WO2021189635A1 - 一种外置微界面造纸污水处理系统及处理方法 - Google Patents

一种外置微界面造纸污水处理系统及处理方法 Download PDF

Info

Publication number
WO2021189635A1
WO2021189635A1 PCT/CN2020/092692 CN2020092692W WO2021189635A1 WO 2021189635 A1 WO2021189635 A1 WO 2021189635A1 CN 2020092692 W CN2020092692 W CN 2020092692W WO 2021189635 A1 WO2021189635 A1 WO 2021189635A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
treatment system
interface
tank
inlet
Prior art date
Application number
PCT/CN2020/092692
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Priority to CA3140712A priority Critical patent/CA3140712C/en
Priority to US17/617,928 priority patent/US20220267182A1/en
Publication of WO2021189635A1 publication Critical patent/WO2021189635A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/24Separation of coarse particles, e.g. by using sieves or screens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention belongs to the technical field of papermaking sewage treatment, and specifically relates to an external micro-interface papermaking sewage treatment system and a treatment method.
  • the current wet oxidation technology has the advantages of strong adaptability and good treatment effects.
  • the combination of processes is more successful in treating papermaking wastewater, but the wet oxidation method requires higher reaction temperature, pressure and longer residence time. The reason is that the residence time of air or oxygen in the liquid phase is short and the mass transfer time is insufficient.
  • the bubble diameter is large, the gas-liquid phase boundary area formed in the reactor is small, and the mass transfer space is insufficient, which leads to the problems of too long reaction time, high energy consumption, and low reaction efficiency.
  • the first object of the present invention is to provide an external micro-interface papermaking wastewater treatment system, which improves the mass transfer effect and reaction efficiency between the two phases by arranging the micro-interface generator before the wet oxidation reactor. Break the bubbles into micron-level bubbles, thereby increasing the phase boundary area between the gas phase and the liquid phase, so that the mass transfer space is fully satisfied, and the residence time of air or oxygen in the liquid phase is increased, thereby reducing the consumption of air or oxygen.
  • the reaction itself can be guaranteed to proceed efficiently, avoiding a series of potential safety hazards caused by high temperature and high pressure, and it is more conducive to the energy saving and consumption reduction of the reaction process, and the cost is low.
  • the second object of the present invention is to provide a papermaking wastewater treatment method using the above treatment system.
  • the treatment method is easy to operate, has milder operating conditions, low energy consumption, and achieves a better treatment effect than the existing process.
  • the present invention provides an external micro-interface papermaking wastewater treatment system, which is characterized in that it includes a grid collection tank, a first coagulation sedimentation tank, an inclined screen, a second coagulation sedimentation tank, and a heat exchange
  • the heat exchanger is provided with a first inlet, a first outlet, a second inlet, and a second outlet;
  • the side wall of the wet oxidation reactor is provided with a feed inlet,
  • the top of the wet oxidation reactor is provided with an oxidizing water outlet, the feed inlet is connected with a micro-interface generator for dispersing broken gas into bubbles, and the micro-interface generator is provided with a liquid phase inlet and a gas phase inlet, so
  • the gas inlet is connected with an air compressor;
  • the first inlet communicates with the second coagulation sedimentation tank
  • the first outlet communicates with the liquid phase inlet on the micro-interface generator through the preheater
  • the second inlet communicates with The oxidized water outlet is connected
  • the second outlet is connected with a biological aerated filter.
  • the wet oxidation treatment method In the papermaking wastewater treatment process in the prior art, the wet oxidation treatment method often requires higher reaction temperature, pressure and longer residence time. The reason is that the residence time of air or oxygen in the liquid phase is short and the mass transfer time Insufficiency, the bubble diameter is large, the gas-liquid phase boundary area formed in the reactor is small, and the mass transfer space is insufficient, which leads to the problems of too long reaction time, high energy consumption, and low reaction efficiency.
  • the pretreatment system in turn includes the grid collection tank, the first coagulation sedimentation tank, the inclined screen, and the second coagulation sedimentation tank.
  • the processing equipment is connected in sequence, and the sewage discharged from the papermaking process first enters the grid collection basin, and the grid collection basin is provided with a mechanical grid, preferably a rotary mechanical grid, which can be more effectively and continuously removed than other grids. Large-size floating matter and suspended matter; then the sewage from the grid collection tank enters the first coagulation sedimentation tank, and the SS pollutants flocculate and settle by adding coagulants or coagulants to the sewage.
  • the first coagulation sedimentation tank is a partition sedimentation tank, which has good flocculation effect and low cost; the sewage after the first coagulation sedimentation enters the inclined screen, and the inclined screen is used for recovery
  • the filter mesh of the inclined screen is preferably composed of 80 mesh and 100 mesh nylon filter screens, so that long fibers can be recovered; the sewage after the inclined screen enters the second coagulation sedimentation tank for processing.
  • the treatment system uses a micro-interface generator before the wet oxidation reactor to break the air or oxygen before entering the wet oxidation reactor into bubbles, so that the bubbles and sewage form a gas-liquid emulsion, thereby increasing The phase boundary area between the gas and the sewage is further improved, and the reaction efficiency is increased. After the mass transfer effect of the reaction phase interface is increased, the operating temperature and pressure do not need to be too high, and the effects of low energy consumption and low operating cost are realized.
  • the micro-interface generator of the present invention is a pneumatic micro-interface generator, so that the air or oxygen compressed by the air compressor enters the pneumatic micro-interface generator from the gas phase inlet, and the gas is broken and dispersed by the micro-interface generator. Disperse and break into micro-bubbles, thereby reducing the thickness of the liquid film, effectively increasing the mass transfer area between air or oxygen and sewage, reducing mass transfer resistance and improving reaction efficiency.
