WO2021189414A1 - 车载控制单元的接口电路、装置、车辆及控制方法 - Google Patents

车载控制单元的接口电路、装置、车辆及控制方法 Download PDF

Info

Publication number
WO2021189414A1
WO2021189414A1 PCT/CN2020/081650 CN2020081650W WO2021189414A1 WO 2021189414 A1 WO2021189414 A1 WO 2021189414A1 CN 2020081650 W CN2020081650 W CN 2020081650W WO 2021189414 A1 WO2021189414 A1 WO 2021189414A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
resistor
pull
branch
output
Prior art date
Application number
PCT/CN2020/081650
Other languages
English (en)
French (fr)
Inventor
吴子旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20927217.8A priority Critical patent/EP4063977B1/en
Priority to PCT/CN2020/081650 priority patent/WO2021189414A1/zh
Priority to CN202080004584.3A priority patent/CN112639757B/zh
Publication of WO2021189414A1 publication Critical patent/WO2021189414A1/zh
Priority to US17/863,654 priority patent/US12009768B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/382Information transfer, e.g. on bus using universal interface adapter
    • G06F13/385Information transfer, e.g. on bus using universal interface adapter for adaptation of a particular data processing system to different peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4204Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus
    • G06F13/4221Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus being an input/output bus, e.g. ISA bus, EISA bus, PCI bus, SCSI bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/03Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors
    • H02P7/04Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors by means of a H-bridge circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0238Electrical distribution centers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • H03K19/01707Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits
    • H03K19/01721Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits by means of a pull-up or down element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40273Bus for use in transportation systems the transportation system being a vehicle

