;否则转到下一步骤S323;
    S323、若
    Figure PCTCN2020095094-appb-100012
    则使
    Figure PCTCN2020095094-appb-100013
    并转到步骤S33;否则转到下一步骤S324;
    S324、若
    Figure PCTCN2020095094-appb-100014
    则使
    Figure PCTCN2020095094-appb-100015
    并转到步骤S33;否则结束后,转到步骤S33;
    其中,α、β、δ分别为系数并根据路口交通渠化特性和路口交通信号方案在[0,1]之间取值,且α<β<δ。
  8. 如权利要求1-4任一项所述的基于排队消散时间的路口交通信号方案优化方法,其特征在于:步骤S4中,确定各相位阶段的绿灯时长,具体为,
    S41、确定待选相序是否存在搭接相位,若存在则转到下一步骤,否则转到步骤S43;
    S42、若调整后的实际绿时需求G ij满足搭接相位实施要求,则构建方案空放最小凸规划模型,求解出该控制时间段内各阶段最优绿灯时长
    Figure PCTCN2020095094-appb-100016
    否则剔除搭接相位,转到下一步骤;
    S43、基于相序各阶段流向中的绿灯时长G ij最大值分配阶段绿时长,即:
    Figure PCTCN2020095094-appb-100017
    式中,
    Figure PCTCN2020095094-appb-100018
    表示第n套相序方案下m相位阶段内的绿灯时长;G ij表示调整后i进口道j流向的实际绿时需求;
    S44、汇总步骤S41得到的各阶段绿灯时长
    Figure PCTCN2020095094-appb-100019
    确定周期总时长,即:
    Figure PCTCN2020095094-appb-100020
    式中,
    Figure PCTCN2020095094-appb-100021
    表示第n套相序方案的修正周期时长,
    Figure PCTCN2020095094-appb-100022
    表示第n套相序方案下m相位阶段内的绿灯时长。
  9. 如权利要求8所述的基于排队消散时间的路口交通信号方案优化方法,其特征在于:步骤S42中,对所得单位时间段内的最优方案进行周期优化调整,具体为,若所得单位时间段内的最优方案的周期时长
    Figure PCTCN2020095094-appb-100023
    大于路口交通信号方案最大周期max C,则根据各阶段绿灯时长
    Figure PCTCN2020095094-appb-100024
    进行等比缩放,即:
    Figure PCTCN2020095094-appb-100025
PCT/CN2020/095094 2020-03-27 2020-06-09 基于排队消散时间的路口交通信号方案优化方法 WO2021189668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010234831.0A CN111429721B (zh) 2020-03-27 2020-03-27 基于排队消散时间的路口交通信号方案优化方法
CN202010234831.0 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021189668A1 true WO2021189668A1 (zh) 2021-09-30

Family

ID=71549821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095094 WO2021189668A1 (zh) 2020-03-27 2020-06-09 基于排队消散时间的路口交通信号方案优化方法

Country Status (2)

