WO2021187383A1 - 細胞培養器具の加工装置 - Google Patents

細胞培養器具の加工装置 Download PDF

Info

Publication number
WO2021187383A1
WO2021187383A1 PCT/JP2021/010165 JP2021010165W WO2021187383A1 WO 2021187383 A1 WO2021187383 A1 WO 2021187383A1 JP 2021010165 W JP2021010165 W JP 2021010165W WO 2021187383 A1 WO2021187383 A1 WO 2021187383A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
unit
laser
region
cell culture
Prior art date
Application number
PCT/JP2021/010165
Other languages
English (en)
French (fr)
Inventor
忠夫 森下
松本 潤一
Original Assignee
株式会社片岡製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社片岡製作所 filed Critical 株式会社片岡製作所
Priority to JP2022508328A priority Critical patent/JPWO2021187383A1/ja
Priority to US17/911,527 priority patent/US20230140027A1/en
Publication of WO2021187383A1 publication Critical patent/WO2021187383A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/10Petri dish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings

Definitions

  • the present invention relates to a processing device for a cell culture device.
  • a treatment such as cutting the cultured cell mass into a desired shape or processing a cell culture device so that the previously cultured cell mass has a desired shape. Is being done (Patent Document 1).
  • the cell culture device is processed so that the cell mass after culturing has a desired shape by patterning the surface of the cell culture device by a photolithography method.
  • a photolithography method is carried out, a wide variety of manufacturing equipment such as a photomask forming apparatus and an exposure apparatus are required. Therefore, there is a demand for a processing device capable of controlling the shape of cells on a cell culture device with a simpler configuration.
  • an object of the present invention is to provide a processing device for a cell culture device having a cell culture substrate layer and a photothermal conversion layer, which can control a region where cells can be adhered.
  • the processing apparatus for the cell culture apparatus of the present invention (hereinafter, also referred to as “processing apparatus”) is used for the photothermal conversion layer in the cell culture apparatus having the cell culture substrate layer and the photothermal conversion layer.
  • Laser irradiation unit capable of irradiating laser
  • a control unit for controlling the laser irradiation unit is provided.
  • the control unit includes a setting unit and an irradiation control unit.
  • the setting unit sets an irradiation region for irradiating the laser in the cell culture device. Based on the irradiation region, the irradiation control unit controls the laser irradiation unit so as to irradiate the photothermal conversion layer in the corresponding region with a laser.
  • a cell culture apparatus having a cell culture substrate layer and a photothermal conversion layer, it is possible to control a region where cells can adhere.
  • FIG. 1 is a schematic view showing an example of the configuration of the culture device of the first embodiment
  • FIG. 1A is a schematic perspective view of the culture device of the first embodiment
  • FIG. 1B is a schematic perspective view of the culture device of the first embodiment. It is a schematic cross-sectional view of the culture device of Embodiment 1 as seen from the I direction
  • (C) is a plan view of the culture device of Embodiment 1.
  • FIG. 2 is a schematic view showing an example of a manufacturing method and a processing method of the culture instrument of the first embodiment.
  • FIG. 3 is a perspective view showing the configuration of the processing apparatus of the second embodiment.
  • 4A and 4B are schematic views showing a processing apparatus according to the second embodiment, FIG.
  • FIG. 4A is a block diagram showing an example of a configuration of a control unit of the processing apparatus according to the second embodiment
  • FIG. It is a block diagram which shows an example of the structure of a CPU.
  • FIG. 5 is a flowchart showing a process of a processing method of the control unit of the processing apparatus of the second embodiment.
  • FIG. 6 shows an example of the configuration of the control unit in the processing apparatus of the third embodiment.
  • FIG. 7 is a flowchart showing an example of processing of the control unit according to the third embodiment.
  • FIG. 8 is a schematic view showing a method of setting an irradiation region in the third embodiment.
  • FIG. 9 is a schematic view showing an example of control of the laser irradiation unit by the irradiation control unit in the third embodiment.
  • FIG. 5 is a flowchart showing a process of a processing method of the control unit of the processing apparatus of the second embodiment.
  • FIG. 6 shows an example of the configuration of the control unit in the processing apparatus of
  • FIG. 10 is a schematic view showing the configuration of the processing apparatus according to the fourth embodiment.
  • FIG. 11 is a flowchart showing an example of processing of the processing apparatus according to the fourth embodiment.
  • FIG. 12 is a perspective view showing an example of the processing apparatus according to the fifth embodiment.
  • FIG. 13 is a perspective view showing an example of the first region in the processing apparatus of the fifth embodiment.
  • FIG. 14 is a cross-sectional view of the first region as viewed from the I-I direction in FIG. 15A is an exploded perspective view showing an example of a culture container arrangement portion in the processing apparatus of the first embodiment, and
  • FIG. 15B is a cross-sectional view taken from the direction III-III in FIG. 15A. be.
  • FIG. 16 is a perspective view showing an example of the first region and the circulation means when the outer wall of the first region is removed in the processing apparatus of the fifth embodiment.
  • FIG. 17 is a cross-sectional view of the upper part of the first region and the circulation means as viewed from the direction II-II in FIG.
  • FIG. 18 (a) is a perspective view showing an example of the configuration of the second region of the processing apparatus of the fifth embodiment, and (b) is a perspective view showing another example of the configuration of the second region. be.
  • FIG. 19 is a block diagram showing an example of the configuration of the control unit of the processing apparatus according to the fifth embodiment.
  • FIG. 20 is a perspective view showing another example of the processing apparatus of the fifth embodiment.
  • FIG. 21 is a schematic view showing a method of setting an irradiation region in the third embodiment.
  • FIG. 22 is a schematic view showing a method of setting an irradiation region in the third embodiment.
  • cell means, for example, an isolated cell, a cell mass (spheroid) composed of cells, a tissue, or an organ.
  • the cell may be, for example, a cultured cell or a cell isolated from a living body.
  • the cell mass, tissue or organ may be, for example, a cell mass, cell sheet, tissue or organ prepared from the cell, or a cell mass, tissue or organ isolated from a living body.
  • the cells are preferably cells that adhere in an extracellular matrix (extracellular matrix) -dependent manner.
  • FIGS. 1 to 22 the same parts may be designated by the same reference numerals and the description thereof may be omitted. Further, in the drawings, for convenience of explanation, the structure of each part may be simplified as appropriate, and the dimensional ratio of each part may be shown schematically, which is different from the actual one.
  • the present embodiment is an example of a cell culture device to be processed by the processing device of the present invention, a method for producing the cell culture device, and a processing method using the processing device of the present invention.
  • 1A and 1B are schematic views showing the configuration of the incubator 100 of the first embodiment
  • FIG. 1A is a schematic perspective view of the incubator 100
  • FIG. 1B is a schematic perspective view of the incubator 100 in FIG. It is a schematic cross-sectional view of the culture device 100
  • (C) is a plan view of the culture device 100.
  • the culture device 100 has a cell culture base layer 11, a photothermal conversion layer 13, and a container 12 which is a cell culture device.
  • the cell culture substrate layer 11 is composed of a cell adhesion region 11a to which cells can adhere.
  • the container 12 has a bottom surface 12a and a side wall 12b.
  • the cell culture substrate layer 11 is laminated on the bottom surface 12a.
  • the photothermal conversion layer 13 is arranged between the cell culture substrate layer 11 and the bottom surface 12a. That is, the photothermal conversion layer 13 and the cell culture substrate layer 11 are laminated in this order on the bottom surface 12a.
  • the culture apparatus 100 by irradiating the culture apparatus 100 with light (laser), the adhesion of the cell culture substrate in the cell culture substrate layer 11 is changed, and the cell adhesion is inhibited. It forms a cell adhesion inhibition region.
  • the culture instrument 100 is subjected to cell culture after the formation of the cell adhesion inhibition region. Therefore, the culture device 100 can be said to be a culture device before cell culture or a culture device in which cells are not laminated.
  • the cell culture substrate layer 11 is a layer containing the cell culture substrate.
  • the cell culture substrate means, for example, a substance that serves as a scaffold for cells when culturing cells.
  • Examples of the cell culture substrate include an extracellular matrix (extracellular matrix) or a substance having a function as a cell scaffold.
  • the extracellular matrix is, for example, elastin; entactin; type I collagen, type II collagen, type III collagen, type IV collagen, type V collagen, type VII collagen and other collagen; tenesin; fibrillin; fibronectin; laminin; vitronectin.
  • Proteoglycan composed of sulfated glucosaminoglycan such as chondroitin sulfate, heparan sulfate, keratane sulfate, dermatan sulfate and core protein; Noglycan; Synthemax (registered trademark, bitronectin derivative), Matrigel (registered trademark, laminin, type IV collagen, heparin sulfate proteoglycan, mixture of entactin / nidgen, etc.) and the like, and laminin is preferable.
  • Synthemax registered trademark, bitronectin derivative
  • Matrigel registered trademark, laminin, type IV collagen, heparin sulfate proteoglycan, mixture of entactin / nidgen, etc.
  • the laminin is, for example, laminin 111, laminin 121, laminin 211, laminin 213, laminin 222, laminin 311 (laminin 3A11), laminin 332 (laminin 3A32), laminin 321 (laminin 3A21), laminin 3B32, laminin 411, laminin 421. , Laminin 423, Laminin 521, Laminin 522, Laminin 523 and the like.
  • the three numbers in each laminin are the names of the constituent subunits of the ⁇ chain, ⁇ chain, and ⁇ chain, respectively, from the beginning.
  • laminin 111 is composed of an ⁇ 1 chain, a ⁇ 1 chain, and a ⁇ 1 chain.
  • laminin 3A11 is composed of ⁇ 3A chain, ⁇ 1 chain, and ⁇ 1 chain.
  • the cell culture substrate may contain a peptide fragment of the protein or a fragment of the sugar chain.
  • the peptide fragment of the protein includes, for example, a fragment of laminin.
  • the laminin fragment (fragment) include the above-mentioned laminin fragment, and specific examples thereof include laminin 211-E8, laminin 311-E8, laminin 411-E8, and laminin 511-E8.
  • the laminin 211-E8 is composed of fragments of the ⁇ 2 chain, ⁇ 1 chain, and ⁇ 1 chain of laminin.
  • the laminin 311-E8 is composed of fragments of laminin ⁇ 3 chain, ⁇ 1 chain, and ⁇ 1 chain.
  • the laminin 411-E8 is composed of fragments of laminin ⁇ 4 chain, ⁇ 1 chain, and ⁇ 1 chain.
  • the laminin 511-E8 is composed of, for example, fragments of the ⁇ 5 chain, ⁇ 1 chain, and ⁇ 1 chain of laminin.
  • the cell culture substrate can be indirectly denatured by irradiating the photothermal conversion layer 13 with light (laser). Specifically, the indirect denaturation occurs when the irradiated light is converted into heat and the structure of the cell culture substrate is changed by the heat energy. That is, the cell culture substrate is denatured by the heat generated by the light irradiation.
  • the cell culture substrate layer 11 is one layer, but may be a plurality of layers.
  • the cell culture substrate layer 11 may contain other components in addition to the cell culture substrate.
  • the other components include buffers, salts, growth factors (cell growth factors), cytokines, hormones and the like.
  • the cell culture substrate layer 11 is arranged (formed) only on the upper surface of the photothermal conversion layer 13, but the present invention is not limited to this.
  • the cell culture substrate layer 11 may be arranged, for example, in a region in contact with the cells, and in the culture instrument 100, in place of or in addition to the upper surface of the photothermal conversion layer 13, on the inner peripheral surface of the side wall 12b. It may be arranged. Further, the cell culture substrate layer 11 may be formed in a part of the region in contact with the cells, or may be formed in the whole area. In the former case, the cell culture substrate layer 11 is preferably formed on the photothermal conversion layer 13 of the container 12 during cell culture.
  • the cell adhesion region 11a is a region in the cell culture substrate layer 11 to which the cells can adhere.
  • the cell culture substrate can adhere to the cells, for example, in an undenatured state. Therefore, the cell adhesion region 11a can be said to be, for example, a region containing the cell culture substrate in an unmodified state, that is, a region containing the unmodified cell culture substrate.
  • the cell culture substrate contained in the cell adhesion region 11a is in an undenatured state in part or in whole. When a part of the cell culture substrate is in an unmodified state, for example, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95 of the cell culture substrate in the cell adhesion region 11a.
  • the cell adhesion region 11a was recovered, and the obtained recovered product was subjected to non-denatured electrophoresis (native PAGE). , Can be determined based on changes in band position. Further, the cell adhesion region 11a can also be said to be a region not irradiated with light in, for example, the production method described later. In the present embodiment, the cell culture substrate is indirectly denatured by light irradiation, and the adhesive ability with the cells is lowered.
  • the cell adhesion region 11a contains a cell culture substrate in an undenatured state.
  • the present invention is not limited to this, and the cell culture substrate is inhibited from adhering to cells in an unmodified state, and is directly or indirectly denatured by light irradiation, and has an ability to adhere to the cells. May be improved.
  • the cell adhesion region 11a contains a denatured cell culture substrate.
  • the cell culture substrate can be adhered to the cells by indirectly denaturing it by irradiation with light.
  • the container 12 can culture the cells.
  • the space surrounded by the bottom surface 12a and the side wall 12b is a region (cell culture region) in which the cells can be cultured, and can be referred to as a well, for example.
  • the container 12 include a cell culture container, and specific examples thereof include a substrate, a dish, a plate, and a flask (cell culture flask).
  • the size, volume, material, presence or absence of adhesive treatment, etc. of the container 12 can be appropriately determined according to the type and amount of cells to be cultured in the incubator 100.
  • the bottom surface 12a may be substantially flat or flat, or may have irregularities.
  • the container 12 has a side wall 12b, but the side wall 12b may or may not be present. If the container 12 does not have a side wall 12b, the container 12 can also be, for example, a substrate or a substrate.
  • the material of the container 12 is not particularly limited, and examples thereof include a material that transmits a laser irradiated by a laser irradiation unit described later, and specific examples thereof include plastic and glass that transmit a laser.
  • Plastics include, for example, polystyrene-based polymers, acrylic-based polymers (polymethylmethacrylate (PMMA), etc.), polyvinylpyridine-based polymers (poly (4-vinylpyridine), 4-vinylpyridine-styrene copolymer, etc.), and silicone-based polymers.
  • Polymers (polydimethylsiloxane, etc.), polyolefin-based polymers (polyethylene, polypropylene, polymethylpentene, etc.), polyester-based polymers (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), polycarbonate-based polymers, epoxy-based polymers, etc. can give.
  • the container 12 has one cell culture region, but may have a plurality of them. In the latter case, the container 12 can also have, for example, a plurality of wells. In the latter case, the cell culture base layer 11 and the photothermal conversion layer 13 may be formed in any one of the plurality of cell culture regions, or the cell culture base layer 11 and the photoheat conversion layer 13 may be formed in a plurality of cell culture base layers 11. 13 may be formed, or the cell culture substrate layer 11 and the photothermal conversion layer 13 may be formed on all of them. That is, in the container 12, the cell culture substrate layer 11 and the photothermal conversion layer 13 may be formed in any one well, two or more wells, or all wells among the plurality of wells.
  • the container 12 may include a lid.
  • the lid can, for example, detachably cover the upper surface of the container 12.
  • the lid is arranged, for example, so as to face the bottom surface 12a.
  • Examples of the lid include the lid of the cell culture container.
  • the photothermal conversion layer 13 is a layer capable of converting light into heat.
  • the photothermal conversion layer 13 contains, for example, a molecule capable of converting light into heat (photothermal conversion molecule).
  • the photothermal conversion molecule is preferably composed of, for example, a polymer (polymer) containing a dye structure (chromophore) that absorbs the wavelength of light L to be irradiated in the processing method of the culture vessel 100 described later. It is preferable that the photothermal conversion molecule can be easily coated on the container 12.
  • the dye structure that absorbs light L is, for example, a derivative of an organic compound such as azobenzene, diarylethene, spiropyran, spirooxazine, flugide, leuco dye, indigo, carotenoid (carotene, etc.), flavonoid (anthocyanin, etc.), quinoid (anthocyanin, etc.).
  • Examples of the skeleton constituting the polymer include acrylic polymers, polystyrene-based polymers, polyolefin-based polymers, polyvinyl acetate and polyvinyl chloride, polyolefin-based polymers, polycarbonate-based polymers, and epoxy-based polymers.
  • the photothermal conversion molecule for example, represented by the following formula (1), poly [methyl methacrylate -co- (di sparse yellow 7 methacrylate)] ((C 5 H 8 O 2) m ( C 23 H 20 N 4 O 2 ) n ) can be mentioned.
  • formula (1) as the structure of azobenzene in the polymer, in addition to the unsubstituted azobenzene, various variations of the structure modified with a nitro group, an amino group, a methyl group and the like may be adopted.
  • m and n are molar percentages. The sum of m and n is, for example, 100 mol%. The m and n may be the same or different, for example.
  • the photothermal conversion layer 13 may contain, for example, one type of photothermal conversion molecule or may contain a plurality of types of photothermal conversion molecules.
  • the photothermal conversion layer 13 is one layer, but may be a plurality of layers. In this case, it is preferable that a plurality of photothermal conversion layers 13 are arranged between the cell culture substrate layer 11 and the bottom surface 12a. Further, in the culture instrument 100 of the present embodiment, the photothermal conversion layer 13 is arranged so as to come into contact with the cell culture base layer 11, but may be arranged so as not to come into contact with the cell culture base layer 11. In this case, the photothermal conversion layer 13 and the cell culture substrate layer 11 may be thermally connected. Specifically, a heat conductive layer is formed between the photothermal conversion layer 13 and the cell culture base layer 11 to conduct the heat generated by the photoheat conversion layer 13 to the cell culture base layer 11. The heat conductive layer contains molecules having high thermal conductivity such as metal.
  • the photothermal conversion layer 13 may contain other components in addition to the photothermal conversion molecule.
  • the other components include polymer curing agents and unpolymerized monomers.
  • the photothermal conversion layer 13 is arranged (formed) only on the upper surface of the bottom surface 12a, but the present invention is not limited to this.
  • the photothermal conversion layer 13 may be arranged so as to be adjacent to the cell culture substrate layer 11, for example, and may be formed in the container 12, for example. In this case, the photothermal conversion layer 13 is preferably formed on the upper surface of the bottom surface 12a of the container 12.
  • the photothermal conversion layer 13 is arranged (formed) on the entire upper surface of the bottom surface 12a, but the present invention is not limited to this.
  • the photothermal conversion layer 13 may be formed on a part of the bottom surface 12a, for example.
  • the photothermal conversion layer 13 is arranged (formed) only on the upper surface of the bottom surface 12a, but the present invention is not limited to this.
  • the photothermal conversion layer 13 may be arranged so as to be thermally connected to, for example, the cell culture substrate layer 11, and in the culture apparatus 100, in place of or in addition to the upper surface of the bottom surface 12a, inside the side wall 12b. It may be arranged on the peripheral surface. Further, the photothermal conversion layer 13 may be formed so as to be thermally connected to a part of the cell culture substrate layer 11, or may be formed so as to be thermally connected to the whole. In the former case, the photothermal conversion layer 13 is preferably formed on the bottom surface 12a of the container 12 during cell culture.
  • FIG. 2 is a schematic view showing an example of a manufacturing method and a processing method of the culture device 100.
  • the cell culture base layer 11 is formed on the photothermal conversion layer 13 by using the unmodified cell culture base material.
  • the light is converted into heat by the photothermal conversion layer 13 by irradiating the photothermal conversion layer 13 with light.
  • the heat generated in the photothermal conversion layer 13 denatures the cell culture base material in the cell culture base material layer 11 adjacent to the region where the heat is generated, and the cell adhesion inhibition region 11b is formed. It is formed.
  • the container 12 is prepared (preparation step).
  • the container 12 may be a commercially available product or may be prepared in-house.
  • a photothermal conversion layer 13 containing the photothermal conversion molecule is formed on the bottom surface 12a of the container 12 (conversion layer forming step).
  • the photothermal conversion layer 13 can be formed by, for example, a known film forming method, and as a specific example, it can be carried out by a coating method, a printing method (screen method), a vapor deposition method, a sputtering method, a casting method, a spin coating method, or the like.
  • the photothermal conversion layer 13 uses, for example, a raw material liquid containing the dye structure-containing polymer or a raw material liquid obtained by dissolving the dye structure-containing polymer in a solvent in a container 12 by a spin coating method, a casting method, or the like. It can be formed inside, more specifically, by introducing it so as to be in contact with the bottom surface 12a of the container 12 and curing it.
  • the solvent include organic solvents such as 1,2-dichloroethane and methanol.
  • a cell culture base material layer 11 containing the cell culture base material is formed on the photothermal conversion layer 13 (base material layer forming step). ).
  • the container 12 having the cell culture substrate layer 11 and the photothermal conversion layer 13 can be prepared.
  • the cell culture base material used for forming the cell culture base material layer 11 is a cell culture base material in an unmodified state.
  • the cell culture substrate can adhere to the cells in an undenatured state. Therefore, as shown in FIG. 2C, the cell culture substrate layer 11 after formation is composed of the cell adhesion region 11a.
  • the cell culture substrate layer 11 can be formed by, for example, a known film forming method, and as a specific example, it can be carried out by a coating method, a printing method (screen method), a vapor deposition method, a sputtering method, a casting method, a spin coating method, or the like.
  • the method for forming the cell culture base material layer 11 is preferably a coating method because denaturation of the cell culture base material can be suppressed.
  • the cell culture base layer 11 may be formed, for example, by introducing a solvent containing an undenatured cell culture base material into the container 12 and allowing it to stand.
  • the solvent examples include an aqueous solvent, and water is preferable.
  • the standing time is, for example, 30 minutes to 1 day.
  • the temperature at the time of standing is, for example, 4 to 40 ° C.
  • the standing time is, for example, 1 hour or more, and the standing temperature is about 37 ° C. ( 35-39 ° C).
  • the solvent containing the undenatured cell culture base material is removed. After removing the solvent, the inside of the container 12 may be washed with a solvent that does not contain the cell culture substrate.
  • a region to which cells can adhere by irradiation with light is defined.
  • the light irradiation is carried out using the processing apparatus of the present invention described later.
  • the container 12 cell culture instrument
  • the photothermal conversion layer 13 is irradiated with light L, and the cell culture base material is described. Is denatured to form a cell adhesion inhibition region 11b (inhibition region formation step).
  • the photothermal conversion layer 13 is irradiated with light L, and more specifically, the photothermal conversion layer 13 is irradiated with light L in a focused state.
  • the photothermal conversion layer 13 contains a photothermal conversion molecule that converts light into heat. Therefore, the photothermal conversion layer 13 irradiated with the light L converts the light energy contained in the irradiated light L into heat energy.
  • the temperature of the region irradiated with light L rises, and further, the temperature of the region adjacent to the region irradiated with light L in the cell culture substrate layer 11 rises, and the cell culture
  • the structure of the cell culture substrate in the substrate layer 11 changes.
  • the cell culture substrate is denatured to form the cell adhesion inhibition region 11b.
  • the light L is preferably controlled so as to focus on the photothermal conversion layer 13.
  • the solvent is present on the cell culture substrate layer 11.
  • the cell culture substrate can adhere to the cells in an undenatured state, for example.
  • the light L irradiates the region of the photothermal conversion layer 13 corresponding (adjacent) to the region forming the cell adhesion inhibition region 11b. More specifically, in FIG. 4D, the light L irradiates the corresponding region of the photothermal conversion layer 13 that exists immediately below the region that forms the cell adhesion inhibition region 11b.
  • the wavelength of the light L can be appropriately set according to the absorption wavelength of the photothermal conversion molecule contained in the photothermal conversion layer 13.
  • the wavelength of the light L is, for example, the ultraviolet light, the visible light, or the infrared light.
  • the wavelength of light L is, for example, 390 to 420 nm.
  • Laser light is preferable because the light can precisely form the cell adhesion inhibition region 11b.
  • the spot diameter (beam width) of the light L can be appropriately set according to, for example, the amount of energy of the light L. When the amount of energy of the light L is relatively small, the spot diameter is set relatively small and the light L is set.
  • the spot diameter of the light L is, for example, 10 to 200 ⁇ m.
  • the energy amount (output) of the light L is, for example, the amount of energy at which the cell culture base material of the cell culture base material layer 11 corresponding (adjacent) to the irradiation portion of the light L in the photoheat conversion layer 13 is denatured, and the cell culture It can be appropriately set according to the type of the base material and the type of the photothermal conversion molecule.
  • the amount of energy of the light L is preferably a temperature at which the cells laminated on the cell culture base layer 11 are lethal, and as a specific example, the temperature of the cell culture base material of the irradiation portion of the light L in the cell culture base layer 11 is 50.
  • the amount of energy is such that ° C. or higher, 60 ° C. or higher, 70 ° C. or higher, 80 ° C. or higher, 90 ° C. or higher, preferably 100 ° C. or higher, 110 ° C. or higher, 120 ° C. or higher.
  • the upper limit of the temperature is, for example, 200 ° C.
  • light L may be irradiated so that the temperature of the photothermal conversion layer 13 is, for example, an example of the temperature of the cell culture substrate.
  • the scanning speed of the light L can be appropriately set according to, for example, the spot diameter and the amount of energy of the light L. When the amount of light energy per unit area of the spot diameter is relatively low, the scanning speed of the light L is relatively slow. When the amount of light energy per unit area of the spot diameter is relatively high, the scanning speed of the light L is set relatively high. As a specific example, the scanning speed of the light L is, for example, 100 mm / sec or less.
  • the energy amount of the light L is about 0.5 W (0.3 to 0). .7W).
  • the cell adhesion inhibition region 11b is a region in which the cell adhesion is inhibited.
  • the cell culture substrate can adhere to the cells, for example, in an undenatured state. Therefore, the cell adhesion inhibition region 11b can be said to be, for example, a region containing the cell culture substrate in a denatured state, that is, a region containing a heat-denatured product of the cell culture substrate.
  • the cell culture substrate contained in the cell adhesion inhibition region 11b is in a denatured state in part or in whole.
  • the cell adhesion inhibition region 11b can be said to be, for example, a region irradiated with light L.
  • the cell adhesion inhibition region 11b is, for example, a region in which the cell adhesion is reduced as compared with the cell adhesion region 11a.
  • the number of cells adhered per unit area is 30%, 40%, 50% as compared with the number of cells adhered per unit area in the cell adhesion region 11a. , 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or more, preferably 100% or more.
  • the number of adhered cells per unit area is obtained, for example, by a test in which conditions other than the state of the cell culture substrate in each region are the same.
  • the cells used in the test are preferably iPS cells (induced pluripotent stem cells).
  • the culture conditions in the test are conditions in which the iPS cells maintain an undifferentiated state.
  • the cell culture substrate is indirectly denatured by light irradiation, and the adhesive ability with the cells is lowered. Therefore, the cell adhesion inhibition region 11b contains a cell culture substrate in a denatured state.
  • the present invention is not limited to this, and the cell culture substrate is inhibited from adhering to cells in an unmodified state and indirectly denatured by light irradiation to improve the adhesive ability to the cells. You may.
  • the cell adhesion inhibition region 11b contains a cell culture substrate in an undenatured state.
  • the cell culture substrate inhibits the adhesion of the cells in a state where light irradiation is not performed.
  • a culture instrument 100 having a cell adhesion region 11a and a cell adhesion inhibition region 11b is produced.
  • the cell culture substrate can adhere to the cells in an undenatured state. Therefore, in the inhibition region forming step, light L is used to form a cell adhesion inhibition region 11b. Is irradiated to the photothermal conversion layer 13 adjacent to the above.
  • the present invention is not limited to this, and in the inhibition region forming step, the light L may irradiate the photothermal conversion layer 13 adjacent to the region forming the cell adhesion region 11a. In this case, the cell culture substrate can adhere to the cells in a denatured state.
  • the photothermal conversion layer 13 can be used to efficiently convert light energy into heat energy. Therefore, in the present embodiment, in the cell culture base material layer 11, the cell culture base material in the region adjacent to the region irradiated with the light L of the photothermal conversion layer 13 can be efficiently denatured. Therefore, the processing apparatus of the present invention, which will be described later, can control the region where cells can adhere to the culture device 100 of the present embodiment.
  • FIG. 3 shows an example of the configuration of the processing apparatus of this embodiment.
  • FIG. 3 is a perspective view showing an example of the configuration of the processing apparatus of the present embodiment.
  • the processing apparatus 200 of the present embodiment includes a laser irradiation unit 21 and a control unit 22.
  • the laser irradiation unit 21 includes a laser emitting unit 21a, an optical fiber 21b, and a laser light source 21c.
  • the control unit 22 is connected to the laser irradiation unit 21, and more specifically, is connected to the laser emitting unit 21a and the laser light source 21c of the laser irradiation unit 21.
  • the laser irradiation unit 21 includes a laser emitting unit 21a, an optical fiber 21b, and a laser light source 21c, but the laser irradiation unit 21 is not limited to this, and the photothermal conversion of the culture apparatus 100 is not limited to this. It suffices if the layer 13 can be irradiated with a laser.
  • the laser irradiation unit 21 may include, for example, the laser light source 21c and directly irradiate the photothermal conversion layer 13 of the culture apparatus 100 with the laser from the laser light source 21c.
  • the light guiding unit such as a mirror or MEMS (Micro Electro Mechanical Systems) may be used instead of the optical fiber 21b to guide the light.
  • the optical fiber 21b is preferable because the arrangement of the laser light source 21c can be freely set, the size of the processing device 200 can be reduced, and the weight of the processing device 200 can be reduced as compared with other light guide units.
  • the laser emitting unit 21a is configured so that the irradiation position of the laser L can be moved by, for example, a laser moving unit (not shown).
  • a laser moving unit for example, a galvanometer mirror and an f ⁇ lens may be used to make the irradiation position of the laser L movable.
  • the laser moving unit the description described later can be incorporated.