Definitions

  • This application relates to the field of automobile technology, and more specifically, to an interface circuit, a device, a vehicle, and a control method of an in-vehicle control unit.
  • the on-board control unit is an important part for managing and controlling on-board electronic equipment.
  • the in-vehicle control unit is usually equipped with special digital input, digital output, local interconnect network (LIN) bus, single edge nibble transmission (single edge nibble) transmission, SENT) bus, H-bridge output and other interfaces.
  • LIN local interconnect network
  • SENT single edge nibble transmission
  • H-bridge output H-bridge output and other interfaces.
  • the present application provides an interface circuit of a vehicle control unit, a vehicle control unit, a vehicle, and a control method, which can realize a configurable multifunctional interface circuit and reduce the demand pressure of diversified vehicle electronic equipment on the diversified interface of the vehicle control unit.
  • an interface circuit of a vehicle control unit includes: an H-bridge circuit 210, an input branch 220, and a pull-up network 230; the input 211 of the H-bridge circuit 210 is connected to the controller 240, The output terminal 212 of the H-bridge circuit 210 is connected to the interface terminal IO of the interface circuit; the first end of the input branch 220 is connected to the interface terminal IO, and the second end of the input branch 220 is connected to the controller 240; the pull-up network 230 includes a local interconnect network (LIN) bus pull-up resistor branch 231, and/or a single edge nibble transmission (SENT) bus pull-up resistor branch 232; among them, on the LIN bus
  • the pull-up resistor branch 231 is provided with a LIN bus pull-up resistor 2311, a diode 2312, and a first switching device 2313.
  • the first end of the LIN bus pull-up resistor 2311 is connected to the LIN bus power supply 233, and the second end of the LIN bus pull-up resistor 2311
  • the terminal is connected to the anode of the diode 2312, and the cathode of the diode 2312 is connected to the interface terminal IO through the first switching device 2313;
  • the SENT bus pull-up resistor branch 232 is provided with a SENT bus pull-up resistor 2321 and a second switching device 2322, which are on the SENT bus
  • the first end of the pull-up resistor 2321 is connected to the SENT bus power supply 234, and the second end of the SENT bus pull-up resistor 2321 is connected to the interface terminal IO through the second switch device 2322; the first switch device 2313 and/or the second switch device 2322
  • the on and off of is controlled by the controller 240 through the first control branch 235 and/or the second control branch 236;
  • the interface circuit is configured as one or more of the following interface
  • the interface circuit provided by the embodiments of the present application is a configurable multifunctional interface circuit, which can be configured into a variety of different types of interfaces under the control of the controller 240, so that the interface circuit is suitable for more types of in-vehicle electronic equipment. It can reduce the pressure on the diversified interfaces of the on-board control unit from diversified in-vehicle electronic equipment.
  • the H-bridge circuit 210 is a full-bridge circuit or includes two half-bridge circuits; wherein, the output terminal 212 of the H-bridge circuit 210 includes a first output terminal and a second output terminal, and the interface terminal IO includes A first interface terminal and a second interface terminal; wherein, the first interface terminal is connected to the first output terminal, and the second interface terminal is connected to the second output terminal.
  • the interface port IO is set to two, so that the interface port IO can realize the forward and reverse rotation of the motor when it is connected to the DC brushed motor; when it is connected to some other in-vehicle electronic equipment, the two ports Terminals can work independently of each other, for example: one of the interface terminals can be used to connect to the vehicle electronic equipment, or two interface terminals can be used to connect to two vehicle equipment respectively; the two interface terminals can also be used in conjunction with each other, for example: use one interface The terminal provides the supply voltage for the vehicle-mounted electronic equipment, and the other interface terminal is used to communicate with the vehicle-mounted electronic equipment, thereby improving the utilization of resources.
  • the input branch 220 includes a first input branch and a second input branch, which are respectively connected to the first interface terminal and the second interface terminal.
  • setting two input branches 220 can realize the configuration of two independent digital signal input interfaces.
  • the LIN bus pull-up resistor branch 231 includes a first LIN bus pull-up resistor branch and a second LIN bus pull-up resistor branch connected in parallel
  • the LIN bus pull-up resistor 2311 includes a first LIN bus pull-up resistor branch.
  • the pull-up resistor R1 and the second pull-up resistor R2, the diode 2312 set by the LIN bus pull-up resistor branch 231 includes a first diode D1 and a second diode D2, and the first diode set by the LIN bus pull-up resistor branch 231
  • the switching device 2313 includes a third switching device S1 and a fourth switching device S2; the first LIN bus pull-up resistor branch includes a first pull-up resistor R1, a first diode D1, and a third switching device S1.
  • the first end of the resistor R1 is connected to the LIN bus power supply 233, the second end of the first pull-up resistor R1 is connected to the anode of the diode D1, and the cathode of the diode D1 is connected to the first interface terminal through the third switching device S1;
  • the LIN bus pull-up resistor branch includes a second pull-up resistor R2, a second diode D2, and a fourth switching device S2.
  • the first end of the LIN bus pull-up resistor R2 is connected to the LIN bus power supply 233, and the LIN bus pulls up
  • the second end of the resistor R2 is connected to the anode of the diode D2, and the cathode of the diode D2 is connected to the second interface terminal through the first switching device S2;
  • the first control branch 235 includes a third control branch K1 and a fourth control branch K2
  • the controller 240 controls the on and off of the third switching device S1 and the fourth switching device S2 through the third control branch K1 and the fourth control branch K2, respectively.
  • setting two LIN bus pull-up resistor branches can realize the configuration of two independent LIN bus interfaces.
  • the SENT bus pull-up resistor branch 232 includes a first SENT bus pull-up resistor branch and a second SENT bus pull-up resistor branch connected in parallel, and the SENT bus pull-up resistor 2321 includes a third pull-up resistor branch.
  • the second switch device 2322 provided by the SENT bus pull-up resistor branch 232 includes the fifth switch device S3 and the sixth switch device S4; the first SENT bus pull-up resistor branch includes the first SENT bus pull-up resistor.
  • the second SENT bus pull-up resistor branch includes a fourth pull-up resistor R4 and a sixth switching device S4, the first end of the fourth pull-up resistor R4 is connected to the SENT bus power supply 234, and the fourth pull-up resistor R4 Is connected to the second interface terminal through the sixth switching device S4;
  • the second control branch 236 includes a fifth control branch K3 and a sixth control branch K4, the controller 240 respectively through the fifth control branch K3 and The sixth control branch K4 controls the on and off of the fifth switching device S3 and the sixth switching device S4.
  • setting two SENT bus pull-up resistor branches can realize the configuration of two independent SENT bus interfaces.
  • the interface circuit when the interface circuit is configured as an H-bridge output interface, the interface circuit is controlled by the controller 240 and the H-bridge circuit 210 outputs a control signal of the DC brushed motor.
  • the interface circuit may be configured as one H-bridge full-bridge output interface, or two H-bridge half-bridge output interfaces.
  • the interface circuit when the interface circuit is configured as a 12V power output interface, the interface circuit is controlled by the controller 240 to output the high-side output of the H-bridge circuit 210.
  • the interface circuit may be configured as a two-way 12V power output interface.
  • the interface circuit is controlled by the controller 240 to output the low-side output of the H-bridge circuit 210.
  • the interface circuit may be configured as two 5V digital signal output interfaces.
  • the H-bridge circuit 210 is an H-bridge circuit with a high-impedance output.
  • an H-bridge circuit with a high-impedance output is used to enable the interface terminal IO to have an input function.
  • the interface circuit when the interface circuit is configured as a 5V digital signal input interface, the interface circuit is controlled by the controller 240 to output a high-impedance output on the H-bridge circuit 210, and the signal of the interface terminal IO is collected through the input branch 220 .
  • the interface circuit may be configured as two 5V digital signal input interfaces.
  • the interface circuit when the interface circuit is configured as a 12V digital signal input interface, the interface circuit is controlled by the controller 240 to output a high-impedance output on the H-bridge circuit 210, and the signal of the interface terminal IO is collected through the input branch 220 .
  • the interface circuit may be configured as two 12V digital signal input interfaces.
  • the interface circuit when the interface circuit is configured as a LIN bus interface, the interface circuit is controlled by the controller 240 to close the first switching device 2313, and the H-bridge circuit 210 is controlled to output the low-side output according to the LIN bus timing, or press LIN bus timing output high-impedance output.
  • the interface circuit may be configured as a two-way LIN bus interface.
  • the interface circuit when the interface circuit is configured as a SENT bus interface, the interface circuit is controlled by the controller 240 to close the second switching device 2322, and the H-bridge circuit 210 is controlled to output a high-impedance output according to the timing of the SENT bus.
  • the interface circuit may be configured as a two-way SENT bus interface.
  • the interface circuit when the interface circuit is configured to work in cooperation with the two output terminals, the interface circuit is controlled by the controller 240 at the first output terminal of the H-bridge circuit 210 to generate a supply voltage for the on-board electronic equipment, and the second The output terminal communicates according to the following interfaces: LIN bus interface, SENT bus interface, 12V power output interface, 5V digital signal input interface, 5V digital signal output interface, 12V digital signal input interface.
  • the power supply of the H-bridge circuit 210 is 12V; and/or the power supply of the LIN bus is 12V; and/or the power supply of the SENT bus is 5V.
  • the power supply of the H-bridge circuit 210 is 12V
  • the power supply of the LIN bus is 12V
  • the power supply of the SENT bus is 5V, so that the interface circuit is suitable for vehicles.
  • the H-bridge circuit 210 shares a power supply with the LIN bus.
  • the H-bridge circuit 210 can share a 12V power supply with the LIN bus, so that the resources are fully utilized.
  • the controller is a micro-control unit MCU.
  • a vehicle-mounted control unit which includes one or more interface circuits as in the first aspect.
  • the on-board control unit is an electronic control unit ECU.
  • a vehicle which includes one or more vehicle-mounted control units as in the second aspect.
  • a method for controlling an interface circuit includes: an H-bridge circuit 210, an input branch 220, and a pull-up network 230; the input terminal 211 of the H-bridge circuit 210 is connected to the controller 240, and the H-bridge The output terminal 212 of the circuit 210 is connected to the interface terminal IO of the interface circuit; the first end of the input branch 220 is connected to the interface terminal IO, and the second end of the input branch is connected to the controller 240; the pull-up network 230 includes a partial The interconnection network LIN bus pull-up resistor branch 231, and/or unilateral nibble transmission SENT bus pull-up resistor branch 232; wherein the LIN bus pull-up resistor branch 231 is provided with a LIN bus pull-up resistor 2311, a diode 2312 With the first switching device 2313, the first end of the LIN bus pull-up resistor 2311 is connected to the LIN bus power supply 233, the second end of the LIN bus pull
  • the first end of the SENT bus pull-up resistor 2321 is connected to the SENT bus power supply 234, SENT The second end of the bus pull-up resistor 2321 is connected to the interface terminal IO through the second switching device 2322; the on and off of the first switching device 2313 and/or the second switching device 2322 are respectively controlled by the controller 240 through the first control branch 235 and / Or control by the second control branch 236; the control method includes: the controller 240 controls the interface circuit to be configured as one or more of the following interfaces: H-bridge output interface, 12V power output interface, 5V digital signal output interface, 5V digital signal Input interface, 12V digital signal input interface, LIN bus interface and/or SENT bus interface.
  • the H-bridge circuit 210 is a full-bridge circuit or includes two half-bridge circuits; wherein, the output terminal 212 of the H-bridge circuit 210 includes a first output terminal and a second output terminal, and the interface terminal IO includes A first interface terminal and a second interface terminal; wherein, the first interface terminal is connected to the first output terminal, and the second interface terminal is connected to the second output terminal.
  • the input branch 220 includes a first input branch and a second input branch, which are respectively connected to the first interface terminal and the second interface terminal.
  • the LIN bus pull-up resistor branch 231 includes a first LIN bus pull-up resistor branch and a second LIN bus pull-up resistor branch connected in parallel
  • the LIN bus pull-up resistor 2311 includes a first LIN bus pull-up resistor branch.
  • the pull-up resistor R1 and the second pull-up resistor R2, the diode 2312 set by the LIN bus pull-up resistor branch 231 includes a first diode D1 and a second diode D2, and the first diode set by the LIN bus pull-up resistor branch 231
  • the switching device 2313 includes a third switching device S1 and a fourth switching device S2; the first LIN bus pull-up resistor branch includes a first pull-up resistor R1, a first diode D1, and a third switching device S1.
  • the first end of the resistor R1 is connected to the LIN bus power supply 233, the second end of the first pull-up resistor R1 is connected to the anode of the diode D1, and the cathode of the diode D1 is connected to the first interface terminal through the third switching device S1;
  • the LIN bus pull-up resistor branch includes a second pull-up resistor R2, a second diode D2, and a fourth switching device S2.
  • the first end of the LIN bus pull-up resistor R2 is connected to the LIN bus power supply 233, and the LIN bus pulls up
  • the second end of the resistor R2 is connected to the anode of the diode D2, and the cathode of the diode D2 is connected to the second interface terminal through the first switching device S2;
  • the first control branch 235 includes a third control branch K1 and a fourth control branch K2
  • the controller 240 controls the on and off of the third switching device S1 and the fourth switching device S2 through the third control branch K1 and the fourth control branch K2, respectively.
  • the SENT bus pull-up resistor branch 232 includes a first SENT bus pull-up resistor branch and a second SENT bus pull-up resistor branch connected in parallel, and the SENT bus pull-up resistor 2321 includes a third pull-up resistor branch.
  • the second switch device 2321 provided by the SENT bus pull-up resistor branch 232 includes the fifth switch device S3 and the sixth switch device S4; the first SENT bus pull-up resistor branch includes the second switch device S3 and the sixth switch device S4.
  • the second SENT bus pull-up resistor branch includes a fourth pull-up resistor R4 and a sixth switching device S4, the first end of the fourth pull-up resistor R4 is connected to the SENT bus power supply 234, and the fourth pull-up resistor R4 Is connected to the second interface terminal through the sixth switching device S4;
  • the second control branch 236 includes a fifth control branch K3 and a sixth control branch K4, the controller 240 respectively through the fifth control branch K3 and The sixth control branch K4 controls the on-off of the fifth switching device S3 and the sixth switching device S4.
  • the controller 240 controls the interface circuit to output a control signal of the DC brushed motor on the H-bridge circuit 210.
  • the controller 240 controls the interface circuit to output a high-side output on the H-bridge circuit 210.
  • the controller 240 controls the interface circuit to output a low-side output on the H-bridge circuit 210.
  • the H-bridge circuit 210 is an H-bridge circuit with a high-impedance output.
  • the controller 240 controls the interface circuit to output a high-impedance output on the H-bridge circuit 210, and collects the signal of the interface terminal IO through the input branch 220.
  • the controller 240 controls the interface circuit to output a high-impedance output in the H-bridge circuit 210, and collects the signal of the interface terminal IO through the input branch 220.
  • the controller 240 controls to close the first switching device 2313, and controls the H-bridge circuit 210 to output low-side output according to the LIN bus timing or output according to the LIN bus timing. High impedance output.
  • the controller 240 controls to close the second switching device 2322, and controls the H-bridge circuit 210 to output a high-impedance output according to the SENT bus timing sequence.
  • the controller 240 controls the interface circuit to generate a supply voltage for the on-board electronic equipment at the first output terminal of the H-bridge circuit 210, and the second output
  • the terminal communicates according to the following interfaces: LIN bus interface, SENT bus interface, 12V power output interface, 5V digital signal input interface, 5V digital signal output interface, 12V digital signal input interface.
  • the power supply of the H-bridge circuit 210 is 12V; and/or the power supply of the LIN bus is 12V; and/or the power supply of the SENT bus is 5V.
  • the H-bridge circuit 210 shares a power supply with the LIN bus.
  • the controller is a microcontroller unit MCU.
  • Figure 1 is an example diagram of a typical vehicle-mounted control unit interface
  • FIG. 2 is an example diagram of an interface circuit structure of an on-board control unit provided by an embodiment of the present application
  • FIG. 3 is an example diagram of an interface circuit structure of another vehicle-mounted control unit provided by an embodiment of the present application.
  • Fig. 4 is a detailed example diagram of the current trend of the interface circuit of Fig. 3 configured as an H-bridge full-bridge output interface;
  • Figure 5 is a detailed example diagram of the current trend of the interface circuit of Figure 3 configured as two H-bridge half-bridge output interfaces;
  • Fig. 6 is a detailed example diagram of the signal direction of the interface circuit of Fig. 3 configured as a two-way LIN bus interface;
  • Fig. 7 is a detailed example diagram of the signal direction of the interface circuit of Fig. 3 configured as two-way SENT bus interface;
  • Fig. 8 is a detailed example diagram of the current trend of the interface circuit of Fig. 3 configured as two 12V power output interfaces;
  • Fig. 9 is a detailed example diagram of the signal direction of the interface circuit of Fig. 3 configured as a two-way 5V bidirectional digital signal interface;
  • Fig. 10 is a detailed example diagram of the signal direction of the interface circuit of Fig. 3 configured as two 12V digital signal input interfaces;
  • Fig. 11 is an exemplary diagram of a vehicle-mounted control unit provided by an embodiment of the present application.
  • On-board control units such as: electronic control unit (ECU), vehicle control unit (VCU), hybrid control unit (HCU), etc. are used to manage and control these on-board electronics Important parts of equipment.
  • ECU electronice control unit
  • VCU vehicle control unit
  • HCU hybrid control unit
  • a car usually contains dozens or even hundreds of on-board control units.
  • these on-board control units usually need to be equipped with special digital input, digital output, LIN
  • Various interfaces such as bus, SENT bus, and H-bridge output are shown in Figure 1.
  • a car is a personalized product.
  • the prior art proposes a configurable solution for the ECU interface, which mainly adopts a complex programmable logic device (CPLD) to realize the control connection between the main control chip and the output circuit, and then the control of the main control chip Configure the output circuit as a multi-function interface circuit to enable it to have interface functions such as digital input, digital output, and H-bridge output.
  • CPLD complex programmable logic device
  • the design of the dedicated interface into a multi-functional interface can increase the flexibility of control, but the CPLD and main control chip used in the prior art are expensive, which significantly increases the manufacturing cost of the ECU, and the prior art
  • the interface circuit given in does not meet the electrical characteristics of the interface between the LIN bus and the SENT bus, and is not suitable for LIN bus and SENT bus signal transmission.
  • the embodiments of the present application provide an interface circuit of a vehicle control unit.
  • the interface circuit can be configured as one or more of the following interfaces under the control of the controller: H-bridge output interface, 12V power output interface, 5V Digital signal output interface, 5V digital signal input interface, 12V digital signal input interface, LIN bus interface and/or SENT bus interface.
  • the multifunctional interface circuit provided by the embodiment of the application can reduce the cost while reducing the diversified vehicle electronic equipment Demand pressure for diversified interfaces of on-board control units.
  • Fig. 2 is an example diagram of an interface circuit structure of a vehicle-mounted control unit provided by an embodiment of the present application.
  • the interface circuit 200 includes at least: an H-bridge circuit 210, an input branch 220, and a pull-up network 230.