  • micro-interface generators are not limited in the manner of setting, the position of the micro-interface generator, and the number; more preferably, the number of the micro-interface generator is more than one, and the micro-interface generators are sequentially arranged from top to bottom before the wet oxidation reactor. Parallel arrangement, through this kind of multi-row parallel micro-interface generators to disperse and crush incoming materials at the same time, which can effectively improve the subsequent reaction efficiency.
  • micro-interface generator used in the present invention is embodied in the inventor’s previous patents, such as the patent publication No. 106215730A.
  • the core of the micro-interface generator is bubble breakage, and the bubble breaker
  • the principle is that the gases carried by the high-speed jets collide with each other to transfer energy and break the bubbles.
  • the structure of the micro-interface generator is disclosed in one of the above-mentioned patents, and will not be repeated here.
  • connection between the micro-interface generator and the wet oxidation reactor including the connection structure and the connection position, it depends on the structure of the micro-interface generator, which is not limited.
  • reaction mechanism and control method of the micro-interface generator it has been disclosed in the previous patent CN107563051B of the present inventor, and will not be repeated here.
  • the treatment system further includes a sludge tank, which is connected to the first coagulation settling tank and the second coagulation settling tank at the same time.
  • the sludge tank can be connected to a sludge dewatering machine, and the sludge is buried or reused after being dewatered.
  • first coagulation sedimentation tank is composed of two or more in series with each other; the second coagulation sedimentation tank is composed of two or more in series with each other.
  • the use of multi-stage coagulation sedimentation can more effectively remove pollutants such as SS, BOD and COD.
  • the second coagulation sedimentation tank includes three filter layers arranged from top to bottom, and each filter layer is filled with flocculating substances.
  • the type of the second coagulation sedimentation tank is a vortex sedimentation tank, which has the advantages of short flocculation time, good flocculation effect, and large capacity compared with other coagulation sedimentation tanks.
  • the treatment system further includes an ion exchanger, which is connected to the biological aerated filter and is used to neutralize the alkali in the sewage.
  • the strong acid cation exchange resin in the ion exchanger can neutralize the alkali contained in the waste water, and can also remove BOD, COD and other pollutants, and further reduce the content of organic pollutants in the waste water.
  • the ion exchanger can be fixed-bed ion exchange. Or continuous ion exchanger.
  • the treatment system further includes a COD concentration monitoring device and a disinfection tank, the COD concentration monitoring device is connected to the ion exchanger for monitoring the water quality and discharged into the disinfection tank, and the COD concentration monitoring device is simultaneously with the exposure tank.
  • the biological aerated filter connection is used to return the unqualified water to the biological aerated filter for reprocessing.
  • COD concentration detection it can detect whether the sewage treatment indicators meet the requirements in time, and it can also monitor whether the entire treatment system has problems at the same time, which is convenient for timely maintenance; the disinfection tank can be disinfected by ultraviolet or ozone.
  • a first solenoid valve is provided on the connecting pipeline between the COD concentration monitoring device and the disinfection pool
  • a second solenoid valve is provided on the connecting pipeline between the COD concentration monitoring device and the exposure biological filter.
  • the electromagnetic valve The clean water after ion exchange enters the COD concentration monitoring device first to monitor the COD concentration of the water. If the COD concentration of the clean water is lower than the set value, it meets the requirements and can be recycled.
  • the first solenoid valve opens and enters the clean pool; If the COD concentration of the clean water is higher than the set value, the second solenoid valve is opened, and the clean water returns to the biological aerated filter through the pipeline to perform biological purification again.
  • a booster pump is arranged between the sedimentation tank and the heat exchanger.
  • the booster pump also has a pressure monitoring module and a control module inside. If the pressure is detected to be too high or too low during the process, the control module can open or close the booster pump at any time; the booster pump can also be connected in series through multiple Or it can be used in parallel to achieve multi-stage pressure boosting, and the pressure can be adjusted according to actual needs by using multi-stage pressure boosting.
  • the present invention also provides a method for treating papermaking wastewater by adopting the above-mentioned sewage treatment system, which includes the following steps:
  • the papermaking wastewater first enters the grid sump to remove the large-size floating matter and suspended matter, and then enters the first coagulation sedimentation tank to flocculate and settle the SS pollutants in the wastewater, and enters through the first coagulation and sedimentation wastewater
  • the fiber in the water is recovered in the inclined screen, and the sewage after passing through the inclined screen enters the second coagulation sedimentation tank for treatment;
  • the sewage treated by the above steps is heated and enters the micro-interface generator, and at the same time, compressed air or oxygen is introduced into the micro-interface generator.
  • the dispersed and broken micro-bubbles and sewage are fully emulsified in the micro-interface generator and then enters
  • the wet oxidation treatment is performed in the wet oxidation reactor; the product after the wet oxidation treatment is cooled by heat exchange and then enters the aerated biological filter for biological oxidation treatment.
  • the reaction temperature of the wet oxidation treatment is 170-180° C., and the reaction pressure is 3-3.5 MPa.
  • the reaction temperature is 175° C., and the reaction pressure is 3.2 MPa.
  • the sewage treatment method of the present invention has simple and convenient operation, milder operating conditions, low energy consumption, and achieves a better treatment effect than the existing process.
  • the present invention has the following beneficial effects:
  • the present invention also significantly saves the energy consumption of the air compressor by reducing the reaction temperature and pressure.