  • the laser light source 21c is, for example, a device that oscillates a continuous wave laser or a pulse laser.
  • the laser light source 21c may be, for example, a high-frequency laser having a long pulse width, which is close to a continuous wave.
  • the output of the laser oscillated from the laser light source 21c is not particularly limited, and can be appropriately determined, for example, according to the absorption wavelength of the photothermal conversion molecule in the above-mentioned photothermal conversion layer 13.
  • the wavelength of the laser oscillated by the laser light source 21c is not particularly limited, and examples thereof include visible light lasers such as 405 nm, 450 nm, 520 nm, 532 nm, and 808 nm, and infrared lasers.
  • the laser light source 331 is a continuous wave diode laser having a wavelength in the vicinity of 405 nm and having a maximum output of 5 W.
  • FIG. 4 illustrates a block diagram showing the hardware configuration of the control unit 22.
  • the control unit 22 includes a central processing unit (CPU) 22a, a main memory 22b, an auxiliary storage device 22c, a video codec 22d, an I / O interface 22e, and the like, and these are controllers (system controller, I). / O controller, etc.) It is controlled by 22f and operates in cooperation.
  • Each member is connected via, for example, a bus.
  • Examples of the auxiliary storage device 22c include storage units such as a flash memory and a hard disk drive.
  • the video codec 22d generates a screen to be displayed based on a drawing instruction received from the CPU 22a, and transmits the screen signal to, for example, a display device outside the processing device 200, a GPU (Graphics Processing Unit), a screen. And includes a video memory for temporarily storing image data and the like.
  • the I / O (input-output) interface 22e is a device for communicably connecting to and controlling the laser emitting unit 21a and the laser light source 21c.
  • the I / O interface 22e may include a servo driver (servo controller). Further, the I / O interface 22e may be connected to, for example, an input device outside the processing device 200.
  • Examples of the display device include a monitor that outputs images (for example, various image display devices such as a liquid crystal display (LCD) and a cathode ray tube (CRT) display).
  • Examples of the input device include a touch panel that can be operated by an operator with fingers, a track pad, a pointing device such as a mouse, a keyboard, and a push button.
  • the program executed by the control unit 22 is stored in the auxiliary storage device 22c. The program is read into the main memory 22b at the time of execution and is decoded by the CPU 22a. Then, the control unit 22 controls each member according to the program.
  • the CPU 22a operates in cooperation with other configurations by, for example, a controller 22f (system controller, I / O controller, etc.) and takes charge of overall control of the processing apparatus 200.
  • the control unit 22 for example, the program and other programs are executed by the CPU 22a, and various information is read and written.
  • the CPU 22a functions as, for example, a setting unit 221 and an irradiation control unit 222.
  • the control unit 22 includes a CPU as an arithmetic unit, but may include other arithmetic units such as a GPU (Graphics Processing Unit) and an APU (Accelerated Processing Unit), or may include a CPU and a combination thereof. good.
  • the CPU 22a functions as, for example, each unit such as an acquisition unit, which will be described later, and each unit other than the storage unit in the third and fourth embodiments.
  • the main memory 22b is also referred to as a main storage device.
  • the main memory 22b reads, for example, various operation programs such as the program stored in the auxiliary storage device 22c described later. Then, the CPU 22a reads data from the main memory 22b, decodes the data, and executes the program.
  • the main memory 22b is, for example, a RAM (random access memory).
  • the main memory 22b further includes, for example, a ROM (read-only memory).
  • the auxiliary storage device 22c stores an operation program including the program.
  • the auxiliary storage device 22c includes, for example, a storage medium and a drive for reading and writing to the storage medium.
  • the storage medium is not particularly limited, and may be an internal type or an external type, for example, HD (hard disk), FD (floppy (registered trademark) disk), CD-ROM, CD-R, CD-RW, MO, etc. Examples thereof include a DVD, a flash memory, a memory card, and the like, and the drive is not particularly limited.
  • the auxiliary storage device 22c may be, for example, a hard disk drive (HDD) in which the storage medium and the drive are integrated.
  • HDD hard disk drive
  • FIG. 5 is a flowchart showing an example of processing (S1 to S2) of the control unit 22.
  • the setting unit 221 sets the irradiation region for irradiating the laser L in the culture device 100 (setting step). Specifically, the setting unit 221 links each coordinate of the bottom surface 12a of the culture device 100 with information on the presence or absence of laser L irradiation of the laser irradiation unit 21.
  • the coordinates can be obtained, for example, by setting a coordinate plane on a plane including the bottom surface 12a.
  • the coordinate plane can be set, for example, by setting an axis in one direction (X-axis) and an axis in the orthogonal direction in the X-axis direction (Y-axis) in a plane including the bottom surface 12a.
  • the center position in the coordinate plane may be set inside the bottom surface 12a or outside the bottom surface 12a, for example.
  • the shape of the irradiation region set in the S1 step is not particularly limited and can be any shape. In the present embodiment, the case where the setting unit 221 directly sets the irradiation region will be described as an example, but the setting unit 221 indirectly sets the non-irradiation region that does not irradiate the laser L.
  • the irradiation area may be set, or both the irradiation area and the non-irradiation area may be set.
  • the irradiation area may be set in advance, for example, or may be set when the processing apparatus 200 is used.
  • the irradiation area information (irradiation area information) is stored in, for example, the auxiliary storage device 22c. Therefore, the setting unit 221 sets the irradiation area to irradiate the laser L by using the information of the irradiation area stored in the auxiliary storage device 22c.
  • the control unit 22 may include, for example, an acquisition unit for acquiring the irradiation area information in which the irradiation area is defined.
  • the control method of the present embodiment includes a step of acquiring the irradiation region information in which the irradiation region is defined by the acquisition unit prior to the S1 step. Then, in the S1 step, the setting unit 221 sets the irradiation region to irradiate the laser L based on the irradiation region information.
  • the acquisition unit can acquire the irradiation area information by acquiring the information in which the irradiation area is not defined and defining the irradiation area using the information in which the irradiation area is not specified.
  • Information for which the irradiation region is not defined is, for example, an image (image data) of the entire surface or a part of the cell culture device; the cell culture device such as the size, volume, material, and presence / absence of adhesion treatment of the cell culture device. Information (identification information); etc.
  • the acquisition unit determines an unclear region generated in the cell culture device from the image and performs the irradiation.
  • the irradiation area information may be acquired by setting it as an area.
  • the processing apparatus 200 can set the irradiation region as follows as an example.
  • the meniscus means bending of the liquid level formed at the boundary between the cell culture device and the liquid introduced into the cell culture device.
  • the unclear region is formed from the boundary portion to the center of the cell culture apparatus by, for example, bending of the liquid level formed at the boundary portion between the cell culture apparatus and the liquid introduced into the cell culture apparatus. It means a region where a decrease in contrast or an increase in brightness value occurs in the direction.
  • the unclear region is located at the boundary between the cell culture device and the liquid introduced into the cell culture device. It means a region imaged in a state in which a phase shift existing from the boundary portion toward the center of the cell culture device occurs due to the bending of the formed liquid surface.
  • the acquisition unit acquires an image including the irradiation region or an image that may include the irradiation region.
  • the image can be acquired by, for example, an optical observation device such as a phase contrast microscope.
  • the image is an image including the entire surface or a part of the cell culture device, and is preferably an image including the entire surface of the cell culture device.
  • the acquisition unit extracts the unclear region from the image. Specifically, the acquisition unit compares the brightness value of each pixel of the image and / or the contrast of each pixel existing in a region of a certain size with a threshold value, and the pixel or region is the meniscus. Determine if you are affected by.
  • the acquisition unit when the brightness value is equal to or less than the threshold value and / or when the contrast can be said to exceed the threshold value, the pixel or region is not affected by the meniscus, that is, it is clear. Judged as an area. Next, the acquisition unit does not associate the clear region with the information that the laser L is not irradiated, or does not associate the clear region with the information that the laser L is irradiated. On the other hand, in the acquisition unit, when the luminance value exceeds the threshold value and / or when the contrast is equal to or less than the threshold value, the pixel or region is affected by the meniscus, that is, an unclear region. Is determined to be.
  • the acquisition unit does not associate the unclear region with the information that the laser L is irradiated, or does not associate the information that the laser L is not irradiated.
  • the acquisition unit can acquire the irradiation area information in which the irradiation area is defined.
  • the threshold value may be specified by the user, for example, or may be preset using an image obtained by capturing an image of a cell culture device into which a liquid has been introduced.
  • the acquisition unit identifies and identifies the cell culture device from, for example, an image including the cell culture device.
  • the irradiation area information in which the irradiation area is defined may be acquired from the information of the cell culture device.
  • the processing apparatus 200 can set the irradiation region as follows as an example. First, the acquisition unit acquires an image including the cell culture device.
  • the image can be acquired by, for example, an optical observation device such as a phase contrast microscope.
  • the image is an image including the entire surface or a part of the cell culture device, and is preferably an image including the entire surface of the cell culture device.
  • the acquisition unit extracts the region where the cell culture device exists from the image. Specifically, the acquisition unit identifies (identifies) the type of cell culture device included in the image from the image.
  • the identification method is a database in which information on a cell culture device such as the size, thickness, and material of the cell culture device is extracted from the image, and information on various cell culture devices and information on each cell culture device is linked. It may be carried out by collating with.
  • the database may be a database outside the processing apparatus 200, or data may be stored in the auxiliary storage device 22c and used as a database. Further, the identification method may be carried out by collating the image with the image of various cell culture instruments by image processing such as template matching.
  • the acquisition unit identifies the cell culture device obtained as a result of the collation as the cell culture device in the image. Further, the acquisition unit uses the identified cell culture device to link the cell culture device in the image from a database in which various cell culture devices and the irradiation area in which the irradiation area in each cell culture device is defined are linked. Extract the irradiation area information corresponding to. As a result, the acquisition unit can acquire the irradiation region information from the image including the cell culture device.
  • the case where the irradiation region information is acquired from the image including the cell culture device by using the characteristics of the cell culture device has been given as an example, but the processing apparatus of the present invention is not limited to this, and the cell culture device is not limited to this.
  • identification information for example, an identifier such as a character, a figure, or a QR code (registered trademark)
  • the irradiation area information may be acquired using the identification information.
  • the processing apparatus 200 further includes an identification information acquisition unit for acquiring the identification information of the cell culture device, and the acquisition unit is irradiated from the identification information of the cell culture device in association with the cell culture device. Area information can be acquired.
  • the identification information can be acquired by using an optical observation device such as an optical microscope in the same manner as the acquisition of an image including the cell culture device, for example.
  • the processing device 200 may include a determination unit for determining whether or not the identification information is included in the image including the cell culture device.
  • the acquisition unit acquires the irradiation region information from the image including the cell culture device.
  • the identification information acquisition unit acquires the identification information of the cell culture device, and the acquisition unit acquires the cell culture.
  • the irradiation area information is acquired from the identification information of the instrument.
  • the irradiation area information examples include an image in which the irradiation area is defined, information on the irradiation area specified by the user, and the like.
  • the setting unit 221 associates the image with information that the laser L is irradiated to pixels satisfying preset conditions, for example. Therefore, the irradiation region can be set by associating the remaining pixels with the information that the laser L is not irradiated. Further, for example, in the image, the setting unit 221 associates the pixels satisfying the preset conditions with the information that the laser L is not irradiated, and associates the remaining pixels with the information that the laser L is irradiated.
  • the setting unit 221 may set the irradiation region under the conditions opposite to these conditions.
  • the preset conditions include conditions based on the irradiation region or the irradiated region in the image, conditions based on the contrast or brightness value in each pixel of the image, and the like.
  • the setting unit 221 determines whether or not it is an irradiation region, for example, based on whether or not the contrast or luminance value of each pixel in the image satisfies a condition based on the contrast or luminance value (for example, the threshold value). Then, the irradiation area can be set.
  • the setting unit 221 receives, for example, the information that the laser L is irradiated to the area satisfying the preset condition in the information.
  • the irradiation area can be set by associating the remaining area with the information that the laser L is not irradiated. Further, for example, in the above information, the setting unit 221 associates the region satisfying the preset condition with the information that the laser L is not irradiated, and associates the remaining region with the information that the laser L is irradiated. By attaching, the irradiation area may be set. Further, the setting unit 221 may set the irradiation region under the conditions opposite to these conditions.
  • the preset condition includes, for example, whether or not an enclosed region, that is, a closed region is formed in the irradiation region designated by the user.
  • the setting unit 221 determines whether or not the irradiation area is an irradiation area based on whether or not there is an area forming a closed area in the information of the irradiation area designated by the user, and the irradiation is performed. You can set the area.
  • the irradiation control unit 222 causes the laser irradiation unit 21 to irradiate the photothermal conversion layer 13 in the region corresponding to the irradiation region in the culture apparatus 100 based on the irradiation region.
  • the control of the laser irradiation unit 21 by the irradiation control unit 222 includes, for example, control of the irradiation position of the laser L in the photothermal conversion layer 13 and switching of ON / OFF of the irradiation of the laser L.
  • the irradiation control unit 222 controls the irradiation position of the laser
  • the irradiation control unit 222 controls, for example, the start, stop, and / or movement speed of the moving unit that can move the laser irradiation unit 21.
  • the irradiation position of the laser can be controlled.
  • the laser irradiation unit 21 includes a galvano mirror and an f ⁇ lens
  • the irradiation control unit 222 can control the irradiation position of the laser by, for example, controlling the angle of the galvano mirror.
  • the irradiation control unit 222 controls the ON / OFF of the irradiation of the laser L
  • the irradiation control unit 222 controls the ON / OFF of the oscillation of the laser light by the laser light source 21c, for example, to irradiate the laser L.
  • ON / OFF can be controlled.
  • the irradiation control unit 222 is based on, for example, each coordinate of the bottom surface 12a in the irradiation region set in the setting unit 221 and information on the presence / absence of laser L irradiation of the laser irradiation unit 21 associated with each coordinate. Controls ON / OFF of light oscillation.
  • control unit 22 is formed on the cell field substrate layer 11 of the culture instrument 100 by controlling the irradiation of the laser L to the photothermal conversion layer 13 of the culture instrument 100 by the laser irradiation unit 21.
  • the shape of the cell adhesion inhibition region 11b can be controlled.
  • the control unit 22 controls the entire processing apparatus 200, but the processing apparatus of the present invention is not limited to this, and is used for a laser irradiation unit 21 such as a laser controller.
  • a control unit may be provided separately, and the control unit for the laser irradiation unit 21 may function as the irradiation control unit 222.
  • the cell culture apparatus by controlling the irradiation of the laser of the processing apparatus 200, the cell culture apparatus having the cell culture substrate layer and the photothermal conversion layer can easily control the cell adhesion region. can.
  • FIG. 6 shows an example of the configuration of the control unit 22 in the processing apparatus of this embodiment.
  • FIG. 6 is a block diagram showing an example of the control unit 22 in the processing apparatus of the present embodiment.
  • the control unit 22 of the processing apparatus of the present embodiment is implemented except that it includes an acquisition unit 223, a division unit 224, and a position acquisition unit 225 in addition to the setting unit 221 and the irradiation control unit 222. It has the same configuration as the control unit 22 of the processing apparatus of the second embodiment, and the description thereof can be incorporated.
  • the CPU 22a functions as a setting unit 221, an irradiation control unit 222, an acquisition unit 223, a division unit 224, and a position acquisition unit 225.
  • FIG. 8A is a flowchart showing an example of processing (S1 to S5) of the control unit 22.
  • FIG. 8 is a schematic diagram showing a method of setting the irradiation region.
  • the acquisition unit 223 acquires the irradiation region information in which the irradiation region is defined (acquisition step). Specifically, in the bottom surface 12a of the culture device 100 shown in FIG. 8A, an irradiation region (R i ) in which the laser L is irradiated by the laser irradiation unit 21 and a non-irradiation region (R n ) in which the laser L is not irradiated. ) And the image including.
  • the image can be carried out, for example, by taking in data including the image from outside the processing apparatus.
  • the setting unit 221 sets the irradiation region based on the image. Specifically, the obtained image in the acquisition unit 223, the luminance value for a given value or less than a predetermined value or more areas, sets an irradiation region R i.
  • the predetermined value is, for example, a value capable of distinguishing the irradiation region R i shown in gray and the non-irradiation region R n shown in white. Therefore, as shown in FIG. 8 (A), setting unit 221, based on the predetermined value, it sets the gray area and the irradiation region R i. Therefore, the white region is indirectly set as the non-irradiated region R n.
  • the division unit 224 divides the set irradiation region Ri by the laser irradiation width W (processing width).
  • the division unit 224 divides the irradiation region Ri so that the left-right direction (hereinafter, also referred to as “X-axis direction”) in FIG. 8 has a strip shape in the longitudinal direction.
  • the divided irradiation regions L1 to L13 are formed.
  • the length of L1 to L13 in the vertical direction (hereinafter, also referred to as “Y-axis direction”) is the irradiation width W.
  • the irradiation width W can be said to be, for example, the length in the Y-axis direction of the spot diameter of the laser irradiation unit 21.
  • the divided portion 224 divides the region straddling the irradiation region Ri and the non-irradiation region R n as in L4 to L8, in the divided irradiation region, the region having the same coordinates in the Y-axis direction is set to 1.
  • the irradiation width W is set to a constant length, but may be a different length.
  • the width of the divided irradiation regions (L1 to L13) is the same as the irradiation width W, but may be different. In the latter case, the length of the width of the divided irradiation regions (L1 to L13) may be larger than the length of the irradiation width W.
  • the position information acquisition unit 225 acquires the positions of the end points of the divided regions for L1 to L13. Specifically, the position information acquisition unit 225 acquires the coordinates of the end points at both ends of the divided irradiation region, as shown by the crosses (x) in FIG. 8C.
  • the coordinates are, for example, coordinates on the XY plane set based on the X-axis direction and the Y-axis direction.
  • the position information acquisition unit 225 Acquires the coordinates of the boundary between the irradiation region Ri and the non-irradiation region R n as the laser ON / OFF switching position in the divided irradiation region. Then, the position information acquisition unit 225 associates the divided irradiation regions L1 to 13 with the coordinates of the corresponding end points and the laser ON / OFF switching position.
  • FIG. 9A and 9B are schematic views showing an example of control of the laser irradiation unit 21 by the irradiation control unit 222
  • FIG. 9A is a schematic view showing an example of control over the entire culture device 100
  • FIG. 9B is a schematic view showing an example of control over the entire culture device 100. It is a schematic diagram which shows the example of the control with respect to and L5.
  • the irradiation control unit 222 corresponds to each of the divided irradiation regions L1 to 13 based on the coordinates of the corresponding end points and the laser ON / OFF switching position.
  • the laser irradiation unit 21 is controlled so as to irradiate the photothermal conversion layer 13 in the region with the laser L.
  • the irradiation control unit 222 controls the laser irradiation unit 21 to irradiate the laser L from the left end point of L1 toward the right end point.
  • the irradiation control unit 222 also acquires the irradiation position (coordinates) of the laser L of the laser irradiation unit 21.
  • the laser L irradiation position of the laser irradiation unit 21 is the virtual irradiation position when the laser irradiation unit 21 is irradiating the laser L. Obtained as the irradiation position.
  • the virtual irradiation position can be calculated from the coordinates of the divided irradiation region and the moving speed of the laser.
  • the irradiation control unit 222 may determine whether the position of the laser irradiation unit 21 and the position of the divided irradiation region coincide with each other.
  • the irradiation control unit 222 controls the position of the laser moving unit to position the laser irradiation unit 21. Can be controlled. Therefore, the irradiation control unit 222 acquires the position of the laser moving unit as the irradiation position of the laser L of the laser irradiation unit 21. After the irradiation of the laser L to L1 is completed, the irradiation control unit 222 controls the laser irradiation unit 21 so that the laser irradiation unit 21 can irradiate the laser L to the right end point of the L2.
  • the irradiation control unit 222 controls the laser irradiation unit 21 to irradiate the photothermal conversion layer 13 in the corresponding region with the laser L from the right end point to the left end point of L2. Similarly, the irradiation control unit 222 controls the laser irradiation unit 21 to irradiate the laser L from the left end point of the L3 toward the right end point.
  • the irradiation control unit 222 controls the laser irradiation unit 21 to irradiate the laser L from the right end point of the L4 toward the left end point.
  • L4 is set so as to straddle the irradiation region Ri and the non-irradiation region R n. Therefore, as shown in FIG. 9B, L4 includes two laser ON / OFF switching positions. As described above, the irradiation control unit 222 has acquired the irradiation position of the laser L of the laser irradiation unit 21.
  • the irradiation control unit 222 turns on / off the laser L irradiation by the laser irradiation unit 21 based on whether or not the laser L irradiation position of the laser irradiation unit 21 matches the laser ON / OFF switching position. Switching can be controlled. Specifically, when the laser irradiation unit 21 irradiates the region from the right end point of the L4 to the right circle, the irradiation control unit 222 sets the irradiation position of the laser L of the laser irradiation unit 21. Since it is determined that the laser L irradiation does not match the ON / OFF switching position, the laser ON / OFF switching of the laser irradiation unit 21 is not controlled.
  • the irradiation control unit 222 sets the irradiation position of the laser L of the laser irradiation unit 21 to the laser ON / OFF switching position. In order to determine that they match, the switching of the laser ON / OFF of the laser irradiation unit 21 is controlled. In this case, since the laser irradiation unit 21 is irradiating the laser L, the irradiation control unit 222 controls the irradiation of the laser L of the laser irradiation unit 21 so as to be turned off.
  • the irradiation control unit 222 sets the irradiation position of the laser L of the laser irradiation unit 21 (the laser irradiation unit 21 sets the laser L). Since it is determined that the (virtual irradiation position) in the case of irradiation coincides with the laser ON / OFF switching position, the laser ON / OFF switching of the laser irradiation unit 21 is controlled.
  • the irradiation control unit 222 controls the irradiation of the laser L of the laser irradiation unit 21 to be ON. Then, the irradiation control unit 222 controls the laser irradiation unit 21 so that the laser L can be irradiated up to the leftmost end point of the L4. Similarly, the irradiation control unit 222 controls the laser irradiation unit 21 so as to irradiate the laser L to the photothermal conversion layer 13 corresponding to the irradiation regions of L5 to L13.
  • the scanning directions of the laser L are sequentially implemented in alternating directions, but the scanning direction of the laser L in the processing apparatus of the present invention is not limited to this, and the scanning direction is the same in one direction. May be good.
  • the laser L irradiation is sequentially performed from L1 to L13, but the irradiation order of the laser L is not particularly limited in each divided irradiation region.
  • the cell culture apparatus having the cell culture substrate layer and the photothermal conversion layer can easily control the cell adhesion region.
  • the shape of the cell adhesion region 11a in the culture instrument 100 can be easily controlled by controlling the irradiation region.
  • the irradiation region can be divided based on the irradiation width of the laser L to irradiate the laser L.
  • the processing apparatus of the present embodiment is excellent in moldability of the cell adhesion region 11a, for example.
  • the control unit 22 of the processing apparatus directly controls the laser irradiation unit 21, but the control of the laser irradiation unit 21 in the processing apparatus of the present invention is not limited to this.
  • the position information acquisition unit 225 corresponds to each of the divided irradiation regions L1 to 13 in association with each other.
  • the coordinates of the end points and the laser ON / OFF switching position are written in the control unit for the laser irradiation unit 21.
  • the control unit for the laser irradiation unit 21 irradiates the photothermal conversion layer 13 of the culture apparatus 100 with the laser L by the laser irradiation unit 21 based on the written information.
  • the irradiation position of the laser is moved (scanned) at a substantially constant speed with respect to the irradiated region Ri and the non-irradiated region R n, but the present invention is not limited to this.
  • the present invention is not limited to this, and the irradiation control unit 222 may change the moving speed of the irradiation position in the irradiation region Ri and the non-irradiation region R n. Specifically, as shown in FIGS.
  • the irradiation control unit 22 moves the laser irradiation position at a substantially constant speed in the irradiation region Ri, whereas the irradiation control unit 22 does not irradiate. in the region R n, it may be accelerated and / or decelerated movement speed of the laser irradiation position.
  • the irradiation controller 222, the irradiation region R i and non-irradiated regions R n by changing the moving speed of the laser irradiation position, while maintaining the moldability of the cell adhesion region 11a, faster Can be processed.
  • the irradiation control unit 222 may accelerate and / or decelerate the moving speed of the laser irradiation position in the region outside the cell culture device 100.
  • the irradiation region R i and the non-irradiation region R n are divided into strips by the division portion 224, but the present invention is not limited to this, and the division portion 224 divides the irradiation region R i into any arbitrary region R i. It may be divided into shapes. As a specific example, as shown in FIG. 22 (A), the division portion 224 may divide the irradiation region Ri into a substantially circular shape (for example, an elliptical shape, a circular shape, or a perfect circle shape) or a spiral. It may be divided into shapes. Processing device 200, by dividing the thus irradiated region R i, it is possible to reduce the scanning distance of the laser, it can be processed faster.
  • a substantially circular shape for example, an elliptical shape, a circular shape, or a perfect circle shape
  • the division unit 224 is obtained by dividing the irradiation region R i and non-irradiated regions R n taken together are the invention is not limited thereto, may be divided only irradiated region R i ..
  • the division portion 224 may divide only the irradiation region Ri into a band shape or a substantially circular shape. Processing device 200, by dividing the irradiation area R i Thus, for example, when the unclear region caused by the meniscus, as described above, can be processed faster.
  • FIG. 10 shows the configuration of the processing apparatus 300 of this embodiment.
  • 10A and 10B are schematic views showing the configuration of the processing apparatus 300 of the present embodiment
  • FIG. 10A is a perspective view showing an example of the configuration of the processing apparatus 300 of the present embodiment
  • FIG. 10B is a control unit.
  • It is a block diagram which shows an example of 22.
  • the processing apparatus 300 of the present embodiment includes a displacement meter 23 as a displacement measuring unit in addition to the configuration of the processing apparatus 200 of the second embodiment.
  • the displacement meter 23 is attached to the laser emitting portion 21a. Further, as shown in FIG.
  • the control unit 22 includes a displacement adjusting unit 226 in addition to the configuration of the control unit 22 of the processing apparatus 200 of the second embodiment. Except for this point, the configuration of the processing apparatus 300 of the present embodiment is the same as the configuration of the processing apparatus 200 of the second embodiment, and the description thereof can be incorporated.
  • the displacement meter 23 can measure the distance to the incubator 100.
  • the measuring method of the displacement meter 23 for example, an optical type, an eddy current type, an ultrasonic type, a laser force type, or the like can be adopted.
  • the processing device 300 of the present embodiment includes the displacement meter 23 and the displacement adjusting unit 226, so that the displacement adjusting unit 226 moves the position of the laser emitting unit 21a based on the distance (displacement) measured by the displacement meter 23.
  • the laser L can be controlled to focus on the photothermal conversion layer 13. Thereby, the processing apparatus 300 of the present embodiment can suppress the strain of the culture instrument 100 and the influence of the strain, and can apply the desired light energy to the photothermal conversion layer 13.
  • the displacement meter 23 may be an optical observation device such as an optical microscope as long as it can measure the distance to the incubator 100.
  • the displacement meter 23 can measure the distance by using the focus function on the bottom surface 12a of the culture instrument 100. Specifically, when the displacement meter 23 has the focus of the optical observation device on the bottom surface 12a. The distance of the bottom surface 12a of the culture instrument 100 is calculated back from the optical observation device from the set value of the optical system of.
  • the displacement meter 23 measures, for example, the length in the height direction (the length in the direction orthogonal to the bottom surface 12a) up to the incubator 100.
  • the displacement meter 23 is attached to the laser emitting unit 21a and interlocks with the movement of the laser emitting unit 21a, but the present invention is not limited to this, and the displacement meter 23 includes the laser emitting unit 21a and the like. It may be arranged so as not to be interlocked with the laser irradiation unit 21 of the above. In this case, the displacement meter 23 may be arranged at a position where the position in the height direction does not change or in the XY axis direction in conjunction with the laser irradiation unit 21, but in a place where the movement in the height direction is not interlocked. preferable. As a result, the displacement meter 23 can measure the height from a fixed position to the incubator 100 in the height direction regardless of the position of the laser irradiation unit 21.
  • FIG. 11 is a flowchart showing an example of processing (S1, S2, S6 and S7) of the processing apparatus 300.
  • the laser emitting unit 21a and the displacement meter 23 are arranged below the bottom surface 12a of the incubator 100.
  • the location is preferably below the central region of the incubator 100.
  • the displacement meter 23 is used to measure the distance to the bottom surface 12a of the incubator 100, specifically, the distance in the height direction.
  • the displacement meter 23 is attached to the laser emitting portion 21a. Therefore, in the S6 step, by considering the positional relationship between the laser emitting unit 21a and the displacement meter 23, the height from the laser emitting unit 21a to the bottom surface 12a of the incubator 100 is based on the distance measured by the displacement meter 23. Calculate the length of the laser.
  • the S1 step is carried out in the same manner as the S1 step of the second embodiment.
  • the displacement adjusting unit 226 adjusts the position of the laser irradiation unit 21, specifically, the position in the height direction, based on the distance obtained in the S6 process. Specifically, the displacement adjusting unit 226 controls the above-mentioned laser moving unit, and when the laser irradiation unit 21 irradiates the photothermal conversion layer 13 with the laser L, the focus of the laser L is focused on the photothermal conversion layer 13. The position of the laser irradiation unit 21 in the height direction is adjusted so as to be performed.
  • the displacement adjusting unit 226 uses the laser irradiation unit 21 based on the reference value in the height direction and the distance obtained in the S6 step.
  • the position of the laser in the height direction may be adjusted.
  • the S2 step is carried out in the same manner as the S2 step of the second embodiment.
  • the focus of the laser L is preferably focused on the photothermal conversion layer 13.
  • the position of the bottom surface 12a of the incubator 100 may not be constant and may be tilted or distorted.
