WO2021217790A1 - 考虑路口流量失衡状况的交通信号控制方案时段划分方法 - Google Patents

考虑路口流量失衡状况的交通信号控制方案时段划分方法 Download PDF

Info

Publication number
WO2021217790A1
WO2021217790A1 PCT/CN2020/095092 CN2020095092W WO2021217790A1 WO 2021217790 A1 WO2021217790 A1 WO 2021217790A1 CN 2020095092 W CN2020095092 W CN 2020095092W WO 2021217790 A1 WO2021217790 A1 WO 2021217790A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
time period
flow
difference
phase
Prior art date
Application number
PCT/CN2020/095092
Other languages
English (en)
French (fr)
Inventor
陈凝
吕伟韬
马党生
李璐
钱锐
潘阳阳
Original Assignee
江苏智通交通科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏智通交通科技有限公司 filed Critical 江苏智通交通科技有限公司
Publication of WO2021217790A1 publication Critical patent/WO2021217790A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control
    • G08G1/082Controlling the time between beginning of the same phase of a cycle at adjacent intersections
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights

Definitions

  • the invention relates to a time division method of a traffic signal control scheme considering the unbalanced flow of the intersection.
  • the traditional traffic signal control time period is divided by professionals based on experience and historical traffic flow changes. If the daily control time period is the same, it will easily lead to the waste of green light time and low efficiency.
  • a variety of data mining and analysis methods have been applied to traffic signal control. How to achieve automated and intelligent intersection traffic signal control scheme time division and signal timing optimization is the current stage of traffic Important solution ideas and methods for management and control personnel.
  • the Chinese patent application CN201810447305.5 discloses a multi-dimensional time series segmentation-based method and system for dividing traffic signal time periods
  • a Chinese patent application CN201711010537.6 discloses a two-dimensional clustering-based traffic signal time period dividing method and system
  • a Chinese patent application CN201811600402.X discloses a method for dividing intelligent traffic time periods based on a sliding average algorithm.
  • the current time division is mostly based on the overall division of traffic flow sequence data, and further optimize the phase sequence configuration and phase green time of the scheme according to the divided traffic signal control scheme , Did not consider the imbalance of the traffic flow of each entrance and its direction, and the time division and the green time configuration were completely independent, and the mutual impact management was not considered.
  • the purpose of the present invention is to provide a time division method for traffic signal control schemes that considers traffic imbalances at intersections, and solves the problem of unbalanced traffic at intersections in the traditional schemes in the prior art that cause green light to be too long, waste of green light discharge, or congestion at cross-circuit junctions. problem.
  • a time division method for traffic signal control schemes considering the unbalanced flow of intersections including the following steps:
  • step S2 According to the traffic flow data obtained in step S1, based on the basic phase sequence scheme in the basic information of the traffic signal control scheme obtained in step S1, the traffic flow in the same phase phase is compared in a regular manner, and the flow difference of different flow directions in the same phase phase is determined. value Compare the flow difference threshold range, normalize the traffic flow difference, and get the processed traffic flow difference Plot the change trend graph of the difference in traffic flow throughout the day;
  • step S3 Based on the traffic flow data obtained in step S1, analyze and integrate the traffic flow data, adopt the Fisher optimal segmentation method to initially divide the time period, obtain the divided plan time period, and draw the initial division diagram of the control time period;
  • step S4 Traffic flow difference in the all-day difference change trend graph based on step S2 Perform noise reduction analysis based on the processed traffic flow difference Increase the overlap phase, determine the phase sequence of the signal scheme under the control period, and add it to the divided scheme period obtained in step S3 to obtain the optimally adjusted signal control period;
  • step S5 Based on the optimally adjusted signal control time period obtained in step S4, the traffic signal plan for each time period is solved, and the control time period and the signal plan are optimized again based on the capacity to obtain the optimal control time period and the final traffic signal control plan.
  • step S1 the intersection channelization information, traffic flow data, and basic information of the traffic signal control scheme are acquired, specifically,
  • step S2 the flow difference of different flow directions in the same phase phase is determined Compare the threshold range of the traffic flow difference and normalize the traffic flow difference, specifically,
  • the flow difference threshold range [-U,U] is determined according to the channelization characteristics of the intersection and the historical traffic flow of the intersection.
  • step S3 the divided solution period is obtained, and the initial division diagram of the control period is drawn; specifically,
  • step S32 Based on the time series data of total traffic flow in step S31, use Fisher optimal segmentation method to perform clustering analysis to realize the preliminary time division of signal control and obtain the divided program time periods, which are superimposed on the all-day difference change trend graph and drawn The initial division diagram of the control period.
  • step S4 the signal control period is optimized; specifically,
  • step S41 Based on the traffic flow difference in the all-day difference change trend graph obtained in step S2 Revise the data of the critical difference change point, determine the traffic flow difference of each unit time in the whole day after the correction, and adjust the traffic flow difference trend chart for the whole day;
  • step S42 On the basis of the basic phase sequence scheme in the basic information of the traffic signal control scheme obtained in step S1, adjust the determined traffic flow difference in each unit time period according to step S3, and add the overlap phase to the basic phase sequence scheme; , If the difference in traffic flow between the two traffic directions in the same phase phase is non-zero, the difference in different flow directions in the next phase phase of the same entrance is equal to the difference in traffic flow in the previous phase phase, and the duration exceeds the imbalance threshold time, then adjust The traffic signal phase sequence scheme under this unit time period will increase the single-split overlap phase of the entrance road with large traffic flow;
  • step S43 Summarize the all-sky phase sequence plan obtained in step S42, determine the change node of the all-sky phase sequence plan, superimpose it with the preliminary division result of step S3, and optimize and adjust the division time period of the traffic signal plan.
  • step S41 the data of the critical difference change point is corrected based on the difference change trend graph obtained in step S2, specifically,
  • step S5 the final time period division and signal scheme are obtained, specifically,
  • step S52 Compare and analyze the traffic capacity in each time period for the traffic signal control time period divided in step S4, merge or split the control time period, and determine the optimal control time period and the final traffic signal control plan.
  • step S52 the traffic signal control time period divided in step S4 is compared and analyzed for the traffic capacity in each time period, the control time periods are combined or split, and the optimal control time period and the traffic signal control plan are determined, specifically,
  • This kind of traffic signal control plan time division method that considers the traffic imbalance condition of the intersection, considers the influence of the phase sequence plan on the traffic signal control plan, based on the traditional Fisher traffic signal control plan time division, takes the traffic flow imbalance problem at the intersection as
  • the research object is based on the analysis of the difference in traffic flow in different directions during the same phase phase, and further fine-tunes the control period according to the capacity of the signal plan at each time period, and finally determines the optimal division time period and its signal control plan, compared with the traffic imbalance caused by the intersection in the traditional plan
  • the green light is too long and the green light is wasteful or the short-circuit port is congested.
  • the present invention provides a data-oriented overlap phase configuration method and a phase scheme configuration method, which can effectively improve the green light utilization efficiency.
  • the present invention takes into account the problem of traffic flow imbalance while dividing the time period, and uses overlapping phases as a means to configure the phase sequence to realize the time period.
  • the intelligent optimization configuration of the phase sequence and the traffic signal phase at the same time effectively improves the management and control efficiency of the traffic signal control scheme.
  • This kind of time division method of traffic signal control scheme considering the unbalanced situation of intersection flow, compares the unbalanced situation of intersection traffic flow based on the traditional four-phase phase, and based on the traditional Fisher time division, configures the overlap phase for the unbalanced time period to achieve Time division and optimization of the traffic signal control scheme, further compare the traffic signal timing schemes of each time period, optimize and adjust the division time nodes based on the traffic capacity of the scheme, and finally realize the signal control time period division and scheme optimization.
  • FIG. 1 is a schematic flow chart of a method for dividing a time period of a traffic signal control scheme considering an unbalanced flow of an intersection according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the flow of increasing the overlap phase according to the traffic flow difference in step S42 in the embodiment.