  • the input terminal 211 of the H-bridge circuit 210 is connected to the controller 240, the output terminal 212 of the H-bridge circuit 210 is connected to the interface terminal IO of the interface circuit 200; the first terminal of the input branch 220 is connected to the interface terminal IO, and the input branch The second end of 220 is connected to the controller 240; the pull-up network 230 includes the pull-up resistor branch 231 of the LIN bus and/or the pull-up resistor branch 232 of the SENT bus.
  • the LIN bus pull-up resistor branch 231 is provided with a LIN bus pull-up resistor 2311, a diode 2312, and a first switching device 2313.
  • the first end of the LIN bus pull-up resistor 2311 is connected to the LIN bus power supply 233, and the LIN bus pulls up
  • the second end of the resistor 2311 is connected to the anode of the diode 2312, and the cathode of the diode 2312 is connected to the interface terminal IO through the first switching device 2313;
  • the SENT bus pull-up resistor branch 232 is provided with a SENT bus pull-up resistor 2321 and a second switching device 2322.
  • the first end of the SENT bus pull-up resistor 2321 is connected to the SENT bus power supply 234, and the second end of the SENT bus pull-up resistor 2321 is connected to the interface terminal IO through the second switch device 2322; the first switch device 2313 and/or The on-off of the second switching device 2322 is controlled by the controller 240 through the first control branch 235 and/or the second control branch 236 respectively.
  • the interface circuit can be configured as one or more of the following interfaces under the control of the controller 240: H-bridge output interface, 12V power output interface, 5V digital signal output interface, 5V digital signal input interface, 12V digital signal input interface, LIN Bus interface and/or SENT bus interface. It should be understood that the above description can be replaced by controlling the output of the H-bridge circuit through the controller 240, so that the interface terminal has the interface function of any one or more of the following interfaces: H-bridge output interface, 12V power output interface, 5V digital signal output Interface, 5V digital signal input interface, 12V digital signal input interface, LIN bus interface and/or SENT bus interface.
  • the interface circuit provided by the embodiments of the present application is a configurable multifunctional interface circuit, which can be configured into a variety of different types of interfaces under the control of the controller 240, so that the interface circuit is suitable for more types of in-vehicle electronic equipment. It can reduce the pressure on the diversified interfaces of the on-board control unit from diversified in-vehicle electronic equipment.
  • the H-bridge circuit 210 may be one full-bridge circuit or two half-bridge circuits.
  • the output terminal 212 of the H-bridge circuit 210 includes a first output terminal and a second output terminal
  • the interface terminal IO includes a first interface terminal IO A and a second interface terminal IO B ; wherein, the first interface terminal IO A is connected to the first interface terminal IO A.
  • One output terminal, the second interface IO B terminal is connected to the second output terminal.
  • the number of interface terminals IO is set to two, so that the interface terminal IO can realize the forward and reverse rotation of the motor when externally connected to the DC brushed motor; when externally connected to some other in-vehicle electronic equipment,
  • the two interface terminals can work independently of each other.
  • one of the interface terminals can be used to connect to the vehicle electronic equipment, or two interface terminals can be used to connect to two vehicle equipment respectively; the two interface terminals can also be used in conjunction with each other, for example:
  • One interface terminal is used to provide power supply voltage for the vehicle-mounted electronic equipment, and the other interface terminal is used to communicate with the vehicle-mounted electronic equipment, thereby improving resource utilization.
  • an external DC brushed motor is not required, only one interface terminal can be configured, which is not limited in this application.
  • the input branch 220 may include one input branch or two input branches: a first input branch and a second input branch.
  • the input branch is connected to the first interface terminal IO A or the second interface terminal IO B , so that the interface circuit can be configured as a digital signal input interface;
  • the input branch 220 includes two
  • the two input branches are respectively connected to the first interface terminal IO A and the second interface terminal IO B , so that the interface circuit can be configured as two digital signal input interfaces.
  • the LIN bus pull-up resistor branch 231 may include one branch, so that the interface circuit can be configured as a LIN bus interface.
  • the LIN bus pull-up resistor branch 231 may also include a first LIN bus pull-up resistor branch and a second LIN bus pull-up resistor branch connected in parallel, so that the interface circuit can be configured as two Road LIN bus interface.
  • the LIN bus pull-up resistor 2311 may include a first pull-up resistor R1 and a second pull-up resistor R2, and the diode 2312 provided in the LIN bus pull-up resistor branch 231 includes a first diode D1 and a second diode.
  • the first switch device 2313 provided by the LIN bus pull-up resistor branch 231 includes a third switch device S1 and a fourth switch device S2;
  • the first LIN bus pull-up resistor branch includes a first pull-up resistor R1, a first two The pole tube D1 is connected to the third switching device S1, the first end of the first pull-up resistor R1 is connected to the LIN bus power supply 233, the second end of the first pull-up resistor R1 is connected to the anode of the diode D1, and the cathode of the diode D1 passes through
  • the third switch device S1 is connected to the first interface terminal IO A ;
  • the second LIN bus pull-up resistor branch includes a second pull-up resistor R2, a second diode D2, and a fourth switch device S2, and the LIN bus pull-up resistor R2
  • the first end of the LIN bus power supply 233 is connected
  • the second end of the LIN bus pull-up resistor R2 is connected to
  • the first control branch 235 may include a third control branch K1 and a fourth control branch K2, and the controller 240 controls the third switching device S1 and the third control branch K1 and the fourth control branch K2 respectively through the third control branch K1 and the fourth control branch K2.
  • the SENT bus pull-up resistor branch 232 may include one branch, so that the interface circuit can be configured as a SENT bus interface.
  • the SENT bus pull-up resistor branch 232 may also include a first SENT bus pull-up resistor branch and a second SENT bus pull-up resistor branch connected in parallel, so that the interface circuit can be configured as two Road SENT bus interface.
  • the SENT bus pull-up resistor 2321 may include a third pull-up resistor R3 and a fourth pull-up resistor R4, and the second switch device 2322 provided by the SENT bus pull-up resistor branch 232 includes a fifth switch device and a sixth switch device.
  • the first SENT bus pull-up resistor branch includes a third pull-up resistor R3 and a fifth switching device S3, the first end of the third pull-up resistor R3 is connected to the SENT bus power supply 234, the third pull-up resistor R3 The two ends are connected to the first interface terminal IO A through the fifth switch device S3;
  • the second SENT bus pull-up resistor branch includes a fourth pull-up resistor R4 and a sixth switch device S4, and the first end of the fourth pull-up resistor R4 It is connected to the SENT bus power supply 234, and the second end of the fourth pull-up resistor R4 is connected to the second interface terminal IO B through the sixth switching device S4.
  • the second control branch 236 may include a fifth control branch K3 and a sixth control branch K4, and the controller 240 controls the fifth control branch K3 and the sixth control branch K4, respectively.
  • the fifth switching device S3 and the sixth switching device S4 are turned on and off.
  • R1 and R2 are pull-up resistors of the LIN bus, and the resistance value may be 1K ⁇ ; R3 and R4 are pull-up resistors of the SENT bus, and the resistance value may be 10K ⁇ ⁇ 55K ⁇ .
  • the switching device can be composed of a metal-oxide-semiconductor (MOS) switching circuit; the diode can be a 1N4148 diode. It should be understood that the foregoing is merely an example and not a specific limitation.
  • the H-bridge circuit 210 may be an H-bridge circuit with a high-impedance output, so that the interface terminal IO also has an input function. It should be understood that in actual operation, when the interface terminal IO is used as an output interface, the controller controls the H-bridge circuit 210 not to generate a high-impedance output; when the interface terminal is used as an input interface, the controller controls the H-bridge circuit 210 to generate a high-impedance output.
  • the interface circuit 200 is controlled by the controller 240 to output the control signal of the DC brushed motor on the H-bridge circuit 210.
  • the controller 240 controls the H-bridge circuit 210 outputs a high-side output IO A, the low-side output IO B; or low-side output IO A output, the output in the high-side IO B so as to be arranged along the full H-bridge Bridge output interface.
  • control the H-bridge half-bridge circuit to output low-side output or high-side output on IO A and/or IO B , thereby being configured as one or two H-bridge half-bridge output interfaces.
  • control of the high-side output is realized by turning off the high-side switch, which is located at the power terminal; the control of the low-side output is realized by turning off the low-side switch, which is located at the ground terminal.
  • the interface circuit 200 When the interface circuit 200 needs to be configured as a 12V power output interface, the interface circuit 200 is controlled by the controller 240 to output the high-side output at the H-bridge circuit 210, specifically, the high-side output is output at IO A and/or IO B , thereby being Configured as one or two 12V power output interfaces.
  • the interface circuit 200 is controlled by the controller 240 to output low-side output on the H-bridge circuit 210, specifically, output low-side output on IO A and/or IO B , thereby being Configured as one or two 5V digital signal output interfaces.
  • +5V depends on the actual situation: if other +5V terminals with the same electrical characteristics of the on-board control unit where this interface circuit is located cannot be reused, +5V must be drawn from this interface circuit Terminal; if other +5V terminals with the same electrical characteristics of the on-board control unit where this interface circuit is located can be reused, there is no need to lead out the +5V terminal from this interface circuit.
  • the interface circuit 200 When the interface circuit 200 needs to be configured as a 5V digital signal input interface, the interface circuit 200 is controlled by the controller 240 to output a high-impedance output at the H-bridge circuit 210, specifically, a high-impedance output at IO A and/or IO B , and The signal of the interface terminal IO is collected through the input branch 220, so as to be configured as one or two 5V digital signal input interfaces.
  • +5V depends on the actual situation: if other +5V terminals with the same electrical characteristics of the on-board control unit where this interface circuit is located cannot be reused, +5V must be drawn from this interface circuit Terminal; if other +5V terminals with the same electrical characteristics of the on-board control unit where this interface circuit is located can be reused, there is no need to lead out the +5V terminal from this interface circuit.
  • the interface circuit 200 When the interface circuit 200 needs to be configured as a 12V digital signal input interface, the interface circuit 200 is controlled by the controller 240 to output a high-impedance output at the H-bridge circuit 210, specifically, a high-impedance output at IO A and/or IO B , and The signal of the interface terminal IO is collected through the input branch 220, so as to be configured as one or two 12V digital signal input interfaces.
  • the interface circuit 200 When the interface circuit 200 needs to be configured as a LIN bus interface, the interface circuit 200 is controlled by the controller 240 to close the first switching device 2313, and the H-bridge circuit 210 is controlled to output low-side output at IO A and/or IO B according to the LIN bus timing. , Or IO A and/or IO B output high-impedance output according to the LIN bus timing, so as to be configured as one or two LIN bus interfaces.
  • the interface circuit 200 When the interface circuit 200 needs to be configured as a SENT bus interface, the interface circuit 200 is controlled by the controller 240 to close the second switching device 2322, and the H-bridge circuit 210 is controlled to output high-impedance output at IO A and/or IO B according to the SENT bus timing. , Which is configured as one or two SENT bus interfaces.
  • the interface circuit 200 can also be configured to cooperate with two output terminals.
  • the interface circuit 200 is controlled by the controller 240 at the first output terminal of the H-bridge circuit 210 to generate a supply voltage for the on-board electronic equipment, and the second The output terminal communicates according to any one of the following interfaces: LIN bus interface, SENT bus interface, 12V power output interface, 5V digital signal input interface, 5V digital signal output interface, 12V digital signal input interface.
  • the power supply of the H-bridge circuit 210 may be 12V.
  • the above-mentioned 12V power supply is adopted because 12V is a common power supply in automobiles, which can make the interface circuit suitable for vehicles, and it is not a limitation of this application.
  • the LIN bus power supply can be 12V.
  • the above-mentioned 12V power supply is adopted because 12V is a commonly used power supply in the LIN bus, and it cannot be used as a limitation to this application.
  • the SENT bus power supply can be 5V.
  • the above 5V power supply is used because 5V is a commonly used power supply in the SENT bus, and it cannot be used as a limitation to this application.
  • the H-bridge circuit 210 may share a 12V power supply with the LIN bus.
  • the interface circuit 200 may further include a protection circuit to ensure safe and reliable operation of the interface circuit.
  • the protection circuit may include: level conversion and input protection circuit 250, electromagnetic compatibility (EMC) and/or electrostatic discharge (ESD) protection circuit 260; wherein, level conversion and input protection circuit 250 It is located on the input branch; the EMC and/or ESD protection circuit 260 is located on the connection line between the interface terminal IO and the output terminal 212 of the H-bridge circuit 210.
  • the controller may be a microcontroller unit (MCU) or a microprocessor unit (MPU).
  • MCU microcontroller unit
  • MPU microprocessor unit
  • the H-bridge circuit with high-impedance output can be composed of discrete components and/or H-bridge chips such as MC33926; level conversion and input protection can be composed of discrete components and/or level conversion chips such as CD4050B; EMC/ESD circuits can be composed of discrete components and/or level conversion chips such as CD4050B Discrete components and/or dedicated chips. It should be understood that the foregoing is merely an example and not a specific limitation.
  • this embodiment can obtain more interface functions with little increase in cost.
  • the cost difference is mainly reflected in the total cost of the resistance, capacitor, diode, MOS tube, level conversion chip, EMC/ESD protection chip in the interface circuit and the CPLD and the necessary peripheral circuits of the CPLD used in the prior art 1.
  • the difference between the total cost, and this cost difference usually differs by an order of magnitude.
  • FIG. 3 is an example diagram of an interface circuit structure of another vehicle-mounted control unit provided by an embodiment of the present application.
  • the interface circuit 300 includes: an H-bridge circuit 210, an input branch 220, a pull-up network 230, a level conversion and input protection circuit 250, and an EMC and/or ESD protection circuit 260.
  • the H-bridge circuit 210 is an H-bridge circuit with a high-impedance output and includes two output terminals.
  • the interface circuit 300 includes two interface terminals IO A and IO B.
  • the input branch 220 includes two input branches, which are pulled up.
  • the network 230 includes two LIN bus pull-up resistor branches and/two SENT bus pull-up resistor branches, and the control branch includes two LIN bus switch control branches and two SENT bus switch control branches.
  • the specific connection method is that the input terminal 211 of the H-bridge circuit 210 is connected to the MCU, the two output terminals of the H-bridge circuit 210 are respectively connected to the two interface terminals IO A and IO B of the interface circuit 300, and the power supply of the H-bridge circuit 210 is The power supply is 12V.
  • the first ends of the two input branches are respectively connected to the interface terminals IO A and IO B , and the second end of the input branch is connected to the MCU.
  • the MCU can obtain the level status of IN A or IN B by reading the input branch.
  • the level conversion and input protection circuit 250 is located on the input branch 220; the EMC and/or ESD protection circuit 260 is located on the connection between the interface terminal and the output terminal 212 of the H-bridge circuit 210.
  • the two LIN bus pull-up resistor branches include a first LIN bus pull-up resistor branch and a second LIN bus pull-up resistor branch connected in parallel.
  • the first LIN bus pull-up resistor branch includes R1, D1, S1, and R1.
  • the first end is connected to the LIN bus 12V power supply, the second end of R1 is connected to the anode of D1, the cathode of D1 is connected to IO A through S1;
  • the second LIN bus pull-up resistor branch includes R2, D2 and S2, R2
  • the first end is connected to the LIN bus 12V power supply, the second end of R2 is connected to the anode of D2, and the cathode of D2 is connected to IO B through S2.
  • the two SENT bus pull-up resistor branches include a first SENT bus pull-up resistor branch and a second SENT bus pull-up resistor branch connected in parallel.
  • the first SENT bus pull-up resistor branch includes R3 and S3, the first of R3 The second end of R3 is connected to the SENT bus 5V power supply, the second end of R3 is connected to IO A through S3; the second SENT bus pull-up resistor branch includes R4 and S4, the first end of R4 is connected to the SENT bus 5V power supply, and the R4 The second end is connected to IO B through S4.
  • S1, S2, S3, and S4 are respectively connected to the MCU through control branches K1, K2, K3, and K4, and are closed and disconnected under the control of the MCU.
  • the interface circuit 300 can be configured into the following multiple interfaces under the control of the MCU: H-bridge output interface, 12V power output interface, 5V digital signal output interface, 5V digital signal input interface, 12V digital signal input interface, LIN Bus interface and SENT bus interface.
  • the first configuration method H-bridge output interface (full bridge).
  • the interface circuit 300 may be configured as an H-bridge full-bridge output interface.
  • the configuration process of an H-bridge full-bridge output interface is as follows: the MCU controls the switching devices S1, S2, S3, and S4 in the pull-up network 230 to disconnect, and controls the H-bridge circuit 210 with high-impedance output to output a DC brushed motor Control signal.
  • Fig. 4 is a detailed example diagram of the current trend of the interface circuit of Fig. 3 configured as an H-bridge full-bridge output interface.
  • the controller 4 with a high impedance output from the H-bridge circuit 210 outputs a high-side output IO A, the output in the low output IO B-side, the direction of current IO A interface terminal and the IO B As shown by the dashed arrow.
  • the MCU is configured to control the H-bridge circuit 210 with high-impedance output when IO A outputs low-side output and IO B outputs high-side output, and the current directions of interface terminals IO A and IO B are true. Line arrow shown.
  • the MCU may or may not collect the level states of IN A and IN B according to actual requirements.
  • the two interface ends of the interface circuit 300 can be connected to a DC brushed motor peripheral.
  • the interface circuit 300 can drive the DC brushed motor peripherals connected to IO A and IO B to rotate forward and reverse under the control of the MCU, and can realize the DC brushed motor peripherals through the PWM control of the H-bridge circuit Speed control.
  • the common vehicle-mounted DC brush motor is provided with a seat motor, a window motor, etc., which are not specifically limited in this application.
  • the peripheral is that, with respect to a vehicle-mounted control unit, other vehicle-mounted electronic devices connected to it are all referred to as peripherals of the electronic control unit, and for ease of description, they are all referred to as peripherals in the following.
  • the second configuration method H-bridge output interface (half bridge).
  • the interface circuit 300 may be configured as two H-bridge half-bridge output interfaces.
  • the configuration process of the two H-bridge half-bridge output interfaces is as follows: the MCU controls the switching devices S1, S2, S3, and S4 in the pull-up network 230 to disconnect, and controls the H-bridge circuit 210 with high-impedance output to output high-side output. Or output low-side output.
  • the ground terminal (GND) of the wire needs to be used, but how to use it depends on the specific situation: if it is not possible to reuse other equivalent electrical characteristics of the on-board control unit where the interface circuit is located For the GND terminal, the GND terminal needs to be derived from the interface circuit; if other GND terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located can be reused, there is no need to draw the GND terminal from the interface circuit.
  • FIG. 5 is a detailed example diagram of the current flow of the interface circuit of Figure 3 configured as two H-bridge half-bridge output interfaces. Since the functions of the two channels are the same, only one of them is taken as an example for detailed description. Shown, if the interface circuit is H-bridge needs to output a half-bridge in IO A high-side output, the MCU control with high impedance output in the H-bridge circuit 210 outputs a high-side output IO A to a dotted arrow in FIG.