  • the position of the photothermal conversion layer 13 in the height direction deviates from the focusing position of the laser L.
  • the efficiency of conversion of the laser L from light energy to thermal energy is reduced.
  • the distance to the incubator 100 is measured, and the position of the laser irradiation unit 21 can be adjusted by this. Therefore, the laser L can be focused on the photothermal conversion layer 13, which is efficient.
  • the incubator 100 can be processed.
  • FIG. 12 is a perspective view showing an example of the configuration of the processing apparatus of the present embodiment
  • FIG. 13 is a perspective view showing an example of the configuration of the first region of the processing apparatus of the present embodiment
  • FIG. 14 is a perspective view showing an example of the configuration of the processing apparatus of the present embodiment.
  • 12 is a cross-sectional view of the first region as viewed from the I-I direction in FIG. 12, and in FIG. 15,
  • FIG. 15A is an exploded perspective view showing an example of an instrument arrangement portion in the processing apparatus of the present embodiment, (b). ) Is a cross-sectional view seen from the direction III-III in FIG.
  • FIG. 15 (a), and FIG. 16 is a perspective view of the first region and the circulation unit when the outer wall of the first region is removed. Is a cross-sectional view of the upper part of the first region and the circulation unit as viewed from the II-II direction in FIG. 12, and in FIG. 18, (a) is an example of the configuration of the second region of the processing apparatus of the present embodiment.
  • FIG. 19B is a perspective view showing another example of the configuration of the second region
  • FIG. 19 is a block view showing an example of a control unit in the processing apparatus of the present embodiment.
  • FIG. 20 is a perspective view showing another example of the configuration of the processing apparatus of the present embodiment.
  • the processing apparatus 400 of the present embodiment includes a first region 4, a second region 5, a third region 6, and a circulation unit 7, and includes a first region 4 and a second region. 5 and the third region 6 are continuously arranged from top to bottom in this order.
  • the processing apparatus 400 of the present embodiment includes the circulation unit 7, but the circulation unit 7 may or may not have an arbitrary configuration. Further, the positional relationship between the first region 4, the second region 5, and the third region 6 may be such that the first region 4 and the second region 5 are arranged continuously (adjacent), and the third region 6 is , Can be placed in any position.
  • the third region 6 may be arranged separately from the first region 4 and the second region 5, for example, as shown in FIG. As shown in FIG.
  • the processing apparatus 400 can be referred to as a processing system, for example.
  • the processing system may be, for example, a desktop system.
  • the first region 4 is preferably arranged above the second region 5.
  • the outlet of the laser emission unit 532 is provided in the solution in the culture device 100. Need to be placed.
  • the processing apparatus 400 of the present embodiment for example, when the laser irradiation unit 53 described later irradiates the photothermal conversion layer 13 in the culture apparatus 100 with the laser L, the laser irradiation unit 53 It is possible to suppress the dirt on the laser emission port. Therefore, according to the processing apparatus 400 of the present invention, for example, the output of the laser emitted from the laser irradiation unit 53 can be stabilized, and the incubator 100 can be efficiently processed.
  • the material for forming each region is not particularly limited, and examples thereof include a stainless steel plate, a rust-preventive iron plate, a resin plate that can be molded by vacuum forming, injection molding, pressure molding, or the like.
  • the material for forming each region is preferably a non-translucent material because the inside of the culture instrument 100 can be imaged more clearly by the second imaging unit described later.
  • the "non-transmissive" means, for example, suppressing the transmission of light having a wavelength that affects the imaging by the second imaging unit.
  • the wavelength of the light may be, for example, a wavelength corresponding to the fluorescence to be detected.
  • the non-transmissive material includes, for example, the above-mentioned forming material for each region.
  • the size and shape of each region are not particularly limited, and can be appropriately set according to the size and shape of the members (units) arranged in each region.
  • the first region 4 and the second region 5 are configured by separate housings, and the housings constituting the first region 4 and the housings constituting the second region 5 are adjacent to each other.
  • the present invention is not limited to this, and the first region 4 and the second region 5 are configured by one housing, and the first region 4 and the second region 5 are arranged in one housing. It may be configured by dividing.
  • by configuring the first region 4 and the second region 5 in separate housings for example, maintenance of each member in the processing apparatus 400 can be easily performed, and the processing apparatus The 400 can be easily assembled.
  • the first region 4 includes a work opening 41a on the front surface (front side in FIG. 12) and a maintainable opening 41b on the side surface thereof.
  • the opening 41a is an opening for performing work related to the processing of the incubator 100 in the processing chamber in the first region 4.
  • the opening 41b is an opening capable of maintenance of the processing chamber.
  • the opening area of the opening 41a is preferably smaller than the opening area of the opening 41b, for example, because maintenance work is facilitated.
  • the size and number of the openings 41a and 41b are not particularly limited, and for example, the size and number of working openings and maintainable openings in the safety cabinet can be referred to.
  • the size and number of the openings 41a and 41b can refer to, for example, the safety cabinet standard specified by the EN standard EN12469: 2000.
  • the number of openings 41b is not particularly limited and can be any number, but for example, 2 or more is preferable because maintenance becomes easier.
  • the location of the opening 41a and the opening 41b in the first region 4 is not particularly limited and may be any location, but the opening 41a and the opening 41b are different locations (for example, different) in the first region 4. It is preferable to arrange it on the side surface).
  • the main purpose of the opening 41b is to facilitate maintenance in the processing apparatus 400, but the opening 41b may be used for other purposes as well.
  • the processing device 400 of the present embodiment can directly observe the defective part when a trouble occurs in the processing device 400 by making it possible to observe the movement of each member inside from the opening 41b, for example, and take countermeasures. Can be considered.
  • the front wall of the first region 4 is a double wall having an outer wall and an inner wall, and the door 42a has an opening by raising and lowering a rail arranged in the space between the outer wall and the inner wall.
  • the opening of 41a is opened and closed.
  • the opening 41b can be opened and closed by attaching / detaching the door 42b that covers the opening. It is preferable that the opening 41b is sealed in the door 42b, for example, when the incubator 100 is processed in the processing chamber. Thereby, for example, the gas outside the processing apparatus 400 and the dust contained therein can be prevented from flowing into the processing chamber.
  • the opening 41a and its door 42a, and the opening 41b and its door 42b may or may not have any configuration, and any opening may be present. And only its door may be included.
  • the wall of the first region 4 may be a double wall or a single wall, but the former is preferable because the size of the processing apparatus 400 can be reduced by arranging other members inside.
  • the door 42a is arranged outside the first region 4 like, for example, the door 42b.
  • the form of opening and closing the door is not particularly limited, and may be, for example, an elevating type such as the door 42a, an external type such as the door 42b, or another type.
  • Examples of the other type include a double door type, an accordion type, and a sliding door type.
  • the door forming material is not particularly limited, and for example, a non-translucent material is preferable because the forming material of each region described above can be used.
  • the inside of the first region 4 of the processing apparatus 400 of the present embodiment is a processing chamber for processing the incubator 100, and can be closed by closing the doors 42a and 42b, that is, opening and closing. It is possible.
  • the processing chamber includes an XY stage 43a and an arm 43b, which are suction / discharge moving units, a suction / discharge unit 44, a light source 45, a drainage container arrangement part 46a, a storage container arrangement part 47a, an instrument arrangement part 48, and the like. Includes a collection container arrangement portion 49a.
  • the processing chamber includes an XY stage 43a, an arm 43b, a suction / discharge unit 44, a light source 45, a drainage container arrangement portion 46a, a storage container arrangement portion 47a, and a collection container arrangement portion 49a, all of which are included. It may or may not have an arbitrary configuration, and may include any one or two or more.
  • the XY stage 43a is arranged on the bottom surface of the processing chamber, and is arranged so as to be movable in the arrow X direction and the arrow Y direction.
  • An arm 43b including a pair of arms is arranged on the upper part of the XY stage 43a.
  • a suction / discharge unit 44 is arranged at the tip of one arm of the arm 43b with its suction / discharge port facing downward.
  • a light source 45 is arranged at the tip of the other arm of the arm 43b so that light can be projected (irradiated) downward.
  • the drainage container arranging part 46a, the storage container arranging part 47a, the instrument arranging part 48, and the collecting container arranging part 49a are arranged in this order on the bottom surface of the processing chamber along the moving direction of the XY stage 43a in the arrow X direction. Have been placed.
  • a drainage container 46b having a tip member detachment unit 46c is arranged in the drainage container arrangement part 46a, a storage container 47b is arranged in the storage container arrangement part 47a, and a collection container is arranged in the collection container arrangement part 49a. 49b is arranged.
  • the processing device 400 of the present embodiment is provided with an XY stage 43a and an arm 43b as a suction / discharge moving unit, but the suction / discharge moving unit is not limited to this, as long as the suction / discharge unit 44 can be moved. Often, for example, known mobile units can be used.
  • the moving direction of the suction / discharging moving unit is not particularly limited, and may be movable in, for example, one direction (for example, the arrow Y direction) or two directions (for example, the arrows X and Y directions). It may be movable in three directions (for example, the arrows X, Y and Z directions).
  • the first direction does not have to be parallel to the second direction, and preferably the first direction is substantially orthogonal or orthogonal to the second direction.
  • the plane including the first direction and the second direction is preferably a plane substantially parallel to the arrangement surface of the instrument arrangement portion 48.
  • the third direction may intersect the plane including the first direction and the two directions, for example, and is preferably substantially orthogonal to the plane including the first direction and the two directions. Orthogonal.
  • the XY stage 43a is a known one capable of moving an object at high speed and precisely along the arrow X direction and the arrow Y direction via, for example, a linear motor carriage or the like.
  • the arm 43b can be expanded and contracted in the vertical direction (arrow Z direction), but the arm 43b may be fixed.
  • the suction / discharge moving unit can move the suction / discharge unit 44 only on a plane substantially parallel to the bottom surface of the processing chamber, that is, only in the directions of arrows X and Y in FIG. Is.
  • the suction / discharge unit 44 sucks and discharges, for example, a solution such as a medium or cells in the culture device 100.
  • the suction / discharge unit 44 is used, for example, by mounting a tip member described later on the suction / discharge port side thereof.
  • the suction / discharge unit 44 is not particularly limited, and for example, a known suction / discharge unit can be used, and specific examples thereof include an electric pipetter and an electric syringe pump.
  • the light source 45 irradiates light from, for example, the upper part of the instrument arrangement portion 48 toward the instrument arrangement portion 48.
  • the light source 45 is preferably used together, for example, when an optical microscope such as a phase-contrast microscope is used as the second imaging unit described later.
  • the light emitted by the light source 45 is, for example, visible light.
  • the light source 45 is not particularly limited, and examples thereof include known light sources such as a xenon light source, LED (light emission diode) illumination, and a laser diode (LD).
  • the light source 45 is arranged on the arm 43b of the suction / discharge moving unit and moves in synchronization with the movement of the suction / discharge unit 44, but may move asynchronously with the suction / discharge unit 44.
  • the light source 45 may be arranged in a light source moving unit in which the light source 45 can be moved, which is different from the suction / discharging moving unit.
  • the control unit 61 described later may include a light source movement control unit that controls the movement of the light source movement unit.
  • the moving direction of the light source moving unit for example, the description of the moving direction of the suction / discharging unit can be incorporated.
  • the drainage container arranging portion 46a is a region where the drainage container 46b for draining the suction liquid sucked by the suction / discharge unit 44 can be arranged.
  • the drainage container 46b is arranged in the drainage container arrangement portion 46a, but the drainage container 46b may or may not have an arbitrary configuration.
  • the drainage container 46b is a box with an upper opening, and the wall on the side of the storage container arrangement portion 47a extends upward and is formed as a semicircular recess (notch) at the upper end thereof. It has a wall (upper surface) substantially parallel to the bottom surface of the processing chamber, including the tip member detaching unit 46c.
  • the drainage container 46b can collect the tip member detached from the suction / discharge unit 44, it can be referred to as a tip member recovery container, for example, and the drainage container arrangement portion 46a is arranged in the tip member collection container. It can also be called a department.
  • the tip member detachment unit 46c is formed in the drainage container 46b, but may be arranged separately. Further, the tip member detachment unit 46c may be arranged in the vicinity of the suction / discharge unit 44, specifically, in the suction / discharge moving unit in which the suction / discharge unit 44 is arranged.
  • the storage container arranging portion 47a is an area in which the storage container 47b in which the detachable tip member is housed in the suction / discharge unit 44 can be placed.
  • the storage container 47b is arranged in the storage container arrangement portion 47a, but the storage container 47b may or may not have an arbitrary configuration.
  • the tip member is not particularly limited as long as it is a member capable of storing the liquid sucked by the suction / discharge unit 44 inside. For example, when the suction / discharge unit 44 is a pipetter, the tip can be raised.
  • Examples of the storage container 47b include a rack in which the chips are stored.
  • the processing device 400 of the present embodiment includes the tip member detachment unit 46c and the storage container arrangement portion 47a, which simplifies the movement of the culture medium 100 and the like solution, cells, and the like during suction and discharge. Can be shortened).
  • the collection container arrangement unit 49a is an area in which the collection container 49b for collecting the suction liquid containing the cells collected by the suction / discharge unit 44 can be arranged.
  • the collection container 49b is arranged in the collection container arrangement portion 49a, but the collection container 49b may or may not have an arbitrary configuration.
  • Examples of the recovery container 49b include known dishes, culture containers such as flasks, and the like.
  • the bottom surface of the processing chamber is on the arrangement surface of the instrument arrangement portion 48, that is, on a plane substantially parallel to the bottom surface of the processing chamber, in the long axis direction (arrow X direction) of the XY stage 43a.
  • the drainage container arranging portion 46a, the storage container arranging portion 47a, the instrument arranging portion 48, and the collection container arranging portion 49a are arranged in this order along the moving direction of the above. It does not have to be arranged along the direction, and it does not have to be arranged in this order.
  • the drainage container arrangement portion 46a, the storage container arrangement portion 47a, the instrument arrangement portion 48, and the collection container arrangement portion 49a are arranged in the above-mentioned order, so that, for example, the suction / discharge unit 44 can be moved.
  • the first camera 80, the illumination lamps 81a, 81b and the germicidal lamp 82 are placed above the opening 41a. including. Illumination lamps 81a and 81b are arranged on both sides of the first camera 80 in the direction of arrow X, and germicidal lamps 82 are arranged on the upper part.
  • the camera 80 is provided as the first imaging unit, but the first imaging unit may or may not have an arbitrary configuration. Further, the first imaging unit is not limited to the camera, and may be any image as long as it can image the processing chamber.
  • the first image pickup unit is not particularly limited, and a known image pickup unit such as a microscope or a camera can be used, and a known image pickup unit and a solid-state image sensor (image sensor) such as a CCD or CMOS (Complementary MOS) can be used. May be a combination of.
  • the camera 80 is arranged on the front wall of the processing chamber, but the position of the camera 80 is not particularly limited and can be any position, and a wide range of the processing chamber can be imaged.
  • the suction / discharge moving unit XY stage 43a and the arm 43b are located on the back side (upper left side in FIG. 13) of the instrument arrangement portion 48.
  • the suction / discharge unit 44 it is preferable to arrange it on the front side (lower right side in FIG. 13) of the processing chamber because a wide range of the processing chamber can be imaged.
  • the first imaging unit preferably can image at a plurality of magnifications (for example, different magnifications), but may be capable of imaging at one magnification.
  • the magnification means for example, an imaging magnification.
  • the camera 80 includes, for example, lenses having a plurality of magnifications (for example, different magnifications).
  • the first imaging unit may be capable of, for example, optical zoom, digital zoom, and the like.
  • the lighting units 81a and 81b are provided as the lighting units, but the lighting units may or may not have an arbitrary configuration. Further, the lighting unit is not limited to a lighting lamp, and any lighting unit may be used as long as it can project light (illumination) into the processing chamber.
  • the lighting unit is not particularly limited, and for example, known lighting such as a fluorescent lamp and an LED lamp can be used.
  • the illumination lamps 81a and 81b are arranged on the front wall of the processing chamber, but the positions of the illumination lamps 81a and 81b are not particularly limited and can be any position, and can be any position in the processing chamber.
  • the suction / discharge moving unit XY stage 43a and the arm 43b are located on the back side (upper left side in FIG. 13) of the instrument arrangement portion 48.
  • the suction / discharge unit 44 it is preferable to arrange it on the front side (lower right side in FIG. 13) of the processing chamber because light can be projected over a wide range in the processing chamber.
  • the illumination lamps 81a and 81b By including the illumination lamps 81a and 81b in the processing apparatus 400 of the present embodiment, for example, the work in the processing chamber can be confirmed, and the reliability of the work is improved.
  • the number of lighting units arranged in the processing chamber is not particularly limited, and may be one or a plurality.
  • the germicidal lamp 82 is provided as the sterilization unit, but the sterilization unit may or may not have an arbitrary configuration. Further, the sterilization unit is not limited to the germicidal lamp, and may be any sterilizer capable of sterilizing the processing chamber, particularly around the instrument arrangement portion 48. The sterilization unit is not particularly limited, and for example, a known sterilization unit such as a germicidal lamp or an ultraviolet LED lamp can be used. In the present embodiment, the germicidal lamp 82 is arranged on the front wall of the processing chamber, but the position of the germicidal lamp 82 is not particularly limited and can be any position.
  • the position of the germicidal lamp 82 for example, dust and the like outside the processing apparatus 400 flow in from the openings 41a and 41b, so that the vicinity of the openings 41a and 41b is preferably arranged so as to be sterilizable.
  • the opening 41a is provided on the front wall of the processing chamber as in the processing apparatus 400 of the present embodiment
  • the opening 41a is provided on the front wall of the processing chamber.
  • the sterilization unit is provided on the upper part.
  • the sterilization unit is provided on the side wall of the processing chamber above the opening 41b. It is preferable to arrange.
  • the processing device 400 includes the lighting unit and the sterilization unit, it is preferable to arrange both of them on the same wall of the processing chamber, for example, a wall provided with an opening 41a. In this case, it is preferable to provide the sterilization unit above the lighting unit.
  • the sterilization unit By including the germicidal lamp 82 in the processing apparatus 400 of the present embodiment, for example, the cleanliness of the processing chamber is improved.
  • the number of sterilization units arranged in the processing chamber is not particularly limited, and may be one or a plurality.
  • the size, shape, structure, etc. of the processing chamber for example, the size, shape, structure, etc. of the safety cabinet can be referred to, and as a specific example, the above-mentioned EN12469: 2000 You can refer to the specified safety cabinet standard.
  • the instrument arrangement portion 48 of the processing apparatus 400 of the present embodiment includes an upper lid 481 and a bottom portion 482, and the upper lid 481 is detachably attached to the bottom portion 482.
  • the instrument arranging portion 48 is a box including the upper lid 481 and the bottom 482, and the culture instrument 100 is arranged inside the box, but the instrument arranging portion 48 is not limited to this, and the culture instrument 100 is not limited thereto. Is arranged so as to be adjacent to the second region 5 in the processing chamber, and the portion adjacent to the second region 5 (bottom plate 486 in FIG. 15) in the instrument arrangement portion 48 is translucent. Just do it.
  • the “transparency” means, for example, that the laser emitted from the laser irradiation unit 53 in the second region 5 is transmitted. Further, when the second region 5 includes a second image pickup unit described later, it means that the second image pickup unit can take an image through the bottom plate 486.
  • the upper lid 481 is provided with a translucent region 483 so that the incubator 100 can be irradiated with light from the light source 45.
  • the translucent region 483 is formed of, for example, a transparent glass plate, an acrylic plate, or the like.
  • the bottom 482 includes a bottom wall 485 and a translucent bottom plate 486.
  • the translucent bottom plate 486 is formed of, for example, a transparent glass plate, an acrylic plate, or the like.
  • the bottom plate 486 is adjacent to the second region 5.
  • the portion adjacent to the second region 5 of the instrument arranging portion 48 that is, the bottom plate 486 forms a part of the wall of the processing chamber.
  • the contact portion between the bottom plate 486 and the wall of the processing chamber is preferably sealed with a sealing member such as packing or a sealing material.
  • a sealing member such as packing or a sealing material.
  • the bottom wall 485 includes four recesses 487 in which the four culture instruments 100 can be arranged, and the side surface of each recess 487 is directed from the inside of the processing chamber to the outside of the processing chamber (in FIG. 15B). It has a reverse taper shape that narrows from top to bottom).
  • each recess 487 includes a protrusion 488 protruding inward of the recess 487 on the end side of the bottom plate 486.
  • the bottom end of the incubator 100 comes into contact with the protrusion 488.
  • the bottom wall 485 has four recesses 487, but the number of recesses 487 possessed by the bottom wall 485 is not limited to this, and is appropriately determined according to the number of culture instruments 100 to be arranged. Can be set.
  • the size of the recess 487 can be appropriately set according to the size of the incubator 100 to be arranged.
  • the culture instrument 100 can be arranged in the instrument arranging portion 48 regardless of the shape of the side surface of the culture instrument 100.
  • the bottom wall 485 is integrally formed with the bottom wall thereof and the side wall thereof, but the bottom wall 485 is not limited to this, and each of them may be a separate member. good.
  • the bottom wall 485 is configured as a separate member, it is possible to prepare, for example, a member of the bottom wall of a plurality of bottom walls 485 having different numbers and sizes of recesses 487.
  • the culture device 100 can be replaced with a member of the bottom wall of the bottom wall 485 having a size and number suitable for the arrangement of the culture device 100 according to the size and number of the culture device 100. It can be preferably arranged.
  • the instrument arranging unit 48 may further include, for example, a temperature adjusting unit for adjusting the temperature of the incubator 100.
  • a temperature adjusting unit for adjusting the temperature of the incubator 100.
  • the culture conditions during culturing the cells in the culturing instrument 100 can be made constant, and for example, damage to the cells during cell culturing can be reduced.
  • the temperature adjusting unit include a heating unit such as a heater.
  • the instrument placement unit 48 may further include, for example, a pH adjusting unit for adjusting the pH of a solution such as a medium in the culture instrument 100.
  • a pH adjusting unit for adjusting the pH of a solution such as a medium in the culture instrument 100.
  • the pH adjustment unit By including the pH adjustment unit, the culture conditions during the culture of the cells in the culture device 100 can be made constant, and for example, damage to the cells during cell culture can be reduced.
  • the pH adjusting unit include a carbon dioxide concentration adjusting unit, and specific examples thereof include a carbon dioxide cylinder, a connecting portion connected to a carbon dioxide supply unit outside the processing apparatus 400, and the like.
  • the circulation unit 7 includes an intake unit 71, a circulation flow path 72, a gas supply unit 73, and an exhaust unit 74. As a result, the circulation unit 7 circulates the gas in the processing chamber.
  • the intake unit 71 takes in the gas in the processing chamber.
  • the intake unit 71 may take in the gas outside the processing apparatus 400 in place of or in addition to the gas in the processing chamber.
  • the intake unit 71 is arranged in the vicinity (for example, directly below) the opening 41a of the processing chamber.
  • the intake portion 71 has a plurality of openings (for example, slits) formed on the upper surface thereof (not shown), and the lower side of the opening 41a so that the openings communicate with the opening 41a. It is located in.
  • the intake unit 71 By arranging the intake unit 71 in the vicinity of the opening 41a of the processing chamber in this way, for example, when the door 42a is opened and the operator works in the processing chamber, the gas outside the processing apparatus 400 and It is possible to prevent dust and the like contained therein from flowing into the processing chamber.
  • the intake portion 71 may be arranged in place of or in addition to the opening 41a in the vicinity of the opening 41b.
  • the intake unit 71 may intake gas in the processing chamber by, for example, a blower unit such as a fan.
  • the circulation flow path 72 connects the intake unit 71, the gas supply unit 73, and the exhaust unit 74.
  • the circulation flow path 72 is arranged in the space between the outer wall and the inner wall and in the upper part of the first region 4.
  • the circulation flow path 72 is, for example, a hollow cylinder. Further, one end of the circulation flow path 72 communicates with the intake unit 71, and the other end communicates with the gas supply unit 73 and the exhaust unit 74.
  • the circulation unit 7 includes the circulation flow path 72, but the circulation flow path 72 may or may not be present.
  • the intake unit 71 is directly connected to, for example, the gas supply unit 73 and the exhaust unit 74.
  • the circulation flow path 72 may blow the gas taken in by the intake unit 71 to the gas supply unit 73 and the exhaust unit 74 by, for example, a blower unit such as a fan.
  • the blower unit may be arranged in the vicinity of the intake unit 71, the gas supply unit 73, or the exhaust unit 74, or at other positions such as the central portion thereof. Although it may be arranged, the intake air from the intake unit 71 is improved, and for example, as compared with the downflow generated by the gas supply unit 73 described later, dust and the like are more effectively prevented from flowing into the processing chamber. Therefore, it is preferable to arrange it in the vicinity of the intake unit 71.
  • the blower unit is arranged in the vicinity of the intake unit 71, it is preferable that the blower unit is arranged in, for example, the second region 5 or the third region 6.
  • the blower unit when the circulation flow path 72 further includes the blower unit, the blower unit is on the front side (in FIG. 12) in the second region 5 or the third region 6. It is arranged on the lower left side), that is, on the lower side of the intake unit 71.
  • the circulation flow path 72 connects the intake unit 71 and the intake side of the blower unit, and connects the blower side of the blower unit with the gas supply unit 73 and the exhaust unit 74. That is, the circulation flow path 72 is arranged in the second region 5, the second region 5 and the third region 6, the space between the outer wall and the inner wall, and the upper part of the first region 4.
  • the gas supply unit 73 supplies a part of the gas taken in by the intake unit 71 to the processing chamber.
  • the gas supply unit 73 communicates with the upper end of the first region 4 so that the gas taken in from the intake unit 71 can be supplied to the processing chamber.
  • the gas supply unit 73 may supply gas to the processing chamber by, for example, a blower unit such as a fan.
  • the gas supply unit 73 may include, for example, a gas purification unit. In this case, the gas supplied from the gas supply unit 73 into the processing chamber passes through the gas purification unit.
  • the gas cleaning unit for example, it is possible to prevent dust and the like from flowing into the processing chamber.
  • the gas purification unit examples include a filter for collecting fine particles such as a HEPA filter (High Efficiency Particulate Air Filter) and a ULPA filter (Ultra Low Penetration Air Filter). Since the processing apparatus 400 of the present embodiment is connected to the gas supply unit 73 at the upper part of the processing chamber, for example, downflow is generated by blowing air from the gas supply unit 73, which causes dust and the like from the opening 41a. Can be more effectively prevented from flowing into the processing chamber.
  • a filter for collecting fine particles such as a HEPA filter (High Efficiency Particulate Air Filter) and a ULPA filter (Ultra Low Penetration Air Filter). Since the processing apparatus 400 of the present embodiment is connected to the gas supply unit 73 at the upper part of the processing chamber, for example, downflow is generated by blowing air from the gas supply unit 73, which causes dust and the like from the opening 41a. Can be more effectively prevented from flowing into the processing chamber.
  • the exhaust unit 74 exhausts the remaining portion of the gas taken in by the intake unit 71 to the outside of the processing chamber, specifically, the outside of the processing device 400.
  • the exhaust unit 74 is arranged at the upper end (top) of the processing device 400 so that the gas taken in from the intake unit 71 can be exhausted to the outside of the processing device 400.
  • the exhaust unit 74 may exhaust the gas to the outside of the processing device 400 by, for example, a blower unit such as a fan.
  • the exhaust unit 74 may include, for example, the gas cleaning unit.
  • the gas discharged from the exhaust unit 74 to the outside of the processing device 400 passes through the gas cleaning unit.
  • the gas purification unit for example, it is possible to prevent the outflow of fine particles and the like generated in the processing chamber to the outside of the processing apparatus 400.
  • the size, shape, structure, etc. of each part can be referred to, for example, the size, shape, structure, etc. of the safety cabinet, and as a specific example, it is specified by the above-mentioned EN12469: 2000. You can refer to the standard of the safety cabinet.
  • the second region 5 includes a second XY stage 51, a microscope 52 having three types of objective lenses 521a to c of different magnifications, and laser irradiation. Includes unit 53.
  • the processing apparatus 400 of the present embodiment includes an XY stage 51 and a microscope 52, and the XY stage 51 and the microscope 52 have an arbitrary configuration and may or may not be included. But it may be.
  • the XY stage 51 is arranged on the arrangement surface of the instrument arrangement portion 48, that is, on the bottom surface of the second region 5 substantially parallel to the bottom surface of the processing chamber.
  • the laser irradiation unit 53 includes a laser light source 531, a laser emitting unit 532, and an optical fiber 533.
  • the microscope 52 points its objective lenses 521a to 521 upward (in the direction of arrow Z) toward the carriage 511b, and above the laser emission port of the laser emission section 532 of the laser irradiation unit 53.
  • the dolly 511a can be raised and lowered in the vertical direction (arrow Z direction).
  • the laser light source 531 is arranged on the bottom surface of the second region 5 in the second region 5 in a region that does not overlap with the movable range of the XY stage 51.
  • One end of the optical fiber 533 is connected to the laser light source 531 and the other end is connected to the laser emitting portion 532.
  • the processing apparatus 400 of the present embodiment provides the XY stage 51 as the laser moving unit and the second imaging moving unit, but the laser moving unit and the second imaging moving unit are not limited thereto. It suffices as long as the laser irradiation unit 53 and the second imaging unit described later can be moved, respectively, and for example, a known moving unit can be used. Further, in the present embodiment, the laser moving unit and the second imaging moving unit share a rail in the arrow X direction (first direction), but the laser moving unit and the second imaging moving unit May be independent. As a specific example, as shown in FIG. 18B, the laser moving unit is arranged on the bottom surface of the second region 5 as, for example, an XY stage 51a, and the second imaging moving unit is used as an XY stage 51b.
  • the moving directions of the laser moving unit and the second imaging moving unit are not particularly limited, and may be movable in, for example, one direction (for example, the arrow Y direction) or two directions (for example, arrow X and arrow Y). It may be movable in three directions (for example, the arrows X, Y and Z directions).