Country Link
CN (1) CN111429721B (zh)
WO (1) WO2021189668A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113863074A (zh) * 2021-10-29 2021-12-31 北京交通大学 一种缓解城市过饱和交叉口交通拥堵的通行管控方法
CN114202933A (zh) * 2021-12-09 2022-03-18 合肥安慧软件有限公司 一种基于路口电警数据的路口信号控制效率评价方法
CN114373296A (zh) * 2021-12-07 2022-04-19 浙江银江智慧交通工程技术研究院有限公司 混行交叉口网联自动专用道布设方案评价方法和系统
CN114446066A (zh) * 2021-12-30 2022-05-06 银江技术股份有限公司 一种道路信号控制方法以及装置
CN114627660A (zh) * 2022-03-11 2022-06-14 公安部交通管理科学研究所 面向非均衡交通流的交叉口信号实时迭代优化控制方法
CN115512556A (zh) * 2022-09-28 2022-12-23 清华大学 用于特殊车辆优先通行的交通信号控制方法及装置
CN116153065A (zh) * 2022-12-29 2023-05-23 山东大学 车路协同环境下交叉口交通信号精细化优化方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111028519B (zh) * 2019-12-28 2021-01-12 江苏航天大为科技股份有限公司 一种基于视频流量检测器的自适应控制方法
CN113299080B (zh) * 2021-04-28 2021-12-21 东南大学 一种基于路口交通通行状态的信号实时优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103778791A (zh) * 2012-10-26 2014-05-07 中兴通讯股份有限公司 一种交通自适应控制方法和装置
US20170069204A1 (en) * 2015-09-08 2017-03-09 Ofer Hofman Method for traffic control
CN107862878A (zh) * 2017-11-14 2018-03-30 浙江浙大中控信息技术有限公司 基于相位方案决策的单交叉口自适应控制方法
CN109035780A (zh) * 2018-09-07 2018-12-18 江苏智通交通科技有限公司 信号控制路口相位绿时感应区间的优化配置方法
CN109087519A (zh) * 2018-08-10 2018-12-25 江苏智通交通科技有限公司 联控路口交通信号方案阶段划分及绿时配置方法
CN110634308A (zh) * 2019-09-26 2019-12-31 同济大学 一种基于车辆排队消散时间的单交叉口信号控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280113B (zh) * 2013-05-08 2014-12-24 长安大学 一种自适应的交叉口信号控制方法
CN104318789B (zh) * 2014-10-05 2016-07-20 哈尔滨工业大学 一种提高信号交叉口进口道相位绿灯时间利用率的方法
CN105679051B (zh) * 2016-03-08 2017-11-07 大连理工大学 基于允许绿灯结束时段的全感应式协调信号控制方法
CN105957371B (zh) * 2016-06-21 2019-03-01 同济大学 控制装置、及其应用的交通灯控制方法及系统
CN106846835B (zh) * 2017-02-22 2019-07-05 北方工业大学 一种城市区域交通信号自适应协调控制方法
CN108665715B (zh) * 2018-05-09 2021-04-09 上海电科智能系统股份有限公司 一种路口智能交通研判和信号优化方法
CN109345839A (zh) * 2018-10-19 2019-02-15 江苏智通交通科技有限公司 基于常规相序的组合相位灵活配置方法
CN109544945B (zh) * 2018-11-30 2021-06-01 江苏智通交通科技有限公司 基于车道饱和度的区域控制相位配时优化方法
CN110047299B (zh) * 2019-04-10 2020-11-03 合肥学院 交叉口机动车交通信号动态调配方法
CN110136444B (zh) * 2019-06-06 2020-07-10 南京慧尔视智能科技有限公司 一种交叉口绿灯空放时间计算方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103778791A (zh) * 2012-10-26 2014-05-07 中兴通讯股份有限公司 一种交通自适应控制方法和装置
US20170069204A1 (en) * 2015-09-08 2017-03-09 Ofer Hofman Method for traffic control
CN107862878A (zh) * 2017-11-14 2018-03-30 浙江浙大中控信息技术有限公司 基于相位方案决策的单交叉口自适应控制方法
CN109087519A (zh) * 2018-08-10 2018-12-25 江苏智通交通科技有限公司 联控路口交通信号方案阶段划分及绿时配置方法
CN109035780A (zh) * 2018-09-07 2018-12-18 江苏智通交通科技有限公司 信号控制路口相位绿时感应区间的优化配置方法
CN110634308A (zh) * 2019-09-26 2019-12-31 同济大学 一种基于车辆排队消散时间的单交叉口信号控制方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113863074A (zh) * 2021-10-29 2021-12-31 北京交通大学 一种缓解城市过饱和交叉口交通拥堵的通行管控方法
CN113863074B (zh) * 2021-10-29 2022-11-25 北京交通大学 一种缓解城市过饱和交叉口交通拥堵的通行管控方法
CN114373296A (zh) * 2021-12-07 2022-04-19 浙江银江智慧交通工程技术研究院有限公司 混行交叉口网联自动专用道布设方案评价方法和系统
CN114202933A (zh) * 2021-12-09 2022-03-18 合肥安慧软件有限公司 一种基于路口电警数据的路口信号控制效率评价方法
CN114202933B (zh) * 2021-12-09 2023-10-27 合肥安慧软件有限公司 一种基于路口电警数据的路口信号控制效率评价方法
CN114446066A (zh) * 2021-12-30 2022-05-06 银江技术股份有限公司 一种道路信号控制方法以及装置
CN114446066B (zh) * 2021-12-30 2023-05-16 银江技术股份有限公司 一种道路信号控制方法以及装置
CN114627660A (zh) * 2022-03-11 2022-06-14 公安部交通管理科学研究所 面向非均衡交通流的交叉口信号实时迭代优化控制方法
CN114627660B (zh) * 2022-03-11 2023-01-20 公安部交通管理科学研究所 面向非均衡交通流的交叉口信号实时迭代优化控制方法
CN115512556A (zh) * 2022-09-28 2022-12-23 清华大学 用于特殊车辆优先通行的交通信号控制方法及装置
CN116153065A (zh) * 2022-12-29 2023-05-23 山东大学 车路协同环境下交叉口交通信号精细化优化方法及装置