  • Fig. 3 is a schematic flow chart of the comparison and analysis of the traffic signal control period divided by step S43 in step S52 and the capacity in each period in the embodiment.
  • Fig. 4 is a graph of the variation trend of the traffic flow all-day difference drawn in the embodiment; among them, Fig. 4(a) is the graph of the variation trend of the traffic flow all-day difference drawn in step S2; Fig. 4(b) is the drawing of step S3 Figure 4 (c) is the step S4 to adjust the traffic flow all-day difference trend diagram.
  • a time division method for traffic signal control schemes considering the unbalanced flow of intersections includes the following steps:
  • step S2 According to the traffic flow data obtained in step S1, based on the basic phase sequence scheme in the basic information of the traffic signal control scheme obtained in step S1, the traffic flow in the same phase phase is compared in a regular manner, and the flow difference of different flow directions in the same phase phase is determined. value Compare the threshold range of the traffic flow difference, normalize the traffic flow difference, and draw a graph of the change trend of the traffic flow difference throughout the day. Specifically, Where Represents the traffic flow difference between the flow directions of the two entrances i and i'in the same phase phase in the n unit time period.
  • the flow difference Sum flow difference threshold [-U,U] normalizes the flow difference, and the processed traffic flow difference is recorded as Among them, if the flow difference Is greater than the flow difference threshold U, the difference is set to 1; if the flow difference If it is less than the flow difference threshold -U, the difference is set to -1; otherwise, the difference is set to 0, that is:
  • the flow difference threshold range [-U, U] is determined according to the channelization characteristics of the intersection and the historical traffic flow of the intersection.
  • the basic phase sequence scheme is the traditional four-phase phase, namely going straight from east to west, turning left from east to west, going straight from north to south, and turning left from north to south.
  • the phase will go straight from south to north.
  • the difference of traffic flow is compared and calculated, and it is normalized to one of the three values -1,0,1.
  • step S3 Based on the traffic flow data of step S1, analyze and integrate the traffic flow data, and use the Fisher optimal segmentation method to initially divide the time period to obtain the divided plan time period.
  • step S32 Based on the time series data of the total traffic flow in step S31, cluster analysis is performed by using the Fisher optimal segmentation method to realize the preliminary period division of signal control.
  • step S4 Traffic flow difference in the all-day difference change trend graph based on step S2 Perform noise reduction analysis based on the processed traffic flow difference Increase the overlap phase, determine the phase sequence of the signal scheme under the control period, and add it to the divided scheme period obtained in step S3 to obtain the optimally adjusted signal control period;
  • step S41 Based on the traffic flow difference in the all-day difference change trend graph obtained in step S2 Revise the data of the critical difference change point, determine the traffic flow difference of each unit time in the whole day after the correction, and adjust the traffic flow difference trend chart for the whole day.
  • step S42 Based on the basic phase sequence scheme in the basic information of the traffic signal control scheme obtained in step S1, adjust the determined traffic flow difference of each unit time period according to step S3, and add the overlap phase to the basic phase sequence scheme; specifically , If the difference in traffic flow between the two traffic directions in the same phase phase is non-zero, the difference in different flow directions in the next phase phase of the same entrance is equal to the difference in traffic flow in the previous phase phase, and the duration exceeds the imbalance threshold time, then adjust The traffic signal phase sequence plan under the unit time period, increase the single-split overlap phase of the entrance road with large traffic flow; determine the traffic signal plan under each control time period;
  • the imbalance threshold duration is 30 minutes. Taking the time period of 7:00-7:30 as an example, the difference in east-west traffic flow between east and west during this time period is 1 and the difference in east-west left-turn traffic flow is 1, then the phase sequence can be adjusted during this time period to add Dongdan Lap phase of the release.
  • step S43 Summarize the all-sky phase sequence scheme obtained in step S42, determine the change node of the all-sky phase sequence scheme, and superimpose it with the preliminary division result of step S3, and optimize and adjust the division time period of the traffic signal scheme.
  • step S5 Based on the signal control time period optimized and adjusted in step S4, the traffic signal scheme is solved for each time period, and the control time period and signal scheme are optimized again based on the capacity to obtain the optimal control time period and the final traffic signal control scheme.
  • step S52 For the traffic signal control period divided in step S43, compare and analyze the traffic capacity in each period, merge or split the control period, and determine the optimal control period and the final traffic signal control plan; as shown in Figure 3, specifically,
  • m represents a C m-th control period, the maximum junction capacity
  • capacity C n represents the n-th unit period intersection which is an intersection and the capacity of each of the inlet channel, i.e.,
  • This kind of traffic signal control plan time division method that considers the flow imbalance of intersections, considers the influence of the phase sequence plan on the traffic signal control plan, and based on the time division of the traditional Fisher traffic signal control plan, takes the traffic flow imbalance problem at the intersection as the research object Analyze the changes in the difference of traffic flow in different directions during the same phase phase, and further fine-tune the control period according to the capacity of the signal scheme at each time period, and finally determine the optimal division time period and its signal control scheme. Compare the green light duration caused by the imbalance of the traffic at the intersection in the traditional scheme For the problem of excessively long green light empty discharge or short-circuit port congestion, the embodiment method is a data-oriented overlap phase configuration method and phase scheme configuration method, which can effectively improve the green light utilization efficiency.
  • the present invention takes into account the problem of traffic flow imbalance while dividing the time period. Intelligently optimize the configuration of the sequence and traffic signal phase at the same time, which effectively improves the management and control efficiency of the traffic signal control scheme.
  • This kind of traffic signal control plan time division method that considers the flow imbalance of intersections, proposes a flow difference analysis for the problem of traffic flow imbalance in the basic four-phase phase plan, so as to realize the optimal management of the control time division.
  • This kind of traffic signal control scheme time division method that considers the traffic imbalance of the intersection is based on the traditional four-phase phase to compare the traffic flow imbalance of the intersection.
  • the overlap phase is configured for the unbalanced time to realize the traffic signal Time division and optimization of the control scheme, further compare the traffic signal timing schemes of each time period, and optimize and adjust the division time nodes based on the traffic capacity of the scheme, and finally realize the signal control time period division and scheme optimization.
  • the east, south, west, and north entrances have four lanes each, which are turn left, go straight, go straight, and turn right. Relying on the all-day traffic flow data collected by vehicle detectors, data cleaning and analysis of the traffic flow data are carried out to realize the collection of traffic flow within a unit time period of 5 minutes, and establish a 5 minutes traffic flow data table.
  • the traffic flow difference in different flow directions in the same phase phase is analyzed to determine the flow difference in each time period.
  • the minimum flow threshold is set to 10, that is, data with a total traffic flow of less than 10 in 5 minutes is eliminated, and the traffic flow data is divided based on the Fisher method to achieve preliminary traffic flow division.
  • the division result is 00:00 -06:30; 06:30-08:30; 08:30-09:30; 09:30-11:45; 11:45-16:30; 16:30-21:45; 21:45-00 :00. It is further superimposed on the change trend graph of the difference in traffic flow throughout the day to obtain the initial division diagram of the control period, as shown in Figure 4(b), where the abscissa is the number of unit time periods in the whole day. The number of 288 unit time periods.
  • phase sequence scheme is determined based on the adjusted traffic flow difference.
  • the time period 16:55-17:40 requires the overlap phase of the north direction, so the traffic signal control time period is re-divided into 00:00-06:30 ; 06:30-08:30; 08:30-09:30; 09:30-11:45; 11:45-16:30; 16:30-16:55; 16:55-17:40; 17 :40-21:45; 21:45-00:00.
  • the shortest control period time length T is 15 minutes; the scheme imbalance threshold t is 30 seconds. Under this signal control period, there is no control period less than 15 minutes, and the sum of the difference between the green hour demand of each unit time period and the green light duration of the corresponding phase phase is less than the scheme imbalance threshold of 30 seconds, no additional division is required, and the units in each period are further divided.
  • the time (15min) time period signal control scheme with the largest capacity is used as the current time period signal scheme.