  • the first direction does not have to be parallel to the second direction, and preferably the first direction is substantially orthogonal or orthogonal to the second direction.
  • the plane including the first direction and the second direction is preferably a plane substantially parallel to the arrangement surface of the instrument arrangement portion 48.
  • the third direction may intersect the plane including the first direction and the two directions, for example, and is preferably substantially orthogonal to the plane including the first direction and the two directions. Orthogonal.
  • the laser moving unit can move the laser irradiation unit 53 in a direction substantially orthogonal to, for example, the placement surface of the device placement unit 48, that is, the bottom surface of the culture device 100, the laser moving unit is a spot described later. The diameter can be adjusted.
  • the laser moving unit also serves as, for example, a spot diameter adjusting unit described later.
  • the XY stage 51 is a known one capable of moving an object at high speed and precisely along the arrow X direction and the arrow Y direction via, for example, a linear motor carriage or the like.
  • the laser moving unit and the second imaging moving unit are in the first direction (for example, FIG. 18) in a plane substantially parallel to the placement surface of the instrument placement portion 48, as in the XY stage 51 of the present embodiment.
  • the laser irradiation unit 53 and the second imaging unit can be moved in the direction of the arrow Y in (a)), and the laser moving unit moves the laser irradiation unit 53 in the first direction and the second imaging. It is preferable that the movement of the second imaging unit in the first direction by the moving unit is on the same straight line.
  • the number of movements of each unit can be reduced and the processing time can be reduced when performing processing such as.
  • the carriage 511a on which the laser irradiation unit 53 is arranged and the carriage 511a move, and the moving path (the moving path) arranged along the first direction (the first direction).
  • the second imaging moving unit includes a trolley 511b on which the second imaging unit is arranged and a moving path (rail) on which the trolley 511b is moved and arranged along the first direction. Including, it is preferable that the moving path of the laser moving unit and the moving path of the second imaging unit are the same. With this configuration, the number of movements of each unit can be further reduced and the processing time can be further reduced when processing such as processing by the laser irradiation unit 53 after imaging by the second imaging unit.
  • the processing apparatus 400 of the present embodiment is provided with a microscope 52 having three types of magnification objective lenses 521a to 521 as the second imaging unit, but is not limited to this, and is arranged in the instrument arrangement unit 48. It suffices if it is possible to take an image of the inside of the culture device 100.
  • the second image pickup unit is not particularly limited, and a known image pickup unit such as a microscope or a camera can be used, and a known image pickup unit and a solid-state image sensor (image sensor) such as a CCD or CMOS (Complementary MOS) can be used. May be a combination of.
  • Examples of the microscope include an optical microscope such as a phase contrast microscope and a fluorescence microscope.
  • the microscope may have the functions of both the phase-contrast microscope and the fluorescence microscope, for example.
  • the second imaging unit is preferably capable of imaging at a plurality of magnifications, for example, but may be capable of imaging at a single magnification.
  • the microscope preferably includes objective lenses having a plurality of magnifications (for example, different magnifications).
  • the magnifications of the objective lenses 521a to 521a to c are, for example, 2x, 4x, and 8x, respectively.
  • the second imaging unit may be capable of, for example, optical zoom, digital zoom, and the like.
  • the inside of the culture device 100 can be imaged more clearly, so that the magnification of the second imaging unit is increased. Is preferably a higher magnification than the magnification of the first imaging unit.
  • the laser irradiation unit 53 includes a laser light source 531, a laser emitting unit 532, and an optical fiber 533, but the laser irradiation unit 53 is not limited to this, and is arranged in the equipment arrangement unit 48. It suffices if the culture instrument 100 can be irradiated with a laser.
  • the laser irradiation unit 53 may include, for example, the laser light source 531 and irradiate the incubator 100 with the laser directly from the laser light source 531. Further, when the laser of the laser light source 531 is guided to the laser emitting unit 532, the light guide unit such as a mirror or MEMS (Micro Electro Mechanical Systems) may be used instead of the optical fiber 533 to guide the light.
  • the arrangement of the laser light source 531 in the second region 5 can be freely set, for example, in the second region 5, the laser moving unit, the second imaging unit, the second imaging moving unit, and the like.
  • the size of the processing device 400 can be reduced, and processing is performed in comparison with other light guide units.
  • the optical fiber 533 is preferable because the weight of the device 400 can be reduced.
  • the laser light source 531 is, for example, a device that oscillates a continuous wave laser or a pulse laser.
  • the laser light source 531 may be, for example, a high-frequency laser having a long pulse width, which is close to a continuous wave.
  • the output of the laser oscillated from the laser light source 531 is not particularly limited, and can be appropriately determined depending on, for example, the photothermal conversion molecules of the photothermal conversion layer 13.
  • the wavelength of the laser oscillated by the laser light source 531 is not particularly limited, and examples thereof include visible light lasers such as 405 nm, 450 nm, 520 nm, 532 nm, and 808 nm, and infrared lasers.
  • the laser light source 531 oscillates, for example, a wavelength that can be absorbed by the laser absorption layer.
  • the laser light source 531 includes a continuous wave diode laser having a wavelength in the vicinity of 405 nm and having a maximum output of 5 W.
  • the laser moving unit moves the laser emitting unit 532.
  • the laser moving unit moves the laser emitting portion 532 in the vertical direction (in the direction of arrow Z in FIG. 18)
  • the laser emitting port of the laser emitting portion 532 is the bottom surface of the processing chamber, preferably the instrument arrangement portion. It is preferable to move it so that it does not come into contact with the bottom surface of the 48.
  • the laser moving unit moves the laser emitting port of the laser emitting portion 532 so as not to approach within 1 mm with respect to the bottom surface of the instrument arranging portion 48.
  • the laser moving unit moves the laser emitting unit 532, so that, for example, the culture medium arranged in the instrument arrangement unit 48 is generated by the contact between the laser emitting unit 532 and the bottom surface of the instrument arrangement unit 48. It is possible to prevent shaking of a solution such as a medium in 100.
  • the microscope 52 which is the second imaging unit, is arranged on the front side (lower left side in FIG. 18), and the laser irradiation unit 53 is arranged on the back side (upper right side in FIG. 18).
  • the positional relationship between the second imaging unit and the laser irradiation unit 53 is not limited to this, and for example, the second imaging unit is arranged on the back side and the laser irradiation unit 53 is arranged on the front side. You may.
  • the volume of the second imaging unit such as a microscope is larger than that of the laser irradiation unit 53. Therefore, when the instrument arranging portion 48 is arranged on the front side in the first region 4, the second imaging unit is arranged on the back side and the laser irradiation unit 53 is arranged on the front side for processing.
  • the size of the device 400 can be reduced.
  • the processing apparatus 400 of the present embodiment may further include a spot diameter adjusting unit that adjusts the diameter of the spot formed by the laser on the irradiated portion of the irradiated object.
  • the spot diameter means the beam diameter of the laser at the contact portion between the laser and the irradiated object.
  • the spot diameter can be adjusted, for example, by switching at least one of the laser condensing lens and the collimator lens (collimator lens) of the laser irradiation unit 53, or by changing the distance between the laser irradiation unit 53 and the object to be irradiated. ..
  • the laser irradiation unit 53 includes, for example, a plurality of lenses, and the spot diameter adjusting unit adjusts the diameter of the spot by changing the lens.
  • the plurality of lenses may be, for example, a plurality of condensing lenses, a plurality of collimator lenses, or a combination of one or more condensing lenses and one or more collimator lenses.
  • the plurality of condenser lenses have different focal lengths from each other, for example.
  • the plurality of collimator lenses have different focal lengths from each other, for example.
  • the lens may be changed manually, for example, or may be changed by a spot diameter adjustment control unit described later.
  • the spot diameter adjusting unit adjusts the diameter of the spot by adjusting the distance between the laser irradiation unit 53 and the object to be irradiated. ..
  • the distance between the laser irradiation unit 53 and the object to be irradiated means, for example, a distance in a direction substantially orthogonal to the arrangement surface of the instrument arrangement portion 48, that is, the bottom surface of the culture instrument 100.
  • the distance between the laser irradiation unit 53 and the irradiated object means the distance between the laser emitting unit 532 and the irradiated object.
  • the distance between the laser irradiation unit 53 and the object to be irradiated can be adjusted by, for example, the laser moving unit.
  • the distance from the bottom surface of the culture device 100, which is the object to be irradiated can be adjusted by moving in the arrow Z direction by the laser moving unit.
  • the carriage 511a of the XY stage 51 which is the laser moving unit, can be moved up and down in the vertical direction (arrow Z direction).
  • the laser moving unit in the present embodiment can be referred to as, for example, a spot diameter adjusting unit.
  • the spot diameter adjusting unit adjusts the spot diameter to be small, for example, when performing a processing process in which a small spot diameter is preferable. Further, the spot diameter adjusting unit adjusts the spot diameter to a large extent, for example, when performing a processing process in which a large spot diameter is preferable.
  • the size of the spot diameter is not particularly limited and can be appropriately set according to the type of processing, for example.
  • the processing apparatus 400 of the present embodiment can adjust the spot diameter to an appropriate size during the processing process performed on the incubator 100, and the processing process can be performed quickly. .. Further, since the spot diameter can be adjusted to an appropriate size, for example, the cell adhesion region 11a in the culture instrument 100 is excellent in moldability.
  • the control unit described later includes a spot diameter adjusting control unit that controls the adjustment of the spot diameter by the spot diameter adjusting unit.
  • the movement of gas is suppressed between the processing chamber and the second region 5.
  • the suppression of the movement of the gas can be carried out, for example, by sealing the portion adjacent to the second region 5 in the processing chamber with the sealing member such as the packing and the sealing material described above.
  • the third region 6 includes the control unit 61 and the power supply unit 62.
  • the control unit 61 includes a configuration similar to a personal computer, a server computer, a workstation, and the like.
  • the control unit 61 includes a central processing unit (CPU) 61a, a main memory 61b, an auxiliary storage device 61c, a video codec 61d, an I / O interface 61e, and the like, and these are controllers (system controller, I). / O controller, etc.) It is controlled by 61f and operates in cooperation.
  • the auxiliary storage device 61c include storage units such as a flash memory and a hard disk drive.
  • the video codec 61d generates a screen to be displayed based on a drawing instruction received from the CPU 61a, and transmits the screen signal to, for example, a display device outside the processing device 400, a GPU (Graphics Processing Unit), a screen. And includes a video memory for temporarily storing image data and the like.
  • the I / O (input-output) interface 61e includes a first XY stage 43a and an arm 43b (suction / discharge moving unit), a suction / discharge unit 44, a camera 80 (first imaging unit), and a second XY stage 61 (suction / discharge movement unit).
  • the I / O interface 61e may include a servo driver (servo controller). Further, the I / O interface 61e may be connected to, for example, an input device outside the processing device 400.
  • the display device include a monitor that outputs images (for example, various image display devices such as a liquid crystal display (LCD) and a cathode ray tube (CRT) display).
  • the input device 8 include a touch panel that can be operated by an operator with fingers, a track pad, a pointing device such as a mouse, a keyboard, and a push button.
  • the program executed by the control unit 61 is stored in the auxiliary storage device 61c.
  • the program is read into the main memory 61b at the time of execution and is decoded by the CPU 61a. Then, the control unit 61 controls each member according to the program.
  • the control unit 61 includes an irradiation control unit, a suction / discharge control unit, a first image pickup control unit, and a second image pickup control unit in addition to the configuration of the control unit 22 of the second embodiment.
  • the irradiation control unit, the suction / discharge control unit, the first image pickup control unit, and the second image pickup control unit may or may not have an arbitrary configuration.
  • the control unit 61 has functions such as the irradiation control unit, the suction / discharge control unit, the first image pickup control unit, and the second image pickup control unit. , It is not necessary to separately provide a control unit for each member, and the processing apparatus can be miniaturized.
  • control unit 61 in order to reduce the load on the control unit 61, a control unit is provided in each member, and the control unit 61 and the control unit of each member cooperate with each other to reduce the load on each member. May be controlled.
  • control such as laser oscillation may be controlled by, for example, a control unit provided on each member, and movement of the laser irradiation unit 53 may be controlled by, for example, a control unit 61.
  • the control unit 61 may be composed of one semiconductor element, a chip in which a plurality of semiconductor elements are packaged in one package, or a configuration in which a plurality of semiconductor elements are provided on a substrate.
  • the irradiation control unit controls laser irradiation by the laser irradiation unit 53 and movement of the laser emission unit 532 of the laser irradiation unit 53 by the laser moving unit XY stage 51 and the carriage 511a.
  • the control unit may control either one.
  • the suction / discharge control unit controls suction / discharge by the suction / discharge unit 44 and movement of the suction / discharge unit 44 by the suction / discharge movement units XY stage 43a and arm 43b. May control either one.
  • the first imaging control unit controls imaging in the processing chamber by the camera 80, which is the first imaging unit.
  • the second imaging control unit controls imaging by the microscope 52, which is the second imaging unit, and movement of the microscope 52 by the XY stage 51 and the trolley 511b, which are the second imaging moving units.
  • the second imaging control unit may control either one.
  • the power supply unit 62 is not particularly limited, and a known power supply can be used.
  • the power supply unit 62 includes, for example, a laser irradiation unit 53, the laser moving unit, the first imaging unit, the second imaging unit, the second imaging moving unit, the suction / discharging unit 44, and the suction / discharging moving unit.
  • the circulation unit 7, the lighting unit, the sterilization unit, the control unit 61, and the like are supplied with electric power. Therefore, the power supply unit 62 is electrically connected to, for example, a member (unit) operated by the electric power.
  • the power supply unit 62 supplies electric power at a voltage of 100 V, for example. As a result, for example, the processing apparatus 400 can be used even in a general electric power environment.
  • the entire power supply is supplied to the power supply unit 62, so that it is not necessary to individually provide the power supply unit for each member. Therefore, for example, the processing apparatus 400 is small in size. It is possible to realize weight reduction and weight reduction.
  • the present invention is not limited to this, and for example, a dedicated power supply unit may be provided in at least one of each unit.
  • the processing apparatus 400 of the present embodiment may further include a communication unit (not shown) in the third region 6.
  • the communication unit has, for example, a wired or wireless connection function between an external device such as a personal computer or a mobile communication device and a data transmission / reception function or the Internet.
  • Examples of the communication unit include an existing communication module and the like.
  • the germicidal lamp 82 is turned off, and the lighting lamps 81a and 81b are turned on.
  • the first imaging control unit activates the camera 80 to start imaging in the processing chamber.
  • the image in the processing chamber captured by the camera 80 is output to the display device via, for example, the control unit 61.
  • the circulation unit 7 is operated to circulate the gas in the processing chamber. Further, the user opens the door 42a of the opening 41a and arranges the culture instrument 100 in the instrument arrangement portion 48. After the arrangement, the worker closes the door 42a of the opening 41a.
  • the second imaging control unit controls the XY stage 51 and the carriage 511b to move, and the microscope 52 moves to the lower side of the bottom surface of the culture device 100.
  • the suction / discharge control unit controls the XY stage 43a to move, and the light source 45 moves to the upper part of the upper surface of the culture instrument 100, that is, to the upper part of the instrument arrangement unit 48.
  • the focus is adjusted by the microscope 52 so as to focus on the bottom surface 12a in the culture device 100, and the distance to the culture device 100 is measured. Focusing by the microscope 52 may be performed a plurality of times using, for example, objective lenses 521a to 521a to c having different magnifications.
  • the microscope 52 may capture images over time.
  • examples of the image captured by the microscope 52 over time include a phase-contrast microscope image captured by a phase-contrast microscope, a fluorescence microscope image captured by a fluorescence microscope, and the like.
  • the captured image is output to the display device via, for example, the control unit 61.
  • the control unit 61 sets the irradiation area based on the input information of the irradiation area in the same manner as the control unit of the second embodiment.
  • the control unit 61 controls the laser irradiation unit 53 so as to irradiate the photothermal conversion layer 13 in the region corresponding to the irradiation region with the laser L based on the irradiation region.
  • the user opens the door 42a of the opening 41a and collects the culture instrument 100 from the instrument arrangement portion 48, so that the processed culture instrument 100 can be collected by the processing device 400 of the embodiment.
  • the processing apparatus 400 of the present embodiment for example, in a cell culture apparatus having a cell culture substrate layer and a photothermal conversion layer in a sterile state or a clean space, it is possible to easily control a region where cells can adhere.
  • a laser irradiation unit capable of irradiating a laser on a photothermal conversion layer in a cell culture apparatus having a cell culture substrate layer and a photothermal conversion layer, and a laser irradiation unit.
  • a control unit for controlling the laser irradiation unit is provided.
  • the control unit includes a setting unit and an irradiation control unit.
  • the setting unit sets an irradiation region for irradiating the laser in the cell culture device.
  • the irradiation control unit is a processing device for a cell culture device that controls the laser irradiation unit so as to irradiate a laser on a photothermal conversion layer in a corresponding region based on the irradiation region.
  • the control unit includes a split portion and The divided portion divides the irradiation region by the irradiation width of the laser.
  • the processing apparatus according to Appendix 1, wherein the irradiation control unit controls the laser irradiation unit so as to irradiate the photothermal conversion layer in the corresponding region with a laser based on each divided irradiation region.
  • the laser irradiation unit includes a position acquisition unit and has a position acquisition unit.
  • the position acquisition unit acquires the position of the end point in each of the divided irradiation areas and associates it with each irradiation area.
  • the irradiation control unit is based on the divided irradiation regions and the positions of the end points of each irradiation region, and the end points of one end to the other end of the divided irradiation regions with respect to the photothermal conversion layer of the corresponding region.
  • the processing apparatus according to Appendix 2, which controls the laser irradiation unit so as to irradiate the laser in a direction.
  • the irradiation control unit Based on each of the divided irradiation regions and the position of the end points of each irradiation region, the photothermal conversion layer of the corresponding region is irradiated with a laser from one end point of the divided irradiation region to the other end point direction. As described above, the laser irradiation unit is controlled. In the next divided irradiation region, the laser irradiation unit is controlled so as to irradiate the laser from the end point on the other end side of the previous divided irradiation region to the end point side on one end side of the previous divided irradiation region.
  • the processing apparatus according to Appendix 3, wherein the control is performed on the entire surface of the irradiation region.
  • Appendix 5 The position acquisition unit acquires the ON / OFF switching position of the laser for each divided irradiation region.
  • the irradiation control unit Based on each of the divided irradiation regions and the position of the end points of each irradiation region, the photothermal conversion layer of the corresponding region is irradiated with a laser from one end point of the divided irradiation region to the other end point direction.
  • the processing apparatus according to Appendix 3 or 4, wherein the laser irradiation unit is controlled so that the laser irradiation is turned ON or OFF based on the switching position of the laser ON or OFF.
  • Appendix 6 The processing apparatus according to any one of Supplementary note 2 to 5, wherein the dividing portion divides the irradiation region into a substantially circular shape or a spiral shape according to the irradiation width of the laser.
  • the control unit includes an acquisition unit. The acquisition unit acquires the irradiation area information in which the irradiation area is defined, and obtains the irradiation area information.
  • the processing apparatus according to any one of Supplementary note 1 to 6, wherein the setting unit sets the irradiation area from the irradiation area information.
  • the irradiation area information includes an image in which the irradiation area is defined.
  • the processing apparatus according to Appendix 7, wherein the setting unit sets the irradiation area from the brightness value of the image in which the irradiation area is defined.
  • the irradiation area information includes information on the irradiation area specified by the user.
  • the processing apparatus according to Appendix 8, wherein the setting unit sets the irradiation area from the information of the irradiation area designated by the user.
  • the control unit includes an acquisition unit.
  • the acquisition unit An image including the cell culture device was acquired and The irradiation area is extracted from the image, and the irradiation area information in which the irradiation area is defined is acquired.
  • the processing apparatus according to any one of Supplementary note 1 to 6, wherein the setting unit sets the irradiation area from the irradiation area information.
  • the control unit includes an acquisition unit. The acquisition unit The cell culture device was identified from the image, and the cell culture device was identified. From the obtained identification information of the cell culture device, the irradiation area information associated with the cell culture device is acquired, and the information is obtained.
  • the processing apparatus according to any one of Supplementary note 1 to 6, wherein the setting unit sets the irradiation area from the irradiation area information.
  • the control unit includes an identification information acquisition unit and an acquisition unit.
  • the identification information acquisition unit acquires the identification information of the cell culture device, and obtains the identification information.
  • the acquisition unit acquires irradiation region information associated with the cell culture device from the identification information of the cell culture device.
  • the processing apparatus according to any one of Supplementary note 1 to 6, wherein the setting unit sets the irradiation area from the irradiation area information.
  • (Appendix 13) Equipped with a displacement measuring unit The processing apparatus according to any one of Supplementary note 1 to 12, wherein the displacement measuring unit can measure a distance to the cell culture device.
  • the control unit includes a displacement adjusting unit.
  • the processing apparatus includes first, second and third regions
  • the first region and the second region are arranged consecutively.
  • the first region is a processing room for processing cell culture equipment.
  • the processing chamber can be closed from outside the processing chamber and includes an instrument arranging portion for arranging cell culture instruments.
  • the second region includes the laser irradiation unit, and the laser irradiation unit can irradiate a cell culture instrument arranged in the instrument arrangement portion with a laser.
  • the third region includes the control unit.
  • the instrument arranging portion is arranged in the processing chamber so as to be adjacent to the second region.
  • the processing apparatus according to any one of Supplementary note 1 to 14, wherein a portion of the instrument arrangement portion adjacent to the second region is translucent.
  • Appendix 16 The processing apparatus according to Appendix 15, wherein the processing chamber includes an opening and a door that can open and close the opening.
  • Appendix 17 The processing apparatus according to Appendix 16, wherein the door is non-translucent.
  • Appendix 18 The processing chamber includes a work opening for performing work related to the processing of the cell culture device in the processing chamber and an opening capable of maintaining the processing chamber.
  • the processing apparatus according to Appendix 16 or 17, wherein the opening for work and the opening capable of maintenance are arranged at different places in the processing chamber.
  • the processing apparatus according to Appendix 18, wherein the opening area of the opening for work is smaller than the opening area of the opening that can be maintained.
  • the processing chamber further includes a sterilization unit capable of sterilizing the processing chamber.
  • it includes a circulation unit that circulates the gas in the processing chamber.
  • the circulation unit An intake unit that takes in gas in the processing chamber and A gas supply unit that supplies a part of the intake gas to the processing chamber,
  • the processing apparatus according to any one of Appendix 15 to 20, further comprising an exhaust unit that exhausts the remaining portion of the intake gas to the outside of the processing chamber.
  • (Appendix 22) The processing apparatus according to Appendix 21, wherein the exhaust unit is arranged at the uppermost part of the processing apparatus.
  • (Appendix 23) In the processing apparatus according to any one of Appendix 16 to 20, The processing apparatus according to Appendix 21 or 22, wherein the intake unit is arranged in the vicinity of the opening of the processing chamber.
  • the processing chamber includes an outer wall and an inner wall.
  • (Appendix 25) The processing chamber according to any one of Appendix 15 to 24, further comprising a lighting unit capable of projecting light into the processing chamber.
  • the processing apparatus according to any one of Appendix 15 to 25, wherein the movement of gas is suppressed between the processing chamber and the second region.
  • the processing chamber further includes a suction / discharge unit and a suction / discharge moving unit for moving the suction / discharge unit.
  • the processing chamber includes a drainage container arranging portion in which a drainage container for draining the suction liquid sucked by the suction / discharge unit can be arranged.
  • the processing apparatus according to Appendix 27, wherein the instrument arranging portion and the drainage container arranging portion are arranged along the moving direction of the suction / discharging moving unit on a plane substantially parallel to the arranging surface of the cell culture instrument. .. (Appendix 29)
  • the processing room A storage container arranging portion in which a tip member storage container in which a detachable tip member is housed can be placed in the suction / discharge unit, and a storage container arranging portion.
  • the processing apparatus according to Appendix 27 or 28, which includes a tip member detaching unit that detaches the tip member from the suction / discharge unit.
  • the processing chamber includes a first imaging unit capable of imaging the processing chamber.
  • the processing apparatus includes a first imaging control unit that controls imaging in the processing chamber by the first imaging unit.
  • the second region includes a second imaging unit capable of imaging the inside of the culture instrument arranged in the instrument arrangement portion.
  • the control unit includes a second imaging control unit that controls imaging by the second imaging unit.
  • the processing apparatus according to any one of Appendix 15 to 30, wherein the second imaging unit can image images at a plurality of magnifications.
  • the laser irradiation unit includes a laser light source and a laser emitting unit.
  • the processing apparatus according to any one of Appendix 15 to 31, wherein the laser light source is arranged in a region other than the region in which the other unit is arranged in the second region.
  • the second region is A second imaging unit capable of imaging the cell culture instrument arranged in the instrument placement portion, and A laser moving unit that moves the laser irradiation unit and The second imaging moving unit for moving the second imaging unit is included.
  • the control unit is An irradiation control unit that controls laser irradiation by the laser irradiation unit and movement of the laser irradiation unit by the laser movement unit, and A second imaging control unit that controls imaging by the second imaging unit and movement of the second imaging unit by the second imaging moving unit is included.
  • the laser moving unit can move the laser irradiation unit in the first direction on a plane substantially parallel to the placement surface of the instrument placement portion.
  • the second image pickup moving unit can move the second image pickup unit in the first direction in a plane substantially parallel to the arrangement surface of the instrument arrangement portion.
  • the movement of the laser irradiation unit in the first direction by the laser moving unit and the movement of the second imaging unit in the first direction by the second imaging moving unit are movements on the same straight line.
  • the processing apparatus according to any one of. (Appendix 34)
  • the laser moving unit includes a carriage on which the laser irradiation unit is arranged and a moving path on which the carriage moves and is arranged along the first direction.
  • the second imaging moving unit includes a carriage on which the second imaging unit is arranged and a moving path on which the carriage moves and is arranged along the first direction.
  • the laser irradiation unit can move the laser irradiation unit in a second direction which is a direction substantially orthogonal to the first direction in a plane substantially parallel to the arrangement surface of the instrument arrangement portion.
  • the processing apparatus according to any one.
  • the bottom surface of the instrument placement portion includes a recess in which the cell culture device is placed.
  • the recess includes a protrusion that projects inward of the recess on the end side of the second region.
  • the processing apparatus according to any one of Appendix 15 to 36, wherein the side surface of the recess has a reverse taper shape narrowing from the inside of the processing chamber toward the outside of the processing chamber.
  • the processing apparatus according to any one of Supplementary note 1 to 37, comprising an observation (imaging) unit capable of observing (imaging) the inside of the cell culture device.