  • the oxidation of organic matter will generate more heat, which can basically maintain the self-sufficiency of heat for the operation of the device.
  • the operating cost is mainly the energy consumption of air compressors and pumps, of which air compressors account for most of the energy consumption.
  • the outlet pressure of the compressor is reduced, the energy consumption of the compressor is greatly reduced, and the cost is saved for the enterprise.
  • Figure 1 is a schematic structural diagram of an external micro-interface papermaking wastewater treatment system provided by an embodiment of the present invention.
  • FIG. 1 is an external micro-interface papermaking wastewater treatment system according to an embodiment of the present invention.
  • Settling tank 40 as well as heat exchanger 50, preheater 60, wet oxidation reactor 70, biological aerated filter 100, wherein the bottom of the first coagulation sedimentation tank 20 and the second coagulation sedimentation tank 40
  • a sludge tank 140 the first coagulation sedimentation tank 20 and the second coagulation sedimentation tank 40 are connected to the sludge tank 140 at the same time;
  • the side wall of the wet oxidation reactor 70 is provided with a feed inlet 72, and the top is provided with an oxidation
  • the water outlet 71 and the feed inlet 72 are connected with a micro-interface generator 80 for dispersing crushed gas into bubbles.
  • the micro-interface generator 80 is provided with a liquid phase inlet 81 and a gas phase inlet 82, and the gas phase inlet 82 is connected with an air compressor 90 .
  • the air compressor 90 is preferably a centrifugal air compressor, because the centrifugal air compressor has a large gas volume and does not require lubrication inside, which saves oil and does not pollute the compressed gas.
  • the compressed air or oxygen After the compressed air or oxygen is dispersed into bubbles, it is fully emulsified with sewage in the micro-interface generator 80 and then enters the wet oxidation reactor 70 for oxidation reaction.
  • the contact area of the gas-liquid two-phase is increased through the action of the micro-interface generator. , Improve the mass transfer effect.
  • the number of micro-interface generators 80 is not limited to the number. In order to increase the dispersion and mass transfer effects, additional micro-interface generators can also be added. Multiple micro-interface generators can be connected in series or in parallel.
  • the method is set before the wet oxidation reactor 70, and is preferably arranged side by side from top to bottom.
  • the type of the micro-interface generator is a pneumatic micro-interface generator, which is driven by compressed air or oxygen.
  • the heat exchanger 50 of this embodiment is provided with a first inlet 51, a first outlet 52, a second inlet 53, and a second outlet 54, and the second coagulation sedimentation tank 40 is preferably connected to the first inlet 51 through a booster pump.
  • the first outlet 52 is connected to the liquid phase inlet 81 of the micro-interface generator 80 through the preheater 60.
  • the sewage is preheated before entering the liquid phase inlet 81 after passing through the heat exchanger 50.
  • the wet oxidation reactor 70 is also provided on the top There is an oxidized water outlet 71, which is connected to the second inlet 53, and the oxidized water from the oxidized water outlet 71 enters the heat exchanger 50 through the second inlet 53 for heat exchange, and heats the sewage to be treated while being cooled. So as to achieve the purpose of making full use of energy. Subsequently, the oxidized water after heat exchange enters the biological aerated filter 100 through the second outlet 54.
  • a condenser can be added between the second outlet 54 and the biological aerated filter 100, and the oxidized water is exchanged After being heated, it is cooled before entering the biological aerated filter 100.
  • the treatment system also includes an ion exchanger 110, a COD concentration detection device 120, and a disinfection tank 130.
  • the ion exchanger 110 is connected to the aerated biological filter 100 and is used to neutralize the alkali in the sewage, and the COD concentration
  • the monitoring device 120 is connected to the ion exchanger 110 for monitoring the qualified water and discharged into the disinfection tank 130.
  • the COD concentration monitoring device 120 is connected to the biological aerated filter 100 at the same time.
  • a first solenoid valve 150 is provided on the pipeline
  • a second solenoid valve 160 is provided on the connecting pipeline between the COD concentration monitoring device 120 and the exposure biological filter 100.
  • the clean water after ion exchange first enters the COD concentration monitoring device 120 to monitor the COD concentration of the water. If the COD concentration of the clean water is lower than the set value, it meets the requirements and can be recycled.
  • the first solenoid valve 150 Open, enter the disinfection tank 130 for ultraviolet or ozone disinfection; if the COD concentration of the clean water is higher than the set value, the second solenoid valve is opened, and the clean water returns to the biological aerated filter 100 through the pipeline to perform biological purification again.
  • the papermaking wastewater first enters the grid sump 10 to remove large-size floating and suspended matter, and then enters the first coagulation sedimentation tank 20 to flocculate and settle the SS pollutants in the wastewater, and the settled harmful substances are discharged into the sludge In the pond, the sewage after passing through the first coagulation sedimentation enters the inclined screen 30 to recover the fibers in the water, and the sewage after passing through the inclined screen enters the second coagulation sedimentation tank 40 for processing;
  • the sewage treated by the above steps is heated and enters the micro-interface generator 80, and at the same time, compressed air or oxygen is introduced into the micro-interface generator 80, and the dispersed and broken micro-bubbles and sewage are fully emulsified in the micro-interface generator 80 Then enter the wet oxidation reactor 70 for wet oxidation reaction; the wet oxidation reaction temperature in the reactor is 170-180° C., the reaction pressure is 3-3.5 MPa, preferably the reaction temperature is 175° C., and the reaction pressure is 3.2 MPa.
  • the oxidation product enters the heat exchanger 50 through the oxidized water outlet 71 to exchange heat with the sewage to be treated, and then enters the biological aerated filter 100 through the cooler for biodegradation treatment, and the biodegraded water is neutralized by the ion exchanger 110 After the alkali in the sewage is monitored by the COD concentration detection device 120, it enters the disinfection tank 120 to be disinfected and then recycled and reused.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