Abstract

一种考虑路口流量失衡状况的交通信号控制方案时段划分方法,获取路口渠化信息、交通流量数据及交通信号控制方案基础信息(S1);绘制出交通流量全天差值变化趋势图(S2);对交通流量数据分析整合,采用Fisher最优分割法初步划分时段(S3);基于归一化处理后所得交通流量差值的波动情况增加搭接相位,确定控制时段下的信号方案相序,叠加至划分的方案时段,得到优化调整的信号控制时段(S4);对各时段下交通信号方案求解,并基于通行能力再次对控制时段和信号方案优化,得到最终时段划分和信号方案(S5)。该方法在时段划分的同时考虑到交通流量失衡的问题,以搭接相位为手段进行相序配置,实现了时段、相序和交通信号相位的同时智能化优化配置,有效提高交通管控效率。

Description

考虑路口流量失衡状况的交通信号控制方案时段划分方法 技术领域
本发明涉及一种考虑路口流量失衡状况的交通信号控制方案时段划分方法。
背景技术
随着机动车数量的增加以及交通拥堵问题的加剧,早晚高峰和平峰车流量不一的情况引起了交通管控专业人员的注意和重视,因此,路口交通信号分时段控制成为目前较为常见的交通信号控制手段之一。
传统的交通信号控制时段划分由专业人员根据经验和历史交通流量变化规律进行划分,且每日的控制时段一致,则容易导致绿灯时间浪费,效率低下的问题。而随着人工智能等数据算法的发展,多种数据挖掘分析的手段被应用到交通信号控制中,如何实现自动化、智能化的路口交通信号控制方案的时段划分和信号配时优化是现阶段交通管控人员重要的解决思路和方法。
如中国专利申请CN201810447305.5公开的基于多维时间序列分段的路口控制时段划分方法及系统,中国专利申请CN201711010537.6公开的基于二维聚类的交通信号时段划分方法及系统,以及中国专利申请CN201811600402.X公开的基于滑动平均算法的智能交通时段划分方法。
现阶段虽已对交通信号控制方案自动化时段划分有了一定研究,但目前的时段划分大多基于交通流量序列数据进行整体划分,进一步根据划分的交通信号控制方案对方案相序配置和相位绿时优化,并未考虑到各进口道及其流向交通流量失衡的情况,且时段划分和绿时配置完全独立开来,未考虑到其相互之间的影响管理。
上述问题是在考虑路口流量失衡状况的交通信号控制方案时段划分方法的设计过程中应当予以考虑并解决的问题。
发明内容
本发明的目的是提供一种考虑路口流量失衡状况的交通信号控制方案时段划分方法,解决现有技术中存在的传统方案中路口流量失衡导致绿灯时长过长绿灯空放浪费或过短路口拥堵的问题。
本发明的技术解决方案是:
一种考虑路口流量失衡状况的交通信号控制方案时段划分方法,包括以下步骤,
S1、获取路口渠化信息、交通流量数据以及交通信号控制方案基础信息;
S2、根据步骤S1获取的交通流量数据,基于步骤S1获取的交通信号控制方案基础信息中的基础相序方案对同一相位阶段通行方向的交通流量进行规整对比,确定同一相位阶段不同流向的流量差值
Figure PCTCN2020095092-appb-000001
对比流量差值阈值范围,将交通流量差值作归一化处理,得到处理后的交通流量差值
Figure PCTCN2020095092-appb-000002
绘制出交通流量全天差值变化趋势图;
S3、基于步骤S1获取的交通流量数据,对交通流量数据分析整合,采用Fisher最优分割法初步划分时段,得到划分的方案时段,绘制控制时段初始划分图;
S4、基于步骤S2的交通流量全天差值变化趋势图中交通流量差值
Figure PCTCN2020095092-appb-000003
进行降噪分析,再基于处理后的交通流量差值
Figure PCTCN2020095092-appb-000004
增加搭接相位,确定控制时段下的信号方案相序,叠加至步骤S3所得划分的方案时段,得到优化调整的信号控制时段;
S5、基于步骤S4所得优化调整的信号控制时段,对各时段下交通信号方案求解,并基于通行能力再次对控制时段和信号方案优化,得到最优控制时段和最终的交通信号控制方案。
进一步地,步骤S1中,获取路口渠化信息、交通流量数据以及交通信号控制方案基础信息,具体为,
S11、针对路口完成路口渠化信息采集,包括进口道i、流向j信息;
S12、获取各单位时间段内各进口道流向的交通流量数据
Figure PCTCN2020095092-appb-000005
表示第n个单位时间段内i进口道j流向的交通流量,其中n={1,2,…,N},N表示全天单位时间段的总个数;并对所获取的各单位时间段内各进口道流向的交通流量数据
Figure PCTCN2020095092-appb-000006
进行清洗处理;
S13、获取交通信号控制方案基础信息,包括基础相序方案及各基础相位的最小绿灯时长、黄灯时长、全红时长。
进一步地,步骤S2中,确定同一相位阶段不同流向的流量差值
Figure PCTCN2020095092-appb-000007
对比流 量差值阈值范围,将交通流量差值作归一化处理,具体为,
S21、确定同一相位阶段不同流向的流量差值
Figure PCTCN2020095092-appb-000008
Figure PCTCN2020095092-appb-000009
其中,
Figure PCTCN2020095092-appb-000010
表示n单位时间段内同一相位阶段i和i’两进口道j流向之间的交通流量
Figure PCTCN2020095092-appb-000011
Figure PCTCN2020095092-appb-000012
的差值;
S22、根据流量差值
Figure PCTCN2020095092-appb-000013
和流量差阈值[-U,U]对流量差值做归一化处理,处理完的交通流量差值记为
Figure PCTCN2020095092-appb-000014
Figure PCTCN2020095092-appb-000015
其中若流量差值
Figure PCTCN2020095092-appb-000016
大于流量差阈值U则将其差值设为1;若流量差值
Figure PCTCN2020095092-appb-000017
小于流量差阈值-U则将其差值设为-1;否则将其差值设为0,即:
Figure PCTCN2020095092-appb-000018
其中,流量差阈值范围[-U,U]根据路口渠化特征和路口历史交通流量确定。
进一步地,步骤S3中,得到划分的方案时段,绘制控制时段初始划分图;具体为,
S31、针对单位时间段,汇总路口的交通流量数据,即
Figure PCTCN2020095092-appb-000019
若交通总流量q n小于最低流量阈值则将其数据剔除,得到路口交通总流量时间序列;
S32、基于步骤S31的交通总流量时间序列数据,利用Fisher最优分割法进行聚类分析,实现信号控制初步时段划分,得到划分的方案时段,叠加至全天差值变化趋势图中,绘制得到控制时段初始划分图。