  • the processing apparatus of the present invention in a cell culture apparatus having a cell culture substrate layer and a photothermal conversion layer, it is possible to control a region where cells can adhere. Therefore, the present invention is extremely useful in fields such as regenerative medicine and drug discovery.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

細胞培養基材層11および光熱変換層13を有する細胞培養器具100において、細胞の接着可能な領域を制御可能な細胞培養器具の加工装置を提供する。 本発明の細胞培養器具の加工装置200は、細胞培養基材層11および光熱変換層13を有する細胞培養器具100における光熱変換層13に対して、レーザを照射可能なレーザ照射ユニット21と、 レーザ照射ユニット21を制御する制御ユニット22とを備え、 制御ユニット22は、設定部221と、照射制御部222とを備え、 前設定部221は、細胞培養器具100において、前記レーザを照射する照射領域を設定し、 照射制御部222は、前記照射領域に基づき、対応する領域の光熱変換層13に対して、レーザを照射するように、レーザ照射ユニット21を制御する。

Description

細胞培養器具の加工装置
 本発明は、細胞培養器具の加工装置に関する。
 培養した細胞塊を所望の形状に加工する場合、培養後の細胞塊を所望の形状に切断する等の処理または予め培養後の細胞塊が所望の形状となるように、細胞培養器具を加工することが行なわれている(特許文献1)。
特開平03-007576号公報
 特許文献1の製造方法では、フォトリソグラフィ法により細胞培養器具の表面パターニングすることにより、培養後の細胞塊が所望の形状となるように、細胞培養器具を加工している。しかしながら、フォトリソグラフィ法を実施する場合、フォトマスクの形成装置、露光装置等の多種多様な製造設備が必要となる。このため、より簡便な構成で、細胞培養器具上の細胞の形状を制御可能な加工装置が求められている。
 そこで、本発明は、細胞培養基材層および光熱変換層を有する細胞培養器具において、細胞の接着可能な領域を制御可能な細胞培養器具の加工装置を提供することを目的とする。
 前記目的を達成するために、本発明の細胞培養器具の加工装置(以下、「加工装置」ともいう)は、細胞培養基材層および光熱変換層を有する細胞培養器具における光熱変換層に対して、レーザを照射可能なレーザ照射ユニットと、
前記レーザ照射ユニットを制御する制御ユニットとを備え、
前記制御ユニットは、設定部と、照射制御部とを備え、
前記設定部は、前記細胞培養器具において、前記レーザを照射する照射領域を設定し、
前記照射制御部は、前記照射領域に基づき、対応する領域の光熱変換層に対して、レーザを照射するように、前記レーザ照射ユニットを制御する。
 本発明の加工装置によれば、細胞培養基材層および光熱変換層を有する細胞培養器具において、細胞の接着可能な領域を制御できる。
図1は、実施形態1の培養器具の構成の一例を示す模式図であり、(A)は、実施形態1の培養器具の模式斜視図であり、(B)は、(A)におけるI-I方向からみた実施形態1の培養器具の模式断面図であり、(C)は、実施形態1の培養器具の平面図である。 図2は、実施形態1の培養器具の製造方法および加工方法の一例を示す模式図である。 図3は、実施形態2の加工装置の構成を示す斜視図である。 図4は、実施形態2の加工装置を示す模式図であり、(A)は、実施形態2の加工装置の制御ユニットの構成の一例を示すブロック図であり、(B)は、制御ユニットにおけるCPUの構成の一例を示すブロック図である。 図5は、実施形態2の加工装置の制御ユニットの処理方法の工程を示すフローチャートである。 図6は、実施形態3の加工装置における制御ユニットの構成の一例を示す 図7は、実施形態3における制御ユニットの処理の一例を示すフローチャートである。 図8は、実施形態3における照射領域の設定方法を示す模式図である。 図9は、実施形態3における照射制御部によるレーザ照射ユニットの制御の例を示す模式図である。 図10は、実施形態4における加工装置の構成を示す模式図である。 図11は、実施形態4における加工装置の処理の一例を示すフローチャートである。 図12は、実施形態5における加工装置の一例を示す斜視図である。 図13は、実施形態5の加工装置における第1領域の一例を示す斜視図である。 図14は、図12におけるI-I方向からみた前記第1領域の断面図である。 図15において、(a)は、実施形態1の加工装置における培養容器配置部の一例を示す分解斜視図であり、(b)は、図15(a)におけるIII-III方向からみた断面図である。 図16は、実施形態5の加工装置において、前記第1領域の外壁を外した場合の前記第1領域および循環手段の一例を示す斜視図である。 図17は、図12におけるII-II方向からみた前記第1領域の上部および前記循環手段の断面図である。 図18において、(a)は、実施形態5の加工装置の第2領域の構成の一例を示す斜視図であり、(b)は、前記第2領域の構成の他の例を示す斜視図である。 図19は、実施形態5の加工装置の制御部の構成の一例を示すブロック図である。 図20は、実施形態5の加工装置の他の例を示す斜視図である。 図21は、実施形態3における照射領域の設定方法を示す模式図である。 図22は、実施形態3における照射領域の設定方法を示す模式図である。
 本発明において、「細胞」は、例えば、単離された細胞、細胞から構成される細胞塊(スフェロイド)、組織、または臓器を意味する。前記細胞は、例えば、培養細胞でもよいし、生体から単離した細胞でもよい。また、前記細胞塊、組織または臓器は、例えば、前記細胞から作製した細胞塊、細胞シート、組織または臓器でもよいし、生体から単離した細胞塊、組織または臓器でもよい。前記細胞は、細胞外基質(細胞外マトリックス)依存的に接着する細胞が好ましい。
 以下、本発明の加工装置および前記加工装置における加工対象の細胞培養器具について、図面を参照して詳細に説明する。ただし、本発明は、以下の説明に限定されない。なお、以下の図1~図22において、同一部分には、同一符号を付し、その説明を省略する場合がある。また、図面においては、説明の便宜上、各部の構造は適宜簡略化して示す場合があり、各部の寸法比等は、実際とは異なり、模式的に示す場合がある。
(実施形態1)
 本実施形態は、本発明の加工装置の加工対象の細胞培養器具、細胞培養器具の製造方法、および本発明の加工装置を用いた加工方法の一例である。図1は、実施形態1の培養器具100の構成を示す模式図であり、(A)は、培養器具100の模式斜視図であり、(B)は、(A)におけるI-I方向からみた培養器具100の模式断面図であり、(C)は、培養器具100の平面図である。図1に示すように、培養器具100は、細胞培養基材層11と、光熱変換層13と、細胞培養器具である容器12とを有する。本実施形態において、細胞培養基材層11は、細胞が接着可能な細胞接着領域11aから構成されている。容器12は、底面12aと、側壁12bとを有する。細胞培養基材層11は、底面12aの上に積層されている。光熱変換層13は、細胞培養基材層11と底面12aとの間に配置されている。すなわち、光熱変換層13および細胞培養基材層11は、底面12aに対してこの順番で積層されている。後述するように、本実施形態では、培養器具100に対して、光(レーザ)を照射することにより、細胞培養基材層11における細胞培養基材の接着性を変化させ、細胞の接着が阻害される細胞接着阻害領域を形成する。そして、培養器具100が、前記細胞接着阻害領域の形成後に、細胞の培養に供する。このため、培養器具100は、細胞培養前の培養器具、または細胞が積層されていない培養器具ということもできる。
 細胞培養基材層11は、細胞培養基材を含む層である。前記細胞培養基材は、例えば、細胞の培養時に細胞の足場となる物質を意味する。前記細胞培養基材は、例えば、細胞外基質(細胞外マトリックス)または細胞の足場としての機能を有する物質があげられる。前記細胞外基質は、例えば、エラスチン;エンタクチン;I型コラーゲン、II型コラーゲン、III型コラーゲン、IV型コラーゲン、V型コラーゲン、VII型コラーゲン等のコラーゲン;テネイシン;フィブリリン;フィブロネクチン;ラミニン;ビトロネクチン(Vitronectin);コンドロイチン硫酸、ヘパラン硫酸、ケラタン硫酸、デルマタン硫酸等の硫酸化グルコサミノグリカンと、コアタンパク質とから構成されるプロテオグリカン;コンドロイチン硫酸、ヘパラン硫酸、ケラタン硫酸、デルマタン硫酸、ヒアルロン酸等のグルコサミノグリカン;Synthemax(登録商標、ビトロネクチン誘導体)、Matrigel(登録商標、ラミニン、IV型コラーゲン、ヘパリン硫酸プロテオグリカン、エンタクチン/ニドゲン等の混合物)等があげられ、好ましくは、ラミニンである。前記ラミニンは、例えば、ラミニン111、ラミニン121、ラミニン211、ラミニン213、ラミニン222、ラミニン311(ラミニン3A11)、ラミニン332(ラミニン3A32)、ラミニン321(ラミニン3A21)、ラミニン3B32、ラミニン411、ラミニン421、ラミニン423、ラミニン521、ラミニン522、ラミニン523等があげられる。なお、各ラミニンにおける3つの数字は、先頭からそれぞれ、α鎖、β鎖、およびγ鎖の構成サブユニットの名前である。具体例として、ラミニン111は、α1鎖、β1鎖、およびγ1鎖から構成される。また、ラミニン3A11は、α3A鎖、β1鎖、およびγ1鎖から構成される。前記細胞培養基材は、前記タンパク質のペプチド断片または前記糖鎖の断片を含んでもよい。具体例として、前記タンパク質のペプチド断片は、例えば、ラミニンの断片があげられる。前記ラミニンの断片(フラグメント)は、例えば、前述のラミニンの断片があげられ、具体例として、ラミニン211-E8、ラミニン311-E8、ラミニン411-E8、ラミニン511-E8があげられる。前記ラミニン211-E8は、ラミニンのα2鎖、β1鎖、およびγ1鎖の断片から構成される。前記ラミニン311-E8は、ラミニンのα3鎖、β1鎖、およびγ1鎖の断片から構成される。前記ラミニン411-E8は、ラミニンのα4鎖、β1鎖、およびγ1鎖の断片から構成される。前記ラミニン511-E8は、例えば、ラミニンのα5鎖、β1鎖、およびγ1鎖の断片から構成される。
 前記細胞培養基材は、後述するように、光熱変換層13への光(レーザ)照射により、間接的に変性可能である。具体的には、前記間接的な変性は、照射された光が熱に変換され、前記熱エネルギーにより、前記細胞培養基材の構造が変化することにより生じる。すなわち、前記細胞培養基材は、前記光照射により生じた熱により変性する。
 本実施形態の培養器具100において、細胞培養基材層11は、1層であるが、複数層であってもよい。
 細胞培養基材層11は、前記細胞培養基材に加え、他の成分を含んでもよい。前記他の成分は、例えば、緩衝剤、塩、成長因子(細胞増殖因子)、サイトカイン、ホルモン等があげられる。
 本実施形態の培養器具100において、細胞培養基材層11は、光熱変換層13の上面のみに配置(形成)されているが、本発明はこれに限定されない。細胞培養基材層11は、例えば、前記細胞と接触可能な領域に配置されればよく、培養器具100において、光熱変換層13の上面に代えて、または加えて、側壁12bの内周面に配置されてもよい。また、細胞培養基材層11は、前記細胞と接触可能な領域の一部に形成されてもよいし、全部に形成されてもよい。前者の場合、細胞培養基材層11は、細胞培養時において、容器12の光熱変換層13上に形成されることが好ましい。
 細胞接着領域11aは、細胞培養基材層11において、前記細胞が接着可能な領域である。前記細胞培養基材は、例えば、未変性の状態において、前記細胞と接着可能である。このため、細胞接着領域11aは、例えば、前記細胞培養基材を未変性の状態で含む領域、すなわち、未変性の細胞培養基材を含む領域ということもできる。細胞接着領域11aに含まれる細胞培養基材は、その一部または全部が未変性の状態である。前記細胞培養基材の一部が未変性の状態の場合、例えば、細胞接着領域11aにおける細胞培養基材の50%、60%、70%、75%、80%、85%、90%、95%、96%、97%、98%、または99%以上が、未変性の状態である。前記細胞培養基材における未変性の状態または変性状態の細胞培養基材の割合は、例えば、細胞接着領域11aを回収し、得られた回収物について、非変性電気泳動(native PAGE)を実施し、バンド位置の変化に基づき、決定できる。また、細胞接着領域11aは、例えば、後述の製造方法において、光を照射していない領域ということもできる。本実施形態において、前記細胞培養基材は、光照射により、間接的に変性し、前記細胞との接着能が低下する。このため、細胞接着領域11aは、未変性の状態の細胞培養基材を含む。ただし、本発明は、これに限定されず、前記細胞培養基材は、未変性の状態で細胞との接着が阻害され、光照射により、直接または間接的に変性し、前記細胞との接着能が向上してもよい。この場合、細胞接着領域11aは、変性状態の細胞培養基材を含む。また、前記細胞培養基材は、光照射により、間接的に変性することにより、前記細胞と接着可能となる。
 容器12は、前記細胞を培養可能である。容器12において、底面12aと、側壁12bとで囲まれた空間が、前記細胞を培養可能な領域(細胞培養領域)であり、例えば、ウェルということもできる。容器12は、細胞培養容器があげられ、具体例として、基板、ディッシュ、プレート、フラスコ(細胞培養フラスコ)等があげられる。容器12の大きさ、容積、材質、接着処理の有無等は、培養器具100で培養する細胞の種類および量に応じて適宜決定できる。底面12aは、略平面状または平面状でもよいし、凹凸を有してもよい。本実施形態において、容器12は、側壁12bを有するが、側壁12bはあってもなくてもよい。容器12において側壁12bがない場合、容器12は、例えば、基板または基材ということもできる。
 容器12の材質は、特に制限されず、例えば、後述するレーザ照射ユニットにより照射されるレーザを透過する材料があげられ、具体例として、レーザを透過するプラスチック、ガラス等があげられる。プラスチックは、例えば、ポリスチレン系ポリマー、アクリル系ポリマー(ポリメタクリル酸メチル(PMMA)等)、ポリビニルピリジン系ポリマー(ポリ(4-ビニルピリジン)、4-ビニルピリジン-スチレン共重合体等)、シリコーン系ポリマー(ポリジメチルシロキサン等)、ポリオレフィン系ポリマー(ポリエチレン、ポリプロピレン、ポリメチルペンテン等)、ポリエステル系ポリマー(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等)、ポリカーボネート系ポリマー、エポキシ系ポリマー等があげられる。
 容器12は、前記細胞培養領域を1つ有するが、複数有してもよい。後者の場合、容器12は、例えば、複数のウェルを有するということもできる。また、後者の場合、複数の細胞培養領域のうち、いずれか1つに細胞培養基材層11および光熱変換層13が形成されてもよいし、複数に細胞培養基材層11および光熱変換層13が形成されてもよいし、全てに細胞培養基材層11および光熱変換層13が形成されてもよい。すなわち、容器12は、複数のウェルのうち、いずれか1ウェル、2ウェル以上または全てのウェルに細胞培養基材層11および光熱変換層13が形成されてもよい。
 本実施形態において、容器12は、蓋を含んでもよい。前記蓋は、例えば、容器12の上面を着脱可能に覆うことができる。前記蓋は、例えば、底面12aと対向するように配置される。前記蓋は、例えば、前記細胞培養容器の蓋があげられる。
 光熱変換層13は、光を熱に変換可能な層である。光熱変換層13は、例えば、光を熱に変換可能な分子(光熱変換分子)を含む。前記光熱変換分子は、例えば、後述の培養容器100の加工方法において照射する光Lの波長を吸収する色素構造(発色団)を含んだポリマー(高分子)により構成することが好ましい。前記光熱変換分子は、容器12へのコーティングが容易であることが好ましい。光Lを吸収する色素構造は、例えば、アゾベンゼン、ジアリールエテン、スピロピラン、スピロオキサジン、フルギド、ロイコ色素、インジゴ、カロチノイド(カロテン等)、フラボノイド(アントシアニン等)、キノイド(アントラキノン等)等の有機化合物の誘導体があげられる。前記ポリマーを構成する骨格は、例えば、アクリル系ポリマー、ポリスチレン系ポリマー、ポリオレフィン系ポリマー、ポリ酢酸ビニルやポリ塩化ビニル、ポリオレフィン系ポリマー、ポリカーボネート系ポリマー、エポキシ系ポリマー等があげられる。具体例として、前記光熱変換分子は、例えば、下記式(1)で表される、ポリ[メチルメタクリラート-co-(ジスパースイエロー 7 メタクリラート)]((C(C2320)があげられる。下記式(1)において、ポリマーにおけるアゾベンゼンの構造は、無置換のアゾベンゼンの他、ニトロ基、アミノ基、メチル基等で修飾した様々なバリエーションの構造を採用してもよい。下記式(1)において、mおよびnは、モル百分率である。mとnとの総和は、例えば、100モル%である。前記mおよびnは、例えば、同じでもよいし、異なってもよい。光熱変換層13は、例えば、1種類の光熱変換分子を含んでもよいし、複数種類の光熱変換分子を含んでもよい。
Figure JPOXMLDOC01-appb-C000001
 本実施形態の培養器具100において、光熱変換層13は、1層であるが、複数層であってもよい。この場合、細胞培養基材層11と底面12aとの間に、複数層の光熱変換層13が配置されることが好ましい。また、本実施形態の培養器具100において、光熱変換層13は、細胞培養基材層11と接触するように配置されているが、接触しないように配置されてもよい。この場合、光熱変換層13と細胞培養基材層11とは、熱的に接続されていればよい。具体的には、光熱変換層13と細胞培養基材層11との間には、光熱変換層13で生じた熱を細胞培養基材層11に伝導する熱伝導層が形成されている。前記熱伝導層は、例えば、金属等の熱伝導率の高い分子を含む。
 光熱変換層13は、前記光熱変換分子に加え、他の成分を含んでもよい。前記他の成分は、例えば、ポリマーの硬化剤、未重合のモノマー等があげられる。
 本実施形態の培養器具100において、光熱変換層13は、底面12aの上面のみに配置(形成)されているが、本発明はこれに限定されない。光熱変換層13は、例えば、細胞培養基材層11と隣接するように配置されればよく、例えば、容器12内に形成されてもよい。この場合、光熱変換層13は、容器12の底面12aの上面に形成されることが好ましい。
 本実施形態の培養器具100において、光熱変換層13は、底面12aの上面の全面に配置(形成)されているが、本発明はこれに限定されない。光熱変換層13は、例えば、底面12aの一部に形成されてもよい。
 本実施形態の培養器具100において、光熱変換層13は、底面12aの上面のみに配置(形成)されているが、本発明はこれに限定されない。光熱変換層13は、例えば、細胞培養基材層11と熱的に接続されるように配置されればよく、培養器具100において、底面12aの上面に代えて、または加えて、側壁12bの内周面に配置されてもよい。また、光熱変換層13は、細胞培養基材層11の一部と熱的に接続されるように形成されてもよいし、全部と熱的に接続されるように形成されてもよい。前者の場合、光熱変換層13は、細胞培養時において、容器12の底面12a上に形成されることが好ましい。
 つぎに、培養器具100の製造方法(本実施形態の製造方法)および培養器具100において細胞の接着可能な領域を制御する加工方法(本実施形態の加工方法)について、図2に基づき説明する。図2は、培養器具100の製造方法および加工方法の一例を示す模式図である。本実施形態の培養器具100の製造方法では、光熱変換層13上に、未変性の細胞培養基材を用いて、細胞培養基材層11を形成する。そして、本実施形態の加工方法では、光熱変換層13に対して、光を照射することで、光熱変換層13により光が熱に変換される。このため、本実施形態の製造方法では、光熱変換層13において発生した熱により、熱が発生した領域と隣接する細胞培養基材層11における細胞培養基材が変性し、細胞接着阻害領域11bが形成される。
 まず、本実施形態の製造方法は、図2(A)に示すように、容器12を準備する(準備工程)。容器12は、前述のように、市販品を購入してもよいし、自家調製してもよい。
 つぎに、本実施形態の製造方法は、図2(B)に示すように、容器12の底面12a上に、前記光熱変換分子を含む光熱変換層13を形成する(変換層形成工程)。光熱変換層13は、例えば、公知の膜形成方法により形成でき、具体例として、塗布法、印刷法(スクリーン法)、蒸着法、スパッタリング法、キャスト法、スピンコート法等により実施できる。具体的には、光熱変換層13は、例えば、前記色素構造含有ポリマーを含む原料液、または前記色素構造含有ポリマーを溶剤に溶解させた原料液を、スピンコート法、キャスト法等により容器12の内部、より具体的には、容器12の底面12aと接触させるように導入し、硬化することにより形成できる。前記溶剤は、例えば、1,2-ジクロロエタン、メタノール等の有機溶剤があげられる。
 つぎに、本実施形態の製造方法は、図2(C)に示すように、光熱変換層13上に、前記細胞培養基材を含む細胞培養基材層11を形成する(基材層形成工程)。これにより、本実施形態の製造方法は、細胞培養基材層11および光熱変換層13を有する容器12を準備できる。本実施形態の製造方法において、細胞培養基材層11の形成に用いる細胞培養基材は、未変性の状態の細胞培養基材である。また、前記細胞培養基材は、未変性の状態において、前記細胞と接着可能である。このため、図2(C)に示すように、形成後の細胞培養基材層11は、細胞接着領域11aから構成される。細胞培養基材層11は、例えば、公知の膜形成方法により形成でき、具体例として、塗布法、印刷法(スクリーン法)、蒸着法、スパッタリング法、キャスト法、スピンコート法等により実施できる。前記細胞培養基材がタンパク質等の生体高分子の場合、細胞培養基材層11の形成方法は、前記細胞培養基材の変性を抑制できることから、塗布法が好ましい。この場合、細胞培養基材層11は、例えば、未変性の細胞培養基材を含む溶媒を容器12の内部に導入し、静置することに形成してもよい。前記溶媒は、例えば、水性溶媒があげられ、好ましくは、水である。静置時間は、例えば、30分~1日である。静置時の温度は、例えば、4~40℃である。前記細胞培養基材がラミニン511-E8であり、コーティング濃度が0.5μg/cmの場合、前記静置時間は、例えば、1時間以上であり、静置時の温度は、約37℃(35~39℃)である。そして、前記静置後、前記基材層形成工程では、前記未変性の細胞培養基材を含む溶媒を除去する。前記溶媒の除去後、容器12は、その内部を、前記細胞培養基材を含まない溶媒で洗浄してもよい。
 つぎに、本実施形態の培養器具100について、光(レーザ)照射により、細胞が接着可能な領域を規定する。前記光照射は、後述の本発明の加工装置を用いて実施する。本実施形態の加工方法は、図2(D)に示すように、細胞培養基材層11および光熱変換層13を有する容器12(細胞培養器具)に光Lを照射し、前記細胞培養基材を変性させ、細胞接着阻害領域11bを形成する(阻害領域形成工程)。具体的には、前記阻害領域形成工程では、光熱変換層13に光Lを照射する、より具体的には、光熱変換層13に合焦した状態で光Lを照射する。光熱変換層13は、前述のように、光を熱に変換する光熱変換分子を含む。このため、光Lを照射された光熱変換層13は、照射された光Lが含む光エネルギーを熱エネルギーに変換する。すると、光熱変換層13において、光Lが照射された領域の温度上昇が生じ、さらに、細胞培養基材層11における、光Lが照射された領域と隣接する領域の温度が上昇し、細胞培養基材層11における前記細胞培養基材の構造が変化する。これにより、前記阻害領域形成工程では、前記細胞培養基材を変性させ、細胞接着阻害領域11bを形成する。光Lは、光熱変換層13に焦点があうように制御されることが好ましい。前記阻害領域形成工程において、細胞培養基材層11上には、前記溶媒が存在することが好ましい。本実施形態の製造方法において、前記細胞培養基材は、例えば、未変性の状態において、前記細胞と接着可能である。このため、光Lは、細胞接着阻害領域11bを形成する領域と対応(隣接)する光熱変換層13の領域に対して照射される。より具体的には、光Lは、図4(D)において、細胞接着阻害領域11bを形成する領域の直下に存在する、光熱変換層13の対応する領域に対して照射される。
 光Lの波長は、光熱変換層13が含む光熱変換分子の吸収波長に応じて適宜設定できる。光Lの波長は、例えば、前記紫外光、前記可視光、または前記赤外光である。具体例として、前記式(1)のポリマーの場合、光Lの波長は、例えば、390~420nmである。前記光は、細胞接着阻害領域11bを精密に形成できることから、レーザ光が好ましい。光Lのスポット径(ビーム幅)は、例えば、光Lのエネルギー量に応じて適宜設定でき、光Lのエネルギー量が相対的に少ない場合、スポット径は、相対的に小さく設定し、光Lのエネルギー量が相対的に多い場合、スポット径は、相対的に大きく設定する。光Lのスポット径は、例えば、10~200μmである。光Lのエネルギー量(出力)は、例えば、光熱変換層13における光Lの照射部と対応(隣接)する細胞培養基材層11の細胞培養基材が変性するエネルギー量であり、前記細胞培養基材の種類および前記光熱変換分子の種類に応じて、適宜設定できる。光Lのエネルギー量は、細胞培養基材層11に積層する細胞が致死する温度が好ましく、具体例として、細胞培養基材層11における光Lの照射部の細胞培養基材の温度が、50℃以上、60℃以上、70℃以上、80℃以上、90℃以上、好ましくは、100℃以上、110℃以上、120℃以上となるエネルギー量である。前記温度の上限は、例えば、200℃である。前記阻害領域形成工程では、光熱変換層13の温度が、例えば、前記細胞培養基材の温度の例示となるように、光Lを照射してもよい。光Lの走査速度は、例えば、スポット径および光Lのエネルギー量に応じて適宜設定でき、スポット径の単位面積当たり光エネルギー量が相対的に低い場合、光Lの走査速度は相対的に遅く設定し、スポット径の単位面積当たり光エネルギー量が相対的に高い場合、光Lの走査速度は相対的に速く設定する。具体例として、光Lの走査速度は、例えば、100mm/秒以下である。光Lが可視光レーザ(405nm)であり、スポット径が45μmであり、光Lの走査速度が、80mm/秒である場合、光Lのエネルギー量は、約0.5W(0.3~0.7W)である。
 細胞接着阻害領域11bは、前記細胞の接着が阻害される領域である。前述のように、前記細胞培養基材は、例えば、未変性の状態において、前記細胞と接着可能である。このため、細胞接着阻害領域11bは、例えば、前記細胞培養基材を変性状態で含む領域、すなわち、前記細胞培養基材の熱変性物を含む領域ということもできる。細胞接着阻害領域11bに含まれる細胞培養基材は、その一部または全部が変性状態である。前記細胞培養基材の一部が変性状態の場合、例えば、細胞接着阻害領域11bにおける細胞培養基材の50%、60%、70%、75%、80%、85%、90%、95%、96%、97%、98%、または99%以上が、変性状態である。また、細胞接着阻害領域11bは、例えば、光Lを照射した領域ということもできる。細胞接着阻害領域11bは、例えば、細胞接着領域11aと比較して、前記細胞の接着が低下している領域である。具体的には、細胞接着阻害領域11bは、例えば、単位面積あたりの細胞の接着数が、細胞接着領域11aにおける単位面積あたりの細胞の接着数と比較して、30%、40%、50%、60%、70%、75%、80%、85%、90%、95%、96%、97%、98%、または99%以上、好ましくは、100%低下している。前記単位面積あたりの細胞数の接着数は、例えば、各領域における細胞培養基材の状態以外の条件を同一とした試験により取得する。前記試験に用いる細胞は、iPS細胞(induced pluripotent stem cells)が好ましい。この場合、前記試験における培養条件は、iPS細胞が未分化状態を維持する条件である。本実施形態において、前記細胞培養基材は、光照射により、間接的に変性し、前記細胞との接着能が低下する。このため、細胞接着阻害領域11bは、変性状態の細胞培養基材を含む。ただし、本発明は、これに限定されず、前記細胞培養基材は、未変性の状態で細胞との接着が阻害され、光照射により、間接的に変性し、前記細胞との接着能が向上してもよい。この場合、細胞接着阻害領域11bは、未変性の状態の細胞培養基材を含む。また、前記細胞培養基材は、光照射を実施しない状態で、前記細胞の接着を阻害する。
 そして、本実施形態の加工方法では、図2(E)に示すように、細胞接着領域11aおよび細胞接着阻害領域11bを有する培養器具100が、作製される。本実施形態の製造方法において、前記細胞培養基材は、未変性の状態において、前記細胞と接着可能であるため、前記阻害領域形成工程では、光Lを、細胞接着阻害領域11bを形成する領域と隣接する光熱変換層13に対して照射される。ただし、本発明はこれに限定されず、前記阻害領域形成工程では、光Lは、細胞接着領域11aを形成する領域と隣接する光熱変換層13に対して照射されてもよい。この場合は、前記細胞培養基材は、変性状態において、前記細胞と接着可能である。
 本実施形態では、光熱変換層13を利用して、効率よく光エネルギーを熱エネルギーに変換できる。このため、本実施形態では、細胞培養基材層11において、光熱変換層13の光Lが照射された領域と隣接する領域の細胞培養基材を効率よく変性できる。このため、後述する本発明の加工装置は、本実施形態の培養器具100について、細胞の接着可能な領域を制御できる。
(実施形態2)
 本実施形態は、加工装置の一例である。図3に、本実施形態の加工装置の構成の一例を示す。図3は、本実施形態の加工装置の構成の一例を示す斜視図である。図3に示すように、本実施形態の加工装置200は、レーザ照射ユニット21と、制御ユニット22とを備える。レーザ照射ユニット21は、レーザ出射部21a、光ファイバ21b、およびレーザ光源21cを備える。制御ユニット22は、レーザ照射ユニット21と接続さており、より具体的には、レーザ照射ユニット21のレーザ出射部21aおよびレーザ光源21cに接続されている。
 本実施形態の加工装置200において、レーザ照射ユニット21は、レーザ出射部21a、光ファイバ21b、およびレーザ光源21cを含むが、レーザ照射ユニット21は、これに限定されず、培養器具100の光熱変換層13にレーザを照射可能であればよい。レーザ照射ユニット21は、例えば、レーザ光源21cを含み、レーザ光源21cから直接的に培養器具100の光熱変換層13にレーザを照射してもよい。また、レーザ光源21cのレーザをレーザ出射部21aに導光する場合、光ファイバ21bに代えて、ミラー、MEMS(Micro Electro Mechanical Systems)等の導光ユニットを用いて、導光してもよいが、レーザ光源21cの配置を自由に設定でき、加工装置200の大きさを小さくでき、かつ他の導光ユニットと比較して加工装置200の重量を低減できることから、光ファイバ21bが好ましい。