Also Published As

Publication number Publication date
CN111429721B (zh) 2021-11-09
CN111429721A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2021189668A1 (zh) 基于排队消散时间的路口交通信号方案优化方法
CN108510758B (zh) 基于视频实时信息的城市快速路入口匝道信号控制方法
CN110570658B (zh) 基于层次聚类的路口异常车辆轨迹识别分析方法
CN111951549B (zh) 在网联车辆环境下的自适应交通信号灯控制方法及系统
WO2021217790A1 (zh) 考虑路口流量失衡状况的交通信号控制方案时段划分方法
CN109035781B (zh) 基于路口流向需求的多目标交通信号方案优化配置方法
CN111402605B (zh) 基于通行能力模型优化的借对向车道左转的信号控制方法
CN113920769B (zh) 一种基于公交多源数据分析的智能排班表生成方法
WO2020083399A1 (zh) 基于交通流数据的协调干线线路规划方法及配置系统
WO2018232896A1 (zh) 一种交通灯智能控制方法及装置
CN109377753B (zh) 协调方向重复放行的干线协调优化方法
CN109993982B (zh) 基于排队论的失衡交叉口信号相位优化设计方法
CN111899534A (zh) 基于道路实时容量的交通灯智能控制方法
WO2022188387A1 (zh) 基于多榜样学习粒子群的智慧城市信号灯配时优化方法
CN108597235A (zh) 基于交通视频数据的交叉口信号参数优化及效果评估方法
CN108564795A (zh) 相序选择及方案生成式的交通信号相位配置方法及系统
CN113780624B (zh) 一种基于博弈均衡理论的城市路网信号协调控制方法
CN110232821A (zh) 一种高峰时段港湾公交停靠站临近车道通行能力计算方法
CN108281033A (zh) 一种停车诱导系统及方法
CN110288827A (zh) 一种考虑停靠站排队溢出影响的公交车辆运行调度方法
WO2020108216A1 (zh) 协调干线合理性分析及协调方式配置方法
WO2023035666A1 (zh) 一种基于预期收益估计的城市路网交通信号灯控制方法
CN114743396A (zh) 基于粒子群优化算法的交通诱导调度系统及其调度方法
CN108399736B (zh) 一种基于服务时间的区域共享自行车有效车辆数获取方法
CN117218836B (zh) 一种基于智慧城市的城市规划项目综合管理信息平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927367

Country of ref document: EP

Kind code of ref document: A1