  • the current flows from the H-bridge circuit of this interface circuit to the peripheral load via IO A (the upper dashed line); if the interface circuit needs to output a low-side output H-bridge half-bridge at IO A, the MCU control band is high
  • the H-bridge circuit 210 with impedance output only needs to output the low-side output at IO A.
  • the current flows from the peripheral load through IO A to the H-bridge circuit of the interface circuit (the lower dashed line).
  • another IO B can also implement an H-bridge half-bridge interface through the same operation as IO A.
  • IO A and IO B are independent of each other. In actual operation, one of them can be controlled to work, or the two can be controlled to work separately, which is not limited in this application. It should also be understood that the above explanation is also applicable in the following implementation manners, and the explanation will not be repeated.
  • the two interface terminals of the interface circuit 300 can be connected to two motor peripherals respectively, and the interface circuit 300 can respectively drive the motor peripherals to rotate in one direction under the control of the MCU. It can also be connected to the peripherals of the 12V power output interface, which is not specifically limited in this application.
  • the third configuration method LIN bus interface.
  • the interface circuit 300 may be configured as a two-way LIN bus interface.
  • the configuration process of the two-way LIN bus interface is: MCU controls the switching devices S2 and S4 in the pull-up network 230 to be disconnected; the switching devices S1 and S3 are closed, thereby generating an interface circuit that meets the requirements of the LIN bus interface specification, and the control belt
  • the H-bridge circuit with high-impedance output outputs low-side output or high-impedance output according to the LIN bus timing.
  • the LIN bus signal is bidirectionally transmitted, so the interface terminals IO A and IO B can both input signals and output signals.
  • GND is also needed, but how to use it depends on the specific situation: if other GND terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located cannot be reused, The interface circuit leads to the GND terminal; if other GND terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located can be reused, there is no need to lead to the GND terminal from the interface circuit.
  • Fig. 6 is a detailed example diagram of the signal direction of the interface circuit of Fig. 3 configured as a two-way LIN bus interface. Since the functions of the two channels are the same, only one of them is taken as an example for detailed description. Dashed arrows shown in FIG.
  • the MCU is configured to read the level state of IN A to obtain IO A.
  • the level status on the connection (the upper dashed line).
  • another IO B can also implement the LIN bus master signal transmission and reception through the same operation as IO A. It should be understood that when only one operation needs to be controlled, the MCU is configured to control the switching device S1 or S3 to be closed, and the others are all open.
  • the two interface terminals of the interface circuit 300 can be respectively connected to two LIN controller peripherals, which can realize the control of the peripherals using the LIN bus slave device interface.
  • the common vehicle-mounted LIN bus is equipped with a seat controller, a door lock controller, a window controller, a wiper controller, etc. from the device interface.
  • the fourth configuration method SENT bus interface.
  • the interface circuit 300 may be configured as a two-way SENT bus interface.
  • the configuration process of the two SENT bus interfaces is: MCU controls the switching devices S1 and S3 in the pull-up network to be disconnected; switching devices S2 and S4 are closed, thereby generating an interface circuit that meets the requirements of the SENT bus interface specification, and the control band is high.
  • the impedance output H-bridge circuit outputs high impedance output according to the SENT bus sequence. It should be understood that when configured as a SENT bus interface, the interface terminals IO A and IO B mainly perform signal input.
  • GND is also required, but how to use it depends on the actual situation: if other GND terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located cannot be reused, The interface circuit leads to the GND terminal; if other GND terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located can be reused, there is no need to lead to the GND terminal from the interface circuit.
  • +5V also depends on the actual situation: if it is not possible to reuse other +5V terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located, the +5V terminal needs to be drawn from the interface circuit; if the interface circuit can be reused Other +5V terminals with equivalent electrical characteristics of the on-board control unit where the interface circuit is located, do not need to lead out the +5V terminal from this interface circuit.
  • Fig. 7 is a detailed example diagram of the signal direction of the interface circuit of Fig. 3 configured as a two-way SENT bus interface. Since the functions of the two channels are the same, only one of them is taken as an example for detailed description.
  • IO A high impedance output at output, on connection IO A broken line arrow in FIG. 7 with a high impedance output from the MCU to control H-bridge circuit Generate a high level that is pulled up by a resistor.
  • the MCU reads the level status of IN A and obtains the level status on the IO A connection, thereby obtaining the data sent from the device on the SENT bus.
  • another IO B can also be received by the SENT bus master through the same operation as IO A.
  • the MCU is configured to control the switching device S2 or S4 to be closed, and the others are all open.
  • the two interface ends of the interface circuit 300 can be respectively connected to two SENT bus sensor peripherals, and can receive information reported by the SENT bus sensor peripherals.
  • the common vehicle-mounted SENT bus interface is equipped with temperature sensors, pressure sensors, position sensors, and angle sensors that conform to the SENT bus interface.
  • the fifth configuration method 12V power output interface.
  • the interface circuit 300 can be configured as two 12V power output interfaces.
  • the configuration process of the two 12V power output interfaces is as follows: the MCU controls the switching devices S1, S2, S3, and S4 in the pull-up network to disconnect, and controls the H-bridge circuit with high-impedance output to output high-side output.
  • GND is also required, but how to use it depends on the actual situation: if other GND terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located cannot be reused, The interface circuit leads to the GND terminal; if other GND terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located can be reused, there is no need to lead to the GND terminal from the interface circuit.
  • Fig. 8 is a detailed example diagram of the current flow of the interface circuit of Fig. 3 configured as two 12V power output interfaces. Since the functions of the two channels are the same, only one of them is taken as an example for detailed description.
  • MCU control with high impedance output in the H-bridge circuit outputs a high-side output IO A can produce 12V output IO A; off if desired IO A 12V power to the peripherals, the MCU Control the H-bridge circuit with high-impedance output to produce high-impedance output or low-side output at IO A.
  • another IO B can be turned on or turned off 12V power output through the same operation as IO A.
  • the two interface ends of the interface circuit 300 can be connected to two 12V peripherals respectively, and can provide a power output of a certain power for the 12V device.
  • Common on-board 12V is equipped with ambient lights, power window controllers, etc.
  • the sixth configuration method 5V bidirectional digital signal interface.
  • the interface circuit 300 can be configured as two 5V bidirectional digital signal interfaces, and the 5V bidirectional digital signal interface means that the interface circuit 300 can be configured as a 5V digital signal input interface or a 5V digital signal output interface.
  • the configuration process of the two-way 5V bidirectional digital signal interface is: MCU controls the switching devices S1 and S3 in the pull-up network to open, and controls S2 and S4 to close or open according to the actual application: if the peripheral comes with its own If the interface does not need to open the pull-up resistor, the MCU controls S2 and S4 to disconnect; if the peripheral does not have its own pull-up resistor, the MCU controls S2 and S4 to close. And control the H-bridge circuit with high-impedance output to output low-side output or high-impedance output.
  • GND is also required, but how to use it depends on the actual situation: if other GND terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located cannot be reused, The interface circuit leads to the GND terminal; if other GND terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located can be reused, there is no need to lead to the GND terminal from the interface circuit.
  • +5V also depends on the actual situation: if other +5V terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located cannot be reused, the +5V terminal needs to be drawn from the interface circuit; if the interface circuit can be reused For other +5V terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located, there is no need to lead out the +5V terminal from this interface circuit.
  • Fig. 9 is a detailed example diagram of the signal direction of the interface circuit of Fig. 3 configured as a two-way 5V bidirectional digital signal interface. Since the functions of the two channels are the same, only one of them is taken as an example for detailed description.
  • the interface circuit if the data needs to be transmitted via IO A, MCU control with high impedance output H-bridge circuit on the output side of the low output IO A broken line arrow in FIG. 9, so as to be output on connection IO A A low level (dotted line on the lower side); if the above sending state needs to be interrupted, the MCU controls the H-bridge circuit with high-impedance output to output a high-impedance output on IO A , so that a high level can be output on the IO A connection.
  • the MCU controls the H-bridge circuit with high-impedance output to output high-impedance output at IO A.
  • the MCU reads the level state of IN A to obtain the power on the IO A connection.
  • Flat state (dotted line on the upper side).
  • the other IO B can also realize the transmission and reception of 5V bidirectional digital signals through the same operation as IO A.
  • the two interface terminals of the interface circuit 300 can be connected to two 5V digital signal peripherals respectively, which can realize bidirectional communication with the 5V low-rate digital signal peripherals.
  • the common vehicle-mounted 5V low-speed external is equipped with temperature sensors and pressure sensors that conform to the single-wire two-way communication bus interface.
  • the seventh configuration method 12V digital signal input interface.
  • the interface circuit 300 can be configured as two 12V digital signal input interfaces.
  • the configuration process of the two-way 12V digital signal input interface is: MCU controls the switching devices S2 and S4 in the pull-up network to open, and controls S1 and S3 to close or open according to the actual application: if the peripheral comes with its own Pull-up resistor or pull-down resistor, and the interface does not need to open the pull-up resistor, the MCU controls S1 and S3 to be disconnected; if the peripheral does not have its own pull-up resistor or pull-down resistor, and the interface circuit is expected to provide a pull-up resistor, the MCU controls S1 and S3 are closed. And control the H-bridge circuit with high-impedance output to output high-impedance output.
  • GND is also required, but how to use it depends on the actual situation: if other GND terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located cannot be reused, The interface circuit leads to the GND terminal; if other GND terminals with the same electrical characteristics of the on-board control unit where the interface circuit is located can be reused, there is no need to lead to the GND terminal from the interface circuit.
  • Fig. 10 is a detailed example diagram of the signal direction of the interface circuit of Fig. 3 configured as two 12V digital signal input interfaces. Since the functions of the two channels are the same, only one of them is taken as an example for detailed description.
  • the MCU controls the H-bridge circuit with high-impedance output to output a high-impedance output on IO A , thereby generating a high level on the IO A connection.
  • the MCU reads the level status of IN A and obtains the level status on the IO A connection.
  • another IO B can also implement a 12V digital signal input interface through the same operation as IO A.
  • the two interface terminals of the interface circuit 300 can be connected to two 12V digital signal peripherals respectively, which can realize the acquisition of the 12V digital signal switching value.
  • Common on-board 12V digital signal switches include ignition switch signals and so on.
  • the eighth configuration method when the interface terminal is used as any of the following interfaces, one output terminal of the H-bridge circuit is controlled to provide power supply voltage for the peripheral connected to the interface terminal, and the other output terminal is used to communicate with the peripheral: LIN bus interface, SENT bus interface, 12V power output interface, 5V digital signal input interface, 5V digital signal output interface, 12V digital signal input interface.
  • the IO A connection can be used to supply 12V power to the peripheral, while the IO B can be used to communicate with the peripheral according to the LIN bus interface; the IO A connection can also be used to supply the peripheral 12V power supply, and the IO B can be used according to the 5V digital
  • the signal input interface communicates with peripherals, and this application will not describe them one by one.
  • the H-bridge circuit and the pull-up network circuit with high impedance output in each channel can follow the IO A in the second to seventh embodiments. Way to configure.
  • GND and +5V depends on actual conditions, and can refer to the description in the above configuration mode, which will not be described here.
  • An embodiment of the present application also provides a vehicle-mounted control unit 400.
  • the vehicle-mounted control unit 400 includes one or more interface circuits 300.
  • FIG. 11 is an exemplary diagram of the vehicle-mounted control unit 400 provided in the embodiment of the present application.
  • the vehicle-mounted control unit 400 includes one or more interface circuits 300.
  • the on-board control unit may be an electronic control unit (ECU), a vehicle control unit (VCU), or a hybrid control unit (HCU). ), all vehicle-mounted control units that can be applied to the interface circuit of this application fall within the protection scope of this application.
  • ECU electronice control unit
  • VCU vehicle control unit
  • HCU hybrid control unit
  • the vehicle control unit 400 including one or more interface circuits 200 can be flexibly configured as one or more of any one or more of the following interfaces: H-bridge output interface, LIN bus interface, SENT bus interface, 12V power output interface, 5V digital signal input interface, 5V digital signal output interface, 12V digital signal input interface. It will not increase the cost of redesigning the vehicle control unit because the vehicle control unit does not reserve the above-mentioned interfaces or the number of interfaces is insufficient, or the use of one interface is sufficient but other types of interfaces have surplus, resulting in the resource utilization of the vehicle control unit interface Low question.
  • one vehicle control unit 400 may be configured with one or multiple interface circuits 200, which is not limited in this application for comparison.
  • one vehicle control unit 400 may include one interface circuit 200 and other common interfaces; may include multiple interface circuits 200 and other common interfaces; and may also include only one or more interface circuits 200.
  • one vehicle-mounted control unit 400 includes at least one controller, for example, an MCU. It should be understood that one MCU can control one or more interfaces.
  • the embodiment of the present application further provides a vehicle, which includes one or more vehicle-mounted control units 400, and the vehicle-mounted control unit 400 can manage and control the vehicle-mounted equipment in the vehicle.
  • the automobile may be an electric automobile, for example, a pure electric automobile, an extended-range electric automobile, a hybrid electric automobile, a fuel cell automobile, a new energy automobile, etc., which are not specifically limited in this application.
  • the embodiment of the present application further provides a control method of the interface circuit.
  • the control method can be combined with any of the devices shown in FIG. 2 to FIG. 11, which is not specifically limited in the embodiment of the present application.
  • the control method includes: the controller 240 controls the interface circuit 200 to be configured into one or more of the following interfaces: H-bridge output interface, 12V power output interface, 5V digital signal output interface, 5V digital signal input interface, 12V digital signal input interface , LIN bus interface and/or SENT bus interface.
  • the H-bridge circuit 210 may be a full-bridge circuit or may include two half-bridge circuits; wherein, the output terminal 211 of the H-bridge circuit 210 includes a first output terminal and a second output terminal, and the interface terminal IO includes a first interface Terminal IO A and a second interface terminal IO B ; wherein, the first interface terminal IO A is connected to the first output terminal, and the second interface terminal IO B is connected to the second output terminal.
  • the input branch 220 may include a first input branch and a second input branch, which are respectively connected to the first interface terminal IO A and the second interface terminal IO B.
  • the LIN bus pull-up resistor branch 231 may include a first LIN bus pull-up resistor branch and a second LIN bus pull-up resistor branch connected in parallel, and the LIN bus pull-up resistor 2311 includes a first pull-up resistor R1 and The second pull-up resistor R2, the diode 2312 provided in the LIN bus pull-up resistor branch includes a first diode D1 and a second diode D2, and the first switching device 2313 provided in the LIN bus pull-up resistor branch includes a third The switch device S1 and the fourth switch device S2; the first LIN bus pull-up resistor branch includes a first pull-up resistor R1, a first diode D1, and a third switch device S1, the first end of the first pull-up resistor R1 It is connected to the LIN bus power supply 233, the second end of the first pull-up resistor R1 is connected to the anode of the diode D1, and the cathode of the diode D1
  • the second LIN bus pull-up resistor branch includes a second pull-up resistor R2, a second diode D2, and a fourth switching device S2.
  • the first end of the LIN bus pull-up resistor R2 is connected to the LIN bus power supply 233, and the LIN bus
  • the second end of the pull-up resistor R2 is connected to the anode of the diode D2, and the cathode of the diode D2 is connected to the second interface terminal IO B through the first switching device S2;
  • the first control branch 235 may include a third control branch K1 and a second control branch K1.
  • Four control branches K2 the controller 240 controls the on and off of the third switching device S1 and the fourth switching device S2 through the third control branch K1 and the fourth control branch K2, respectively.
  • the SENT bus pull-up resistor branch 232 may include a first SENT bus pull-up resistor branch and a second SENT bus pull-up resistor branch connected in parallel, and the SENT bus pull-up resistor 2321 includes a third pull-up resistor R3 and The fourth pull-up resistor R4, the second switch device 2322 provided by the SENT bus pull-up resistor branch 232 includes a fifth switch device S3 and a sixth switch device S4; the first SENT bus pull-up resistor branch includes a third pull-up resistor R3 is connected to the fifth switch device S3, the first end of the third pull-up resistor R3 is connected to the SENT bus power supply 234, and the second end of the third pull-up resistor R3 is connected to the first interface terminal IO A through the fifth switch device S3 ;
  • the second SENT bus pull-up resistor branch includes a fourth pull-up resistor R4 and a sixth switching device S4, the first end of the fourth pull-up resistor R4 is connected to the SENT bus power
  • the controller 240 controls the interface circuit to output a control signal of the DC brushed motor on the H-bridge circuit 210.
  • the controller controls the interface circuit to output a high-side output on the H-bridge circuit 210.
  • the controller 240 controls the interface circuit to output a low-side output on the H-bridge circuit 210.
  • the H-bridge circuit 210 may be an H-bridge circuit with a high-impedance output.
  • the controller 240 controls the interface circuit to output a high-impedance output in the H-bridge circuit 210, and collects the signal of the interface terminal IO through the input branch 220.
  • the controller 240 controls the interface circuit to output a high-impedance output in the H-bridge circuit 210, and collects the signal of the interface terminal IO through the input branch 220.
  • the controller 240 controls to close the first switching device 2313, and controls the H-bridge circuit 210 to output a low-side output according to the LIN bus timing sequence, or output a high-impedance output according to the LIN bus timing sequence.
  • the controller 240 controls the closing of the second switching device 2322, and controls the H-bridge circuit 210 to output a high-impedance output according to the timing of the SENT bus.
  • the controller 240 can control the interface circuit to generate a supply voltage for the in-vehicle electronic equipment at the first output terminal of the H-bridge circuit 210, and the second output terminal operates according to the following interface Communication: LIN bus interface, SENT bus interface, 12V power output interface, 5V digital signal input interface, 5V digital signal output interface, 12V digital signal input interface.
  • the power supply of the H-bridge circuit 210 may be 12V; the power supply of the LIN bus may be 12V; and the power supply of the SENT bus may be 5V. It should also be understood that the H-bridge circuit 210 shares a power supply with the LIN bus.
  • the controller may be a micro control unit MCU.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Sources (AREA)