 また、本実施形態の加工装置200において、レーザ出射部21aは、例えば、レーザ移動ユニット(図示せず)により、そのレーザLの照射位置を移動可能に構成されるが、レーザ照射ユニット21は、例えば、ガルバノミラーおよびfθレンズを用いて、レーザLの照射位置を移動可能に構成してもよい。前記レーザ移動ユニットについては、後述の説明を援用できる。
 レーザ光源21cは、例えば、連続波レーザまたはパルスレーザを発振する装置である。レーザ光源21cは、例えば、連続波に近い、パルス幅の長い高周波レーザでもよい。レーザ光源21cから発振されるレーザの出力は、特に制限されず、例えば、前述の光熱変換層13における光熱変換分子の吸収波長に応じて、適宜決定できる。レーザ光源21cが発振するレーザの波長は、特に制限されず、例えば、405nm、450nm、520nm、532nm、808nm等の可視光レーザ、赤外線レーザ等があげられる。具体例として、レーザ光源331は、波長が405nm近傍にある最大出力5Wの連続波ダイオードレーザがあげられる。
 制御ユニット22は、レーザ照射ユニット21を制御する。図4に、制御ユニット22のハードウェア構成を示すブロック図を例示する。図4に示すように、制御ユニット22は、中央演算装置(CPU)22a、メインメモリ22b、補助記憶デバイス22c、ビデオコーデック22d、I/Oインターフェイス22e等を含み、これらがコントローラ(システムコントローラ、I/Oコントローラ等)22fにより制御され、連携動作する。各部材は、例えば、バスを介して接続されている。補助記憶デバイス22cは、フラッシュメモリ、ハードディスクドライブ等の記憶ユニットがあげられる。ビデオコーデック22dは、CPU22aより受けた描画指示をもとに表示する画面を生成し、その画面信号を、例えば、加工装置200外の表示装置等に向けて送信するGPU(Graphics Processing Unit)、画面および画像のデータを一時的に記憶しておくビデオメモリ等を含む。I/O(input-output)インターフェイス22eは、レーザ出射部21aおよびレーザ光源21cと通信可能に接続してこれらを制御するためのデバイスである。I/Oインターフェイス22eは、サーボドライバ(サーボコントローラ)を含んでもよい。また、I/Oインターフェイス22eは、例えば、加工装置200外の入力装置と接続してもよい。表示装置は、映像により出力するモニター(例えば、液晶ディスプレイ(LCD)、ブラウン管(CRT)ディスプレイ等の各種画像表示装置等)等があげられる。入力装置は、作業者が手指で操作可能なタッチパネル、トラックパッド、マウス等のポインティングデバイス、キーボード、押下ボタン等があげられる。制御ユニット22が実行するプログラムは、補助記憶デバイス22cに記憶されている。前記プログラムは、実行時にメインメモリ22bに読み込まれ、CPU22aによって解読される。そして、制御部22は、プログラムに従い、各部材を制御する。
 CPU22aは、例えば、コントローラ22f(システムコントローラ、I/Oコントローラ等)等により、他の構成と連携動作し、加工装置200の全体の制御を担う。制御ユニット22において、CPU22aにより、例えば、前記プログラムおよびその他のプログラムが実行され、また、各種情報の読み込みや書き込みが行われる。具体的には、図4(B)に示すように、CPU22aが、例えば、設定部221および照射制御部222として機能する。制御ユニット22は、演算装置として、CPUを備えるが、GPU(Graphics Processing Unit)、APU(Accelerated Processing Unit)等の他の演算装置を備えてもよいし、CPUとこれらとの組合せを備えてもよい。なお、CPU22aは、例えば、後述する取得部等の各部、ならびに実施形態3および4における記憶部以外の各部として機能する。
 メインメモリ22bは、主記憶装置ともいう。CPU22aが処理を行う際には、例えば、後述する補助記憶デバイス22cに記憶されている前記プログラム等の種々の動作プログラムを、メインメモリ22bが読み込む。そして、CPU22aは、メインメモリ22bからデータを読み出し、解読し、前記プログラムを実行する。メインメモリ22bは、例えば、RAM(ランダムアクセスメモリ)である。メインメモリ22bは、例えば、さらに、ROM(読み出し専用メモリ)を含む。
 補助記憶デバイス22cには、前記プログラムを含む動作プログラムが格納されている。補助記憶デバイス22cは、例えば、記憶媒体と、前記記憶媒体に読み書きするドライブとを含む。前記記憶媒体は、特に制限されず、例えば、内蔵型でも外付け型でもよく、HD(ハードディスク)、FD(フロッピー(登録商標)ディスク)、CD-ROM、CD-R、CD-RW、MO、DVD、フラッシュメモリ、メモリーカード等があげられ、前記ドライブは、特に制限されない。補助記憶デバイス22cは、例えば、前記記憶媒体と前記ドライブとが一体化されたハードディスクドライブ(HDD)であってもよい。制御ユニット22が、例えば、前記記憶部を含む場合、補助記憶デバイス22cは、前記記憶部として機能する。
 つぎに、本実施形態の加工装置200の制御ユニット22によるレーザ照射ユニット21の制御方法について、図5のフローチャートを用いて説明する。図5は、制御ユニット22の処理(S1~S2)の一例を示すフローチャートである。
 まず、S1工程において、設定部221は、培養器具100において、レーザLを照射する照射領域を設定する(設定工程)。具体的には、設定部221は、培養器具100の底面12aの各座標と、レーザ照射ユニット21のレーザLの照射の有無の情報とを紐付ける。前記座標は、例えば、底面12aを含む平面において、座標平面を設定することで取得できる。前記座標平面は、例えば、底面12aを含む平面において、一方向の軸(X軸)と、前記X軸方向の直交方向の軸(Y軸)とを設定することにより設定できる。前記座標平面における中心位置は、例えば、底面12a内に設定してもよいし、底面12a外に設定してもよい。S1工程において、設定される照射領域の形状は、特に制限されず、任意の形状とできる。なお、本実施形態では、設定部221が、直接的に照射領域を設定する場合を例にあげて説明するが、設定部221は、レーザLを照射しない非照射領域を設定することにより、間接的に照射領域を設定してもよいし、照射領域および非照射領域の両者を設定してもよい。
 前記照射領域は、例えば、予め設定されてもよいし、加工装置200の使用時に設定されてもよい。前記照射領域が予め設定されている場合、前記照射領域の情報(照射領域情報)は、例えば、補助記憶デバイス22cに記憶されている。このため、設定部221は、補助記憶デバイス22cに記憶された照射領域の情報を利用して、レーザLを照射する照射領域を設定する。
 前記照射形状が使用時に設定される場合、制御ユニット22は、例えば、前記照射領域が規定された照射領域情報を取得する取得部を備えてもよい。この場合、本実施形態の制御方法は、S1工程に先立ち、前記取得部により、前記照射領域が規定された照射領域情報を取得する工程を含む。そして、S1工程では、設定部221が、前記照射領域情報に基づき、レーザLを照射する照射領域を設定する。
 前記取得部は、前記照射領域が規定されていない情報を取得し、前記照射領域が規定されていない情報を用いて前記照射領域を規定することにより、前記照射領域情報を取得できる。前記照射領域が規定されていない情報は、例えば、前記細胞培養器具の全面または一部の画像(画像データ);前記細胞培養器具の大きさ、容積、材質、接着処理の有無等の細胞培養器具の情報(識別情報);等があげられる。
 前記照射領域が規定されていない情報が前記細胞培養器具の全面または一部の画像である場合、前記取得部は、前記細胞培養器具において生じる不明瞭な領域を前記画像から判別して、前記照射領域として設定することにより、前記照射領域情報を取得してもよい。具体例として、前記細胞培養器具を撮像した際に生じるメニスカスに起因する不明瞭な領域を前記照射領域として設定する場合、加工装置200は、一例として以下のように、照射領域を設定できる。なお、前記メニスカスは、前記細胞培養器具と前記細胞培養器具内に導入された液体との境界部に形成される液面の屈曲を意味する。また、前記不明瞭な領域は、例えば、前記細胞培養器具と前記細胞培養器具内に導入された液体との境界部に形成される液面の屈曲により、前記境界部から前記細胞培養器具の中心方向に向かって生じる、コントラストの低下または輝度値の増加が生じる領域を意味する。具体例として、前記画像が位相差顕微鏡により取得された位相差像を含む画像の場合、前記不明瞭な領域は、前記細胞培養器具と前記細胞培養器具内に導入された液体との境界部に形成される液面の屈曲により、前記境界部から前記細胞培養器具の中心方向に向かって存在する位相のずれが生じた状態で撮像された領域を意味する。
 まず、前記取得部は、前記照射領域を含む画像、または前記照射領域を含む可能性がある画像を取得する。前記画像は、例えば、位相差顕微鏡等の光学観察装置により取得できる。前記画像は、前記細胞培養器具の全面または一部を含む画像であり、好ましくは、前記細胞培養器具の全面を含む画像である。つぎに、前記取得部は、前記画像から前記不鮮明な領域を抽出する。具体的には、前記取得部は、前記画像の各画素の輝度値および/または一定の大きさの領域に存在する各画素のコントラストと、閾値とを比較し、前記画素または領域が、前記メニスカスによる影響を受けているかを判断する。そして、前記取得部は、前記輝度値が前記閾値以下の場合、および/または前記コントラストが前記閾値を超えていえる場合、前記画素または領域は、前記メニスカスによる影響を受けていない、すなわち、明瞭な領域であると判定する。つぎに、前記取得部は、前記明瞭な領域について、レーザLを照射しないとの情報と紐付ける、またはレーザLを照射するとの情報と紐付けない。他方、前記取得部は、前記輝度値が閾値を超える場合、および/または前記コントラストが前記閾値以下である場合、前記画素または領域は、前記メニスカスによる影響を受けている、すなわち、不明瞭な領域であると判定する。そして、前記取得部は、前記不明瞭な領域について、レーザLを照射するとの情報と紐付ける、またはレーザLを照射しないとの情報と紐付けない。これにより、前記取得部は、前記照射領域が規定された照射領域情報を取得できる。前記閾値は、例えば、ユーザにより指定されてもよいし、液体が導入された細胞培養器具を撮像した画像を用いて予め設定してもよい。
 前記照射領域が規定されていない情報が前記細胞培養器具の全面または一部の画像である場合、前記取得部は、例えば、前記細胞培養器具を含む画像から前記細胞培養器具を識別し、識別された細胞培養器具の情報から前記照射領域が規定された照射領域情報を取得してもよい。具体例として、前記細胞培養器具を撮像した際に生じるメニスカスに起因する不明瞭な領域を前記照射領域として設定する場合、加工装置200は、一例として以下のように、照射領域を設定できる。まず、前記取得部は、前記細胞培養器具を含む画像を取得する。前記画像は、例えば、位相差顕微鏡等の光学観察装置により取得できる。前記画像は、前記細胞培養器具の全面または一部を含む画像であり、好ましくは、前記細胞培養器具の全面を含む画像である。
 つぎに、前記取得部は、前記画像から前記細胞培養器具が存在する領域を抽出する。具体的には、前記取得部は、前記画像から、前記画像に含まれる細胞培養器具の種類を識別(特定)する。前記識別方法は、前記画像から前記細胞培養器具の大きさ、厚み、材質等の細胞培養器具の情報を抽出し、各種細胞培養器具と各細胞培養器具の情報との情報が紐付けられたデータベースと照合することにより実施してもよい。前記データベースは、加工装置200外のデータベースでもよいし、補助記憶デバイス22c内にデータを格納し、データベースとして用いてもよい。また、前記識別方法は、前記画像と、各種細胞培養器具の画像とをテンプレートマッチング等の画像処理により照合することにより実施してもよい。そして、前記取得部は、照合の結果得られた細胞培養器具を前記画像における細胞培養器具として識別する。さらに、前記取得部は、前記識別された細胞培養器具を用いて、各種細胞培養器具と各細胞培養器具における照射領域が規定された照射領域が紐付けられたデータベースから、前記画像における細胞培養器具に対応する照射領域情報を抽出する。これにより、前記取得部は、前記細胞培養器具を含む画像から前記照射領域情報を取得できる。なお、前記細胞培養器具を含む画像から細胞培養器具の特徴を用いて前記照射領域情報を取得する場合を例にあげたが、本発明の加工装置は、これに限定されず、前記細胞培養器具または前記細胞培養器具の配置部(例えば、後述の器具配置部)に、前記細胞培養器具を識別可能な識別情報(例えば、文字、図形、QRコード(登録商標)等の識別子)が付与(配置)されている場合、前記識別情報を用いて前記照射領域情報を取得してもよい。この場合、加工装置200は、さらに前記細胞培養器具の識別情報を取得する識別情報取得部を備え、前記取得部は、前記細胞培養器具の識別情報から、前記細胞培養器具に紐付けられた照射領域情報を取得することができる。前記識別情報は、例えば、前記細胞培養器具を含む画像の取得と同様に、光学顕微鏡等の光学観察装置を用いて取得できる。加工装置200は、前記細胞培養器具を含む画像に、前記識別情報が含まれているかを判定する判定部を備えてもよい。この場合、前記判定部により、前記画像には、識別情報が含まれていないと判定された場合、前記取得部により、前記細胞培養器具を含む画像から前記照射領域情報を取得する。他方、前記判定部により、前記画像には、識別情報が含まれていると判定された場合、前記識別情報取得部により前記細胞培養器具の識別情報が取得され、前記取得部により、前記細胞培養器具の識別情報から前記照射領域情報を取得する。
 前記照射領域情報は、例えば、前記照射領域が規定された画像、ユーザにより指定された照射領域の情報等があげられる。前記照射領域が規定された画像を用いて前記照射領域を設定する場合、設定部221は、例えば、前記画像において、予め設定された条件を満たす画素について、レーザLを照射するとの情報と紐付けて、残部の画素について、レーザLを照射しないとの情報と紐付けることにより、前記照射領域を設定できる。また、設定部221は、例えば、前記画像において、予め設定された条件を満たす画素について、レーザLを照射しないとの情報と紐付けて、残部の画素について、レーザLを照射するとの情報と紐付けることにより、前記照射領域を設定してもよい。さらに、設定部221は、これらの条件とは、逆の条件で、前記照射領域を設定してもよい。前記予め設定された条件は、例えば、前記画像にける照射領域または被照射領域に基づく条件、前記画像の各画素におけるコントラストまたは輝度値に基づく条件等があげられる。この場合、設定部221は、例えば、前記画像における各画素のコントラストまたは輝度値が、コントラストまたは輝度値に基づく条件(例えば、前記閾値)を満たすか否かに基づき、照射領域か否かを判断し、前記照射領域を設定できる。
 前記ユーザにより指定された照射領域の情報を用いて前記照射領域を設定する場合、設定部221は、例えば、前記情報において、予め設定された条件を満たす領域について、レーザLを照射するとの情報と紐付けて、残部の領域について、レーザLを照射しないとの情報と紐付けることにより、前記照射領域を設定できる。また、設定部221は、例えば、前記情報において、予め設定された条件を満たす領域について、レーザLを照射しないとの情報と紐付けて、残部の領域について、レーザLを照射するとの情報と紐付けることにより、前記照射領域を設定してもよい。さらに、設定部221は、これらの条件とは、逆の条件で、前記照射領域を設定してもよい。前記ユーザは、例えば、前記照射領域を囲って指定する。このため、前記予め設定された条件は、例えば、前記ユーザにより指定された照射領域において、囲われた領域、すなわち、閉じた領域を形成しているか否かがあげられる。この場合、設定部221は、例えば、前記ユーザにより指定された照射領域の情報において、閉じた領域を形成している領域があるか否かに基づき、照射領域か否かを判断し、前記照射領域を設定できる。
 そして、S2工程において、照射制御部222は、前記照射領域に基づき、培養器具100において前記照射領域と対応する領域の光熱変換層13に対して、レーザを照射するように、レーザ照射ユニット21を制御する。照射制御部222によるレーザ照射ユニット21の制御は、例えば、光熱変換層13におけるレーザLの照射位置の制御およびレーザLの照射のON/OFFの切替え等があげられる。
 照射制御部222が、前記レーザの照射位置を制御する場合、照射制御部222は、例えば、レーザ照射ユニット21を移動可能な移動ユニットの移動の開始、停止および/または移動速度を制御することで、前記レーザの照射位置を制御できる。また、レーザ照射ユニット21がガルバノミラーおよびfθレンズを備える場合、照射制御部222は、例えば、ガルバノミラーの角度を制御することで、前記レーザの照射位置を制御できる。
 照射制御部222が前記レーザLの照射のON/OFFを制御する場合、照射制御部222は、例えば、レーザ光源21cによるレーザ光の発振のON/OFFを制御することで、前記レーザLの照射のON/OFFを制御できる。照射制御部222は、例えば、設定部221に設定された照射領域における底面12aの各座標と、各座標に紐付けられたレーザ照射ユニット21のレーザLの照射の有無の情報に基づき、前記レーザ光の発振のON/OFFを制御する。
 このようにして、制御ユニット22は、レーザ照射ユニット21による培養器具100の光熱変換層13へのレーザLの照射を制御することにより、培養器具100の細胞場用基材層11に形成される細胞接着阻害領域11bの形状を制御できる。なお、本実施形態の加工装置200では、制御ユニット22により、加工装置200全体の制御を行なったが、本発明の加工装置は、これに限定されず、レーザコントローラ等のレーザ照射ユニット21用の制御ユニットを別途設け、レーザ照射ユニット21用の制御ユニットが、照射制御部222として機能する構成としてもよい。
 本実施形態の加工装置200によれば、加工装置200のレーザの照射を制御することで、細胞培養基材層および光熱変換層を有する細胞培養器具において、細胞の接着可能な領域を簡便に制御できる。
(実施形態3)
 本実施形態は、加工装置の一例である。図6に、本実施形態の加工装置における制御ユニット22の構成の一例を示す。図6は、本実施形態の加工装置における制御ユニット22の一例を示すブロック図である。図6に示すように、本実施形態の加工装置の制御ユニット22は、設定部221および照射制御部222に加えて、取得部223、分割部224、および位置取得部225を備える以外は、実施形態2の加工装置の制御ユニット22と同様の構成であり、その説明を援用できる。本実施形態の加工装置において、CPU22aが、設定部221、照射制御部222、取得部223、分割部224、および位置取得部225として機能する。
 つぎに、本実施形態の加工装置の制御ユニット22によるレーザ照射ユニット21の制御方法について、図7のフローチャートを用い、培養器具100において、図8(A)に示す円状の非照射領域(R)と、その他の照射領域(R)に対して、本実施形態の加工装置によりレーザを照射する場合を例にあげて説明する。図7は、制御ユニット22の処理(S1~S5)の一例を示すフローチャートである。また、図8は、照射領域の設定方法を示す模式図である。
 まず、S3工程において、取得部223は、前記照射領域が規定された照射領域情報を取得する(取得工程)。具体的には、図8(A)に示す培養器具100の底面12aにおいて、レーザ照射ユニット21によりレーザLを照射される照射領域(R)と、レーザLを照射されない非照射領域(R)とを含む画像を取得する。前記画像は、例えば、前記画像を含むデータを加工装置外から取り込むことにより実施できる。
 つぎに、S1工程において、設定部221は、前記画像に基づき、照射領域を設定する。具体的には、取得部223において取得された画像について、輝度値が所定値未満または所定値以上の領域について、照射領域Rと設定する。本実施形態において、前記所定値は、例えば、グレーで示す照射領域Rと白色で示す非照射領域Rとを分別可能な値である。このため、図8(A)に示すように、設定部221は、前記所定値に基づき、グレーの領域を照射領域Rと設定する。したがって、白色の領域は、非照射領域Rと間接的に設定される。
 S4工程において、図8(B)に示すように、分割部224は、設定された照射領域Rをレーザの照射幅W(加工幅)で分割する。本実施形態において、分割部224は、照射領域Rを、図8の左右方向(以下、「X軸方向」ともいう)が長手方向の帯状となるように分割する。この結果、S4工程では、分割された照射領域(L1~L13)が、形成される。L1~L13の上下方向(以下、「Y軸方向」ともいう)の長さは、照射幅Wである。照射幅Wは、例えば、レーザ照射ユニット21のスポット径におけるY軸方向の長さということもできる。なお、L4~L8のように、分割部224が照射領域Rと非照射領域Rとにまたがる領域を分割する場合、分割された照射領域において、Y軸方向における座標が同じ領域を、1つの分割された照射領域として分割する。また、照射幅Wは、一定の長さとしているが、異なる長さとしてもよい。なお、分割された照射領域(L1~L13)の幅は、照射幅Wと同じ長さとしているが、異なる長さとしてもよい。後者の場合、分割された照射領域(L1~L13)の幅の長さは、照射幅Wの長さより、大きくしてもよい。
 つぎに、S5工程において、位置情報取得部225は、L1~L13について、分割された領域の端点の位置を取得する。具体的には、位置情報取得部225は、図8(C)においてバツ印(×)で示すように、分割された照射領域の両端の端点について、座標を取得する。前記座標は、例えば、前記X軸方向およびY軸方向に基づいて設定したXY平面上の座標である。また、L4~L8のように、分割された照射領域が非照射領域Rをまたぐように設定されている場合、図8(C)において丸(○)で示すように、位置情報取得部225は、分割された照射領域において、照射領域Rと非照射領域Rとの境界の座標を、レーザON/OFFの切替え位置として取得する。そして、位置情報取得部225は、各分割された照射領域L1~13と、対応する端点の座標およびレーザON/OFFの切替え位置とを紐付ける。
 つぎに、S2工程における照射制御部222によるレーザ照射ユニット21の制御について、図9を用いて説明する。図9は、照射制御部222によるレーザ照射ユニット21の制御の例を示す模式図であり、(A)は、培養器具100全体に対する制御の例を示す模式図であり、(B)は、L4およびL5に対する制御の例を示す模式図である。
 図9(A)に示すように、S2工程では、照射制御部222は、各分割された照射領域L1~13と、対応する端点の座標およびレーザON/OFFの切替え位置とに基づき、対応する領域の光熱変換層13に対してレーザLを照射するように、レーザ照射ユニット21を制御する。具体的には、照射制御部222は、L1の左端の端点から右端の端点に向かって、レーザ照射ユニット21がレーザLを照射するように制御する。この際に、照射制御部222は、レーザ照射ユニット21のレーザLの照射位置(座標)をあわせて取得する。レーザ照射ユニット21によるレーザLの照射がOFFの場合、レーザ照射ユニット21のレーザLの照射位置としては、レーザ照射ユニット21がレーザLを照射していた場合の仮想の照射位置について、レーザLの照射位置として取得する。なお、前記仮想の照射位置は、分割された照射領域の座標およびレーザの移動速度から算出できる。照射制御部222は、レーザ照射ユニット21の位置と、分割された照射領域の位置とが一致するかを判定してもよい。本実施形態の加工装置において、レーザ照射ユニット21は、レーザ移動ユニットに移動可能に構成されているため、照射制御部222は、レーザ移動ユニットの位置を制御することにより、レーザ照射ユニット21の位置を制御できる。このため、照射制御部222は、レーザ照射ユニット21のレーザLの照射位置として、レーザ移動ユニットの位置を取得する。L1に対するレーザLの照射終了後、照射制御部222は、レーザ照射ユニット21について、L2の右端の端点に対してレーザLを照射可能なようにレーザ照射ユニット21を制御する。そして、照射制御部222は、L2の右端の端点から左端の端点に向かって、レーザ照射ユニット21が、対応する領域の光熱変換層13にレーザLを照射するように制御する。また、同様にして、照射制御部222は、L3の左端の端点から右端の端点に向かって、レーザ照射ユニット21がレーザLを照射するように制御する。
 つぎに、照射制御部222は、L4の右端の端点から左端の端点に向かってレーザ照射ユニット21がレーザLを照射するように制御する。L4は、照射領域Rと非照射領域Rとをまたぐように設定されている。このため、図9(B)に示すように、L4は、レーザON/OFFの切替え位置を2つ含む。照射制御部222は、前述のように、レーザ照射ユニット21のレーザLの照射位置を取得している。このため、照射制御部222は、レーザ照射ユニット21のレーザLの照射位置が、レーザON/OFFの切替え位置と一致するか否かに基づき、レーザ照射ユニット21によるレーザLの照射のON/OFFの切替えを制御できる。具体的には、レーザ照射ユニット21が、L4の右端の端点から右側の丸までの領域にレーザLを照射している場合、照射制御部222は、レーザ照射ユニット21のレーザLの照射位置がレーザLの照射のON/OFFの切替え位置と一致しないと判定するため、レーザ照射ユニット21のレーザON/OFFの切替を制御しない。他方、レーザ照射ユニット21のレーザLの照射位置が、L4の右側の丸の位置に到達すると、照射制御部222は、レーザ照射ユニット21のレーザLの照射位置がレーザON/OFFの切替え位置と一致すると判定するため、レーザ照射ユニット21のレーザON/OFFの切替を制御する。この場合、レーザ照射ユニット21はレーザLを照射しているため、照射制御部222は、レーザ照射ユニット21のレーザLの照射をOFFとなるように制御する。さらに、レーザ照射ユニット21のレーザLの照射位置が、L4の左側の丸の位置に到達すると、照射制御部222は、レーザ照射ユニット21のレーザLの照射位置(レーザ照射ユニット21がレーザLを照射していた場合の仮想の照射位置)がレーザON/OFFの切替え位置と一致すると判定するため、レーザ照射ユニット21のレーザON/OFFの切替を制御する。この場合、レーザ照射ユニット21はレーザLを照射していないため、照射制御部222は、レーザ照射ユニット21のレーザLの照射をONとなるように制御する。そして、照射制御部222は、L4の左端の端点まで、レーザLを照射可能なようにレーザ照射ユニット21を制御する。照射制御部222は、同様にしてL5~L13の照射領域と対応する光熱変換層13に対して、レーザLを照射するようにレーザ照射ユニット21を制御する。なお、本実施形態においては、レーザLの走査方向を互い違い方向に順次実施したが、本発明の加工装置におけるレーザLの走査方向は、これに限定されず、同じ方向に一方向で実施してもよい。また、本実施形態においては、レーザL照射を、L1からL13まで順次実施したが、各分割された照射領域においてレーザLの照射順序は特に制限されない。
 本実施形態の加工装置200によれば、加工装置200のレーザの照射を制御することで、細胞培養基材層および光熱変換層を有する細胞培養器具において、細胞の接着可能な領域を簡便に制御できる。すなわち、本実施形態の加工装置200によれば、照射領域を制御することにより、簡便に、培養器具100における細胞接着領域11aの形状を制御できる。また、本実施形態の加工装置によれば、レーザLの照射幅に基づき照射領域を分割して、レーザLを照射できる。レーザLの照射幅は、任意の幅に調整可能であるため、例えば、レーザの照射幅を小さくすることにより、より緻密な形状とでき、また、レーザの照射幅を大きくすることにより、より短時間で多くの領域に対してレーザLを照射できる。このため、本実施形態の加工装置は、例えば、細胞接着領域11aの成形性に優れる。
 本実施形態では、加工装置の制御ユニット22がレーザ照射ユニット21を直接的に制御したが、本発明の加工装置におけるレーザ照射ユニット21の制御は、これに限定されない。前述のように、加工装置が制御ユニット22とは別にレーザ照射ユニット21用の制御ユニットを備える場合、位置情報取得部225は、各分割された照射領域L1~13と、紐付けられた対応する端点の座標およびレーザON/OFFの切替え位置とをレーザ照射ユニット21用の制御ユニットに書き込む。そして、前記レーザ照射ユニット21用の制御ユニットが、書き込まれた情報に基づき、レーザ照射ユニット21により培養器具100の光熱変換層13に対してレーザLを照射する。
 本実施形態では、照射領域Rと非照射領域Rに対して、レーザの照射位置(細胞培養器具における被照射部)を略一定速度で移動(走査)させたが、これに限定されず、本発明はこれに限定されず、照射制御部222は、照射領域Rと非照射領域Rにおいて、照射位置の移動速度を変更してもよい。具体的には、図21(A)および(B)に示すように、照射制御部22は、照射領域Rにおいては、レーザの照射位置を略一定速度で移動させるのに対して、非照射領域Rにおいては、レーザの照射位置の移動速度を加速および/または減速させてもよい。このように、照射制御部222が、照射領域Rと非照射領域Rにおいて、レーザの照射位置の移動速度を変更することにより、細胞接着領域11aの成形性を維持したまま、より高速に処理できる。また、照射制御部222は、細胞培養器具100外の領域において、レーザの照射位置の移動速度を加速および/または減速させてもよい。
 本実施形態では、分割部224により、照射領域Rと非照射領域Rとを帯状に分割したが、本発明は、これに限定されず、分割部224は、照射領域Rを任意の形状に分割してもよい。具体例として、図22(A)に示すように、分割部224は、照射領域Rを、略円状(例えば、楕円状、円状または真円状)に分割してもよいし、らせん状に分割してもよい。加工装置200は、このように照射領域Rを分割することにより、レーザの走査距離を低減できるため、より高速に処理できる。また、本実施形態では、分割部224は、照射領域Rと非照射領域Rとを一体として分割したが、本発明はこれに限定されず、照射領域Rのみを分割してもよい。具体例として、図22(A)および(B)に示すように、分割部224は、照射領域Rのみを帯状または略円状に分割してもよい。加工装置200は、このように照射領域Rを分割することにより、例えば、前述のようにメニスカスにより不明瞭な領域が生じる場合に、より高速に処理できる。
(実施形態4)
 本実施形態は、加工装置の一例である。図10に、本実施形態の加工装置300の構成を示す。図10は、本実施形態の加工装置300の構成を示す模式図であり、(A)は、本実施形態の加工装置300の構成の一例を示す斜視図であり、(B)は、制御ユニット22の一例を示すブロック図である。図10(A)に示すように、本実施形態の加工装置300は、実施形態2の加工装置200の構成に加えて、変位測定部として変位計23を備える。変位計23は、レーザ出射部21aに取付けられている。また、図10(B)に示すように、本実施形態の加工装置300において、制御ユニット22は、実施形態2の加工装置200の制御ユニット22の構成に加えて、変位調整部226を備える。この点を除き、本実施形態の加工装置300の構成は、実施形態2の加工装置200の構成と同様であり、その説明を援用できる。