本发明提供了一种外置微界面造纸污水处理系统及处理方法。该处理系统包括依次连接的格栅集水池、第一道混凝沉降池、斜筛、第二道混凝沉降池,以及换热器、预热器、湿式氧化反应器,换热器上设置有第一进口、第一出口、第二进口、第二出口;湿式氧化反应器的侧壁设置有进料口,湿式氧化反应器的顶部设置有氧化水出口,进料口连接有用于分散破碎气体成气泡的微界面发生器,微界面发生器上设置有液相进口以及气相进口,气相进口连接有空压机;本发明的处理系统通过在湿式氧化反应器之前设置微界面发生器,增大了空气或氧气与液相之间的传质面积,降低了造纸污水处理系统的温度与压力,进而有效地降低了能耗、提高了反应效率。

Description

一种外置微界面造纸污水处理系统及处理方法 技术领域
本发明属于造纸污水处理技术领域,具体涉及一种外置微界面造纸污水处理系统及处理方法。
背景技术
目前,我国造纸业排放污水占全国工业污水排放总量的15%左右,COD排放占全国工业COD排放总量的1/3以上。造纸污水排放量大,碱度大,难降解物质含量高、耗氧量大,造成水体污染和生态环境的严重破坏。因此,如何应用造纸污水治理技术,化害为利,回收利用资源,促进生态环境保护与造纸工业可持续发展,具有重要的现实意义。
由于污水成分复杂且污水温度较高,为此工业上采用物理法、化学法、生化法等相结合的污水处理工艺,目前湿式氧化技术因其适应性强、处理效果好等优点,通过和其他工艺的结合处理造纸污水较为成功,但是湿式氧化法需要较高的反应温度、压力和较长的停留时间,究其原因是因为空气或氧气在液相中的停留时间短,传质时间不足,气泡直径大,反应器内形成的气液相界面积较小,传质空间不足,从而导致了反应时间过长、能耗高、反应效率低下的问题。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种外置微界面造纸污水处理系统,该处理系统通过在湿式氧化反应器之前设置微界面发生器,提高了两相之间的传质效果、反应效率,可以将气泡打碎成微米级别的气泡,从而增加气相与液相之间 的相界面积,使得传质空间充分满足,增加了空气或氧气在液相中的停留时间,从而降低空气或氧气的耗量,这样即使温度和压力不需要太高,也可以保证反应本身的高效进行,避免了高温高压带来的一系列安全隐患的发生,更有利于反应过程的节能降耗,成本低。
本发明的第二目的在于提供一种采用上述处理系统进行造纸污水的处理方法,该处理方法操作简便、操作条件更加温和,能耗低,达到了比现有工艺更佳的处理效果。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种外置微界面造纸污水处理系统,其特征在于,包括依次连接的格栅集水池、第一道混凝沉降池、斜筛、第二道混凝沉降池,以及换热器、预热器、湿式氧化反应器,所述换热器上设置有第一进口、第一出口、第二进口、第二出口;所述湿式氧化反应器的侧壁设置有进料口,所述湿式氧化反应器的顶部设置有氧化水出口,所述进料口连接有用于分散破碎气体成气泡的微界面发生器,所述微界面发生器上设置有液相进口以及气相进口,所述气相进口连接有空压机;
其中,所述第一进口与所述第二道混凝沉降池连通,所述第一出口通过所述预热器与所述微界面发生器上的液相进口连通,所述第二进口与所述氧化水出口连通,所述第二出口连接有曝气生物滤池。
现有技术中造纸污水处理工艺中,湿式氧化处理法往往需要较高的反应温度、压力和较长的停留时间,究其原因是因为空气或氧气在液相中的停留时间短,传质时间不足,气泡直径大,反应器内形成的气液相界面积较小,传质空间不足,从而导致了反应时间过长、能耗高、反应效率低下的问题。
上述处理系统中,在进行湿式氧化处理之前先要进行一定的预处理,预处理系统依次包括了格栅集水池、第一道混凝沉降池、斜筛、第二道混凝沉降池,上述处理设备依次连接,造纸工艺中排出的污水先进入格栅集水池,所述格栅集水池中设置有机械格栅,优选回转式机械格栅,相比其他格栅更能有效地连 续自动清除大尺寸的漂浮物和悬浮物;紧接着从格栅集水池中出来的污水进入第一道混凝沉降池中,通过在污水中添加混凝剂或助凝剂,使得SS污染物絮凝沉降,进一步的,所述第一道混凝沉降池为隔板沉淀池,隔板沉淀池的絮凝效果好,造价低;通过第一道混凝沉降后的污水进入斜筛中,斜筛用于回收水中的纤维,所述斜筛的过滤目数优选由80目以及100目的尼龙过滤网组成,从而可以回收长纤维;经过斜筛后的污水再进入第二道混凝沉降池中进行处理。
污水在上述预处理系统中经过初步的除杂、沉降等预处理措施后,再进行后续的湿式氧化处理以达到更为深层的污水净化效果。
需要强调的是,该处理系统通过在湿式氧化反应器之前设置微界面发生器,将进入湿式氧化反应器前的空气或氧气打碎分散成气泡,使得气泡与污水形成气液乳化物,从而增加了气体与污水之间的相界面积,进一步提高了反应效率,增加了反应相界面的传质效果后,操作温度与压力也不需要太高,实现了能耗低,操作成本低的效果。
本发明的微界面发生器为气动式微界面发生器,这样经过空压机压缩后的空气或氧气从气相进口进入到气动式微界面发生器的内部,通过微界面发生器的破碎分散作用,将气体分散破碎成微气泡,从而减小液膜厚度,有效的增大了空气或氧气与污水之间的传质面积,降低传质阻力,提高反应效率。