Abstract

一种车载控制单元的接口电路、车载控制单元、车辆及控制方法。其中,接口电路包括H桥电路210、输入支路220和上拉网络230,H桥电路210的输入端211与控制器240连接,H桥电路210的输出端212与接口电路的接口端IO连接;输入支路220的第一端与接口端IO连接,输入支路220的第二端与控制器240连接;上拉网络230包括LIN总线上拉电阻支路231,和/或SENT总线上拉电阻支路232。该接口电路应用在智能汽车、新能源汽车上,能够在控制器240的控制下配置成多种类型的接口,从而能够减少多样化车载电子设备对车载控制单元多样化接口的需求压力。

Description

车载控制单元的接口电路、装置、车辆及控制方法 技术领域
本申请涉及汽车技术领域,并且更具体地,涉及一种车载控制单元的接口电路、装置、车辆及控制方法。
背景技术
车载控制单元是管理和控制车载电子设备的重要部件。为满足汽车上不同车载电子设备的连接需求,车载控制单元通常配有专门的数字量输入、数字量输出、局部互联网络(local interconnect network,LIN)总线、单边半字节传输(single edge nibble transmission,SENT)总线、H桥输出等接口。然而随着车载电子设备种类的增多,车载控制单元在实际应用中,很容易出现一种接口数量不够,而另一种接口数量还有剩余的情况。从而造成一种接口的需求压力较大,另一种接口又存在资源利用率低的问题。
发明内容
本申请提供一种车载控制单元的接口电路、车载控制单元、车辆及控制方法,能够实现一种可配置的多功能接口电路,减少多样化车载电子设备对车载控制单元多样化接口的需求压力。
第一方面,提供了一种车载控制单元的接口电路,该接口电路包括:H桥电路210、输入支路220和上拉网络230;该H桥电路210的输入端211与控制器240连接,H桥电路210的输出端212与接口电路的接口端IO连接;该输入支路220的第一端与接口端IO连接,输入支路220的第二端与控制器240连接;该上拉网络230包括局部互联网络(local interconnect network,LIN)总线上拉电阻支路231,和/或单边半字节传输(single edge nibble transmission,SENT)总线上拉电阻支路232;其中,LIN总线上拉电阻支路231设置有LIN总线上拉电阻2311、二极管2312与第一开关器件2313,LIN总线上拉电阻2311的第一端与LIN总线供电电源233连接,LIN总线上拉电阻2311的第二端与二极管2312的阳极连接,二极管2312的阴极通过第一开关器件2313连接至接口端IO;SENT总线上拉电阻支路232设置有SENT总线上拉电阻2321与第二开关器件2322,SENT总线上拉电阻2321的第一端与SENT总线供电电源234连接,SENT总线上拉电阻2321的第二端通过第二开关器件2322连接至接口端IO;第一开关器件2313和/或第二开关器件2322的通断分别由控制器240通过第一控制支路235和/或第二控制支路236控制;该接口电路在控制器240的控制下被配置成如下一种或多种接口:H桥输出接口、12V功率输出接口、5V数字信号输出接口、5V数字信号输入接口、12V数字信号输入接口、LIN总线接口和/或SENT总线接口。
本申请实施例提供的接口电路是一种可配置的多功能接口电路,能够在控制器240的控制下配置成多种不同类型的接口,使得该接口电路适用于更多种类的车载电子设备,能 够减少多样化车载电子设备对车载控制单元多样化接口的需求压力。
在一种可能的实现方式中,H桥电路210为全桥电路或包括两个半桥电路;其中,H桥电路210的输出端212包括第一输出端和第二输出端,接口端IO包括第一接口端和第二接口端;其中,第一接口端连接于第一输出端,第二接口端连接于第二输出端。
在本申请实施例中,将接口端IO设置为两个,使得接口端IO在外接直流有刷电机时,能够实现电机的正转和反转;在外接其他一些车载电子设备时,两个接口端可以相互独立工作,例如:可以使用其中一个接口端与车载电子设备连接,也可以使用两个接口端分别与两个车载设备连接;两个接口端也可以相互配合使用,例如:利用一个接口端为车载电子设备提供供电电压,另一个接口端用于与车载电子设备进行通信,从而提高资源的利用率。
在一种可能的实现方式中,输入支路220包括第一输入支路和第二输入支路,分别连接于第一接口端和第二接口端。
在本申请实施例中,设置两个输入支路220能够实现两路独立的数字信号输入接口的配置。
在一种可能的实现方式中,LIN总线上拉电阻支路231包括并联的第一LIN总线上拉电阻支路和第二LIN总线上拉电阻支路,LIN总线上拉电阻2311包括第一上拉电阻R1和第二上拉电阻R2,LIN总线上拉电阻支路231设置的二极管2312包括第一二极管D1和第二二极管D2,LIN总线上拉电阻支路231设置的第一开关器件2313包括第三开关器件S1和第四开关器件S2;第一LIN总线上拉电阻支路包括第一上拉电阻R1、第一二极管D1与第三开关器件S1,第一上拉电阻R1的第一端与LIN总线供电电源233连接,第一上拉电阻R1的第二端与二极管D1的阳极连接,二极管D1的阴极通过第三开关器件S1连接至第一接口端;第二LIN总线上拉电阻支路包括第二上拉电阻R2、第二二极管D2与第四开关器件S2,LIN总线上拉电阻R2的第一端与LIN总线供电电源233连接,LIN总线上拉电阻R2的第二端与二极管D2的阳极连接,二极管D2的阴极通过第一开关器件S2连接至第二接口端;第一控制支路235包括第三控制支路K1和第四控制支路K2,控制器240分别通过第三控制支路K1和第四控制支路K2控制第三开关器件S1和第四开关器件S2的通断。
在本申请实施例中,设置两个LIN总线上拉电阻支路能够实现两路独立的LIN总线接口的配置。
在一种可能的实现方式中,SENT总线上拉电阻支路232包括并联的第一SENT总线上拉电阻支路和第二SENT总线上拉电阻支路,SENT总线上拉电阻2321包括第三上拉电阻R3和第四上拉电阻R4,SENT总线上拉电阻支路232设置的第二开关器件2322包括第五开关器件S3和第六开关器件S4;第一SENT总线上拉电阻支路包括第三上拉电阻R3与第五开关器件S3,第三上拉电阻R3的第一端与SENT总线供电电源234连接,第三上拉电阻R3的第二端通过第五开关器件S3连接至第一接口端;第二SENT总线上拉电阻支路包括第四上拉电阻R4与第六开关器件S4,第四上拉电阻R4的第一端与SENT总线供电电源234连接,第四上拉电阻R4的第二端通过第六开关器件S4连接至第二接口端;第二控制支路236包括第五控制支路K3和第六控制支路K4,控制器240分别通过第五控制支路K3和第六控制支路K4控制第五开关器件S3和第六开关器件S4的通断。
在本申请实施例中,设置两个SENT总线上拉电阻支路能够实现两路独立的SENT总线接口的配置。
在一种可能的实现方式中,接口电路被配置成H桥输出接口时,接口电路被控制器240控制在H桥电路210输出直流有刷电机的控制信号。
在本申请实施例中,接口电路可以被配置为一路H桥全桥输出接口,也可以被配置为两路H桥半桥输出接口。
在一种可能的实现方式中,接口电路被配置成12V功率输出接口时,接口电路被控制器240控制在H桥电路210输出高边输出。
在本申请实施例中,接口电路可以被配置为两路12V功率输出接口。
在一种可能的实现方式中,接口被配置成5V数字信号输出接口时,接口电路被控制器240控制在H桥电路210输出低边输出。
在本申请实施例中,接口电路可以被配置为两路5V数字信号输出接口。
在一种可能的实现方式中,H桥电路210为带高阻输出的H桥电路。
在本申请实施例中,使用带高阻输出的H桥电路,能够使得接口端IO具有输入功能。
在一种可能的实现方式中,接口电路被配置成5V数字信号输入接口时,接口电路被控制器240控制在H桥电路210输出高阻输出,并通过输入支路220采集接口端IO的信号。
在本申请实施例中,接口电路可以被配置为两路5V数字信号输入接口。
在一种可能的实现方式中,接口电路被配置成12V数字信号输入接口时,接口电路被控制器240控制在H桥电路210输出高阻输出,并通过输入支路220采集接口端IO的信号。
在本申请实施例中,接口电路可以被配置为两路12V数字信号输入接口。
在一种可能的实现方式中,接口电路被配置成LIN总线接口时,接口电路被控制器控制240闭合第一开关器件2313,H桥电路210被控制按LIN总线时序输出低边输出,或按LIN总线时序输出高阻输出。
在本申请实施例中,接口电路可以被配置为两路LIN总线接口。
在一种可能的实现方式中,接口电路被配置成SENT总线接口时,接口电路被控制器240控制闭合第二开关器件2322,H桥电路210被控制按SENT总线时序输出高阻输出。
在本申请实施例中,接口电路可以被配置为两路SENT总线接口。
在一种可能的实现方式中,接口电路被配置成两个输出端互相配合工作时,接口电路被控制器240控制在H桥电路210的第一输出端为车载电子设备产生供电电压,第二输出端按照如下接口进行通信:LIN总线接口、SENT总线接口、12V功率输出接口、5V数字信号输入接口、5V数字信号输出接口、12V数字信号输入接口。
在一种可能的实现方式中,H桥电路210的供电电源为12V;和/或LIN总线供电电源为12V;和/或SENT总线供电电源为5V。
在本申请实施例中,H桥电路210的供电电源采用12V,LIN总线供电电源采用12V,SENT总线供电电源采用5V,使得接口电路适用于车辆。
在一种可能的实现方式中,H桥电路210与LIN总线共用一个供电电源。
在本申请实施例中,H桥电路210可以与LIN总线共用一个12V供电电源,使得资 源被充分利用。
在本申请实施例中,控制器为微控制单元MCU。
第二方面,提供一种车载控制单元,包括一个或多个如第一方面的接口电路。
在一种可能的实现方式中,车载控制单元为电子控制单元ECU。
第三方面,提供一种车辆,包括一个或多个如第二方面的车载控制单元。
第四方面,提供一种接口电路的控制方法,该接口电路包括:H桥电路210、输入支路220和上拉网络230;该H桥电路210的输入端211与控制器240连接,H桥电路210的输出端212与接口电路的接口端IO连接;该输入支路220的第一端与接口端IO连接,输入支路的第二端与控制器240连接;该上拉网络230包括局部互联网络LIN总线上拉电阻支路231,和/或单边半字节传输SENT总线上拉电阻支路232;其中,LIN总线上拉电阻支路231设置有LIN总线上拉电阻2311、二极管2312与第一开关器件2313,LIN总线上拉电阻2311的第一端与LIN总线供电电源233连接,LIN总线上拉电阻2311的第二端与二极管2312的阳极连接,二极管2312的阴极通过第一开关器件2313连接至接口端IO;SENT总线上拉电阻支路232设置有SENT总线上拉电阻2321与第二开关器件2322,SENT总线上拉电阻2321的第一端与SENT总线供电电源234连接,SENT总线上拉电阻2321的第二端通过第二开关器件2322连接至接口端IO;第一开关器件2313和/或第二开关器件2322的通断分别由控制器240通过第一控制支路235和/或第二控制支路236控制;控制方法包括:控制器240控制接口电路被配置成如下一种或多种接口:H桥输出接口、12V功率输出接口、5V数字信号输出接口、5V数字信号输入接口、12V数字信号输入接口、LIN总线接口和/或SENT总线接口。
在一种可能的实现方式中,H桥电路210为全桥电路或包括两个半桥电路;其中,H桥电路210的输出端212包括第一输出端和第二输出端,接口端IO包括第一接口端和第二接口端;其中,第一接口端连接于第一输出端,第二接口端连接于第二输出端。
在一种可能的实现方式中,输入支路220包括第一输入支路和第二输入支路,分别连接于第一接口端和第二接口端。
在一种可能的实现方式中,LIN总线上拉电阻支路231包括并联的第一LIN总线上拉电阻支路和第二LIN总线上拉电阻支路,LIN总线上拉电阻2311包括第一上拉电阻R1和第二上拉电阻R2,LIN总线上拉电阻支路231设置的二极管2312包括第一二极管D1和第二二极管D2,LIN总线上拉电阻支路231设置的第一开关器件2313包括第三开关器件S1和第四开关器件S2;第一LIN总线上拉电阻支路包括第一上拉电阻R1、第一二极管D1与第三开关器件S1,第一上拉电阻R1的第一端与LIN总线供电电源233连接,第一上拉电阻R1的第二端与二极管D1的阳极连接,二极管D1的阴极通过第三开关器件S1连接至第一接口端;第二LIN总线上拉电阻支路包括第二上拉电阻R2、第二二极管D2与第四开关器件S2,LIN总线上拉电阻R2的第一端与LIN总线供电电源233连接,LIN总线上拉电阻R2的第二端与二极管D2的阳极连接,二极管D2的阴极通过第一开关器件S2连接至第二接口端;第一控制支路235包括第三控制支路K1和第四控制支路K2,控制器240分别通过第三控制支路K1和第四控制支路K2控制第三开关器件S1和第四开关器件S2的通断。
在一种可能的实现方式中,SENT总线上拉电阻支路232包括并联的第一SENT总线 上拉电阻支路和第二SENT总线上拉电阻支路,SENT总线上拉电阻2321包括第三上拉电阻R3和第四上拉电阻R4,SENT总线上拉电阻支路232设置的第二开关器件2321包括第五开关器件S3和第六开关器件S4;第一SENT总线上拉电阻支路包括第三上拉电阻R3与第五开关器件S3,第三上拉电阻R3的第一端与SENT总线供电电源234连接,第三上拉电阻R3的第二端通过第五开关器件S3连接至第一接口端;第二SENT总线上拉电阻支路包括第四上拉电阻R4与第六开关器件S4,第四上拉电阻R4的第一端与SENT总线供电电源234连接,第四上拉电阻R4的第二端通过第六开关器件S4连接至第二接口端;第二控制支路236包括第五控制支路K3和第六控制支路K4,控制器240分别通过第五控制支路K3和第六控制支路K4控制述第五开关器件S3和第六开关器件S4的通断。
在一种可能的实现方式中,接口电路被配置成H桥输出接口时,控制器240控制接口电路在H桥电路210输出直流有刷电机的控制信号。
在一种可能的实现方式中,接口电路被配置成12V功率输出接口时,控制器240控制接口电路在H桥电路210输出高边输出。
在一种可能的实现方式中,接口被配置成5V数字信号输出接口时,控制器240控制接口电路在H桥电路210输出低边输出。
在一种可能的实现方式中,H桥电路210为带高阻输出的H桥电路。
在一种可能的实现方式中,接口电路被配置成5V数字信号输入接口时,控制器240控制接口电路在H桥电路210输出高阻输出,并通过输入支路220采集接口端IO的信号。
在一种可能的实现方式中,接口电路被配置成12V数字信号输入接口时,控制器240控制接口电路在H桥电路210输出高阻输出,并通过输入支路220采集接口端IO的信号。
在一种可能的实现方式中,接口电路被配置成LIN总线接口时,控制器240控制闭合第一开关器件2313,控制H桥电路210按LIN总线时序输出低边输出,或按LIN总线时序输出高阻输出。
在一种可能的实现方式中,接口电路被配置成SENT总线接口时,控制器240控制闭合第二开关器件2322,控制H桥电路210按SENT总线时序输出高阻输出。
在一种可能的实现方式中,接口电路被配置成两个输出端互相配合工作时,控制器240控制接口电路在H桥电路210的第一输出端为车载电子设备产生供电电压,第二输出端按照如下接口进行通信:LIN总线接口、SENT总线接口、12V功率输出接口、5V数字信号输入接口、5V数字信号输出接口、12V数字信号输入接口。
在一种可能的实现方式中,H桥电路210的供电电源为12V;和/或LIN总线供电电源为12V;和/或SENT总线供电电源为5V。
在一种可能的实现方式中,H桥电路210与LIN总线共用一个供电电源。
在一种可能的实现方式中,控制器为微控制单元MCU。
附图说明
图1是一种典型的车载控制单元的接口示例图;
图2是本申请实施例提供的一种车载控制单元的接口电路结构示例图;
图3是本申请实施例提供的另一种车载控制单元的接口电路结构示例图;
图4是图3接口电路配置为一路H桥全桥输出接口的电流走向细节示例图;
图5是图3接口电路配置为两路H桥半桥输出接口的电流走向细节示例图;
图6是图3接口电路配置为两路LIN总线接口的信号走向细节示例图;
图7是图3接口电路配置为两路SENT总线接口的信号走向细节示例图;
图8是图3接口电路配置为两路12V功率输出接口的电流走向细节示例图;
图9是图3接口电路配置为两路5V双向数字信号接口的信号走向细节示例图;
图10是图3接口电路配置为两路12V数字信号输入接口的信号走向细节示例图;
图11是本申请实施例提供的车载控制单元的示例图。
具体实施方式
为便于理解,首先对本申请实施例的应用场景进行简单的介绍。
随着汽车技术的发展和人们对汽车功能需求的增加,车载电子设备的种类也越来越多。车载控制单元,例如:电子控制单元(electronic control unit,ECU)、整车控制单元(vehicle control unit,VCU)、混合动力整车控制单元(hybrid control unit,HCU)等是管理和控制这些车载电子设备的重要部件。目前,一辆汽车上通常含有几十个甚至上百个车载控制单元,为满足汽车上不同车载电子设备的连接需求,这些车载控制单元通常需要配有专门的数字量输入、数字量输出、LIN总线、SENT总线、H桥输出等多种接口,如图1所示。然而汽车是一种个性化产品,不同车型通常配有不同的车载电子设备,同款车型不同位置的车载电子设备也不尽相同,这些车载电子设备对各种接口数量的需求也有差异。从车载控制单元的选用来看,很容易出现一种接口数量不够,另一种接口数量还有剩余的情况。从而造成一种接口的需求压力较大,另一种接口又存在资源浪费的问题。当然也可以根据实际的场景来设计专用的车载控制单元,但如果这些场景的应用不是很广泛,仅为修改几个接口而另外设计一款车载控制单元无疑会增加成本。
现有技术提出了一种ECU接口的可配置方案,主要采用复杂可编程逻辑器件(complex programmable logic device,CPLD)来实现主控芯片与输出电路之间的控制连接,然后在主控芯片的控制下将输出电路配置为多功能的接口电路,使其具备数字量输入、数字量输出、H桥输出等接口功能。可见,将专用接口设计成多功能的接口,能够增加了控制的灵活性,但是现有技术中所采用的CPLD以及主控芯片的价格较高,使ECU的制造成本显著增加,而且现有技术中给出的接口电路其并不满足LIN总线和SENT总线的接口电气特性要求,不适合用来进行LIN总线和SENT总线信号传输。
针对上述问题,本申请实施例提供了一种车载控制单元的接口电路,接口电路在控制器的控制下能够被配置成如下一种或多种接口:H桥输出接口、12V功率输出接口、5V数字信号输出接口、5V数字信号输入接口、12V数字信号输入接口、LIN总线接口和/或SENT总线接口,本申请实施例所提供的多功能接口电路能够在降低成本的同时减少多样化车载电子设备对车载控制单元多样化接口的需求压力。
下面将结合附图,对本申请中的技术方案进行描述。
图2是本申请实施例提供的一种车载控制单元的接口电路结构示例图。如图2所示,接口电路200至少包括:H桥电路210、输入支路220、上拉网络230。
其中,H桥电路210的输入端211与控制器240连接,H桥电路210的输出端212接口电路200的接口端IO连接;输入支路220的第一端与接口端IO连接,输入支路220的 第二端与控制器240连接;上拉网络230,上拉网络230包括LIN总线上拉电阻支路231,和/或SENT总线上拉电阻支路232。
其中,LIN总线上拉电阻支路231设置有LIN总线上拉电阻2311、二极管2312与第一开关器件2313,LIN总线上拉电阻2311的第一端与LIN总线供电电源233连接,LIN总线上拉电阻2311的第二端与二极管2312的阳极连接,二极管2312的阴极通过第一开关器件2313连接至接口端IO;SENT总线上拉电阻支路232设置有SENT总线上拉电阻2321与第二开关器件2322,SENT总线上拉电阻2321的第一端与SENT总线供电电源234连接,SENT总线上拉电阻2321的第二端通过第二开关器件2322连接至接口端IO;第一开关器件2313和/或第二开关器件2322的通断分别由控制器240通过第一控制支路235和/或第二控制支路236控制。
接口电路在控制器240的控制下可以被配置成如下一种或多种接口:H桥输出接口、12V功率输出接口、5V数字信号输出接口、5V数字信号输入接口、12V数字信号输入接口、LIN总线接口和/或SENT总线接口。应理解,上述描述可替换为,通过控制器240控制H桥电路的输出,使接口端具有如下任意一种或多种接口的接口功能:H桥输出接口、12V功率输出接口、5V数字信号输出接口、5V数字信号输入接口、12V数字信号输入接口、LIN总线接口和/或SENT总线接口。
本申请实施例提供的接口电路是一种可配置的多功能接口电路,能够在控制器240的控制下配置成多种不同类型的接口,使得该接口电路适用于更多种类的车载电子设备,能够减少多样化车载电子设备对车载控制单元多样化接口的需求压力。
可选地,H桥电路210可以为一个全桥电路,也可以为两个半桥电路。其中,H桥电路210的输出端212包括第一输出端和第二输出端,接口端IO包括第一接口端IO A和第二接口端IO B;其中,第一接口端IO A连接于第一输出端,第二接口IO B端连接于第二输出端。
应理解,在本申请实施例中,将接口端IO设置为两个,可以使得接口端IO在外接直流有刷电机时,实现电机的正转和反转;在外接其他一些车载电子设备时,两个接口端可以相互独立工作,例如:可以使用其中一个接口端与车载电子设备连接,也可以使用两个接口端分别与两个车载设备连接;两个接口端也可以相互配合使用,例如:利用一个接口端为车载电子设备提供供电电压,另一个接口端用于与车载电子设备进行通信,从而提高资源的利用率。还应理解,如果不需要外接直流有刷电机,也可以仅配置一个接口端,本申请对此不做限定。
可选地,输入支路220可以包括一个输入支路,也可以包括两个输入支路:第一输入支路和第二输入支路。当输入支路220包括一个输入支路时,输入支路与第一接口端IO A或第二接口端IO B连接,使得接口电路可以配置成一路数字信号输入接口;当输入支路220包括两个输入支路时,两个输入支路分别连接于第一接口端IO A和第二接口端IO B,使得接口电路可以配置成两路数字信号输入接口。
可选地,LIN总线上拉电阻支路231可以包括一个支路,使得接口电路可以配置成一路LIN总线接口。
可选地,作为一种优选方式,LIN总线上拉电阻支路231也可以包括并联的第一LIN总线上拉电阻支路和第二LIN总线上拉电阻支路,使得接口电路可以配置成两路LIN总 线接口。
具体地,LIN总线上拉电阻2311可以包括第一上拉电阻R1和第二上拉电阻R2,LIN总线上拉电阻支路231设置的二极管2312包括第一二极管D1和第二二极管D2,LIN总线上拉电阻支路231设置的第一开关器件2313包括第三开关器件S1和第四开关器件S2;第一LIN总线上拉电阻支路包括第一上拉电阻R1、第一二极管D1与第三开关器件S1,第一上拉电阻R1的第一端与LIN总线供电电源233连接,第一上拉电阻R1的第二端与二极管D1的阳极连接,二极管D1的阴极通过第三开关器件S1连接至第一接口端IO A;第二LIN总线上拉电阻支路包括第二上拉电阻R2、第二二极管D2与第四开关器件S2,LIN总线上拉电阻R2的第一端与LIN总线供电电源233连接,LIN总线上拉电阻R2的第二端与二极管D2的阳极连接,二极管D2的阴极通过第一开关器件S2连接至第二接口端IO B。同时,第一控制支路235可以包括第三控制支路K1和第四控制支路K2,控制器240分别通过第三控制支路K1和第四控制支路K2控制第三开关器件S1和第四开关器件S2的通断。
可选地,SENT总线上拉电阻支路232可以包括一个支路,使得接口电路可以配置成一路SENT总线接口。
可选地,作为一种优选方式,SENT总线上拉电阻支路232也可以包括并联的第一SENT总线上拉电阻支路和第二SENT总线上拉电阻支路,使得接口电路可以配置成两路SENT总线接口。
具体地,SENT总线上拉电阻2321可以包括第三上拉电阻R3和第四上拉电阻R4,SENT总线上拉电阻支路232设置的第二开关器件2322包括第五开关器件和第六开关器件;第一SENT总线上拉电阻支路包括第三上拉电阻R3与第五开关器件S3,第三上拉电阻R3的第一端与SENT总线供电电源234连接,第三上拉电阻R3的第二端通过第五开关器件S3连接至第一接口端IO A;第二SENT总线上拉电阻支路包括第四上拉电阻R4与第六开关器件S4,第四上拉电阻R4的第一端与SENT总线供电电源234连接,第四上拉电阻R4的第二端通过第六开关器件S4连接至第二接口端IO B。同时,第二控制支路236可以包括第五控制支路K3和第六控制支路K4,所述控制器240分别通过所述第五控制支路K3和第六控制支路K4控制所述第五开关器件S3和第六开关器件S4的通断。
在本申请实施例中,R1和R2为LIN总线的上拉电阻,电阻值可以为1KΩ;R3和R4为SENT总线的上拉电阻,电阻值可以为10KΩ~55KΩ。应理解,本申请仅限定上拉网络中各个元器件之间的连接关系,以及上拉电阻的参数范围,而不限定二极管的参数范围,也不限定开关器件的具体实现形式。示例性地,开关器件可由金属氧化物半导体(metal-oxide-semiconductor,MOS)管开关电路组成;二极管可选用1N4148二极管。应理解,上述仅仅作为一种示例,不作为具体限定。
可选地,H桥电路210可以为带高阻输出的H桥电路,使得接口端IO还具有输入功能。应理解,在实际操作中,当接口端IO作为输出接口时,控制器控制H桥电路210不产生高阻输出;当接口端作为输入接口时,控制器控制H桥电路210产生高阻输出。
下面将简单描述一下上述多种接口的配置方式。
当接口电路200需要被配置成H桥输出接口时,接口电路200被控制器240控制在H桥电路210输出直流有刷电机的控制信号。具体地,控制器240控制H桥电路210在IO A 输出高边输出、在IO B低边输出;或者在IO A输出低边输出、在IO B高边输出,从而被配置成一路H桥全桥输出接口。或者,控制H桥半桥电路在IO A和/或IO B输出低边输出或高边输出,从而被配置成一路或两路H桥半桥输出接口。
应理解,高边输出的控制是通过关闭高边开关实现的,高边开关位于电源端;低边输出的控制是通过关闭低边开关实现的,低边开关位于接地端。
当接口电路200需要被配置成12V功率输出接口时,接口电路200被控制器240控制在H桥电路210输出高边输出,具体地,在IO A和/或IO B输出高边输出,从而被配置成一路或两路12V功率输出接口。
当接口200需要被配置成5V数字信号输出接口时,接口电路200被控制器240控制在H桥电路210输出低边输出,具体地,在IO A和/或IO B输出低边输出,从而被配置成一路或两路5V数字信号输出接口。还应理解,在这种情况中,+5V的使用根据实际情况而定:如果无法复用本接口电路所在车载控制单元的其他同等电气特性的+5V端子,则需从本接口电路引出+5V端子;若可以复用本接口电路所在车载控制单元的其他同等电气特性的+5V端子,则无需从本接口电路引出+5V端子。