 変位計23は、培養器具100までの距離を測定可能である。変位計23の測定方式は、例えば、光学式、渦電流式、超音波式、レーザフォー力ス式等を採用できる。本実施形態の加工装置300は、変位計23および変位調整部226を備えることにより、変位計23で測定された距離(変位)に基づき、変位調整部226が、レーザ出射部21aの位置を移動させ、レーザLが光熱変換層13に合焦(フォーカス)するように制御できる。これにより、本実施形態の加工装置300は、培養器具100のひずみおよび歪みの影響を抑え、所望の光エネルギーを光熱変換層13に付与できる。
 変位計23は、前述のように、培養器具100までの距離を測定可能であればよく、例えば、光学顕微鏡等の光学観察装置であってもよい。この場合、変位計23は、培養器具100の底面12aへのフォーカス機能を利用して、距離を測定でき、具体的には、変位計23は、底面12aに光学観察装置の焦点があった際の光学系の設定値から、光学観察装置から培養器具100の底面12a距離を逆算する。変位計23は、例えば、培養器具100までの高さ方向の長さ(底面12aに対する直交方向の長さ)を測定する。本実施形態において、変位計23は、レーザ出射部21aに取付けられており、レーザ出射部21aの移動と連動するが、本発明はこれに限定されず、変位計23は、レーザ出射部21a等のレーザ照射ユニット21と連動しないように配置されてもよい。この場合、変位計23は、高さ方向の位置が変動しない箇所またはXY軸方向では、レーザ照射ユニット21と連動して移動するが、高さ方向の移動は連動しない箇所に配置されることが好ましい。これにより、変位計23は、レーザ照射ユニット21の位置によらず、高さ方向において一定の位置から培養器具100までの高さを測定できる。
 つぎに、本実施形態の加工装置300による加工方法について、図11のフローチャートを用いて説明する。図11は、加工装置300の処理(S1、S2、S6およびS7)の一例を示すフローチャートである。
 まず、S6工程では、レーザ出射部21aおよび変位計23を、培養器具100の底面12aの下方に配置する。前記配置箇所は、培養器具100の中央領域の下方が好ましい。そして、S6工程では、変位計23を用いて、培養器具100の底面12aまでの距離、具体的には、高さ方向の距離を測定する。変位計23は、レーザ出射部21aに取付けられている。このため、S6工程では、レーザ出射部21aと変位計23との位置関係を考慮することで、変位計23で測定された距離に基づき、レーザ出射部21aから培養器具100の底面12aまでの高さの長さを算出する。
 つぎに、実施形態2のS1工程と同様にして、S1工程を実施する。
 S7工程では、変位調整部226は、S6工程で得られた距離に基づき、レーザ照射ユニット21の位置、具体的には、高さ方向の位置を調整する。具体的には、変位調整部226は、前述のレーザ移動ユニットを制御し、レーザ照射ユニット21が光熱変換層13にレーザLを照射した際に、光熱変換層13にレーザLの焦点が合焦するようにレーザ照射ユニット21の高さ方向の位置を調整する。レーザ照射ユニット21の高さ方向の位置に基準値が設定されている場合、変位調整部226は、前記高さ方向の基準値と、S6工程で得られた距離とに基づき、レーザ照射ユニット21の高さ方向の位置を調整してもよい。
 そして、実施形態2のS2工程と同様にして、S2工程を実施する。
 光熱変換層13でレーザLの光エネルギーを熱エネルギーに変換する場合、レーザLの焦点は、光熱変換層13に合焦していることが好ましい。培養器具100は、製品のロットにより、底面12aの位置が一定でなく、傾きまたは歪みが生じている場合がある。この場合、レーザ照射ユニット21の高さの調整を行なわないと、光熱変換層13の高さ方向の位置が、レーザLの合焦位置からずれる。この結果、レーザLの光エネルギーから熱エネルギーへの変換の効率が低下する。本実施形態の加工装置300では、培養器具100までの距離を測定し、これにより、レーザ照射ユニット21の位置を調整できるため、光熱変換層13でレーザLを合焦でき、これにより効率よく、培養器具100を加工できる。
(実施形態5)
 本実施形態は、加工装置の一例である。図12~図20に、本実施形態の加工装置の構成の一例を示す。図12は、本実施形態の加工装置の構成の一例を示す斜視図であり、図13は、本実施形態の加工装置の第1領域の構成の一例を示す斜視図であり、図14は、図12におけるI-I方向からみた前記第1領域の断面図であり、図15において、(a)は、本実施形態の加工装置における器具配置部の一例を示す分解斜視図であり、(b)は、図15(a)におけるIII-III方向からみた断面図であり、図16は、前記第1領域の外壁を外した場合における前記第1領域および循環ユニットの斜視図であり、図17は、図12におけるII-II方向からみた前記第1領域の上部および前記循環ユニットの断面図であり、図18において、(a)は、本実施形態の加工装置の第2領域の構成の一例を示す斜視図であり、(b)は、前記第2領域の構成の他の例を示す斜視図であり、図19は、本実施形態の加工装置における制御部の一例を示すブロック図であり、図20は、本実施形態の加工装置の構成の他の例を示す斜視図である。
 図12に示すように、本実施形態の加工装置400は、第1領域4と、第2領域5と、第3領域6と、循環ユニット7とを含み、第1領域4と、第2領域5と、第3領域6とが、この順番で上から下方向に連続して配置されている。本実施形態の加工装置400は、循環ユニット7を含むが、循環ユニット7は、任意の構成であり、あってもよいし、なくてもよい。また、第1領域4、第2領域5および第3領域6の位置関係は、第1領域4と第2領域5とが連続(隣接)して配置されていればよく、第3領域6は、任意の位置に配置できる。第3領域6は、例えば、図20に示すように、第1領域4と第2領域5とは別個に配置してもよい。図20に示すように、第3領域6が、第1領域4および第2領域5と別個に配置されている場合、加工装置400は、例えば、加工システムということもできる。前記加工システムは、例えば、卓上型のシステムとしてもよい。第1領域4は、第2領域5の上部に配置されていることが好ましい。培養器具100の上部から後述するレーザ照射ユニット53によりレーザを照射する場合、レーザ照射ユニット53の焦点位置を安定化させるために、培養器具100内の溶液内に、レーザ出射部532の出射口を配置する必要がある。しかしながら、この状態でレーザ照射を行なうと、前記溶液の成分が、レーザ出射部532の出射口に固着する、焼き付く等の問題が生じ、レーザ出射部532の出射口に汚れが生じる。このため、本実施形態の加工装置400のように配置することで、例えば、後述するレーザ照射ユニット53で、培養器具100内の光熱変換層13にレーザLを照射する際に、レーザ照射ユニット53のレーザ出射口の汚れを抑制できる。したがって、本発明の加工装置400によれば、例えば、レーザ照射ユニット53から出射されるレーザの出力を安定化することができ、効率よく培養器具100を処理できる。各領域の形成材料は、特に制限されず、例えば、ステンレス板、防錆処理された鉄板、真空成型、射出成型、圧空成型等による成型が可能な樹脂板等があげられる。各領域の形成材料は、後述する第2の撮像ユニットにより、培養器具100内をより明確に撮像できることから、非透光性の材料であることが好ましい。前記「非透光性」は、例えば、前記第2の撮像ユニットによる撮像に影響を与える波長の光の透過を抑制することを意味する。前記第2の撮像ユニットが蛍光顕微鏡の場合、前記光の波長は、例えば、検出する蛍光に対応する波長があげられる。具体例として、前記非透光性の材料は、例えば、前述の各領域の形成材料等があげられる。各領域の大きさおよび形状は、特に制限されず、各領域内に配置する部材(ユニット)の大きさおよび形状に応じて適宜設定できる。本実施形態の加工装置400において、第1領域4と第2領域5とは、別個の筐体で構成し、第1領域4を構成する筐体および第2領域5を構成する筐体を隣接して配置しているが、これに限定されず、第1領域4と第2領域5とを1つの筐体で構成し、1つの筐体内で、第1領域4と第2領域5とを区分けすることで構成してもよい。本実施形態の加工装置400は、第1領域4および第2領域5を別個の筐体で構成することにより、例えば、加工装置400内の各部材のメンテナンスを容易に実施でき、また、加工装置400の組み立てが容易となる。
 第1領域4は、その前面(図12において手前側)に作業用の開口部41aを含み、またその側面にメンテナンスが可能な開口部41bを含む。開口部41aは、第1領域4内の加工室内で培養器具100の加工処理に関連する作業を行なうための開口部である。開口部41bは、前記加工室のメンテナンスが可能な開口部である。開口部41aの開口面積は、例えば、メンテナンス作業が容易になることから、開口部41bの開口面積より小さいことが好ましい。開口部41aならびに開口部41bの大きさおよび数は、特に制限されず、例えば、安全キャビネットにおける作業用の開口部およびメンテナンスが可能な開口部の大きさおよび数を参照できる。具体例として、開口部41aならびに開口部41bの大きさおよび数は、例えば、EN規格であるEN12469:2000で特定される安全キャビネットの規格を参照できる。開口部41bの数は、特に制限されず、任意の数とできるが、例えば、メンテナンスがより容易となることから、2以上が好ましい。第1領域4における開口部41aおよび開口部41bの配置箇所は、特に制限されず、任意の場所とできるが、開口部41aと開口部41bとは、第1領域4の異なる場所(例えば、異なる側面)に配置することが好ましい。本実施形態において、開口部41bは、加工装置400内のメンテナンスを容易に行うことを主目的としたが、他の目的でも使用してもよい。本実施形態の加工装置400は、例えば、開口部41bから内部の各部材の動き等を観察可能とすることで、加工装置400にトラブルが発生した場合に不具合箇所を直接観察でき、対応策を検討することができる。
 第1領域4の前面の壁は、外壁および内壁を有する二重壁となっており、扉42aは、前記外壁と前記内壁との間の空間に配置されたレールを昇降することにより、開口部41aの開口を開閉する。開口部41bは、その開口を、前記開口を覆う扉42bの着脱により開閉可能である。開口部41bは、例えば、前記加工室内で培養器具100の加工処理を行なう際に、その開口が扉42bに封止されていることが好ましい。これにより、例えば、加工装置400外の気体およびそれに含まれる埃の前記加工室内への流入を防止できる。本実施形態の加工装置400において、開口部41aおよびその扉42a、ならびに開口部41bおよびその扉42bは、任意の構成であり、あってもよいし、なくてもよいし、いずれかの開口部およびその扉のみを含んでもよい。また、第1領域4の壁は、二重壁でもよいし、一重壁でもよいが、他の部材を内部に配置することで、加工装置400の大きさを小さくできることから前者が好ましい。また、第1領域4の壁が一重壁の場合、扉42aは、例えば、扉42bのように第1領域4の外部に配置される。前記扉の開閉の形式は、特に制限されず、例えば、扉42aのように昇降式でもよいし、扉42bのように外付け式でもよいし、その他の形式でもよい。前記その他の形式は、例えば、観音開き式、アコーディオン式、引き扉式等があげられる。前記扉の形成材料は、特に制限されず、例えば、前述の各領域の形成材料を援用でき、非透光性の材料が好ましい。
 図13に示すように、本実施形態の加工装置400の第1領域4の内部は、培養器具100の加工処理する加工室であり、扉42a、42bを閉めることにより閉鎖可能である、すなわち開閉可能である。前記加工室は、吸引吐出移動ユニットであるXYステージ43aおよびアーム43bと、吸引吐出ユニット44と、光源45と、排液容器配置部46aと、収容容器配置部47aと、器具配置部48と、回収容器配置部49aとを含む。本実施形態において、前記加工室は、XYステージ43a、アーム43b、吸引吐出ユニット44、光源45、排液容器配置部46a、収容容器配置部47a、および回収容器配置部49aを含むが、いずれも任意の構成であり、あってもよいし、なくてもよく、また、いずれか1つを含んでもよいし、2つ以上を含んでもよい。XYステージ43aは、前記加工室の底面に配置されており、矢印X方向および矢印Y方向に移動可能なように配置されている。XYステージ43aの上部には、一対のアームを含むアーム43bが配置されている。アーム43bの一方のアーム先端部分には、吸引吐出ユニット44が、その吸引吐出口を下方向に向けて配置されている。また、アーム43bの他方のアーム先端部分には、光源45が、下方向に光を投光(照射)可能なように配置されている。排液容器配置部46a、収容容器配置部47a、器具配置部48、および回収容器配置部49aは、前記加工室の底面において、XYステージ43aの矢印X方向の移動方向にそって、この順番で配置されている。排液容器配置部46aには、先端部材脱離ユニット46cを有する排液容器46bが配置され、収容容器配置部47aには、収容容器47bが配置され、回収容器配置部49aには、回収容器49bが配置されている。
 本実施形態の加工装置400は、吸引吐出移動ユニットとして、XYステージ43aおよびアーム43bを設けているが、前記吸引吐出移動ユニットは、これに限定されず、吸引吐出ユニット44を移動可能であればよく、例えば、公知の移動ユニットが使用できる。前記吸引吐出移動ユニットの移動方向は、特に制限されず、例えば、1方向(例えば、矢印Y方向)に移動可能でもよいし、2方向(例えば、矢印XおよびY方向)に移動可能でもよいし、3方向(例えば、矢印X、YおよびZ方向)に移動可能でもよい。2方向の場合、第1方向が、第2方向と平行でなければよく、好ましくは、前記第1方向が、前記第2方向と略直交または直交する。この場合、前記第1方向および前記第2方向を含む平面は、器具配置部48の配置面に略平行な平面であることが好ましい。また、3方向の場合、第3の方向は、例えば、前記第1方向および前記2方向を含む平面と交差すればよく、好ましくは、前記第1方向および前記2方向を含む平面と略直交または直交する。本実施形態において、XYステージ43aは、例えば、リニアモータ台車等を介して、対象物を矢印X方向および矢印Y方向に沿って高速かつ精密に移動可能な公知のものである。アーム43bは、上下方向(矢印Z方向)に伸縮可能であるが、アーム43bは、固定されていてもよい。後者の場合、前記吸引吐出移動ユニットは、前記加工室の底面に対して略平行方向な平面上のみにおいて、すなわち、図13において、矢印Xおよび矢印Y方向のみに、吸引吐出ユニット44を移動可能である。
 吸引吐出ユニット44は、例えば、培養器具100内の培地等の溶液、細胞等を吸引および吐出する。吸引吐出ユニット44は、例えば、その吸引吐出口側に、後述する先端部材を装着して使用する。吸引吐出ユニット44は、特に制限されず、例えば、公知の吸引吐出ユニットが利用でき、具体例として、電動ピペッタ、電動シリンジポンプ等があげられる。
 光源45は、例えば、器具配置部48の上部から器具配置部48に向かって、光を照射する。光源45は、例えば、後述する第2の撮像ユニットとして、位相差顕微鏡等の光学顕微鏡を使用する際に併用することが好ましい。光源45が照射する光は、例えば、可視光である。光源45は、特に制限されず、例えば、キセノン光源、LED(light emitting diode)照明、レーザーダイオード(LD)等の公知の光源があげられる。本実施形態において、光源45は、前記吸引吐出移動ユニットのアーム43bに配置され、吸引吐出ユニット44の移動と同期して移動するが、吸引吐出ユニット44と非同期して移動してもよい。具体例として、光源45は、例えば、前記吸引吐出移動ユニットとは異なる、光源45を移動可能な光源移動ユニットに配置されてもよい。この場合、後述する制御ユニット61は、光源移動ユニットの移動を制御する光源移動制御部を含んでもよい。前記光源移動ユニットの移動方向は、例えば、前記吸引吐出ユニットの移動方向の説明を援用できる。
 排液容器配置部46aは、吸引吐出ユニット44により吸引した吸引液を排液する排液容器46bを配置可能な領域である。本実施形態において、排液容器配置部46aには、排液容器46bが配置されているが、排液容器46bは、任意の構成であり、あってもよいし、なくてもよい。本実施形態において、排液容器46bは、上部開口の箱であり、収容容器配置部47a側の壁が上方向に伸びており、その上端に、半円状の凹部(切り欠き)として形成されている先端部材脱離ユニット46cを含む、前記加工室の底面に対して略平行方向な壁(上面)を有する。排液容器46bは、吸引吐出ユニット44から脱離した先端部材を回収可能であることから、例えば、先端部材回収容器ということもでき、また、排液容器配置部46aは、先端部材回収容器配置部ということもできる。先端部材脱離ユニット46cは、排液容器46bに形成されているが、別個に配置されてもよい。また、先端部材脱離ユニット46cは、吸引吐出ユニット44の近傍、具体的には、吸引吐出ユニット44が配置されている前記吸引吐出移動ユニットに配置されてもよい。
 収容容器配置部47aは、吸引吐出ユニット44に着脱可能な先端部材が収容された収容容器47bを配置可能な領域である。本実施形態において、収容容器配置部47aには、収容容器47bが配置されているが、収容容器47bは、任意の構成であり、あってもよいし、なくてもよい。前記先端部材は、特に制限されず、吸引吐出ユニット44により吸引された液体を内部に貯留可能な部材であればよく、例えば、吸引吐出ユニット44がピペッタの場合、チップがあげられる。収容容器47bは、例えば、前記チップが収容されたラックがあげられる。本実施形態の加工装置400は、先端部材脱離ユニット46cおよび収容容器配置部47aを含むことで、培養器具100内の培地等の溶液、細胞等を吸引および吐出する際の移動を簡素化(短く)できる。
 回収容器配置部49aは、吸引吐出ユニット44により回収した細胞を含む吸引液を回収する回収容器49bを配置可能な領域である。本実施形態において、回収容器配置部49aには、回収容器49bが配置されているが、回収容器49bは、任意の構成であり、あってもよいし、なくてもよい。回収容器49bは、例えば、公知のディッシュ、フラスコ等の培養容器等があげられる。
 本実施形態において、前記加工室の底面には、器具配置部48の配置面、すなわち、前記加工室の底面に対して略平行方向な平面において、XYステージ43aの長軸方向(矢印X方向)の移動方向にそって、排液容器配置部46a、収容容器配置部47a、器具配置部48、および回収容器配置部49aが、この順番で配置されているが、各配置部は、前記長軸方向にそって配置されていなくてもよく、また、この順序で配置されていなくてもよい。本実施形態において、排液容器配置部46a、収容容器配置部47a、器具配置部48、および回収容器配置部49aが、前述の順序で配置されていることにより、例えば、吸引吐出ユニット44の移動を直線的にでき、培養器具100内の培地等の溶液、細胞等を吸引および吐出する際の移動を簡素化(短く)できる。
 また、図14に示すように、本実施形態の加工装置400の前記加工室の前面側の壁には、開口部41aの上部に、第1のカメラ80、照明灯81a、81bおよび殺菌灯82を含む。第1のカメラ80の矢印X方向の両側には、照明灯81a、81bが配置されており、また、上部には、殺菌灯82が配置されている。
 本実施形態において、第1の撮像ユニットとして、カメラ80を設けているが、前記第1の撮像ユニットは、任意の構成であり、あってもよいし、なくてもよい。また、前記第1の撮像ユニットは、カメラに限定されず、前記加工室内を撮像可能であればよい。前記第1の撮像ユニットは、特に制限されず、顕微鏡、カメラ等の公知の撮像ユニットが使用でき、また公知の撮像ユニットと、CCDやCMOS(Complementary MOS)等の固体撮像素子(イメージセンサ)とを組合せたものでもよい。本実施形態において、カメラ80は、前記加工室内の前面の壁に配置されているが、カメラ80の位置は、特に制限されず、任意の位置とでき、前記加工室内の広い範囲を撮像可能なように配置することが好ましい。具体的には、本実施形態の加工装置400のように、前記加工室において、器具配置部48の奥側(図13において左上側)に、吸引吐出移動ユニットであるXYステージ43aおよびアーム43bと吸引吐出ユニット44とが配置されている場合、前記加工室内の広い範囲を撮像可能であることから、前記加工室の手前側(図13において右下側)に配置することが好ましい。前記第1の撮像ユニットは、複数の倍率(例えば、異なる倍率)で撮像可能なことが好ましいが、1つの倍率で撮像可能であってもよい。前記倍率は、例えば、撮像倍率を意味する。具体例として、カメラ80は、例えば、複数の倍率(例えば、異なる倍率)のレンズを含む。前記第1の撮像ユニットは、例えば、光学ズーム、デジタルズーム等が可能であってもよい。本実施形態の加工装置400はカメラ80を含むことで、例えば、前記加工室内の作業を確認可能であり、作業の確実性が向上する。前記加工室内に配置される第1の撮像ユニットの数は、特に制限されず、1つでもよいし、複数でもよい。
 本実施形態において、照明ユニットとして、照明灯81a、81bを設けているが、前記照明ユニットは、任意の構成であり、あってもよいし、なくてもよい。また、前記照明ユニットは、照明灯に限定されず、前記加工室内に投光(照明)可能であればよい。前記照明ユニットは、特に制限されず、例えば、蛍光灯、LED灯等の公知の照明が使用できる。本実施形態において、照明灯81a、81bは、前記加工室内の前面の壁に配置されているが、照明灯81a、81bの位置は、特に制限されず、任意の位置とでき、前記加工室内の広い範囲に投光可能、すなわち、前記加工室内に影ができにくいように配置することが好ましい。具体的には、本実施形態の加工装置400のように、前記加工室において、器具配置部48の奥側(図13において左上側)に、吸引吐出移動ユニットであるXYステージ43aおよびアーム43bと吸引吐出ユニット44とが配置されている場合、前記加工室内の広い範囲に投光可能であることから、前記加工室の手前側(図13において右下側)に配置することが好ましい。本実施形態の加工装置400は照明灯81a、81bを含むことで、例えば、前記加工室内の作業を確認可能であり、作業の確実性が向上する。前記加工室内に配置される照明ユニットの数は、特に制限されず、1つでもよいし、複数でもよい。
 本実施形態において、殺菌ユニットとして、殺菌灯82を設けているが、前記殺菌ユニットは、任意の構成であり、あってもよいし、なくてもよい。また、前記殺菌ユニットは、殺菌灯に限定されず、前記加工室内、特に、器具配置部48周囲を殺菌可能であればよい。前記殺菌ユニットは、特に制限されず、例えば、殺菌灯、紫外LED灯等の公知の殺菌ユニットが使用できる。本実施形態において、殺菌灯82は、前記加工室内の前面の壁に配置されているが、殺菌灯82の位置は、特に制限されず、任意の位置とできる。殺菌灯82の位置は、例えば、加工装置400外の埃等は、開口部41a、41bから流入することから、開口部41a、41b近傍を殺菌可能に配置されていることが好ましい。具体的には、本実施形態の加工装置400のように、前記加工室の前面側の壁に、開口部41aが設けられている場合、前記加工室の前面側の壁において、開口部41aの上部に前記殺菌ユニットを配置することが好ましい。本実施形態の加工装置400のように、前記加工室の側面側の壁に、開口部41bが設けられている場合、前記加工室の側面側の壁において、開口部41bの上部に前記殺菌ユニットを配置することが好ましい。また、加工装置400が前記照明ユニットおよび前記殺菌ユニットを含む場合、両者を前記加工室の同じ壁、例えば、開口部41aが設けられている壁に配置することが好ましい。この場合、前記殺菌ユニットを、前記照明ユニットの上方に設けることが好ましい。本実施形態の加工装置400は殺菌灯82を含むことで、例えば、前記加工室内の清浄性が向上する。前記加工室内に配置される殺菌ユニットの数は、特に制限されず、1つでもよいし、複数でもよい。
 本実施形態の第1領域4において、前記加工室の大きさ、形状、構造等は、例えば、前記安全キャビネットの大きさ、形状、構造等を参照でき、具体例として、前述のEN12469:2000で特定される安全キャビネットの規格を参照できる。
 図15に示すように、本実施形態の加工装置400の器具配置部48は、上蓋481および底部482を含み、上蓋481は、底部482に着脱可能に装着される。本実施形態において、器具配置部48は、上蓋481および底部482を含む箱であり、その内部に培養器具100が配置されているが、器具配置部48は、これに限定されず、培養器具100を配置可能であり、前記加工室において第2領域5と隣接するように配置され、かつ器具配置部48における第2領域5との隣接部(図15において、底板486)が透光可能であればよい。前記「透光」は、例えば、第2領域5のレーザ照射ユニット53から照射されるレーザが透過することを意味する。また、第2領域5が後述する第2の撮像ユニットを含む場合、前記第2の撮像ユニットが、底板486を介して撮像可能であることを意味する。上蓋481は、培養器具100に対して、光源45から光を照射可能なように、透光領域483が設けられている。透光領域483は、例えば、透明なガラス板、アクリル板等から形成される。底部482は、底壁485および透光性の底板486を含む。透光性の底板486は、例えば、透明なガラス板、アクリル板等から形成される。底板486は、第2領域5と隣接している。このため、器具配置部48の第2領域5との隣接部、すなわち、底板486は、前記加工室の壁の一部を形成しているということもできる。底板486と前記加工室の壁との接触部は、例えば、パッキン、シール材等の封止部材で封止されていることが好ましい。これにより、例えば、第2領域5内の気体およびそれに含まれる埃等が器具配置部48および前記加工室に流入することを防止できる。底壁485は、4つの培養器具100をそれぞれ配置可能な、4つの凹部487を含み、各凹部487の側面は、前記加工室の内部から前記加工室の外部方向(図15(b)において、上から下方向)に向かって狭まる逆テーパ状である。また、各凹部487は、その底板486端側において、凹部487の内側方向に突出する突出部488を含む。培養器具100は、その底部端が、突出部488と接触する。本実施形態の加工装置400において、底壁485は、4つの凹部487を有するが、底壁485が有する凹部487の数は、これに限定されず、配置する培養器具100の数に応じて適宜設定できる。凹部487の大きさは、配置する培養器具100の大きさに応じて適宜設定できる。本実施形態の器具配置部48は、凹部487が上述の構造を有することで、例えば、培養器具100の側面の形状によらず、器具配置部48に培養器具100を配置可能となる。本実施形態の加工装置400において、底壁485は、その底面の壁と、その側面の壁とが一体形成されているが、底壁485は、これに限定されず、それぞれを別部材としてもよい。底壁485を別部材で構成することにより、例えば、異なる数および大きさの凹部487を有する、複数の底壁485の底面の壁の部材を準備しておくことができる。これにより、例えば、培養器具100の大きさおよび数に応じて、培養器具100の配置に適した大きさおよび数を有する底壁485の底面の壁の部材に取替えることができ、培養器具100を好適に配置することができる。
 器具配置部48は、例えば、さらに培養器具100の温度を調整する温度調整ユニットを含んでもよい。前記温度調整ユニットを含むことにより、培養器具100内の細胞を培養する間の培養条件を一定にでき、例えば、細胞培養時の細胞へのダメージを低減できる。前記温度調整ユニットは、例えば、ヒータ等の加温ユニットがあげられる。
 器具配置部48は、例えば、さらに培養器具100内の培地等の溶液のpHを調整するpH調整ユニットを含んでもよい。前記pH調整ユニットを含むことにより、培養器具100内の細胞を培養する間の培養条件を一定にでき、例えば、細胞培養時の細胞へのダメージを低減できる。前記pH調整ユニットとしては、例えば、二酸化炭素濃度調整ユニット等があげられ、具体例として、二酸化炭素ボンベ、加工装置400外の二酸化炭素供給ユニットと接続する接続部等があげられる。
 図16および17に示すように、本実施形態の加工装置400において、循環ユニット7は、吸気部71と、循環流路72と、気体供給部73と、排気部74とを含む。これにより、循環ユニット7は、前記加工室内の気体を循環させる。
 吸気部71は、前記加工室内の気体を吸気する。吸気部71は、前記加工室内の気体に代えて、または加えて加工装置400外の気体を吸気してもよい。本実施形態において、吸気部71は、前記加工室の開口部41aの近傍(例えば、直下)に配置されている。具体的には、吸気部71は、その上面に複数の開口(例えば、スリット)が形成されており(図示せず)、前記開口が開口部41aと連通するように、開口部41aの下側に配置されている。このように、前記加工室の開口部41aの近傍に吸気部71を配置することで、例えば、扉42aを開き、作業者が前記加工室内で作業をする際に、加工装置400外の気体およびそれに含まれる埃等が前記加工室内に流入することを防止できる。吸気部71は、開口部41aに代えて、または加えて開口部41bの近傍に配置されてもよい。吸気部71は、例えば、ファン等の送風ユニットにより前記加工室内の気体を吸気してもよい。
 循環流路72は、吸気部71と気体供給部73および排気部74とを接続する。本実施形態において、循環流路72は、前記外壁と前記内壁との間の空間および第1領域4の上部に配置されている。循環流路72は、例えば、中空の筒である。また、循環流路72は、その一端が吸気部71と連通し、その他端が、気体供給部73および排気部74と連通している。本実施形態の加工装置400のように、循環流路72を、前記外壁と前記内壁との間の空間に配置することで、例えば、加工装置400の大きさを小さくできる。また、本実施形態において、循環ユニット7は、循環流路72を含むが、循環流路72はあってもよいし、なくてもよい。後者の場合、吸気部71は、例えば、気体供給部73および排気部74と直接的に接続している。循環流路72は、例えば、ファン等の送風ユニットにより、吸気部71により吸気された気体を、気体供給部73および排気部74に送風してもよい。
 循環流路72が前記送風ユニットを含む場合、前記送風ユニットは、吸気部71、気体供給部73、または排気部74の近傍に配置してもよいし、これらの中央部等のその他の位置に配置してもよいが、吸気部71からの吸気がよくなり、例えば、後述する気体供給部73により生じるダウンフローと比較して、埃等が前記加工室内に流入することをより効果的に防止できることから、吸気部71の近傍に配置することが好ましい。前記送風ユニットが吸気部71の近傍に配置される場合、前記送風ユニットは、例えば、第2領域5または第3領域6に配置されることが好ましい。具体例として、本実施形態の加工装置400において、循環流路72が、さらに前記送風ユニットを含む場合、前記送風ユニットは、第2領域5または第3領域6内において、手前側(図12における左下側)、すなわち、吸気部71の下側に配置されている。そして、この場合、循環流路72は、吸気部71と前記送風ユニットの吸気側とを接続し、かつ前記送風ユニットの送風側と気体供給部73および排気部74とを接続する。すなわち、循環流路72は、第2領域5、または第2領域5および第3領域6と、前記外壁と前記内壁との間の空間と、第1領域4の上部とに配置されている。