进一步的,所述微界面发生器设置方式不限、设置位置不限,数量也不限;更优选的,所述微界面发生器数量为一个以上,在湿式氧化反应器之前由上到下依次并列设置,通过这种多排并列设置的微界面发生器同时对进来的物料进行分散破碎,更能够有效的提升后续的反应效率。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中体现,如公开号106215730A的专利,微界面发生器其核心在于气泡破碎,气泡破碎器的原理是高速射流所携带的气体相互撞击进行能量传递,使气泡破碎,关于微界面发生器的结构在上述专利中公开其中一实施例, 此处不再多加赘述。关于微界面发生器与湿式氧化反应器的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。关于微界面发生器的反应机理及控制方法,在本发明人在先专利CN107563051B中已经公开,此处不再多加赘述。
进一步的,所述处理系统还包括污泥池,所述污泥池同时与所述第一道混凝沉降池以及所述第二道混凝沉降池连接。优选地,污泥池可以连接污泥脱水机,污泥经过脱水后填埋或再利用。
进一步的,所述第一道混凝沉降池为两个以上互相串联组成;所述第二道混凝沉降池为两个以上互相串联组成。采用多级混凝沉降可以更有效的去除SS、BOD和COD等污染物。
进一步的,所述第二道混凝沉降池包括由上至下设置的三层过滤层,每层过滤层填充有絮凝物质。优选地,所述第二道混凝沉降池的类型为涡流沉降池,相比其他混凝沉降池,其具有絮凝时间短、絮凝效果好、容量大等优点。
进一步的,所述处理系统还包括离子交换器,所述离子交换器与所述曝气生物滤池连接,用于中和污水中的碱。离子交换器中的强酸性阳离子交换树脂可中和废水中含有的碱,还可除去BOD、COD等污染物,进一步降低废水中有机污染物的含量,所述离子交换器可以选择固定床离子交换器或连续离子交换器。
进一步的,所述处理系统还包括COD浓度监测装置和消毒池,所述COD浓度监测装置连接所述离子交换器用于监测水质合格后排入消毒池,所述COD浓度监测装置同时与所述曝气生物滤池连接,用于将不合格的水返回曝气生物滤池中再处理。通过COD浓度检测,可及时检测到污水处理指标是否满足要求,还可同时监测整个处理系统是否出问题,方便及时检修;消毒池可采用紫外线或臭氧进行消毒。
进一步的,所述COD浓度监测装置和所述消毒水池之间的连接管道上设置有第一电磁阀,所述COD浓度监测装置和所述曝光生物滤池之间的连接管 道上设置有第二电磁阀。经过离子交换后的清水先进入COD浓度监测装置,对水的COD浓度进行监测,若清水的COD浓度低于设定值,则满足要求,可以回收利用,第一电磁阀打开,进入清水池;若清水的COD浓度高于设定值,则第二电磁阀打开,清水通过管道返回曝气生物滤池重新进行生物净化。
进一步的,所述沉淀池和换热器之间设置有增压泵。所述增压泵的内部还带有压力监测模块和控制模块,过程中如果监测到压力过高或者过低时,控制模块能随时打开或者关闭增压泵;增压泵还可以通过多个串联或者并联使用来实现多级增压,采用多级增压可以根据实际需要压力进行调节。
除此之外,本发明还提供了采用上述污水处理系统进行处理造纸污水的方法,包括如下步骤:
造纸污水先进入格栅集水池后去除大尺寸的漂浮物和悬浮物,紧接着进入第一道混凝沉降池中使污水中SS污染物絮凝沉降,通过第一道混凝沉降后的污水进入斜筛中回收水中的纤维,经过斜筛后的污水再进入第二道混凝沉降池中进行处理;
经过上述步骤处理后的污水经过加热后进入微界面发生器内,同时在微界面发生器内通入压缩空气或氧气,经过分散破碎后的微气泡与污水在微界面发生器内充分乳化后进入湿式氧化反应器内进行湿式氧化处理;所述湿式氧化处理后的产物经过换热冷却后进入曝气生物滤池中进行生物氧化处理。
优选的,所述湿式氧化处理的反应温度为170-180℃,反应压力3-3.5MPa,优选反应温度为175℃,反应压力为3.2MPa。通过采用上述的微处理方法后,提高了处理效率,增加了空气或氧气与污水之间的融合度,即使在比较低的温度、压力下也能达到良好的处理效果,充分降低了能耗。
本发明的污水处理方法操作简便、操作条件更加温和,能耗低,达到了比现有工艺更佳的处理效果。
与现有技术相比,本发明的有益效果在于:
(1)通过在湿式氧化反应器之前设置微界面发生器后,提高了两相之间 的传质效果、反应效率,可以将气泡打碎成微米级别的气泡,从而增加气相与液相之间的相界面积,使得传质空间充分满足,增加了空气或氧气在液相中的停留时间,从而降低空气或氧气的耗量,这样即使温度和压力不需要太高,也可以保证反应本身的高效进行,避免了高温高压带来的一系列安全隐患的发生,更有利于反应过程的节能降耗,成本低。
(2)本发明通过反应温度和压力的降低,也显著节约了空气压缩机的能耗。湿式氧化过程中有机物氧化会产生较多热量,基本能够维持装置操作的热量自给。其运行成本主要是空气压缩机及泵的能耗,而这其中空气压缩机占大部分能耗。降低压缩机的出口压力,大幅度的削减了压缩机的能耗,给企业节约了成本。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的外置微界面造纸污水处理系统的结构示意图。