当接口电路200需要被配置成5V数字信号输入接口时,接口电路200被控制器240控制在H桥电路210输出高阻输出,具体地,在IO A和/或IO B输出高阻输出,并通过输入支路220采集接口端IO的信号,从而被配置成一路或两路5V数字信号输入接口。还应理解,在这种情况中,+5V的使用根据实际情况而定:如果无法复用本接口电路所在车载控制单元的其他同等电气特性的+5V端子,则需从本接口电路引出+5V端子;若可以复用本接口电路所在车载控制单元的其他同等电气特性的+5V端子,则无需从本接口电路引出+5V端子。
当接口电路200需要被配置成12V数字信号输入接口时,接口电路200被控制器240控制在H桥电路210输出高阻输出,具体地,在IO A和/或IO B输出高阻输出,并通过输入支路220采集接口端IO的信号,从而被配置成一路或两路12V数字信号输入接口。
当接口电路200需要被配置成LIN总线接口时,接口电路200被控制器240控制闭合第一开关器件2313,H桥电路210被控制在IO A和/或IO B按LIN总线时序输出低边输出,或在IO A和/或IO B按LIN总线时序输出高阻输出,从而被配置成一路或两路LIN总线接口。
当接口电路200需要被配置成SENT总线接口时,接口电路200被控制器240控制闭合第二开关器件2322,H桥电路210被控制在IO A和/或IO B按SENT总线时序输出高阻输出,从而被配置成一路或两路SENT总线接口。
可选地,接口电路200还可以被配置成两个输出端互相配合工作,例如,接口电路200被控制器240控制在H桥电路210的第一输出端为车载电子设备产生供电电压,第二输出端按照如下任意一种接口进行通信:LIN总线接口、SENT总线接口、12V功率输出接口、5V数字信号输入接口、5V数字信号输出接口、12V数字信号输入接口。
可选地,H桥电路210的供电电源可以为12V。采用上述12V供电电源是因为12V为汽车中常见的一种供电电源,能够使得该接口电路适用于车辆,并不能作为对本申请的限定。
可选地,LIN总线供电电源可以为12V。采用上述12V供电电源是因为12V为LIN 总线中常用的一种供电电源,并不能作为对本申请的限定。
可选地,SENT总线供电电源可以为5V。采用上述5V供电电源是因为5V为SENT总线中常用的一种供电电源,并不能作为对本申请的限定。
可选地,在本申请实施例中,为实现资源的充分利用,H桥电路210可以与LIN总线共用一个12V供电电源。
可选地,接口电路200还可以包括保护电路,用于保证接口电路安全可靠地运行。具体地,保护电路可以包括:电平转换与输入保护电路250、电磁兼容(electromagnetic compatibility,EMC)和/或静电放电(electrostatic discharge,ESD)保护电路260;其中,电平转换与输入保护电路250位于输入支路上;EMC和/或ESD保护电路260位于接口端IO与H桥电路210的输出端212的连线上。
可选地,作为该接口电路的控制元器件,控制器可以是微控制单元(micro controller unit,MCU),还可以是微处理器单元(micro processor unit,MPU)。应理解,只要能够将本申请实施例的接口电路配置为多种接口功能的控制器,均落入本申请的保护范围内。在以下实施例中,将均以MCU为例进行描述,但应理解,这并不构成对本申请的限定。
应理解,在本申请实施例中,不对与接口电路互连的MCU所采用的型号,以及采用+3V还是+5V供电做任何限定。
应理解,本申请不限定带高阻输出的H桥电路、电平转换与输入保护电路、EMC和/或ESD保护电路的具体实现形式,不限定该带高阻输出的H桥电路是否具有脉冲宽度调制(pulse width modulation,PWM)功能。示例性地,带高阻输出的H桥电路可由分立元件和/或MC33926等H桥芯片构成;电平转换与输入保护可由分立元件和/或CD4050B等电平转换芯片构成;EMC/ESD电路可由分立元件和/或专用芯片构成。应理解,上述仅仅作为一种示例,不作为具体限定。
应理解,与现有技术相比,本实施例可在增加很少成本的情况下获得更多接口功能。具体来说,该成本差异主要体现在接口电路中电阻、电容、二极管、MOS管、电平转换芯片、EMC/ESD保护芯片的总成本与现有技术一中使用的CPLD与CPLD必要的外围电路的总成本之间的差异,而这种成本差异通常相差一个数量级。
下面将结合附图,对本申请实施例提供的一种优选的接口电路结构、多种接口的配置方式及应用场景做详细描述。
作为一种优选方式,图3是本申请实施例提供的另一种车载控制单元的接口电路结构示例图。如图3所示,接口电路300包括:H桥电路210、输入支路220、上拉网络230、电平转换与输入保护电路250、EMC和/或ESD保护电路260。
其中,H桥电路210为带高阻输出的H桥电路,且包括两个输出端,接口电路300包括两个接口端IO A和IO B,输入支路220包括两个输入支路,上拉网络230包括两个LIN总线上拉电阻支路和/两个SENT总线上拉电阻支路,控制支路包括两个LIN总线开关控制支路和两个SENT总线开关控制支路。
具体地连接方式为,H桥电路210的输入端211与MCU连接,H桥电路210的两个输出端分别与接口电路300的两个接口端IO A和IO B连接,H桥电路210的供电电源为12V。两个输入支路的第一端分别与接口端IO A和IO B连接,输入支路的第二端与MCU连接,MCU通过读取输入支路上IN A或IN B的电平状态就能够获取IO A或IO B与输出端连线上 的电平状态。电平转换与输入保护电路250位于输入支路220上;EMC和/或ESD保护电路260位于接口端与H桥电路210的输出端212的连接上。两个LIN总线上拉电阻支路包括并联的第一LIN总线上拉电阻支路和第二LIN总线上拉电阻支路,第一LIN总线上拉电阻支路包括R1、D1与S1,R1的第一端与LIN总线12V供电电源连接,R1的第二端与D1的阳极连接,D1的阴极通过S1连接至IO A;第二LIN总线上拉电阻支路包括R2、D2与S2,R2的第一端与LIN总线12V供电电源连接,R2的第二端与D2的阳极连接,D2的阴极通过S2连接至IO B。两个SENT总线上拉电阻支路包括并联的第一SENT总线上拉电阻支路和第二SENT总线上拉电阻支路,第一SENT总线上拉电阻支路包括R3与S3,R3的第一端与SENT总线5V供电电源连接,R3的第二端通过S3连接至IO A;第二SENT总线上拉电阻支路包括R4与S4,R4的第一端与SENT总线5V供电电源连接,R4的第二端通过S4连接至IO B。其中S1、S2、S3和S4分别通过控制支路K1、K2、K3和K4与MCU连接,在MCU的控制下进行闭合与断开。
优选地,接口电路300在MCU的控制下能够分别被配置成如下多种接口:H桥输出接口、12V功率输出接口、5V数字信号输出接口、5V数字信号输入接口、12V数字信号输入接口、LIN总线接口和SENT总线接口。
下面将结合图4至图10,对接口电路300的多种接口的配置方式及应用场景进行详细描述。
第一种配置方式:H桥输出接口(全桥)。
可选地,接口电路300可以配置为一路H桥全桥输出接口。
具体地,一路H桥全桥输出接口的配置过程为:MCU控制上拉网络230中的开关器件S1、S2、S3和S4断开,控制带高阻输出的H桥电路210输出直流有刷电机的控制信号。
图4是图3接口电路配置为一路H桥全桥输出接口的电流走向细节示例图。如图4所示,在一种实现方式中,控制带高阻输出的H桥电路210在IO A输出高边输出、在IO B输出低边输出时,接口端子IO A和IO B的电流方向如虚线箭头所示。在另一种实现方式中,MCU被配置为控制带高阻输出的H桥电路210在IO A输出低边输出、在IO B输出高边输出时,接口端IO A和IO B的电流方向如实线箭头所示。
应理解,在这种配置方式下,根据实际需求,MCU可以采集也可以不采集IN A和IN B的电平状态。
应理解,在这种配置方式下,接口电路300的两个接口端可以与一个直流有刷电机外设连接。该接口电路300在MCU的控制下可驱动连接于IO A和IO B的直流有刷电机外设进行正转、反转,并可通过对H桥电路的PWM控制实现对直流有刷电机外设的调速控制。应理解,常见的车载直流有刷电机外设有座椅电机、车窗电机等,本申请对此不做具体限定。应理解,外设为,相对于一个车载控制单元而言,与其连接的其他车载电子设备均称为该电子控制单元的外设,为便于描述,以下均简称为外设。
第二种配置方式:H桥输出接口(半桥)。
可选地,接口电路300可以配置为两路H桥半桥输出接口。
具体地,两路H桥半桥输出接口的配置过程为:MCU控制上拉网络230中的开关器件S1、S2、S3和S4断开,控制带高阻输出的H桥电路210输出高边输出或输出低边输 出。应理解,这种配置方式中,还需要使用到电线接地端(ground,GND),但如何使用还需根据具体情况而定:如果无法复用本接口电路所在车载控制单元的其他同等电气特性的GND端子,则需从本接口电路引出GND端子;如果可以复用本接口电路所在车载控制单元的其他同等电气特性的GND端子,则无需从本接口电路引出GND端子。
图5是图3接口电路配置为两路H桥半桥输出接口的电流走向细节示例图。由于两路功能相同,这里仅以其中一路为例进行详细描述。如图5中的虚线箭头所示,如果该接口电路需要在IO A输出一个高边输出的H桥半桥时,MCU控制带高阻输出的H桥电路210在IO A输出高边输出即可,此时电流从本接口电路的H桥电路经IO A流出至外设负载(上侧虚线);如果该接口电路需要在IO A输出一个低边输出的H桥半桥时,MCU控制带高阻输出的H桥电路210在IO A输出低边输出即可,此时电流从外设负载经IO A流入至本接口电路的H桥电路(下侧虚线)。同理,如图5中的实线箭头所示,另一路IO B也可以通过如IO A相同的操作实现一路H桥半桥接口。
应理解,上述IO A和IO B两路相互独立,在实际操作中,可以控制其中一路工作,也可以控制两路分别工作,本申请对此不做限定。还应理解,上述解释在接下来的实现方式中同样适用,不再重复讲解。
应理解,在这种配置方式下,接口电路300的两个接口端可以分别与两个电机外设连接,该接口电路300在MCU的控制下可分别驱动电机外设在一个方向转动。也可以与12V功率输出接口的外设连接,本申请对此不做具体限定。
第三种配置方式:LIN总线接口。
可选地,接口电路300可以配置为两路LIN总线接口。
具体地,两路LIN总线接口的配置过程为:MCU控制上拉网络230中的开关器件S2和S4断开;开关器件S1和S3闭合,从而产生符合LIN总线接口规范要求的接口电路,控制带高阻输出的H桥电路按LIN总线时序输出低边输出或高阻输出。应理解,LIN总线信号是双向传输的,因此接口端IO A和IO B既可以输入信号也可以输出信号。应理解,这种配置方式中,还需要使用到GND,但如何使用还需根据具体情况而定:如果无法复用本接口电路所在车载控制单元的其他同等电气特性的GND端子,则需从本接口电路引出GND端子;如果可以复用本接口电路所在车载控制单元的其他同等电气特性的GND端子,则无需从本接口电路引出GND端子。
图6是图3接口电路配置为两路LIN总线接口的信号走向细节示例图。由于两路功能相同,这里仅以其中一路为例进行详细描述。如图6中的虚线箭头所示,如果该接口电路需要通过IO A进行LIN总线主设备发送时,MCU控制带高阻输出的H桥电路在IO A输出低边输出,从而可在IO A连线上输出一个低电平(下侧虚线);如果需要中断上述发送状态,MCU控制带高阻输出的H桥电路在IO A输出高阻输出,从而可在IO A连线上输出一个高电平。当该接口电路需要通过IO A进行LIN总线主设备接收时,MCU控制带高阻输出的H桥电路在IO A输出高阻输出,同时MCU被配置读取IN A的电平状态,获得IO A连线上的电平状态(上侧虚线)。同理,如图6中的实线箭头所示,另一路IO B也可以通过如IO A相同的操作实现LIN总线主设备信号收发。应理解,当仅需控制一路工作时,MCU被配置为控制开关器件S1或S3闭合,其他均断开。
应理解,在这种配置方式下,接口电路300的两个接口端可以分别与两个LIN控制器 外设连接,可实现对采用LIN总线从设备接口的外设进行控制。常见的车载LIN总线从设备接口外设有座椅控制器、车门锁控制器、车窗控制器、雨刷器控制器等。
第四种配置方式:SENT总线接口。
可选地,接口电路300可以配置为两路SENT总线接口。
具体地,两路SENT总线接口的配置过程为:MCU控制上拉网络中的开关器件S1和S3断开;开关器件S2和S4闭合,从而产生符合SENT总线接口规范要求的接口电路,控制带高阻输出的H桥电路按SENT总线时序输出高阻输出。应理解,当配置为SENT总线接口时,接口端IO A和IO B主要进行信号输入。应理解,这种配置方式中,还需要使用到GND,但如何使用还需根据实际情况而定:如果无法复用本接口电路所在车载控制单元的其他同等电气特性的GND端子,则需从本接口电路引出GND端子;如果可以复用本接口电路所在车载控制单元的其他同等电气特性的GND端子,则无需从本接口电路引出GND端子。同时,+5V的使用也是根据实际情况而定:如果无法复用本接口电路所在车载控制单元的其他同等电气特性的+5V端子,则需从本接口电路引出+5V端子;若可以复用本接口电路所在车载控制单元的其他同等电气特性的+5V端子,则无需从本接口电路引出+5V端子。
图7是图3接口电路配置为两路SENT总线接口的信号走向细节示例图。由于两路功能相同,这里仅以其中一路为例进行详细描述。如图7中的虚线箭头所示,当该接口电路通过IO A进行SENT总线主设备接收时,MCU控制带高阻输出的H桥电路在IO A输出高阻输出,从而在IO A连线上产生一个电阻上拉的高电平。同时MCU读取IN A的电平状态,获得IO A连线上的电平状态,从而获得SENT总线从设备发来的数据。同理,如图7中的实线箭头所示,另一路IO B也可以通过如IO A相同的操作实现SENT总线主设备接收。
应理解,当仅需控制一路工作时,MCU被配置为控制开关器件S2或S4闭合,其他均断开。
应理解,在这种配置方式下,接口电路300的两个接口端可以分别与两个SENT总线传感器外设连接,可接收SENT总线传感器外设上报的信息。常见的车载SENT总线接口外设有符合SENT总线接口的温度传感器、压力传感器、位置传感器、角度传感器等。
第五种配置方式:12V功率输出接口。
可选地,接口电路300可以配置为两路12V功率输出接口。
具体地,两路12V功率输出接口的配置过程为:MCU控制上拉网络中的开关器件S1、S2、S3和S4断开,控制带高阻输出的H桥电路输出高边输出。应理解,这种配置方式中,还需要使用到GND,但如何使用还需根据实际情况而定:如果无法复用本接口电路所在车载控制单元的其他同等电气特性的GND端子,则需从本接口电路引出GND端子;如果可以复用本接口电路所在车载控制单元的其他同等电气特性的GND端子,则无需从本接口电路引出GND端子。
图8是图3接口电路配置为两路12V功率输出接口的电流走向细节示例图。由于两路功能相同,这里仅以其中一路为例进行详细描述。如图8中的虚线箭头所示,MCU控制带高阻输出的H桥电路在IO A输出高边输出,即可在IO A产生12V输出;如果需要关断IO A对外设的12V供电,MCU控制带高阻输出的H桥电路在IO A产生高阻输出或低边输出。同理,如图8中的实线箭头所示,另一路IO B也可以通过如IO A相同的操作实现开启 12V功率输出或关断12V功率输出。
应理解,在这种配置方式下,接口电路300的两个接口端可以分别与两个12V外设连接,可为12V设备提供一定功率的电源输出。常见的车载12V外设有氛围灯、电动车窗控制器等。
第六种配置方式:5V双向数字信号接口。
可选地,接口电路300可以配置为两路5V双向数字信号接口,5V双向数字信号接口指接口电路300既可以配置为5V数字信号输入接口,也可以配置为5V数字信号输出接口。
具体地,两路5V双向数字信号接口的配置过程为:MCU控制上拉网络中的开关器件S1和S3断开,并根据实际应用情况控制S2和S4闭合或断开:如果外设自带上拉电阻,且无需本接口开启上拉电阻,则MCU控制S2和S4断开;如果外设没有自带上拉电阻,则MCU控制S2和S4闭合。并控制带高阻输出的H桥电路输出低边输出或高阻输出。应理解,这种配置方式中,还需要使用到GND,但如何使用还需根据实际情况而定:如果无法复用本接口电路所在车载控制单元的其他同等电气特性的GND端子,则需从本接口电路引出GND端子;如果可以复用本接口电路所在车载控制单元的其他同等电气特性的GND端子,则无需从本接口电路引出GND端子。同时,+5V的使用也是根据实际情况而定:如果无法复用本接口电路所在车载控制单元的其他同等电气特性的+5V端子,则需从本接口电路引出+5V端子;若可以复用本接口电路所在车载控制单元的其他同等电气特性的+5V端子,则无需从本接口电路引出+5V端子。
图9是图3接口电路配置为两路5V双向数字信号接口的信号走向细节示例图。由于两路功能相同,这里仅以其中一路为例进行详细描述。如图9中的虚线箭头所示,如果该接口电路需要通过IO A进行数据发送时,MCU控制带高阻输出的H桥电路在IO A输出低边输出,从而可在IO A连线上输出一个低电平(下侧虚线);如果需要中断上述发送状态,MCU控制带高阻输出的H桥电路在IO A输出高阻输出,从而可在IO A连线上输出一个高电平。当该接口电路需要通过IO A进行数据接收时,MCU控制带高阻输出的H桥电路在IO A输出高阻输出,同时MCU读取IN A的电平状态,获得IO A连线上的电平状态(上侧虚线)。同理,如图9中的实线箭头所示,另一路IO B也可以通过如IO A相同的操作实现5V双向数字信号的收发。
应理解,在这种配置方式下,接口电路300的两个接口端可以分别与两个5V数字信号外设连接,可实现与5V低速率数字信号外设进行双向通信。常见的车载5V低速率外设有符合单线双向通信总线接口的温度传感器、压力传感器等。
第七种配置方式:12V数字信号输入接口。
可选地,接口电路300可以配置为两路12V数字信号输入接口。
具体地,两路12V数字信号输入接口的配置过程为:MCU控制上拉网络中的开关器件S2和S4断开,并根据实际应用情况控制S1和S3闭合或断开:如果外设自带上拉电阻或下拉电阻,且无需本接口开启上拉电阻,则MCU控制S1和S3断开;如果外设没有自带上拉电阻或下拉电阻,且希望本接口电路提供上拉电阻,则MCU控制S1和S3闭合。并控制带高阻输出的H桥电路输出高阻输出。应理解,这种配置方式中,还需要使用到GND,但如何使用还需根据实际情况而定:如果无法复用本接口电路所在车载控制单元的 其他同等电气特性的GND端子,则需从本接口电路引出GND端子;如果可以复用本接口电路所在车载控制单元的其他同等电气特性的GND端子,则无需从本接口电路引出GND端子。
图10是图3接口电路配置为两路12V数字信号输入接口的信号走向细节示例图。由于两路功能相同,这里仅以其中一路为例进行详细描述。如图10中的虚线箭头所示,MCU控制带高阻输出的H桥电路在IO A输出高阻输出,从而在IO A连线上产生一个高电平。同时MCU读取IN A的电平状态,获得IO A连线上的电平状态。同理,如图10中的实线箭头所示,另一路IO B也可以通过如IO A相同的操作实现12V数字信号输入接口。
应理解,在这种配置方式下,接口电路300的两个接口端可以分别与两个12V数字信号外设连接,可实现对12V数字信号开关量的采集。常见的车载12V数字信号开关量有点火开关信号等。
第八种配置方式:在接口端作为如下任一种接口的情况下,控制H桥电路的一个输出端为接口端连接的外设提供供电电压,另一个输出端用于与外设进行通信:LIN总线接口、SENT总线接口、12V功率输出接口、5V数字信号输入接口、5V数字信号输出接口、12V数字信号输入接口。
示例性地,可以利用IO A连线对外设进行12V供电,同时使用IO B按照LIN总线接口与外设进行通信;也可以利用IO A连线对外设进行12V供电,同时使用IO B按照5V数字信号输入接口与外设进行通信,本申请在此不进行一一描述。
应理解,在两两组合的各种配置中,由于两路可以独立配置,每一路中带高阻输出的H桥电路和上拉网络电路均可按照实施例二到实施例七中的IO A路进行配置。
应理解,GND以及+5V的使用根据实际情况而定,可参考上述配置方式中的描述,在此不再进行描述。
本申请实施例还提供了一种车载控制单元400,车载控制单元400包括一个或多个接口电路300,图11是本申请实施例提供的车载控制单元400的示例图。优选地,车载控制单元400包括一个或多个接口电路300。
可选地,车载控制单元可以是电子控制单元(electronic control unit,ECU),也可以是整车控制单元(vehicle control unit,VCU),还可以是混合动力整车控制单元(hybrid control unit,HCU),凡是能够应用到本申请接口电路的车载控制单元,均落在本申请的保护范围内。
在本申请实施例中,包括一个或多个接口电路200的车载控制单元400可以灵活配置为一个或多个如下任意一种或多种接口:H桥输出接口、LIN总线接口、SENT总线接口、12V功率输出接口、5V数字信号输入接口、5V数字信号输出接口、12V数字信号输入接口。而不会因该车载控制单元没有预留上述接口或接口数量不足导致重新设计车载控制单元带来的成本增加,或选用一种接口足够但其他类型接口有剩余而导致车载控制单元接口资源利用率低的问题。
可选地,根据实际需求,一个车载控制单元400中可以配置一个也可以配置多个接口电路200,本申请对比不做限定。示例性地,一个车载控制单元400中可以包括一个接口电路200和其他普通接口;可以包括多个接口电路200和其他普通接口;还可以仅包括一个或多个接口电路200。
应理解,一个车载控制单元400中的多个接口之间可以没有依赖关系,也可以相互配合。
还应理解,一个车载控制单元400中至少包括一个控制器,例如,MCU。应理解,一个MCU可以控制一个或多个接口。
本申请实施例又提供了一种车辆,包括一个或多个车载控制单元400,车载控制单元400可以管理和控制汽车中的车载设备。应理解,汽车可以是电动汽车,例如,纯电动汽车、增程式电动汽车、混合动力电动汽车、燃料电池汽车、新能源汽车等,本申请对此不做具体限定。
本申请实施例再提供了一种接口电路的控制方法,该控制方法可以与图2至图11所示的任意一种装置相结合,本申请实施例对此不作具体限定。
该控制方法包括:控制器240控制接口电路200被配置成如下一种或多种接口:H桥输出接口、12V功率输出接口、5V数字信号输出接口、5V数字信号输入接口、12V数字信号输入接口、LIN总线接口和/或SENT总线接口。
可选地,H桥电路210可以为全桥电路或可以包括两个半桥电路;其中,H桥电路210的输出端211包括第一输出端和第二输出端,接口端IO包括第一接口端IO A和第二接口端IO B;其中,第一接口端IO A连接于第一输出端,第二接口端IO B连接于第二输出端。
可选地,输入支路220可以包括第一输入支路和第二输入支路,分别连接于第一接口端IO A和第二接口端IO B
可选地,LIN总线上拉电阻支路231可以包括并联的第一LIN总线上拉电阻支路和第二LIN总线上拉电阻支路,LIN总线上拉电阻2311包括第一上拉电阻R1和第二上拉电阻R2,LIN总线上拉电阻支路设置的二极管2312包括第一二极管D1和第二二极管D2,LIN总线上拉电阻支路设置的第一开关器件2313包括第三开关器件S1和第四开关器件S2;第一LIN总线上拉电阻支路包括第一上拉电阻R1、第一二极管D1与第三开关器件S1,第一上拉电阻R1的第一端与LIN总线供电电源233连接,第一上拉电阻R1的第二端与二极管D1的阳极连接,二极管D1的阴极通过第三开关器件S1连接至第一接口端IO A。第二LIN总线上拉电阻支路包括第二上拉电阻R2、第二二极管D2与第四开关器件S2,LIN总线上拉电阻R2的第一端与LIN总线供电电源233连接,LIN总线上拉电阻R2的第二端与二极管D2的阳极连接,二极管D2的阴极通过第一开关器件S2连接至第二接口端IO B;第一控制支路235可以包括第三控制支路K1和第四控制支路K2,控制器240分别通过所述第三控制支路K1和第四控制支路K2控制第三开关器件S1和第四开关器件S2的通断。
可选地,SENT总线上拉电阻支路232可以包括并联的第一SENT总线上拉电阻支路和第二SENT总线上拉电阻支路,SENT总线上拉电阻2321包括第三上拉电阻R3和第四上拉电阻R4,SENT总线上拉电阻支路232设置的第二开关器件2322包括第五开关器件S3和第六开关器件S4;第一SENT总线上拉电阻支路包括第三上拉电阻R3与第五开关器件S3,第三上拉电阻R3的第一端与SENT总线供电电源234连接,第三上拉电阻R3的第二端通过第五开关器件S3连接至第一接口端IO A;第二SENT总线上拉电阻支路包括第四上拉电阻R4与第六开关器件S4,第四上拉电阻R4的第一端与SENT总线供电电源234连接,第四上拉电阻R4的第二端通过第六开关器件S4连接至第二接口端IO B;第 二控制支路236可以包括第五控制支路K3和第六控制支路K4,控制器240分别通过第五控制支路K3和第六控制支路K4控制第五开关器件S3和第六开关器件S4的通断。
可选地,接口电路被配置成H桥输出接口时,控制器240控制接口电路在H桥电路210输出直流有刷电机的控制信号。
可选地,接口电路被配置成12V功率输出接口时,控制器控制接口电路在H桥电路210输出高边输出。
可选地,接口被配置成5V数字信号输出接口时,控制器240控制接口电路在H桥电路210输出低边输出。
可选地,H桥电路210可以为带高阻输出的H桥电路。
应理解,接口电路被配置成5V数字信号输入接口时,控制器240控制接口电路在H桥电路210输出高阻输出,并通过输入支路220采集接口端IO的信号。
应理解,接口电路被配置成12V数字信号输入接口时,控制器240控制接口电路在H桥电路210输出高阻输出,并通过输入支路220采集接口端IO的信号。
应理解,接口电路被配置成LIN总线接口时,控制器240控制闭合第一开关器件2313,控制H桥电路210按LIN总线时序输出低边输出,或按LIN总线时序输出高阻输出。
应理解,接口电路被配置成SENT总线接口时,控制器240控制闭合第二开关器件2322,控制H桥电路210按SENT总线时序输出高阻输出。
应理解,接口电路被配置成两个输出端互相配合工作时,控制器240可以控制接口电路在H桥电路210的第一输出端为车载电子设备产生供电电压,第二输出端按照如下接口进行通信:LIN总线接口、SENT总线接口、12V功率输出接口、5V数字信号输入接口、5V数字信号输出接口、12V数字信号输入接口。
可选地,H桥电路210的供电电源可以为12V;LIN总线供电电源可以为12V;SENT总线供电电源可以为5V。还应理解,H桥电路210与所述LIN总线共用一个供电电源。
可选地,所述控制器可以为微控制单元MCU。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (37)