进一步地,步骤S4中,对信号控制时段进行优化;具体为,
S41、基于步骤S2得到的交通流量全天差值变化趋势图中交通流量差值
Figure PCTCN2020095092-appb-000020
对临界差值变化点的数据进行修正,确定修正后全天各单位时段交通流量差值,调整交通流量全天差值趋势图;
S42、在步骤S1获取的交通信号控制方案基础信息中的基础相序方案基础 上,根据步骤S3调整确定的各单位时间段交通流量差值,在基础相序方案上增加搭接相位;具体为,若同相位阶段两个通行方向的交通流量差值非零,同进口道下一相位阶段不同流向差值与上一相位阶段交通流量差值相等,且持续时间段超过失衡阈值时长,则调整该单位时段下的交通信号相序方案,增加交通流量大进口道的单放搭接相位;
S43、汇总步骤S42得到的全天相序方案,确定全天相序方案变动节点,与步骤S3初步划分结果相叠加,优化调整交通信号方案划分时段。
进一步地,步骤S41中,基于步骤S2得到的差值变化趋势图对临界差值变化点的数据进行修正,具体为,
S411、若单个单位时间段或连续两个单位时间段内交通流量差值
Figure PCTCN2020095092-appb-000021
为-1或1,其前后两个单位时间段交通流量差值
Figure PCTCN2020095092-appb-000022
均为零,则将
Figure PCTCN2020095092-appb-000023
修正为0,并转到下一步骤S412;
S412、若连续N个滑动时间段内M个交通流量差值
Figure PCTCN2020095092-appb-000024
为零,则将N个时间段的交通流量差值
Figure PCTCN2020095092-appb-000025
均取为0。
进一步地,步骤S5中,得到最终的时段划分和信号方案,具体为,
S51、确定各单位时间段内各流向的绿时需求
Figure PCTCN2020095092-appb-000026
同时基于步骤S1的各流向最小绿灯时长基础信息以及步骤S4的相序方案确定各单位时间段内交通信号控制方案,包括相序方案及各阶段绿灯时长
Figure PCTCN2020095092-appb-000027
从而确定此方案下的通行能力
Figure PCTCN2020095092-appb-000028
S52、针对步骤S4划分的交通信号控制时段对各时段内通行能力比较分析,合并或拆分控制时段,确定最优控制时段和最终的交通信号控制方案。
进一步地,步骤S52中,针对步骤S4划分的交通信号控制时段对各时段内通行能力比较分析,合并或拆分控制时段,确定最优控制时段和交通信号控制方案,具体为,
S521、若划分的控制时段时长小于等于最短控制时段时长T,则转到下一步骤S522;否则转到步骤S523;
S522、分析该控制时段内各单位时间段的路口通行能力c n,选取出该控制时间段的最大通行能力c m,即:c m=max(c n),其中,c m表示第m个控制时段 内最大路口通行能力;c n表示第n个单位时间段内交叉路口的通行能力,其为路口各进口道通行能力之和,即
Figure PCTCN2020095092-appb-000029
将控制时段内最大通行能力c m与上一个控制时间段内的通行能力
Figure PCTCN2020095092-appb-000030
和下一控制时间段内
Figure PCTCN2020095092-appb-000031
的通行能力相比较,将本控制时段归纳至最大控制时间段内,并转到步骤S524;
S523、比较单位时间段的绿时需求
Figure PCTCN2020095092-appb-000032
与其对应相位阶段的交通信号控制方案绿灯时长
Figure PCTCN2020095092-appb-000033
若绿时需求与对应相位阶段绿灯时长差值之和大于方案失衡阈值,即
Figure PCTCN2020095092-appb-000034
式中,
Figure PCTCN2020095092-appb-000035
表示n时间段下i进口道j流向的绿时需求;
Figure PCTCN2020095092-appb-000036
表示n时间段下第l个相位阶段的绿灯时长;t表示方案失衡阈值,则将该单位时间段作为交通信号控制时段划分节点,并重新转回至步骤S521,否则转到下一步骤S524;
S524、对比分析控制时间段内各单位时间的路口通行能力c n,选取max(c n)时间段下的交通信号控制方案为该控制时间段内的交通信号控制方案,包括相序方案和各相位阶段绿灯时长
Figure PCTCN2020095092-appb-000037
本发明的有益效果是:
一、该种考虑路口流量失衡状况的交通信号控制方案时段划分方法,考虑相序方案对交通信号控制方案的影响,在传统Fisher交通信号控制方案时段划分的基础上,以路口交通流量失衡问题为研究对象,基于同相位阶段不同流向交通流量差值变化进行分析,进一步根据各时段信号方案通行能力对控制时段微调,最终确定最优划分时段及其信号控制方案,对比传统方案中路口流量失衡导致绿灯时长过长绿灯空放浪费或过短路口拥堵的问题,本发明提供了一种以数据为导向的搭接相位配置方法和相位方案配置方法,能够有效提高绿灯利用效率。
二、对于传统时段划分后进行相序配置和信号相位绿时优化设置的模式,本发明在时段划分的同时考虑到交通流量失衡的问题,以搭接相位为手段进行相序配置,实现了时段、相序和交通信号相位的同时智能化优化配置,有效提高了交通信号控制方案的管控效率。
三、该种考虑路口流量失衡状况的交通信号控制方案时段划分方法,以传统四阶段相位为基础比较路口交通流量失衡情况,在传统Fisher时段划分的基础 上,对于失衡时段配置搭接相位,实现交通信号控制方案时段划分优化,进一步对比各时段交通信号配时方案,基于方案的通行能力再次对划分时段节点进行优化调整,最终实现信号控制时段划分和方案优化。
附图说明
图1是本发明实施例考虑路口流量失衡状况的交通信号控制方案时段划分方法的流程示意图。
图2是实施例中步骤S42中根据交通流量差值情况增加搭接相位的流程示意图。
图3是实施例中步骤S52中针对步骤S43划分的交通信号控制时段对各时段内通行能力比较分析的流程示意图。
图4是实施例中绘制出的交通流量全天差值变化趋势图;其中,图4(a)是步骤S2绘制出交通流量全天差值变化趋势图;图4(b)是步骤S3绘制的控制时段初始划分图;图4(c)是步骤S4调整交通流量全天差值趋势图。
具体实施方式
下面结合附图详细说明本发明的优选实施例。
实施例
一种考虑路口流量失衡状况的交通信号控制方案时段划分方法,如图1,包括以下步骤,
S1.获取路口渠化信息、交通流量数据以及交通信号控制方案基础信息。
S11.针对路口完成路口渠化信息采集,包括进口道i、流向j等信息;