附图说明:
10-格栅集水池;                    20-第一道混凝沉降池;
30-斜筛;                          40-第一道混凝沉降池;
50-换热器;                        51-第一进口;
52-第一出口;                      53-第二进口;
54-第二出口;                      60-预热器;
70-湿式氧化反应器;                71-氧化水出口;
72-进料口;                        80-微界面发生器;
81-液相进口;                      82-气相进口;
90-空压机;                        100-曝气生物滤池;
110-离子交换器;                    120-COD浓度监测装置;
130-消毒池;                        140-污泥池;
150-第一电磁阀;                    160-第二电磁阀。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例的外置微界面造纸污水的处理系统,包括依次连接的格栅集水池10、第一道混凝沉降池20、斜筛30、第二道混凝沉降池40,以及换热器50、预热器60、湿式氧化反应器70、曝气生物滤池100,其中,第一道混凝沉降池20与第二道混凝沉降池40的底部设置有污泥池140,第一道混凝沉降池20以及第二道混凝沉降池40同时与污泥池140连接;湿式氧化反应器70的侧壁设置有进料口72,顶部设置有氧化水出口71,进料口72连接有用于分散破碎气体成气泡的微界面发生器80,微界面发生器上80上设置有液相进口81以及气相进口82,气相进口82连接有空压机90。
具体而言,污水经过换热器50换热后通过预热器60加热后从液相进口81进入微界面发生器80内,同时,空气或者氧气经过空压机90压缩后通过气相进口82进入微界面发生器80中分散破碎成气泡,这里空压机90优选为离心式空压机,因为离心式空压机气量大,内部不需要润滑,省油且不污染被压缩的气体。
压缩后的空气或氧气分散成气泡后与污水在微界面发生器80内进行充分乳化后进入湿式氧化反应器70内进行氧化反应,通过微界面发生器的作用增加了气液两相的接触面积,提高了传质效果。可以理解的是,上述微界面发生器80的并不局限于个数,为了增加分散、传质效果,也可以多增设额外的微界面发生器,多个微界面发生器可以通过串联或并联的方式设置在湿式氧化反应器70之前,优选采用由上至下并列设置的方式,在本实施例中,微界面发生器的类型为气动式微界面发生器,以压缩空气或氧气作为动力驱动。
该实施例的换热器50设置有第一进口51、第一出口52、第二进口53、第二出口54,第二道混凝沉降池40优选通过增压泵与第一进口51连接,第一出口52通过预热器60与微界面发生器80的液相进口81连接,在污水经过换热器50后进入液相进口81之前先进行预热,湿式氧化反应器70的顶部还设置有氧化水出口71,氧化水出口与第二进口53连接,氧化水出口71出来的氧化 水通过第二进口53进入换热器50中进行换热,被冷却的同时加热了待处理的污水,从而达到充分利用能源的目的。随后,经过换热后的氧化水通过第二出口54进入曝气生物滤池100中,优选地,在第二出口54和曝气生物滤池100的中间可增设冷凝器,在氧化水经过换热后进入曝气生物滤池100之前先进行冷却。
本实施例中,该处理系统还包括有离子交换器110、COD浓度检测装置120和消毒池130,离子交换器110与曝气生物滤池100连接,用于中和污水中的碱,COD浓度监测装置120连接离子交换器110用于监测水质合格后排入消毒池130,COD浓度监测装置120同时与曝气生物滤池100连接,此外,COD浓度监测装置120和消毒池130之间的连接管道上设置有第一电磁阀150,COD浓度监测装置120和曝光生物滤池100之间的连接管道上设置有第二电磁阀160。
具体而言,经过离子交换后的清水先进入COD浓度监测装置120,对水的COD浓度进行监测,若清水的COD浓度低于设定值,则满足要求,可以回收利用,第一电磁阀150打开,进入消毒池130中进行紫外或臭氧消毒;若清水的COD浓度高于设定值,则第二电磁阀打开,清水通过管道返回曝气生物滤池100重新进行生物净化。
以下简要说明本发明的外置微界面造纸污水处理系统的工作过程和原理:
造纸污水先进入格栅集水池10中去除大尺寸的漂浮物和悬浮物,紧接着进入第一道混凝沉降池20中使污水中SS污染物絮凝沉降,沉降下来的有害物质排放到污泥池,通过第一道混凝沉降后的污水进入斜筛30中回收水中的纤维,经过斜筛后的污水再进入第二道混凝沉降池40中进行处理;