  1. 一种车载控制单元的接口电路,其特征在于,所述接口电路包括:H桥电路(210)、输入支路(220)和上拉网络(230);
    所述H桥电路(210)的输入端(211)与控制器(240)连接,所述H桥电路(210)的输出端(212)与所述接口电路的接口端IO连接;
    所述输入支路(220)的第一端与所述接口端IO连接,所述输入支路(220)的第二端与所述控制器(240)连接;
    所述上拉网络(230)包括局部互联网络LIN总线上拉电阻支路(231),和/或单边半字节传输SENT总线上拉电阻支路(232);
    其中,所述LIN总线上拉电阻支路(231)设置有LIN总线上拉电阻(2311)、二极管(2312)与第一开关器件(2313),所述LIN总线上拉电阻(2311)的第一端与LIN总线供电电源(233)连接,所述LIN总线上拉电阻(2311)的第二端与所述二极管(2312)的阳极连接,所述二极管(2312)的阴极通过所述第一开关器件(2313)连接至所述接口端IO;
    所述SENT总线上拉电阻支路(232)设置有SENT总线上拉电阻(2321)与第二开关器件(2322),所述SENT总线上拉电阻(2321)的第一端与SENT总线供电电源(234)连接,SENT总线上拉电阻(2321)的第二端通过所述第二开关器件(2322)连接至所述接口端IO;
    所述第一开关器件(2313)和/或所述第二开关器件(2322)的通断分别由所述控制器(240)通过第一控制支路(235)和/或第二控制支路(236)控制;
    所述接口电路在所述控制器(240)的控制下被配置成如下一种或多种接口:H桥输出接口、12V功率输出接口、5V数字信号输出接口、5V数字信号输入接口、12V数字信号输入接口、LIN总线接口和/或SENT总线接口。
  2. 如权利要求1所述的接口电路,其特征在于,所述H桥电路(210)为全桥电路或包括两个半桥电路;
    其中,所述H桥电路(210)的输出端(212)包括第一输出端和第二输出端,所述接口端IO包括第一接口端和第二接口端;
    其中,所述第一接口端连接于所述第一输出端,所述第二接口端连接于所述第二输出端。
  3. 如权利要求2所述的接口电路,其特征在于,所述输入支路(220)包括第一输入支路和第二输入支路,分别连接于所述第一接口端和所述第二接口端。
  4. 如权利要求3所述的接口电路,其特征在于,所述LIN总线上拉电阻支路(231)包括并联的第一LIN总线上拉电阻支路和第二LIN总线上拉电阻支路,所述LIN总线上拉电阻(2311)包括第一上拉电阻R1和第二上拉电阻R2,所述LIN总线上拉电阻支路(231)设置的所述二极管(2312)包括第一二极管D1和第二二极管D2,所述LIN总线上拉电阻支路(231)设置的第一开关器件(2313)包括第三开关器件S1和第四开关器件S2;
    所述第一LIN总线上拉电阻支路包括第一上拉电阻R1、第一二极管D1与第三开关器件S1,所述第一上拉电阻R1的第一端与LIN总线供电电源连接,所述第一上拉电阻R1的第二端与所述二极管D1的阳极连接,所述二极管D1的阴极通过所述第三开关器件S1连接至所述第一接口端;
    所述第二LIN总线上拉电阻支路包括第二上拉电阻R2、第二二极管D2与第四开关器件S2,所述LIN总线上拉电阻R2的第一端与LIN总线供电电源连接,所述LIN总线上拉电阻R2的第二端与所述二极管D2的阳极连接,所述二极管D2的阴极通过所述第一开关器件S2连接至所述第二接口端;
    所述第一控制支路(235)包括第三控制支路K1和第四控制支路K2,所述控制器(240)分别通过所述第三控制支路K1和第四控制支路K2控制所述第三开关器件S1和第四开关器件S2的通断。
  5. 如权利要求3所述的接口电路,其特征在于,所述SENT总线上拉电阻支路(232)包括并联的第一SENT总线上拉电阻支路和第二SENT总线上拉电阻支路,所述SENT总线上拉电阻(2321)包括第三上拉电阻R3和第四上拉电阻R4,所述SENT总线上拉电阻支路(232)设置的第二开关器件(2322)包括第五开关器件S3和第六开关器件S4;
    所述第一SENT总线上拉电阻支路包括第三上拉电阻R3与第五开关器件S3,所述第三上拉电阻R3的第一端与SENT总线供电电源连接,所述第三上拉电阻R3的第二端通过所述第五开关器件S3连接至所述第一接口端;
    所述第二SENT总线上拉电阻支路包括第四上拉电阻R4与第六开关器件S4,第四上拉电阻R4的第一端与SENT总线供电电源连接,所述第四上拉电阻R4的第二端通过所述第六开关器件S4连接至所述第二接口端;
    所述第二控制支路(236)包括第五控制支路K3和第六控制支路K4,所述控制器(240)分别通过所述第五控制支路K3和第六控制支路K4控制所述第五开关器件S3和第六开关器件S4的通断。
  6. 如权利要求1-5中任一项所述的接口电路,其特征在于,所述接口电路被配置成所述H桥输出接口时,所述接口电路被所述控制器(240)控制在所述H桥电路(210)输出直流有刷电机的控制信号。
  7. 如权利要求1-6中任一项所述的接口电路,其特征在于,所述接口电路被配置成所述12V功率输出接口时,所述接口电路被所述控制器(240)控制在所述H桥电路(210)输出高边输出。
  8. 如权利要求1-7中任一项所述的接口电路,其特征在于,所述接口被配置成所述5V数字信号输出接口时,所述接口电路被所述控制器(240)控制在所述H桥电路(210)输出低边输出。
  9. 如权利要求1-8中任一项所述的接口电路,其特征在于,所述H桥电路(210)为带高阻输出的H桥电路。
  10. 如权利要求9所述的接口电路,其特征在于,所述接口电路被配置成所述5V数字信号输入接口时,所述接口电路被所述控制器(240)控制在所述H桥电路(210)输出高阻输出,并通过所述输入支路(220)采集所述接口端IO的信号。
  11. 如权利要求9或10所述的接口电路,其特征在于,所述接口电路被配置成所述 12V数字信号输入接口时,所述接口电路被所述控制器(240)控制在所述H桥电路(210)输出高阻输出,并通过所述输入支路(220)采集所述接口端IO的信号。
  12. 如权利要求9-11中任一项所述的接口电路,其特征在于,所述接口电路被配置成所述LIN总线接口时,所述接口电路被所述控制器(240)控制闭合所述第一开关器件(2313),所述H桥电路(210)被控制按LIN总线时序输出低边输出,或按LIN总线时序输出高阻输出。
  13. 如权利要求9-12中任一项所述的接口电路,其特征在于,所述接口电路被配置成所述SENT总线接口时,所述接口电路被所述控制器(240)控制闭合所述第二开关器件(2322),所述H桥电路(210)被控制按SENT总线时序输出高阻输出。
  14. 如权利要求2所述的接口电路,其特征在于,所述接口电路被配置成所述两个输出端互相配合工作时,所述接口电路被所述控制器(240)控制在所述H桥电路(210)的第一输出端为车载电子设备产生供电电压,第二输出端按照如下接口进行通信:
    LIN总线接口、SENT总线接口、12V功率输出接口、5V数字信号输入接口、5V数字信号输出接口、12V数字信号输入接口。
  15. 如权利要求1-14中任一项所述的接口电路,其特征在于,所述H桥电路(210)的供电电源为12V;和/或
    所述LIN总线供电电源为12V;和/或
    所述SENT总线供电电源为5V。
  16. 如权利要求1-15中任一项所述的接口电路,其特征在于,所述H桥电路(210)与所述LIN总线共用一个供电电源。
  17. 如权利要求1-16中任一项所述的接口电路,其特征在于,所述控制器为微控制单元MCU。
  18. 一种车载控制单元,其特征在于,包括一个或多个如权利要求1-17中任一项所述的接口电路。
  19. 如权利要求18所述的车载控制单元,所述车载控制单元为电子控制单元ECU。
  20. 一种车辆,其特征在于,包括一个或多个如权利要求18或19所述的车载控制单元。
  21. 一种接口电路的控制方法,其特征在于,所述接口电路包括:H桥电路(210)、输入支路(220)和上拉网络(230);
    所述H桥电路(210)的输入端(211)与控制器(240)连接,所述H桥电路(210)的输出端(212)与所述接口电路的接口端IO连接;
    所述输入支路(220)的第一端与所述接口端IO连接,所述输入支路(220)的第二端与所述控制器(240)连接;
    所述上拉网络(230)包括局部互联网络LIN总线上拉电阻支路(231),和/或单边半字节传输SENT总线上拉电阻支路(232);
    其中,所述LIN总线上拉电阻支路(231)设置有LIN总线上拉电阻(2311)、二极管(2312)与第一开关器件(2313),所述LIN总线上拉电阻(2311)的第一端与LIN总线供电电源(233)连接,所述LIN总线上拉电阻(2311)的第二端与所述二极管(2312)的阳极连接,所述二极管(2312)的阴极通过所述第一开关器件(2313)连接至所述接口 端IO;
    所述SENT总线上拉电阻支路(232)设置有SENT总线上拉电阻(2321)与第二开关器件(2322),所述SENT总线上拉电阻(2321)的第一端与SENT总线供电电源(234)连接,SENT总线上拉电阻(2321)的第二端通过所述第二开关器件(2322)连接至所述接口端IO;
    所述第一开关器件(2313)和/或所述第二开关器件(2322)的通断分别由所述控制器(240)通过第一控制支路(235)和/或第二控制支路(236)控制;
    所述控制方法包括:
    所述控制器(240)控制所述接口电路被配置成如下一种或多种接口:H桥输出接口、12V功率输出接口、5V数字信号输出接口、5V数字信号输入接口、12V数字信号输入接口、LIN总线接口和/或SENT总线接口。
  22. 如权利要求21所述的控制方法,其特征在于,所述H桥电路(210)为全桥电路或包括两个半桥电路;
    其中,所述H桥电路(210)的输出端(212)包括第一输出端和第二输出端,所述接口端IO包括第一接口端和第二接口端;
    其中,所述第一接口端连接于所述第一输出端,所述第二接口端连接于所述第二输出端。
  23. 如权利要求22所述的控制方法,其特征在于,所述输入支路(220)包括第一输入支路和第二输入支路,分别连接于所述第一接口端和所述第二接口端。
  24. 如权利要求23所述的控制方法,其特征在于,所述LIN总线上拉电阻支路(231)包括并联的第一LIN总线上拉电阻支路和第二LIN总线上拉电阻支路,所述LIN总线上拉电阻(2311)包括第一上拉电阻R1和第二上拉电阻R2,所述LIN总线上拉电阻支路(231)设置的所述二极管(2312)包括第一二极管D1和第二二极管D2,所述LIN总线上拉电阻支路(231)设置的第一开关器件(2313)包括第三开关器件S1和第四开关器件S2;
    所述第一LIN总线上拉电阻支路包括第一上拉电阻R1、第一二极管D1与第三开关器件S1,所述第一上拉电阻R1的第一端与LIN总线供电电源连接,所述第一上拉电阻R1的第二端与所述二极管D1的阳极连接,所述二极管D1的阴极通过所述第三开关器件S1连接至所述第一接口端;
    所述第二LIN总线上拉电阻支路包括第二上拉电阻R2、第二二极管D2与第四开关器件S2,所述LIN总线上拉电阻R2的第一端与LIN总线供电电源连接,所述LIN总线上拉电阻R2的第二端与所述二极管D2的阳极连接,所述二极管D2的阴极通过所述第一开关器件S2连接至所述第二接口端;
    所述第一控制支路(235)包括第三控制支路K1和第四控制支路K2,所述控制器(240)分别通过所述第三控制支路K1和第四控制支路K2控制所述第三开关器件S1和第四开关器件S2的通断。
  25. 如权利要求23所述的控制方法,其特征在于,所述SENT总线上拉电阻支路(232)包括并联的第一SENT总线上拉电阻支路和第二SENT总线上拉电阻支路,所述SENT总线上拉电阻(2321)包括第三上拉电阻R3和第四上拉电阻R4,所述SENT总线上拉电阻 支路(232)设置的第二开关器件(2322)包括第五开关器件S3和第六开关器件S4;
    所述第一SENT总线上拉电阻支路包括第三上拉电阻R3与第五开关器件S3,所述第三上拉电阻R3的第一端与SENT总线供电电源连接,所述第三上拉电阻R3的第二端通过所述第五开关器件S3连接至所述第一接口端;
    所述第二SENT总线上拉电阻支路包括第四上拉电阻R4与第六开关器件S4,第四上拉电阻R4的第一端与SENT总线供电电源连接,所述第四上拉电阻R4的第二端通过所述第六开关器件S4连接至所述第二接口端;
    所述第二控制支路(236)包括第五控制支路K3和第六控制支路K4,所述控制器(240)分别通过所述第五控制支路K3和第六控制支路K4控制所述第五开关器件S3和第六开关器件S4的通断。
  26. 如权利要求21-25中任一项所述的控制方法,其特征在于,所述接口电路被配置成所述H桥输出接口时,所述控制器(240)控制所述接口电路在所述H桥电路(210)输出直流有刷电机的控制信号。
  27. 如权利要求21-26中任一项所述的控制方法,其特征在于,所述接口电路被配置成所述12V功率输出接口时,所述控制器(240)控制所述接口电路在所述H桥电路(210)输出高边输出。
  28. 如权利要求21-27中任一项所述的控制方法,其特征在于,所述接口被配置成所述5V数字信号输出接口时,所述控制器(240)控制所述接口电路在所述H桥电路(210)输出低边输出。
  29. 如权利要求21-28中任一项所述的控制方法,其特征在于,所述H桥电路(210)为带高阻输出的H桥电路。
  30. 如权利要求29所述的控制方法,其特征在于,所述接口电路被配置成所述5V数字信号输入接口时,所述控制器(240)控制所述接口电路在所述H桥电路(210)输出高阻输出,并通过所述输入支路(220)采集所述接口端IO的信号。
  31. 如权利要求29或30所述的控制方法,其特征在于,所述接口电路被配置成所述12V数字信号输入接口时,所述控制器(240)控制所述接口电路在所述H桥电路(210)输出高阻输出,并通过所述输入支路(220)采集所述接口端IO的信号。
  32. 如权利要求29-31中任一项所述的控制方法,其特征在于,所述接口电路被配置成所述LIN总线接口时,所述控制器(240)控制闭合所述第一开关器件(2313),控制所述H桥电路(210)按LIN总线时序输出低边输出,或按LIN总线时序输出高阻输出。
  33. 如权利要求29-32中任一项所述的控制方法,其特征在于,所述接口电路被配置成所述SENT总线接口时,所述控制器(240)控制闭合所述第二开关器件(2322),控制所述H桥电路(210)按SENT总线时序输出高阻输出。
  34. 如权利要求22所述的控制方法,其特征在于,所述接口电路被配置成所述两个输出端互相配合工作时,所述控制器(240)控制所述接口电路在所述H桥电路(210)的第一输出端为车载电子设备产生供电电压,第二输出端按照如下接口进行通信:
    LIN总线接口、SENT总线接口、12V功率输出接口、5V数字信号输入接口、5V数字信号输出接口、12V数字信号输入接口。
  35. 如权利要求21-34中任一项所述的控制方法,其特征在于,所述H桥电路(210) 的供电电源为12V;和/或
    所述LIN总线供电电源为12V;和/或
    所述SENT总线供电电源为5V。
  36. 如权利要求21-35中任一项所述的控制方法,其特征在于,所述H桥电路(210)与所述LIN总线共用一个供电电源。
  37. 如权利要求21-36中任一项所述的控制方法,其特征在于,所述控制器为微控制单元MCU。
PCT/CN2020/081650 2020-03-27 2020-03-27 车载控制单元的接口电路、装置、车辆及控制方法 WO2021189414A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20927217.8A EP4063977B1 (en) 2020-03-27 2020-03-27 Interface circuit for vehicle-mounted control unit, device, vehicle and control method
PCT/CN2020/081650 WO2021189414A1 (zh) 2020-03-27 2020-03-27 车载控制单元的接口电路、装置、车辆及控制方法
CN202080004584.3A CN112639757B (zh) 2020-03-27 2020-03-27 车载控制单元的接口电路、装置、车辆及控制方法
US17/863,654 US12009768B2 (en) 2020-03-27 2022-07-13 Interface circuit of vehicle-mounted control unit, apparatus, vehicle, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081650 WO2021189414A1 (zh) 2020-03-27 2020-03-27 车载控制单元的接口电路、装置、车辆及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/863,654 Continuation US12009768B2 (en) 2020-03-27 2022-07-13 Interface circuit of vehicle-mounted control unit, apparatus, vehicle, and control method