S12.获取各单位时间段内各进口道流向的交通流量数据
Figure PCTCN2020095092-appb-000038
对数据进行清洗处理。式中,
Figure PCTCN2020095092-appb-000039
表示第n个单位时间段内i流向j流向的交通流量,其中n={1,2,…,N},单位时间段的时长根据路口特征和交通流特性确定,一般选取5min或15min,N优选取值为288或96。一般情况下,数据清洗包括异常数据剔除(一般情况下,异常数据包括交通流量为零、超出现实最大值、日期时间不一致等情况)及缺省数据估计。
S13.获取交通信号控制方案基础信息,包括基础相序方案及各基础相位的最小绿灯时长、黄灯时长、全红时长。一般情况下,对于十字路口,其基础相序方 案即为传统的四阶段相位方案。
S2.根据步骤S1获取的交通流量数据,基于步骤S1获取的交通信号控制方案基础信息中的基础相序方案对同一相位阶段通行方向的交通流量进行规整对比,确定同一相位阶段不同流向的流量差值
Figure PCTCN2020095092-appb-000040
对比流量差值阈值范围,将交通流量差值作归一化处理,绘制出交通流量全天差值变化趋势图。具体来说,
Figure PCTCN2020095092-appb-000041
式中
Figure PCTCN2020095092-appb-000042
表示n单位时间段同一相位阶段内i和i’两进口道j流向之间的交通流量差值。
根据流量差值
Figure PCTCN2020095092-appb-000043
和流量差阈值[-U,U]对流量差值做归一化处理,处理完的交通流量差值记为
Figure PCTCN2020095092-appb-000044
Figure PCTCN2020095092-appb-000045
其中若流量差值
Figure PCTCN2020095092-appb-000046
大于流量差阈值U则将其差值设为1;若流量差值
Figure PCTCN2020095092-appb-000047
小于流量差阈值-U则将其差值设为-1;否则将其差值设为0,即:
Figure PCTCN2020095092-appb-000048
其中流量差阈值范围[-U,U]根据路口渠化特征和路口历史交通流量确定。
一般情况下,以一个十字路口为例,其基础相序方案为传统的四阶段相位,即东西直行、东西左转、南北直行、南北左转,其中南北直行相位阶段则将南直行和北直行的交通流量进行差值比较和计算,归一化为-1,0,1三个数值之一。
S3.基于步骤S1的交通流量数据,对交通流量数据分析整合,采用Fisher最优分割法初步划分时段,得到划分的方案时段。
S31.针对单位时间段,汇总路口的交通流量数据,即
Figure PCTCN2020095092-appb-000049
若交通总流量q n小于最低流量阈值则将其数据剔除,得到路口交通总流量时间序列;一般情况下,最低流量阈值可根据历史夜间交通流量确定;
S32.基于步骤S31的交通总流量时间序列数据,利用Fisher最优分割法进行聚类分析,实现信号控制初步时段划分。
S4、基于步骤S2的交通流量全天差值变化趋势图中交通流量差值
Figure PCTCN2020095092-appb-000050
进行降 噪分析,再基于处理后的交通流量差值
Figure PCTCN2020095092-appb-000051
增加搭接相位,确定控制时段下的信号方案相序,叠加至步骤S3所得划分的方案时段,得到优化调整的信号控制时段;
S41、基于步骤S2得到的交通流量全天差值变化趋势图中交通流量差值
Figure PCTCN2020095092-appb-000052
对临界差值变化点的数据进行修正,确定修正后全天各单位时段交通流量差值,调整交通流量全天差值趋势图。
S411.若单个单位时间段或连续两个单位时间段内交通流量差值
Figure PCTCN2020095092-appb-000053
为-1或1,其前后两个单位时间段交通流量差值
Figure PCTCN2020095092-appb-000054
均为零,则将
Figure PCTCN2020095092-appb-000055
修正为0,并转到下一步骤S412;
S412.若连续N个滑动时间段内M个交通流量差值
Figure PCTCN2020095092-appb-000056
为零,则将N个时间段的交通流量差值
Figure PCTCN2020095092-appb-000057
均取为0。
S42.在步骤S1获取的交通信号控制方案基础信息中的基础相序方案基础上,根据步骤S3调整确定的各单位时间段交通流量差值,在基础相序方案上增加搭接相位;具体为,若同相位阶段两个通行方向的交通流量差值非零,同进口道下一相位阶段不同流向差值与上一相位阶段交通流量差值相等,且持续时间段超过失衡阈值时长,则调整该单位时段下的交通信号相序方案,增加交通流量大进口道的单放搭接相位;确定各控制时段下的交通信号方案;
也就是说,如图2,若同相位阶段两个通行方向的交通流量差值为1/-1,同进口道下一相位阶段不同流向差值为1/-1且持续时间段超过失衡阈值时长,则调整该单位时段下的交通信号相序方案,增加交通流量大进口道的单放搭接相位。
一般情况下,失衡阈值时长取30min。以7:00-7:30时间段为例,其时间段内东西直行的交通流量差值为1且东西左转交通流量差值为1,则可在该时间段内调整相序,增加东单放的搭接相位。
S43.汇总步骤S42得到的全天相序方案,确定全天相序方案变动节点,与步骤S3初步划分结果相叠加,优化调整交通信号方案划分时段。
S5.基于步骤S4优化调整的信号控制时段对各时段下交通信号方案求解,并 基于通行能力再次对控制时段和信号方案优化,得到最优控制时段和最终的交通信号控制方案。
S51.确定各单位时间段内各流向的绿时需求
Figure PCTCN2020095092-appb-000058
同时基于步骤S1的各流向最小绿灯时长基础信息以及步骤S4的相序方案确定各单位时间段内交通信号控制方案,包括相序方案及各阶段绿灯时长
Figure PCTCN2020095092-appb-000059
从而确定此方案下的通行能力
Figure PCTCN2020095092-appb-000060
其中,
Figure PCTCN2020095092-appb-000061
表示第n个单位时段中i进口道j流向的绿时需求,一般情况下,其可根据交通流量求解,也可通过排队长度和饱和车头时距获得,所有绿时需求算法均可;
Figure PCTCN2020095092-appb-000062
表示第n个单位时段i进口道j流向的通行能,
Figure PCTCN2020095092-appb-000063
表示第n个单位时间段下交通信号控制方案第l个阶段的绿灯时长。