经过上述步骤处理后的污水加热后进入微界面发生器80内,同时在微界面发生器80内通入压缩空气或氧气,经过分散破碎后的微气泡与污水在微界面发生器80内充分乳化后进入湿式氧化反应器70内进行湿式氧化反应;反应器中的湿式氧化反应温度为170-180℃,反应压力3-3.5MPa,优选反应温度为 175℃,反应压力为3.2MPa。氧化产物通过氧化水出口71进入换热器50中与待处理的污水进行换热后,经过冷却器进入曝气生物滤池100进行生物降解处理,生物降解后的水经过离子交换器110中和污水中的碱后,通过COD浓度检测装置120监测达标后进入到消毒池120中进行消毒后回收再利用。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种外置微界面造纸污水处理系统,其特征在于,包括依次连接的格栅集水池、第一道混凝沉降池、斜筛、第二道混凝沉降池,以及换热器、预热器、湿式氧化反应器,所述换热器上设置有第一进口、第一出口、第二进口、第二出口;所述湿式氧化反应器的侧壁设置有进料口,所述湿式氧化反应器的顶部设置有氧化水出口,所述进料口连接有用于分散破碎气体成气泡的微界面发生器,所述微界面发生器上设置有液相进口以及气相进口,所述气相进口连接有空压机;
    其中,所述第一进口与所述第二道混凝沉降池连通,所述第一出口通过所述预热器与所述微界面发生器上的液相进口连通,所述第二进口与所述氧化水出口连通,所述第二出口连接有曝气生物滤池。
  2. 根据权利要求1所述的外置微界面造纸污水处理系统,其特征在于,所述微界面发生器为气动式微界面发生器,所述微界面发生器的数量为一个以上,从上到下依次并列设置。
  3. 根据权利要求1所述的外置微界面造纸污水处理系统,其特征在于,所述处理系统还包括污泥池,所述污泥池同时与所述第一道混凝沉降池以及所述第二道混凝沉降池连接。
  4. 根据权利要求1所述的外置微界面造纸污水处理系统,其特征在于,所述第一道混凝沉降池为两个以上互相串联组成;所述第二道混凝沉降池为两个以上互相串联组成。
  5. 根据权利要求1所述的外置微界面造纸污水处理系统,其特征在于,所述第二道混凝沉降池包括由上至下设置的三层过滤层,每层过滤层填充有絮凝物质。
  6. 根据权利要求1-5任一项所述的外置微界面造纸污水处理系统,其特征在于,所述处理系统还包括离子交换器,所述离子交换器与所述曝气生物滤池连接,用于中和污水中的碱。
  7. 根据权利要求6所述的外置微界面造纸污水处理系统,其特征在于,所述处理系统还包括COD浓度监测装置和消毒池,所述COD浓度监测装置连接所述离子交换器用于监测水质合格后排入消毒池,所述COD浓度监测装置同时与所述曝气生物滤池连接,用于将不合格的水返回所述曝气生物滤池中再处理。
  8. 根据权利要求7所述的外置微界面造纸污水处理系统,其特征在于,所述COD浓度监测装置和所述消毒池之间的连接管道上设置有第一电磁阀,所述COD浓度监测装置和所述曝光生物滤池之间的连接管道上设置有第二电磁阀。
  9. 采用权利要求1-8任一项所述的外置微界面造纸污水处理系统的污水处理方法,其特征在于,包括如下步骤:
    造纸污水先进入格栅集水池后去除大尺寸的漂浮物和悬浮物,紧接着进入第一道混凝沉降池中使污水中SS污染物絮凝沉降,通过第一道混凝沉降后的污水进入斜筛中回收水中的纤维,经过斜筛后的污水再进入第二道混凝沉降池中进行处理;
    经过上述步骤处理后的污水经过加热后进入微界面发生器内,同时在微界面发生器内通入压缩空气或氧气,经过分散破碎后的微气泡与污水在微界面发生器内充分乳化后进入湿式氧化反应器内进行湿式氧化处理;
    所述湿式氧化处理后的产物经过换热冷却后进入曝气生物滤池中进行生物氧化处理。
  10. 根据权利要求9所述的污水处理方法,其特征在于,所述湿式氧化处理的反应温度为170-180℃,反应压力3-3.5MPa,优选反应温度为175℃,反应压力为3.2MPa。
PCT/CN2020/092692 2020-03-24 2020-05-27 一种外置微界面造纸污水处理系统及处理方法 WO2021189635A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3140712A CA3140712C (en) 2020-03-24 2020-05-27 External micro-interface papermaking wastewater treatment system and wastewater treatment method thereof
US17/617,928 US20220267182A1 (en) 2020-03-24 2020-05-27 External micro-interface papermaking wastewater treatment system and wastewater treatment method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010214344.8A CN111573962B (zh) 2020-03-24 2020-03-24 一种外置微界面造纸污水处理系统及处理方法
CN202010214344.8 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021189635A1 true WO2021189635A1 (zh) 2021-09-30