Publications (1)

Publication Number Publication Date
WO2021189414A1 true WO2021189414A1 (zh) 2021-09-30

Family

ID=75291153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081650 WO2021189414A1 (zh) 2020-03-27 2020-03-27 车载控制单元的接口电路、装置、车辆及控制方法

Country Status (4)

Country Link
US (1) US12009768B2 (zh)
EP (1) EP4063977B1 (zh)
CN (1) CN112639757B (zh)
WO (1) WO2021189414A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104423290A (zh) * 2013-09-04 2015-03-18 罗伯特·博世有限公司 用于调整控制设备的方法
CN108304344A (zh) * 2017-01-12 2018-07-20 罗伯特·博世有限公司 计算单元及其运行方法
US20190250610A1 (en) * 2018-02-13 2019-08-15 Sf Motors, Inc. Systems and methods for scalable electrical engineering (ee) architecture in vehicular environments
CN110874917A (zh) * 2018-08-30 2020-03-10 威伯科欧洲有限责任公司 用于收集并传递模拟信号的线缆适配器及其方法和用途

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0227526D0 (en) * 2002-11-26 2002-12-31 Melexis Nv Auto-configured lin bus nodes
US7531852B2 (en) * 2004-06-14 2009-05-12 Denso Corporation Electronic unit with a substrate where an electronic circuit is fabricated
US8187444B2 (en) * 2007-08-10 2012-05-29 Eric John Kruger Fluid treatment device
DE102010062238A1 (de) * 2010-03-30 2011-10-06 Robert Bosch Gmbh Startvorrichtung, Schnittstelleneinrichtung und Verfahren zum Betreiben eines Systems einer Startvorrichtung
DE102014106218B4 (de) * 2013-05-09 2021-11-25 Denso Corporation Drehende elektrische Maschine für ein Fahrzeug
DE102013210064A1 (de) * 2013-05-29 2014-12-04 Robert Bosch Gmbh Verfahren zur Bereitstellung einer generischen Schnittstelle sowie Mikrocontroller mit generischer Schnittstelle
US20180173666A1 (en) * 2016-12-16 2018-06-21 Intel Corporation APPARATUSES AND METHODS TO COUPLE AN EMBEDDED UNIVERSAL SERIAL BUS (eUSB) CIRCUIT TO A UNIVERSAL SERIAL BUS (USB) TRANSCEIVER INTERFACE CIRCUIT
DE102017001657A1 (de) * 2017-02-21 2018-08-23 Lucas Automotive Gmbh Zugriffsgeschützte Ansteuerung eines Aktuators einer elektrischen Parkbremse
CN108146188A (zh) 2017-12-25 2018-06-12 小犇(苏州)新能源科技有限公司 一种能更新程序的电动汽车空调pwm接口

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104423290A (zh) * 2013-09-04 2015-03-18 罗伯特·博世有限公司 用于调整控制设备的方法
CN108304344A (zh) * 2017-01-12 2018-07-20 罗伯特·博世有限公司 计算单元及其运行方法
US20190250610A1 (en) * 2018-02-13 2019-08-15 Sf Motors, Inc. Systems and methods for scalable electrical engineering (ee) architecture in vehicular environments
CN110874917A (zh) * 2018-08-30 2020-03-10 威伯科欧洲有限责任公司 用于收集并传递模拟信号的线缆适配器及其方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4063977A4 *

Also Published As

Publication number Publication date
US12009768B2 (en) 2024-06-11
EP4063977A4 (en) 2022-12-14
US20220345058A1 (en) 2022-10-27
CN112639757A (zh) 2021-04-09
EP4063977B1 (en) 2024-09-25
CN112639757B (zh) 2021-10-01
EP4063977A1 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
CN101384119B (zh) 一种基于can与lin总线的汽车外部灯控制器
US20110022766A1 (en) Circuit Arrangement For A Motor Vehicle Data Bus
EP3854636B1 (en) System and method for implementing electronic control function in vehicle, and vehicle
CN101201619A (zh) 用于客车车载网络与信息集成控制系统中的通用模块
CN204998456U (zh) 一种纯电动汽车整车控制器
US7538586B2 (en) Transmitter for a controlled-shape switched signal on a communication line
WO2021189414A1 (zh) 车载控制单元的接口电路、装置、车辆及控制方法
CN215212990U (zh) 一种基于平台化的汽车车窗控制系统
CN101251748A (zh) 总线型汽车雨刮控制方法与控制器
CN112681927A (zh) 一种基于平台化的汽车车窗控制系统
CN111555968B (zh) 可配置端口模式的以太网网关及车辆
CN109739801A (zh) 一种mcu芯片与soc芯片之间的串口电平转换电路
CN201142019Y (zh) 用于客车车载网络与信息集成控制系统中的通用模块
CN106020175A (zh) 一种整车控制器上下电控制电路及整车控制器
CN221873976U (zh) 一种集中式架构的车身控制装置
CN217932473U (zh) 一种智能网关控制器
CN216069620U (zh) 一种用于机场纯电动设备的can总线可存储控制器
WO2024113179A1 (zh) 电源控制电路、负载电路、供电系统及终端设备
CN201761454U (zh) 一种混合动力汽车的网络系统
CN208581243U (zh) 一种串口-can数据转换单元
CN219676483U (zh) 一种电子开关控制电路
CN214067283U (zh) 一种cxpi通信系统和车辆
CN221010144U (zh) 超低功耗的车用网关控制器
CN221162609U (zh) 一种车载电子电气系统及车辆
CN218041390U (zh) 一种信号发生电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020927217

Country of ref document: EP

Effective date: 20220622

NENP Non-entry into the national phase

Ref country code: DE