S52.针对步骤S43划分的交通信号控制时段对各时段内通行能力比较分析,合并或拆分控制时段,确定最优控制时段和最终的交通信号控制方案;如图3,具体为,
S521.若划分的控制时段时长小于等于最短控制时段时长T,则转到下一步骤,否则转到S523步骤;其中最短控制时段时长T一般取值为15-30分钟;
S522.分析本控制时段内各单位时间段的路口通行能力c n,选取出本控制时间段的最大通行能力c m,即
c m=max(c n)
式中,c m表示第m个控制时段内最大路口通行能力;c n表示第n个单位时间段内交叉路口的通行能力,其为路口各进口道通行能力之和,即
Figure PCTCN2020095092-appb-000064
将控制时段内最大通行能力c m与上一个控制时间段内的通行能力
Figure PCTCN2020095092-appb-000065
和下一控制时间段内
Figure PCTCN2020095092-appb-000066
的通行能力相比较,将本控制时段归纳至最大控制时间段内,并转到步骤S524;
S523.比较单位时间段的绿时需求
Figure PCTCN2020095092-appb-000067
与其对应相位阶段的交通信号控制方案绿灯时长
Figure PCTCN2020095092-appb-000068
若绿时需求与对应相位阶段绿灯时长差值之和大于方案失衡阈值,即
Figure PCTCN2020095092-appb-000069
式中,
Figure PCTCN2020095092-appb-000070
表示n时间段下i进口道j流向的绿时需求;
Figure PCTCN2020095092-appb-000071
表示 n时间段下第l个相位阶段的绿灯时长;t表示方案失衡阈值,一般取值为15-30秒,则将该单位时间段作为交通信号控制时段划分节点,并重新转回至S521步骤,否则转到下一步骤S524;
S524.对比分析控制时间段内各单位时间的路口通行能力c n,选取max(c n)时间段下的交通信号控制方案为本控制时间段内的交通信号控制方案,包括相序方案和各相位阶段绿灯时长
Figure PCTCN2020095092-appb-000072
该种考虑路口流量失衡状况的交通信号控制方案时段划分方法,考虑相序方案对交通信号控制方案的影响,在传统Fisher交通信号控制方案时段划分的基础上,以路口交通流量失衡问题为研究对象,基于同相位阶段不同流向交通流量差值变化进行分析,进一步根据各时段信号方案通行能力对控制时段微调,最终确定最优划分时段及其信号控制方案,对比传统方案中路口流量失衡导致绿灯时长过长绿灯空放浪费或过短路口拥堵的问题,实施例方法是一种以数据为导向的搭接相位配置方法和相位方案配置方法,能够有效提高绿灯利用效率。
对于传统时段划分后进行相序配置和信号相位绿时优化设置的模式,本发明在时段划分的同时考虑到交通流量失衡的问题,以搭接相位为手段进行相序配置,实现了时段、相序和交通信号相位的同时智能化优化配置,有效提高了交通信号控制方案的管控效率。
该种考虑路口流量失衡状况的交通信号控制方案时段划分方法,针对基础四阶段相位方案存在交通流量失衡的问题提出流量差值分析,以此实现控制时段划分的优化管理。
该种考虑路口流量失衡状况的交通信号控制方案时段划分方法,以传统四阶段相位为基础比较路口交通流量失衡情况,在传统Fisher时段划分的基础上,对于失衡时段配置搭接相位,实现交通信号控制方案时段划分优化,进一步对比各时段交通信号配时方案,基于方案的通行能力再次对划分时段节点进行优化调整,最终实现信号控制时段划分和方案优化。
实施例的一个具体示例如下:
S1、获取路口渠化信息、交通流量数据以及交通信号控制方案基础信息。
某十字路口,其东、南、西、北四个进口道各有四个车道,分别为左转、直 行、直行和右转。依托车辆检测器采集获取的全天交通流量数据,对交通流量数据进行数据清洗分析,实现5min单位时间段内交通流量汇集,建立5min交通流量数据表。
早高峰7:30-8:30交通流量表
Figure PCTCN2020095092-appb-000073
S2、交通流量归一化分析。
基于南北直行-南北左转-东西直行-东西左转传统四阶段相位对同一相位阶段不同流向的交通流差值进行分析,确定各时间段内的流量差值。
时间段 南北直行 南北左转 东西直行 东西左转
07:30 -8 2 -5 -7
07:35 2 5 -3 8
07:40 -2 7 -19 -10
07:45 3 8 -12 -8
07:50 -13 -4 -12 3
07:55 -29 -13 -2 -5
08:00 -9 -13 -4 -1
08:05 -6 -3 2 -3
08:10 -6 4 -6 -8
08:15 -11 1 -12 5
08:20 -17 -3 -7 4
08:25 -13 5 -1 15
将流量差阈值范围取为[-8,8],若流量差值小于-8则默认为-1,流量差值大于8默认为1,否则为0,同时绘制出交通流量全天差值变化趋势图,如图4(a),其中横坐标为全天单位时间段的个数,因单位时间段取5min,则为288个单位时间段个数。
S3、控制时段初步划分。
基于步骤S1获取的交通流量数据,设定最低流量阈值为10,即将5min内交通总流量小于10的数据剔除,基于Fisher方法对交通流量数据划分,实现初步交通流量划分,划分结果为00:00-06:30;06:30-08:30;08:30-09:30;09:30-11:45;11:45-16:30;16:30-21:45;21:45-00:00。进一步叠加至交通流量全天差值变化趋势图中,得到控制时段初始划分图,如图4(b),其中横坐标为全天单位时间段的个数,因单位时间段取5min,则为288个单位时间段个数。
S4、结合相序方案优化时段划分节点。
将单个时间段凸变的数据规整,重新输入交通流量差值变化趋势图,如图4(c),其中横坐标为全天单位时间段的个数,因单位时间段取5min,则为288个单位时间段个数。
进一步,基于调整的交通流量差值确定相序方案,其中16:55-17:40时间段需要北方向单放的搭接相位,则交通信号控制时间段重新划分为00:00-06:30;06:30-08:30;08:30-09:30;09:30-11:45;11:45-16:30;16:30-16:55;16:55-17:40;17:40-21:45;21:45-00:00。
S5、确定最优时段和信号方案。
求解出各流向的绿时需求得到优化的交通信号控制方案,确定各方案下通行能力。
选取最短控制时段时长T为15分钟;方案失衡阈值t为30秒。本信号控制时段下未有控制时段低于15分钟,且各单位时间段绿时需求与对应相位阶段绿灯时长差值之和小于方案失衡阈值30秒,则无需另外划分,进一步将各时段内单位时间(15min)求解的通行能力最大的时段信号控制方案作为本时段信号方案。