Family

ID=72119075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092692 WO2021189635A1 (zh) 2020-03-24 2020-05-27 一种外置微界面造纸污水处理系统及处理方法

Country Status (4)

Country Link
US (1) US20220267182A1 (zh)
CN (1) CN111573962B (zh)
CA (1) CA3140712C (zh)
WO (1) WO2021189635A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116282621A (zh) * 2022-12-19 2023-06-23 南京延长反应技术研究院有限公司 一种高盐低cod废水处理系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104326549A (zh) * 2014-11-17 2015-02-04 刘超 一种湿式氧化处理废水的装置
CN106396252A (zh) * 2016-08-29 2017-02-15 浙江远大纸业有限公司 一种造纸污水深度生化处理方法
CN208120937U (zh) * 2018-03-14 2018-11-20 黄河水利职业技术学院 一种造纸废水处理系统
CN110591763A (zh) * 2019-09-10 2019-12-20 南京延长反应技术研究院有限公司 一种煤间接液化的智能强化控制系统及工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977966A (en) * 1975-09-24 1976-08-31 Sterling Drug Inc. Purification of non-biodegradable industrial wastewaters
US5449506A (en) * 1993-06-16 1995-09-12 K-Technologies, Inc. Process for producing potassium carbonate
US5558778A (en) * 1993-11-16 1996-09-24 Shell Oil Company Process for the treatment of a wastewater
WO2002066386A1 (en) * 2001-02-23 2002-08-29 Aquarius Ventures International, Ltd. Process for selective refining of the di-hydrol polymer by temperature and pressure conditions below the critical point of water
US7931816B2 (en) * 2004-12-29 2011-04-26 Acos Llc Method, apparatus and systems for treating contaminants in a waste fluid
CN103896451B (zh) * 2014-03-07 2016-02-24 佛山市新泰隆环保设备制造有限公司 一种造纸废水深度处理装置及方法
KR101926481B1 (ko) * 2016-10-31 2018-12-10 에스케이이노베이션 주식회사 폐가성소다 용액의 층분리 방법
CN206219347U (zh) * 2016-11-23 2017-06-06 江苏省环境科学研究院 一种高浓度有机废水的湿式氧化处理系统
CN107563051B (zh) * 2017-08-30 2019-04-02 南京大学 微界面强化反应器气泡尺度构效调控模型建模方法
CN108101291A (zh) * 2018-01-09 2018-06-01 中冶华天工程技术有限公司 一种有机废水的湿式氧化处理系统及方法
CN110316808B (zh) * 2019-07-16 2021-05-07 北京理工大学 一种用于通过催化湿式氧化法处理有机废水的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104326549A (zh) * 2014-11-17 2015-02-04 刘超 一种湿式氧化处理废水的装置
CN106396252A (zh) * 2016-08-29 2017-02-15 浙江远大纸业有限公司 一种造纸污水深度生化处理方法
CN208120937U (zh) * 2018-03-14 2018-11-20 黄河水利职业技术学院 一种造纸废水处理系统
CN110591763A (zh) * 2019-09-10 2019-12-20 南京延长反应技术研究院有限公司 一种煤间接液化的智能强化控制系统及工艺

Also Published As

Publication number Publication date
CA3140712C (en) 2023-07-11
CN111573962A (zh) 2020-08-25
US20220267182A1 (en) 2022-08-25
CN111573962B (zh) 2021-04-30
CA3140712A1 (en) 2021-11-27

Similar Documents

Publication Publication Date Title
WO2021189634A1 (zh) 一种内置微界面造纸废水处理系统及处理方法
CN100500595C (zh) 一种含油污水处理装置及处理工艺
CN101244879B (zh) 含油乳化液废水处理工艺
CN103073163B (zh) 一种退浆废水的处理和污泥减量装置及其方法
CN101148298A (zh) 一种碱减量废水膜法集成处理回收的方法
CN110981107A (zh) 硅钢含油及乳化液废水处理与回用系统及其工艺
WO2021189635A1 (zh) 一种外置微界面造纸污水处理系统及处理方法
CN102583809A (zh) 一种含油污水除硅除油系统
US11267742B2 (en) Built-in micro-interface papermaking wastewater treatment system and wastewater treatment method thereof
CN105384230A (zh) 一种纤维素废水预处理装置及应用
CN209456210U (zh) 一种用于锅炉补给水处理自用水合理回用系统
CN108503076A (zh) 一种用于乳化含油废水的二级预处理工艺
CN112374684A (zh) 一种油气田钻井废液循环利用处理装置及方法
CN213537527U (zh) 一种适用于垃圾焚烧电厂循环冷却水排污水的处理回用系统
CN111115923A (zh) 一种基于电絮凝技术的含油污水处理系统及方法
CN108658397A (zh) 一种造纸废水处理系统
CN1203231C (zh) 草浆造纸污水处理的方法
CN110981156B (zh) 一种基于碱改性的油泥三相分离方法
CN213085651U (zh) 一种外置微界面造纸污水处理系统
CN207811312U (zh) 一种混合器及气浮溶气装置
CN216737881U (zh) 炼厂原油电脱盐高浓度污水预处理设备
CN114314958B (zh) 炼厂原油电脱盐高浓度污水预处理方法
CN220845838U (zh) 一种荧光废水浓缩装置
CN214990915U (zh) 一种废乳化液的物化处理系统
CN213085757U (zh) 一种内置微界面造纸废水处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3140712

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927592

Country of ref document: EP

Kind code of ref document: A1