Claims (8)

  1. 一种考虑路口流量失衡状况的交通信号控制方案时段划分方法,其特征在于:包括以下步骤,
    S1、获取路口渠化信息、交通流量数据以及交通信号控制方案基础信息;
    S2、根据步骤S1获取的交通流量数据,基于步骤S1获取的交通信号控制方案基础信息中的基础相序方案对同一相位阶段通行方向的交通流量进行规整对比,确定同一相位阶段不同流向的流量差值
    Figure PCTCN2020095092-appb-100001
    对比流量差值阈值范围,将交通流量差值作归一化处理,得到处理后的交通流量差值
    Figure PCTCN2020095092-appb-100002
    绘制出交通流量全天差值变化趋势图;
    S3、基于步骤S1获取的交通流量数据,对交通流量数据分析整合,采用Fisher最优分割法初步划分时段,得到划分的方案时段,绘制控制时段初始划分图;
    S4、基于步骤S2的交通流量全天差值变化趋势图中交通流量差值
    Figure PCTCN2020095092-appb-100003
    进行降噪分析,再基于处理后的交通流量差值
    Figure PCTCN2020095092-appb-100004
    增加搭接相位,确定控制时段下的信号方案相序,叠加至步骤S3所得划分的方案时段,得到优化调整的信号控制时段;
    S5、基于步骤S4所得优化调整的信号控制时段,对各时段下交通信号方案求解,并基于通行能力再次对控制时段和信号方案优化,得到最优控制时段和最终的交通信号控制方案。
  2. 如权利要求1所述的考虑路口流量失衡状况的交通信号控制方案时段划分方法,其特征在于:步骤S1中,获取路口渠化信息、交通流量数据以及交通信号控制方案基础信息,具体为,
    S11、针对路口完成路口渠化信息采集,包括进口道i、流向j信息;
    S12、获取各单位时间段内各进口道流向的交通流量数据
    Figure PCTCN2020095092-appb-100005
    表示第n个单位时间段内i进口道j流向的交通流量,其中n={1,2,…,N},N表示全天单位时间段的总个数;并对所获取的各单位时间段内各进口道流向的交通流量数据
    Figure PCTCN2020095092-appb-100006
    进行清洗处理;
    S13、获取交通信号控制方案基础信息,包括基础相序方案及各基础相位的 最小绿灯时长、黄灯时长、全红时长。
  3. 如权利要求1所述的考虑路口流量失衡状况的交通信号控制方案时段划分方法,其特征在于:步骤S2中,确定同一相位阶段不同流向的流量差值
    Figure PCTCN2020095092-appb-100007
    对比流量差值阈值范围,将交通流量差值作归一化处理,具体为,
    S21、确定同一相位阶段不同流向的流量差值
    Figure PCTCN2020095092-appb-100008
    其中,
    Figure PCTCN2020095092-appb-100009
    表示n单位时间段内同一相位阶段i和i’两进口道j流向之间的交通流量
    Figure PCTCN2020095092-appb-100010
    Figure PCTCN2020095092-appb-100011
    的差值;
    S22、根据流量差值
    Figure PCTCN2020095092-appb-100012
    和流量差阈值[-U,U]对流量差值做归一化处理,处理完的交通流量差值记为
    Figure PCTCN2020095092-appb-100013
    其中若流量差值
    Figure PCTCN2020095092-appb-100014
    大于流量差阈值U则将其差值设为1;若流量差值
    Figure PCTCN2020095092-appb-100015
    小于流量差阈值-U则将其差值设为-1;否则将其差值设为0,即:
    Figure PCTCN2020095092-appb-100016
    其中,流量差阈值范围[-U,U]根据路口渠化特征和路口历史交通流量确定。
  4. 如权利要求1所述的考虑路口流量失衡状况的交通信号控制方案时段划分方法,其特征在于:步骤S3中,得到划分的方案时段,绘制控制时段初始划分图;具体为,
    S31、针对单位时间段,汇总路口的交通流量数据,即
    Figure PCTCN2020095092-appb-100017
    若交通总流量q n小于最低流量阈值则将其数据剔除,得到路口交通总流量时间序列;
    S32、基于步骤S31的交通总流量时间序列数据,利用Fisher最优分割法进行聚类分析,实现信号控制初步时段划分,得到划分的方案时段,叠加至全天差值变化趋势图中,绘制得到控制时段初始划分图。
  5. 如权利要求1-4任一项所述的考虑路口流量失衡状况的交通信号控制方 案时段划分方法,其特征在于:步骤S4中,对信号控制时段进行优化;具体为,
    S41、基于步骤S2得到的交通流量全天差值变化趋势图中交通流量差值
    Figure PCTCN2020095092-appb-100018
    对临界差值变化点的数据进行修正,确定修正后全天各单位时段交通流量差值,调整交通流量全天差值趋势图;
    S42、在步骤S1获取的交通信号控制方案基础信息中的基础相序方案基础上,根据步骤S3调整确定的各单位时间段交通流量差值,在基础相序方案上增加搭接相位;具体为,若同相位阶段两个通行方向的交通流量差值非零,同进口道下一相位阶段不同流向差值与上一相位阶段交通流量差值相等,且持续时间段超过失衡阈值时长,则调整该单位时段下的交通信号相序方案,增加交通流量大进口道的单放搭接相位;
    S43、汇总步骤S42得到的全天相序方案,确定全天相序方案变动节点,与步骤S3初步划分结果相叠加,优化调整交通信号方案划分时段。
  6. 如权利要求5所述的考虑路口流量失衡状况的交通信号控制方案时段划分方法,其特征在于:步骤S41中,基于步骤S2得到的差值变化趋势图对临界差值变化点的数据进行修正,具体为,
    S411、若单个单位时间段或连续两个单位时间段内交通流量差值
    Figure PCTCN2020095092-appb-100019
    为-1或1,其前后两个单位时间段交通流量差值
    Figure PCTCN2020095092-appb-100020
    均为零,则将
    Figure PCTCN2020095092-appb-100021
    修正为0,并转到下一步骤S412;
    S412、若连续N个滑动时间段内M个交通流量差值
    Figure PCTCN2020095092-appb-100022
    为零,则将N个时间段的交通流量差值
    Figure PCTCN2020095092-appb-100023
    均取为0。
  7. 如权利要求1-4任一项所述的考虑路口流量失衡状况的交通信号控制方案时段划分方法,其特征在于:步骤S5中,得到最终的时段划分和信号方案,具体为,
    S51、确定各单位时间段内各流向的绿时需求
    Figure PCTCN2020095092-appb-100024
    同时基于步骤S1的各流向最小绿灯时长基础信息以及步骤S4的相序方案确定各单位时间段内交通信号控制方案,包括相序方案及各阶段绿灯时长
    Figure PCTCN2020095092-appb-100025
    从而确定此方案下的通行能力
    Figure PCTCN2020095092-appb-100026
    S52、针对步骤S4划分的交通信号控制时段对各时段内通行能力比较分析, 合并或拆分控制时段,确定最优控制时段和最终的交通信号控制方案。
  8. 如权利要求7所述的考虑路口流量失衡状况的交通信号控制方案时段划分方法,其特征在于:步骤S52中,针对步骤S4划分的交通信号控制时段对各时段内通行能力比较分析,合并或拆分控制时段,确定最优控制时段和交通信号控制方案,具体为,
    S521、若划分的控制时段时长小于等于最短控制时段时长T,则转到下一步骤S522;否则转到步骤S523;
    S522、分析该控制时段内各单位时间段的路口通行能力c n,选取出该控制时间段的最大通行能力c m,即:c m=max(c n),其中,c m表示第m个控制时段内最大路口通行能力;c n表示第n个单位时间段内交叉路口的通行能力,其为路口各进口道通行能力之和,即
    Figure PCTCN2020095092-appb-100027
    将控制时段内最大通行能力c m与上一个控制时间段内的通行能力
    Figure PCTCN2020095092-appb-100028
    和下一控制时间段内
    Figure PCTCN2020095092-appb-100029
    的通行能力相比较,将本控制时段归纳至最大控制时间段内,并转到步骤S524;
    S523、比较单位时间段的绿时需求
    Figure PCTCN2020095092-appb-100030
    与其对应相位阶段的交通信号控制方案绿灯时长
    Figure PCTCN2020095092-appb-100031
    若绿时需求与对应相位阶段绿灯时长差值之和大于方案失衡阈值,即
    Figure PCTCN2020095092-appb-100032
    式中,
    Figure PCTCN2020095092-appb-100033
    表示n时间段下i进口道j流向的绿时需求;
    Figure PCTCN2020095092-appb-100034
    表示n时间段下第l个相位阶段的绿灯时长;t表示方案失衡阈值,则将该单位时间段作为交通信号控制时段划分节点,并重新转回至步骤S521,否则转到下一步骤S524;
    S524、对比分析控制时间段内各单位时间的路口通行能力c n,选取max(c n)时间段下的交通信号控制方案为该控制时间段内的交通信号控制方案,包括相序方案和各相位阶段绿灯时长
    Figure PCTCN2020095092-appb-100035
PCT/CN2020/095092 2020-04-26 2020-06-09 考虑路口流量失衡状况的交通信号控制方案时段划分方法 WO2021217790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010341744.5A CN111554091B (zh) 2020-04-26 2020-04-26 考虑路口流量失衡状况的交通信号控制方案时段划分方法
CN202010341744.5 2020-04-26

Publications (1)

Publication Number Publication Date
WO2021217790A1 true WO2021217790A1 (zh) 2021-11-04

Family

ID=72001350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095092 WO2021217790A1 (zh) 2020-04-26 2020-06-09 考虑路口流量失衡状况的交通信号控制方案时段划分方法

Country Status (2)

Country Link
CN (1) CN111554091B (zh)
WO (1) WO2021217790A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114120647A (zh) * 2021-11-26 2022-03-01 阿波罗智联(北京)科技有限公司 交通数据处理方法、装置、电子设备和介质
CN114267189A (zh) * 2021-12-20 2022-04-01 黑龙江工程学院 一种快速路出口匝道与衔接交叉口联合控制方法
CN114373296A (zh) * 2021-12-07 2022-04-19 浙江银江智慧交通工程技术研究院有限公司 混行交叉口网联自动专用道布设方案评价方法和系统
CN114999184A (zh) * 2022-04-21 2022-09-02 上海商汤智能科技有限公司 信号时段的更新方法、装置、设备、存储介质及程序产品
CN115019524A (zh) * 2022-05-12 2022-09-06 浙江大华技术股份有限公司 一种交通控制时段划分方法、装置、设备及存储介质
CN115116242A (zh) * 2022-06-29 2022-09-27 苏州科达科技股份有限公司 交通信号控制方法、系统、设备及存储介质
CN115171403A (zh) * 2022-06-24 2022-10-11 上海辉略企业发展集团有限公司 基于聚类的多模式交叉口控制方法及系统
CN116884245A (zh) * 2023-06-26 2023-10-13 华南理工大学 一种基于车道流量与等级区间的交叉口时段划分方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112785858B (zh) * 2021-02-19 2023-06-16 阿里巴巴集团控股有限公司 一种交通控制方法、装置及电子设备
CN113327437B (zh) * 2021-06-01 2022-11-25 平安国际智慧城市科技股份有限公司 交叉路口交通信号控制方法、系统、装置及存储介质
CN113851007B (zh) * 2021-09-27 2023-01-17 阿波罗智联(北京)科技有限公司 划分时段的方法、装置、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082870A (ko) * 2010-01-12 2011-07-20 (주)기술과가치 실시간 교통정보 측정·도로정보 안내장치 및 방법
CN105160894A (zh) * 2015-07-11 2015-12-16 无锡华通智能交通技术开发有限公司 基于车辆排队长度的平面十字交叉口信号控制的优化方法
CN105206070A (zh) * 2015-08-14 2015-12-30 公安部交通管理科学研究所 道路交通信号协调实时优化控制方法及其控制系统
CN105608510A (zh) * 2015-12-31 2016-05-25 连云港杰瑞电子有限公司 一种基于Fisher算法的交通时段自动划分的方法
CN108765988A (zh) * 2018-05-23 2018-11-06 华南理工大学 一种面向互联网数据的路口信号动态优化方法
CN109559513A (zh) * 2018-12-12 2019-04-02 武汉理工大学 一种基于相邻周期流量差值预测的自适应信号控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700273B (zh) * 2014-01-06 2016-01-06 东南大学 基于可变导向车道的信号配时优化方法
CN107833463B (zh) * 2017-10-25 2020-05-12 上海应用技术大学 基于二维聚类的交通信号时段划分方法及系统
CN109087519B (zh) * 2018-08-10 2021-05-28 江苏智通交通科技有限公司 联控路口交通信号方案阶段划分及绿时配置方法
CN109345839A (zh) * 2018-10-19 2019-02-15 江苏智通交通科技有限公司 基于常规相序的组合相位灵活配置方法
CN109544945B (zh) * 2018-11-30 2021-06-01 江苏智通交通科技有限公司 基于车道饱和度的区域控制相位配时优化方法
CN110956826B (zh) * 2019-11-21 2021-07-13 浙江大华技术股份有限公司 一种交通信号配时方案的生成方法、生成装置及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082870A (ko) * 2010-01-12 2011-07-20 (주)기술과가치 실시간 교통정보 측정·도로정보 안내장치 및 방법
CN105160894A (zh) * 2015-07-11 2015-12-16 无锡华通智能交通技术开发有限公司 基于车辆排队长度的平面十字交叉口信号控制的优化方法
CN105206070A (zh) * 2015-08-14 2015-12-30 公安部交通管理科学研究所 道路交通信号协调实时优化控制方法及其控制系统
CN105608510A (zh) * 2015-12-31 2016-05-25 连云港杰瑞电子有限公司 一种基于Fisher算法的交通时段自动划分的方法
CN108765988A (zh) * 2018-05-23 2018-11-06 华南理工大学 一种面向互联网数据的路口信号动态优化方法
CN109559513A (zh) * 2018-12-12 2019-04-02 武汉理工大学 一种基于相邻周期流量差值预测的自适应信号控制方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114120647A (zh) * 2021-11-26 2022-03-01 阿波罗智联(北京)科技有限公司 交通数据处理方法、装置、电子设备和介质
CN114373296A (zh) * 2021-12-07 2022-04-19 浙江银江智慧交通工程技术研究院有限公司 混行交叉口网联自动专用道布设方案评价方法和系统
CN114267189A (zh) * 2021-12-20 2022-04-01 黑龙江工程学院 一种快速路出口匝道与衔接交叉口联合控制方法
CN114267189B (zh) * 2021-12-20 2022-11-18 黑龙江工程学院 一种快速路出口匝道与衔接交叉口联合控制方法
CN114999184A (zh) * 2022-04-21 2022-09-02 上海商汤智能科技有限公司 信号时段的更新方法、装置、设备、存储介质及程序产品
CN115019524A (zh) * 2022-05-12 2022-09-06 浙江大华技术股份有限公司 一种交通控制时段划分方法、装置、设备及存储介质
CN115171403A (zh) * 2022-06-24 2022-10-11 上海辉略企业发展集团有限公司 基于聚类的多模式交叉口控制方法及系统
CN115171403B (zh) * 2022-06-24 2024-03-26 上海辉略企业发展集团有限公司 基于聚类的多模式交叉口控制方法及系统
CN115116242A (zh) * 2022-06-29 2022-09-27 苏州科达科技股份有限公司 交通信号控制方法、系统、设备及存储介质
CN116884245A (zh) * 2023-06-26 2023-10-13 华南理工大学 一种基于车道流量与等级区间的交叉口时段划分方法
CN116884245B (zh) * 2023-06-26 2024-03-12 华南理工大学 一种基于车道流量与等级区间的交叉口时段划分方法

Also Published As

Publication number Publication date
CN111554091B (zh) 2022-04-22
CN111554091A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2021217790A1 (zh) 考虑路口流量失衡状况的交通信号控制方案时段划分方法
CN109544945B (zh) 基于车道饱和度的区域控制相位配时优化方法
CN111429721B (zh) 基于排队消散时间的路口交通信号方案优化方法
CN109087519B (zh) 联控路口交通信号方案阶段划分及绿时配置方法
CN109377753B (zh) 协调方向重复放行的干线协调优化方法
CN108898855B (zh) 路口信号相位方案绿灯时长配置方法
CN103559795B (zh) 一种多策略多目标的自适应交通控制方法
CN108389406A (zh) 信号控制时段自动划分方法
CN102169634B (zh) 一种交通拥塞优先疏散控制方法
WO2020083399A1 (zh) 基于交通流数据的协调干线线路规划方法及配置系统
EP3425608B1 (en) Traffic signal control using multiple q-learning categories
CN105046990B (zh) 一种基于粒子群算法的相邻路口间人行道信号灯控制方法
CN105225503A (zh) 交通控制子区优化与自适应调整方法
CN110491144A (zh) 基于路况预测的调整红绿灯时长的方法及相关设备
AU2021100757A4 (en) Method for optimizing bus bunching based on the combinatorial scheduling of whole-zone bus and inter-zone bus
CN104457770A (zh) 一种拥堵预判和行驶路径规划的方法及行驶路径规划的系统
WO2020108216A1 (zh) 协调干线合理性分析及协调方式配置方法
CN111524345A (zh) 一种车辆实时排队长度约束下多目标优化的感应控制方法
CN111932873B (zh) 一种山地城市热点区域实时交通预警管控方法及系统
CN108010344B (zh) 一种十字路口绿灯时间调整方法及系统
CN112365713B (zh) 一种主支路交叉口信号配时优化方法
CN109887293A (zh) 一种交叉口信号控制时段划分方法
CN108053658B (zh) 一种拥挤全链条管理的快速路多匝道协调控制方法
CN113096415B (zh) 一种行人二次过街交叉口信号协调优化控制方法
CN112669628A (zh) 一种基于需求-供给双波动的交叉口信号设计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933396

Country of ref document: EP

Kind code of ref document: A1