 気体供給部73は、吸気部71が吸気した気体の一部を前記加工室内に供給する。本実施形態において、気体供給部73は、第1領域4の上端と、吸気部71より吸気した気体を前記加工室内に供給可能なように連通されている。気体供給部73は、例えば、ファン等の送風ユニットにより気体を前記加工室内に供給してもよい。また、気体供給部73は、例えば、気体清浄化ユニットを含んでもよい。この場合、気体供給部73から前記加工室内に供給される気体は、前記気体清浄化ユニットを通過する。前記気体清浄化ユニットを含むことにより、例えば、埃等が前記加工室内に流入することを防止できる。前記気体清浄化ユニットは、例えば、HEPAフィルタ(High Efficiency Particulate Air Filter)、ULPAフィルタ(Ultra Low Penetration Air Filter)等の微粒子捕集用フィルタ等があげられる。本実施形態の加工装置400は、前記加工室の上部において気体供給部73と接続していることにより、例えば、気体供給部73からの送風によりダウンフローが生じ、これにより開口部41aから埃等が前記加工室内に流入することをより効果的に防止できる。
 排気部74は、吸気部71が吸気した気体の残部を前記加工室外、具体的には、加工装置400外に排気する。本実施形態において、排気部74は、吸気部71より吸気した気体を加工装置400の外部に排気可能なように、加工装置400の上端(最上部)に配置されている。このように排気部74を加工装置400の最上部に設けることにより、例えば、加工装置400の大きさを小さくでき、かつ排気によって舞い上がった埃が、前記加工室内に流入することを防止できる。排気部74は、例えば、ファン等の送風ユニットにより気体を加工装置400の外部に排気してもよい。また、排気部74は、例えば、前記気体清浄化ユニットを含んでもよい。この場合、排気部74から加工装置400外に排出される気体は、前記気体清浄化ユニットを通過する。前記気体清浄化ユニットを含むことにより、例えば、前記加工室内で生じた微粒子等の加工装置400外への流出を防止できる。
 本実施形態の循環ユニット7において、各部の大きさ、形状、構造等は、例えば、前記安全キャビネットの大きさ、形状、構造等を参照でき、具体例として、前述のEN12469:2000で特定される安全キャビネットの規格を参照できる。
 図18(a)に示すように、本実施形態の加工装置400において、第2領域5は、第2のXYステージ51、3種類の異なる倍率の対物レンズ521a~cを有する顕微鏡52およびレーザ照射ユニット53を含む。本実施形態の加工装置400は、XYステージ51および顕微鏡52を含むが、XYステージ51および顕微鏡52は、任意の構成であり、あってもよいし、なくてもよく、またいずれか一方を含んでもよい。XYステージ51は、器具配置部48の配置面、すなわち、前記加工室の底面と略平行な第2領域5の底面に配置されている。XYステージ51において、矢印Y方向の共通のレール(移動路)上には、2つの矢印X方向のレールが、前記共通のレール上を移動可能に配置されている。前記2つの矢印X方向のレール上には、それぞれ、台車511a、511bがレールを移動可能なように配置されている。レーザ照射ユニット53は、レーザ光源531、レーザ出射部532および光ファイバ533を含む。XYステージ51の上部には、顕微鏡52が、その対物レンズ521a~cを上方向(矢印Z方向)に向けて台車511bに、また、レーザ照射ユニット53のレーザ出射部532のレーザ出射口を上方向(矢印Z方向)に向けて、台車511aに配置されている。台車511aは、上下方向(矢印Z方向)に昇降可能である。レーザ光源531は、第2領域5において、XYステージ51の可動範囲と重ならない領域において、第2領域5の底面に配置されている。光ファイバ533は、その一端がレーザ光源531と、その他端がレーザ出射部532と、接続している。
 本実施形態の加工装置400は、レーザ移動ユニットおよび第2の撮像移動ユニットとして、XYステージ51を設けているが、前記レーザ移動ユニットおよび前記第2の撮像移動ユニットは、これに限定されず、それぞれ、レーザ照射ユニット53および後述する第2の撮像ユニットを移動可能であればよく、例えば、公知の移動ユニットが使用できる。また、本実施形態において、前記レーザ移動ユニットおよび前記第2の撮像移動ユニットは、矢印X方向(第1方向)のレールを共有しているが、前記レーザ移動ユニットおよび前記第2の撮像移動ユニットは、独立していてもよい。具体例として、図18(b)に示すように、第2領域5の底面に、前記レーザ移動ユニットは、例えば、XYステージ51aとして配置され、前記第2の撮像移動ユニットは、XYステージ51bとして配置されてもよい。前記レーザ移動ユニットおよび前記第2の撮像移動ユニットの移動方向は、特に制限されず、例えば、1方向(例えば、矢印Y方向)に移動可能でもよいし、2方向(例えば、矢印Xおよび矢印Y方向)に移動可能でもよいし、3方向(例えば、矢印X、YおよびZ方向)に移動可能でもよい。2方向の場合、第1方向が、第2方向と平行でなければよく、好ましくは、前記第1方向が、前記第2方向と略直交または直交する。この場合、前記第1方向および前記第2方向を含む平面は、器具配置部48の配置面に略平行な平面であることが好ましい。また、3方向の場合、第3の方向は、例えば、前記第1方向および前記2方向を含む平面と交差すればよく、好ましくは、前記第1方向および前記2方向を含む平面と略直交または直交する。前記レーザ移動ユニットが、例えば、器具配置部48の配置面、すなわち、培養器具100の底面に対し、略直交方向に、レーザ照射ユニット53を移動可能な場合、前記レーザ移動ユニットは、後述するスポット径を調整可能である。この場合、前記レーザ移動ユニットは、例えば、後述するスポット径調整ユニットを兼ねる。本実施形態において、XYステージ51は、例えば、リニアモータ台車等を介して、対象物を矢印X方向および矢印Y方向に沿って高速かつ精密に移動可能な公知のものである。
 前記レーザ移動ユニットおよび前記第2の撮像移動ユニットは、本実施形態のXYステージ51のように、器具配置部48の配置面に対し略平行な平面において、それぞれ、第1方向(例えば、図18(a)における矢印Y方向)に、レーザ照射ユニット53および前記第2の撮像ユニットを移動可能であり、かつ前記レーザ移動ユニットによるレーザ照射ユニット53の第1方向の移動と、前記第2の撮像移動ユニットによる第2の撮像ユニットの第1方向の移動とが、同一直線上であることが好ましい。このように、同一直線上で、レーザ照射ユニット53および前記第2の撮像ユニットが移動することで、例えば、培養器具100内を前記第2の撮像ユニットで撮像後、レーザ照射ユニット53で処理する等の加工処理を行なう際に各ユニットの移動回数を低減でき、処理時間を低減できる。また、本実施形態のXYステージ51のように、前記レーザ移動ユニットは、レーザ照射ユニット53を配置する台車511a、および台車511aが移動し、かつ前記第1方向にそって配置された移動路(レール)を含み、前記第2の撮像移動ユニットは、前記第2の撮像ユニットを配置する台車511bおよび、台車511bが移動し、かつ前記第1方向にそって配置された移動路(レール)を含み、前記レーザ移動ユニットの移動路と、前記第2の撮像ユニットの移動路が同じであることが好ましい。このように構成することにより、前記第2の撮像ユニットで撮像後、レーザ照射ユニット53で処理する等の加工処理を行なう際に各ユニットの移動回数をさらに低減でき、処理時間をさらに低減できる。
 本実施形態の加工装置400は、前記第2の撮像ユニットとして、3種類の倍率の対物レンズ521a~cを有する顕微鏡52が設けられているが、これに限定されず、器具配置部48に配置された培養器具100内を撮像可能であればよい。前記第2の撮像ユニットは、特に制限されず、顕微鏡、カメラ等の公知の撮像ユニットが使用でき、また公知の撮像ユニットと、CCDやCMOS(Complementary MOS)等の固体撮像素子(イメージセンサ)とを組合せたものでもよい。前記顕微鏡は、例えば、位相差顕微鏡、蛍光顕微鏡等の光学顕微鏡があげられる。前記顕微鏡は、例えば、前記位相差顕微鏡および前記蛍光顕微鏡の両者の機能を有してもよい。前記第2の撮像ユニットは、例えば、複数の倍率で撮像可能であることが好ましいが、1つの倍率で撮像可能でもよい。具体例として、前記第2の撮像ユニットが顕微鏡の場合、前記顕微鏡は、複数の倍率(例えば、異なる倍率)の対物レンズを含むことが好ましい。本実施形態において、対物レンズ521a~cの倍率は、例えば、それぞれ、2倍、4倍および8倍である。前記第2の撮像ユニットは、例えば、光学ズーム、デジタルズーム等が可能であってもよい。また、本実施形態の加工装置400のように、前記第1の撮像ユニットおよび前記第2の撮像ユニットを含む場合、培養器具100内をより明確に撮像できることから、前記第2の撮像ユニットの倍率は、前記第1の撮像ユニットの倍率より高倍率であることが好ましい。
 本実施形態の加工装置400において、レーザ照射ユニット53は、レーザ光源531、レーザ出射部532および光ファイバ533を含むが、レーザ照射ユニット53は、これに限定されず、器具配置部48に配置された培養器具100にレーザを照射可能であればよい。レーザ照射ユニット53は、例えば、レーザ光源531を含み、レーザ光源531から直接的に培養器具100にレーザを照射してもよい。また、レーザ光源531のレーザをレーザ出射部532に導光する場合、光ファイバ533に代えて、ミラー、MEMS(Micro Electro Mechanical Systems)等の導光ユニットを用いて、導光してもよいが、第2領域5内におけるレーザ光源531の配置を自由に設定でき、例えば、第2領域5において、前記レーザ移動ユニット、前記第2の撮像ユニット、および前記第2の撮像移動ユニット等の他のユニットが配置されておらず、また他のユニットの可動範囲と重ならない領域にレーザ光源531を配置することで、加工装置400の大きさを小さくでき、かつ他の導光ユニットと比較して加工装置400の重量を低減できることから、光ファイバ533が好ましい。
 レーザ光源531は、例えば、連続波レーザまたはパルスレーザを発振する装置である。レーザ光源531は、例えば、連続波に近い、パルス幅の長い高周波レーザでもよい。レーザ光源531から発振されるレーザの出力は、特に制限されず、例えば、光熱変換層13の光熱変換分子に応じて、適宜決定できる。レーザ光源531が発振するレーザの波長は、特に制限されず、例えば、405nm、450nm、520nm、532nm、808nm等の可視光レーザ、赤外線レーザ等があげられる。前述のように、培養器具100にレーザ吸収層を設けている場合、レーザ光源531は、例えば、前記レーザ吸収層が吸収可能な波長を発振する。具体例として、レーザ光源531は、波長が405nm近傍にある最大出力5Wの連続波ダイオードレーザがあげられる。
 レーザ照射ユニット53がレーザ出射部532を含む場合、前記レーザ移動ユニットは、レーザ出射部532を移動させることが好ましい。また、前記レーザ移動ユニットがレーザ出射部532を上下方向(図18において、矢印Z方向)に移動させる場合、レーザ出射部532のレーザ出射口が、前記加工室の底面、好ましくは、器具配置部48の底面と接触しないように移動させることが好ましい。具体例として、前記レーザ移動ユニットは、レーザ出射部532のレーザ出射口を、器具配置部48の底面を基準として、1mm以内に接近しないように移動させることが好ましい。このような範囲で、前記レーザ移動ユニットがレーザ出射部532を移動させることにより、例えば、レーザ出射部532と器具配置部48の底面との接触で生じる、器具配置部48に配置された培養器具100内の培地等の溶液の揺れを防止できる。
 本実施形態において、前記第2の撮像ユニットである顕微鏡52は、手前側(図18において、左下側)に配置され、レーザ照射ユニット53は、奥側(図18において、右上側)に配置されている。ただし、前記第2の撮像ユニットおよびレーザ照射ユニット53との位置関係は、これに限定されず、例えば、前記第2の撮像ユニットを奥側に配置し、レーザ照射ユニット53を手前側に配置してもよい。一般的に顕微鏡等の前記第2の撮像ユニットは、レーザ照射ユニット53と比較して、その体積が大きい。このため、第1領域4において器具配置部48が手前側に配置されている場合、前記第2の撮像ユニットを奥側に配置し、レーザ照射ユニット53は、手前側に配置することで、加工装置400の大きさを小さくすることができる。
 本実施形態の加工装置400は、さらに、前記レーザが被照射物の被照射部に形成するスポットの径を調整するスポット径調整ユニットを含んでもよい。前記スポット径は、前記レーザと前記被照射物との接触部におけるレーザのビーム径を意味する。前記スポット径は、例えば、レーザ照射ユニット53のレーザ集光レンズおよびコリメータレンズ(コリメーションレンズ)の少なくとも一方の切替え、またはレーザ照射ユニット53と前記被照射物との距離を変更することにより、調整できる。前者の場合、レーザ照射ユニット53は、例えば、複数のレンズを含み、前記スポット径調整ユニットは、前記レンズを変更することにより、前記スポットの径を調整することが好ましい。前記複数のレンズは、例えば、複数の集光レンズでもよいし、複数のコリメータレンズでもよいし、1以上の集光レンズと1以上のコリメータレンズとの組合せでもよい。前記複数の集光レンズは、例えば、互いに異なる焦点距離を有する。前記複数のコリメータレンズは、例えば、互いに異なる焦点距離を有する。前記レンズの変更は、例えば、手動で行なってもよいし、後述するスポット径調整制御部により、変更されてもよい。後者の場合、例えば、レンズの変更ユニットを含み、前記変更ユニットにより、レンズが変更される。また、前記スポット径調整ユニットが距離を変更する場合、前記スポット径調整ユニットは、レーザ照射ユニット53と、前記被照射物との距離を調整することにより、前記スポットの径を調整することが好ましい。レーザ照射ユニット53と、前記被照射物との距離は、例えば、器具配置部48の配置面、すなわち、培養器具100の底面に対し、略直交方向の距離を意味する。また、レーザ照射ユニット53がレーザ出射部532を含む場合、レーザ照射ユニット53と、前記被照射物との距離は、レーザ出射部532と、前記被照射物との距離を意味する。レーザ照射ユニット53と、前記被照射物との距離は、例えば、前記レーザ移動ユニットにより調整できる。具体例として、前記レーザ移動ユニットによる矢印Z方向の移動により、前記被照射物である培養器具100の底面との距離を調整できる。本実施形態の加工装置400において、前記レーザ移動ユニットであるXYステージ51の台車511aは、上下方向(矢印Z方向)に昇降可能である。このため、本実施形態におけるレーザ移動ユニットは、例えば、スポット径調整ユニットということもできる。前記スポット径調整ユニットは、例えば、小さいスポット径が好ましい加工処理を実施する場合、例えば、スポット径を小さく調整する。また、前記スポット径調整ユニットは、例えば、大きいスポット径が好ましい加工処理を実施する場合、スポット径を大きく調整する。前記スポット径の大きさは、特に制限されず、例えば、加工処理の種類に応じて、適宜設定できる。本実施形態の加工装置400はスポット径調整ユニットを含むことで、例えば、培養器具100に対して行なう加工処理時にスポット径を適切な大きさに調整することができ、迅速に加工処理を実施できる。また、適切な大きさのスポット径に調整できるため、例えば、培養器具100における細胞接着領域11aの成形性に優れる。
 本実施形態の加工装置400が前記スポット径調整ユニットを含む場合、後述する制御部が、前記スポット径調整ユニットによる前記スポットの径の調整を制御するスポット径調整制御部を含むことが好ましい。
 本実施形態の加工装置400において、前記加工室と第2領域5との間において、気体の移動が抑制されていることが好ましい。前記気体の移動の抑制は、例えば、前記加工室における第2領域5との隣接部を、前述のパッキン、シール材等の封止部材で封止することにより実施できる。このように気体の移動を抑制することで、例えば、前記気体に含まれる埃の前記加工室内への流入を防止できる。
 本実施形態の加工装置400において、第3領域6は、制御ユニット61および電源供給部62を含む。図19に示すように、制御ユニット61は、パーソナルコンピュータ、サーバコンピュータ、ワークステーション等と類似する構成を含む。図19に示すように、制御ユニット61は、中央演算装置(CPU)61a、メインメモリ61b、補助記憶デバイス61c、ビデオコーデック61d、I/Oインターフェイス61e等を含み、これらがコントローラ(システムコントローラ、I/Oコントローラ等)61fにより制御され、連携動作する。補助記憶デバイス61cは、フラッシュメモリ、ハードディスクドライブ等の記憶ユニットがあげられる。ビデオコーデック61dは、CPU61aより受けた描画指示をもとに表示する画面を生成し、その画面信号を、例えば、加工装置400外の表示装置等に向けて送信するGPU(Graphics Processing Unit)、画面および画像のデータを一時的に記憶しておくビデオメモリ等を含む。I/O(input-output)インターフェイス61eは、第1のXYステージ43aおよびアーム43b(吸引吐出移動ユニット)、吸引吐出ユニット44、カメラ80(第1の撮像ユニット)、第2のXYステージ61(レーザ移動ユニットおよび第2の撮像移動ユニット)、顕微鏡52(第2の撮像ユニット)、レーザ照射ユニット53等と通信可能に接続してこれらを制御するためのデバイスである。I/Oインターフェイス61eは、サーボドライバ(サーボコントローラ)を含んでもよい。また、I/Oインターフェイス61eは、例えば、加工装置400外の入力装置と接続してもよい。表示装置は、映像により出力するモニター(例えば、液晶ディスプレイ(LCD)、ブラウン管(CRT)ディスプレイ等の各種画像表示装置等)等があげられる。入力装置8は、作業者が手指で操作可能なタッチパネル、トラックパッド、マウス等のポインティングデバイス、キーボード、押下ボタン等があげられる。
 制御ユニット61が実行するプログラムは、補助記憶デバイス61cに記憶されている。前記プログラムは、実行時にメインメモリ61bに読み込まれ、CPU61aによって解読される。そして、制御ユニット61は、プログラムに従い、各部材を制御する。
 本実施形態において、制御ユニット61は、実施形態2の制御ユニット22の構成に加え、照射制御部、吸引吐出制御部、第1の撮像制御部、および第2の撮像制御部を含むが、前記照射制御部、前記吸引吐出制御部、前記第1の撮像制御部、および前記第2の撮像制御部は、任意の構成であり、あってもよいし、なくてもよい。本実施形態の加工装置400において、制御ユニット61は、前記照射制御部、前記吸引吐出制御部、前記第1の撮像制御部、および前記第2の撮像制御部等の機能を有することで、例えば、各部材に制御部を個別に設ける必要がなく、加工装置を小型化できる。ただし、本発明はこれに限定されず、例えば、制御ユニット61の負荷を軽減するために、各部材に制御部を設け、制御ユニット61と各部材の制御部とを協働させて、各部材を制御させてもよい。具体例として、レーザ発振等の制御は、例えば、各部材に設けられた制御部で制御し、レーザ照射ユニット53の移動は、例えば、制御ユニット61に制御させてもよい。また、制御ユニット61は、1つの半導体素子で構成してもよいし、複数の半導体素子をワンパッケージ化したチップとしてもよいし、複数の半導体素子を基板上に設けた構成としてもよい。
 本実施形態において、前記照射制御部は、レーザ照射ユニット53によるレーザ照射ならびに前記レーザ移動ユニットであるXYステージ51および台車511aによるレーザ照射ユニット53のレーザ出射部532の移動を制御するが、前記照射制御部は、いずれか一方を制御してもよい。
 本実施形態において、前記吸引吐出制御部は、吸引吐出ユニット44による吸引吐出ならびに前記吸引吐出移動ユニットであるXYステージ43aおよびアーム43bによる吸引吐出ユニット44の移動を制御するが、前記吸引吐出制御部は、いずれか一方を制御してもよい。
 本実施形態において、前記第1の撮像制御部は、前記第1の撮像ユニットであるカメラ80による前記加工室内の撮像を制御する。
 本実施形態において、前記第2の撮像制御部は、前記第2の撮像ユニットである顕微鏡52による撮像ならびに前記第2の撮像移動ユニットであるXYステージ51および台車511bによる顕微鏡52の移動を制御するが、前記第2の撮像制御部は、いずれか一方を制御してもよい。
 電源供給部62は、特に制限されず、公知の電源を使用できる。電源供給部62は、例えば、レーザ照射ユニット53、前記レーザ移動ユニット、前記第1の撮像ユニット、前記第2の撮像ユニット、前記第2の撮像移動ユニット、吸引吐出ユニット44、前記吸引吐出移動ユニット、循環ユニット7、照明ユニット、殺菌ユニット、制御ユニット61等の電力により稼働する部材(ユニット)に電力を供給する。このため、電源供給部62は、例えば、前記電力により稼働する部材(ユニット)と、電気的に接続されている。電源供給部62は、例えば、100Vの電圧で電力を供給する。これにより、例えば、一般的な電力環境においても、加工装置400が使用可能となる。本実施形態の加工装置400は、全体の電源供給を、電源供給部62に担わせることによって、各部材にそれぞれ、個別に電源供給部を設けなくてもよいので、例えば、加工装置400の小型化や軽量化を実現することができる。ただし、本発明はこれに限定されず、例えば、各ユニットの少なくとも一つに専用の電源供給部を設けてもよい。
 本実施形態の加工装置400は、さらに、第3領域6に、通信部(図示せず)を設けてもよい。前記通信部は、例えば、有線もしくは無線により、パーソナルコンピュータ、移動体通信機器等の外部の機器とデータの送受信機能またはインターネット等との接続機能を有する。前記通信部は、例えば、既存の通信モジュール等があげられる。このように通信部を設けることで、外部と加工装置400を接続できるようになるため、例えば、外部から加工装置400を操作すること、または外部からのデータを加工装置400が受信することができる。また、加工装置400内のデータを、例えば、外部から接続することで閲覧可能とすることができる。
 つぎに、本実施形態の加工装置400を用いた培養器具の加工処理について、例をあげて説明する。
 まず、殺菌灯82を消灯し、照明灯81a、81bを点灯させる。また、前記第1の撮像制御部により、カメラ80を起動させ、前記加工室内の撮像を開始する。カメラ80により撮像された前記加工室内の画像は、例えば、制御ユニット61を介して、前記表示装置に出力される。つぎに、循環ユニット7を稼働させ、前記加工室内の気体を循環させる。さらに、ユーザが、開口部41aの扉42aを開け、器具配置部48に培養器具100を配置する。前記配置後、前記作業者は、開口部41aの扉42aを閉じる。
 つぎに、前記第2の撮像制御部により、XYステージ51および台車511bが移動するよう制御され、顕微鏡52が、培養器具100の底面の下側に移動する。また、前記吸引吐出制御部により、XYステージ43aが移動するように制御され、光源45が、培養器具100の上面の上部、すなわち、器具配置部48の上部に移動する。そして、顕微鏡52により、培養器具100内の底面12aと合焦するようにフォーカスを調整し、培養器具100までの距離を測定する。顕微鏡52によるフォーカスは、例えば、異なる倍率の対物レンズ521a~cを用いて複数回行ってもよい。顕微鏡52では、経時的に画像を撮像してもよい。この場合、顕微鏡52により経時的に撮像される画像は、例えば、位相差顕微鏡により撮像された位相差顕微鏡画像、蛍光顕微鏡により撮像された蛍光顕微鏡画像等があげられる。前記撮像された画像は、例えば、制御ユニット61を介して、前記表示装置に出力される。
 ユーザが、例えば、ユーザが指定する照射領域の情報を前記入力装置により入力すると、制御ユニット61が実施形態2の制御ユニットと同様に入力された照射領域の情報に基づき、照射領域を設定する。ついで、制御ユニット61は、前記照射領域に基づき、前記照射領域と対応する領域の光熱変換層13にレーザLを照射するように、レーザ照射ユニット53を制御する。
 そして、ユーザが、開口部41aの扉42aを開け、器具配置部48から培養器具100を回収することで、実施形態の加工装置400により、加工された培養器具100を回収できる。
 本実施形態の加工装置400によれば、例えば、無菌状態または清浄空間で、細胞培養基材層および光熱変換層を有する細胞培養器具において、細胞の接着可能な領域を簡便に制御できる。
 以上、実施形態を参照して本発明を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。
 この出願は、2020年3月14日に出願された日本出願特願2020-044841を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
<付記>
 上記の実施形態および実施例の一部または全部は、以下の付記のように記載されうるが、以下には限られない。
(付記1)
細胞培養基材層および光熱変換層を有する細胞培養器具における光熱変換層に対して、レーザを照射可能なレーザ照射ユニットと、
前記レーザ照射ユニットを制御する制御ユニットとを備え、
前記制御ユニットは、設定部と、照射制御部とを備え、
前記設定部は、前記細胞培養器具において、前記レーザを照射する照射領域を設定し、
前記照射制御部は、前記照射領域に基づき、対応する領域の光熱変換層に対して、レーザを照射するように、前記レーザ照射ユニットを制御する、細胞培養器具の加工装置。
(付記2)
前記制御ユニットは、分割部を備え、
前記分割部は、前記照射領域を前記レーザの照射幅で分割し、
前記照射制御部は、分割された各照射領域に基づき、対応する領域の光熱変換層に対して、レーザを照射するように、前記レーザ照射ユニットを制御する、付記1記載の加工装置。
(付記3)
前記レーザ照射ユニットは、位置取得部を備え、
前記位置取得部は、分割された各照射領域おける端点の位置を取得し、各照射領域と紐付け、
前記照射制御部は、分割された各照射領域と、各照射領域の端点の位置とに基づき、対応する領域の光熱変換層に対して、分割された照射領域の一端の端点から他端の端点方向にレーザを照射するように、前記レーザ照射ユニットを制御する、付記2記載の加工装置。
(付記4)
前記照射制御部は、
 分割された各照射領域と、各照射領域の端点の位置とに基づき、対応する領域の光熱変換層に対して、分割された照射領域の一端の端点から他端の端点方向にレーザを照射するように、前記レーザ照射ユニットを制御し、
 つぎの分割された照射領域において、前の分割された照射領域の他端側の端点から前の分割された照射領域の一端側の端点方向にレーザを照射するように、前記レーザ照射ユニットを制御し、
 前記照射領域の全面に対して、前記制御を実施する、付記3記載の加工装置。
(付記5)
前記位置取得部は、分割された各照射領域について、レーザのONまたはOFFの切替え位置を取得し、
前記照射制御部は、
 分割された各照射領域と、各照射領域の端点の位置とに基づき、対応する領域の光熱変換層に対して、分割された照射領域の一端の端点から他端の端点方向にレーザを照射し、
 前記レーザのONまたはOFFの切替え位置に基づき、レーザの照射のONまたはOFFするように、前記レーザ照射ユニットを制御する、付記3または4記載の加工装置。
(付記6)
前記分割部は、前記照射領域を前記レーザの照射幅で略円状またはらせん状に分割する、付記2から5のいずれかに記載の加工装置。
(付記7)
前記制御ユニットは、取得部を備え、
前記取得部は、前記照射領域が規定された照射領域情報を取得し、
前記設定部は、前記照射領域情報から前記照射領域を設定する、付記1から6のいずれかに記載の加工装置。
(付記8)
前記照射領域情報は、前記照射領域が規定された画像を含み、
前記設定部は、前記照射領域が規定された画像の輝度値から前記照射領域を設定する、付記7記載の加工装置。
(付記9)
前記照射領域情報は、ユーザにより指定された照射領域の情報を含み、
前記設定部は、前記ユーザにより指定された照射領域の情報から前記照射領域を設定する、付記8記載の加工装置。
(付記10)
前記制御ユニットは、取得部を備え、
前記取得部は、
 前記細胞培養器具を含む画像を取得し、
 前記画像から前記照射領域を抽出して、前記照射領域が規定された照射領域情報を取得し、
前記設定部は、前記照射領域情報から前記照射領域を設定する、付記1から6のいずれかに記載の加工装置。
(付記11)
前記制御ユニットは、取得部を備え、
前記取得部は、
 前記画像から前記細胞培養器具を識別し、
 得られた細胞培養器具の識別情報から、前記細胞培養器具に紐付けられた照射領域情報を取得し、
前記設定部は、前記照射領域情報から前記照射領域を設定する、付記1から6のいずれかに記載の加工装置。
(付記12)
前記制御ユニットは、識別情報取得部および取得部を備え、
前記識別情報取得部は、前記細胞培養器具の識別情報を取得し、
前記取得部は、前記細胞培養器具の識別情報から、前記細胞培養器具に紐付けられた照射領域情報を取得し、
前記設定部は、前記照射領域情報から前記照射領域を設定する、付記1から6のいずれかに記載の加工装置。
(付記13)
変位測定部を備え、
前記変位測定部は、前記細胞培養器具までの距離を測定可能である、付記1から12のいずれかに記載の加工装置。
(付記14)
前記制御ユニットは、変位調整部を備え、
前記変位調整部は、前記細胞培養器具までの距離に基づき、前記レーザ照射ユニットの位置を調整する、付記13記載の加工装置。
(付記15)
第1領域、第2領域および第3領域を含み、
前記第1領域および前記第2領域は、連続して配置され、
前記第1領域は、細胞培養器具を加工する加工室であり、
前記加工室は、前記加工室外から閉鎖可能であり、かつ細胞培養器具を配置する器具配置部を含み、
前記第2領域は、前記レーザ照射ユニットを備え、かつ前記レーザ照射ユニットは、前記器具配置部に配置された細胞培養器具に対し、レーザを照射可能であり、
前記第3領域は、前記制御ユニットを含み、
前記器具配置部は、前記加工室において、前記第2領域と隣接するように配置され、
前記器具配置部における前記第2領域との隣接部は、透光可能である、付記1から14のいずれかに記載の加工装置。
(付記16)
前記加工室は、開口部と、前記開口部を開閉可能な扉を含む、付記15記載の加工装置。
(付記17)
前記扉は、非透光性である、付記16記載の加工装置。
(付記18)
前記加工室は、前記加工室内で細胞培養器具の加工に関連する作業を行なうための作業用の開口部および前記加工室のメンテナンスが可能な開口部を含み、
前記作業用の開口部と、前記メンテナンスが可能な開口部とは、前記加工室において、異なる場所に配置されている、付記16または17記載の加工装置。
(付記19)
前記作業用の開口部の開口面積は、前記メンテナンスが可能な開口部の開口面積より小さい、付記18記載の加工装置。
(付記20)
前記加工室は、さらに、前記加工室内を殺菌可能な殺菌ユニットを含み、
前記殺菌ユニットは、前記加工室において、前記作業用の開口部側に配置されている、付記18または19記載の加工装置。
(付記21)
さらに、前記加工室内の気体を循環させる循環ユニットを含み、
前記循環ユニットは、
 前記加工室内の気体を吸気する吸気部と、
 前記吸気した気体の一部を前記加工室内に供給する気体供給部と、
 前記吸気した気体の残部を前記加工室外に排気する排気部とを含む、付記15から20のいずれかに記載の加工装置。
(付記22)
前記排気部は、前記加工装置の最上部に配置される、付記21記載の加工装置。
(付記23)
付記16から20のいずれかに記載の加工装置において、
前記吸気部は、前記加工室の前記開口部近傍に配置されている、付記21または22記載の加工装置。
(付記24)
前記加工室は、外壁と内壁とを含み、
前記外壁と前記内壁との間に、前記吸気部と前記気体供給部および前記排気部とを接続する循環流路が配置される、付記21から23のいずれかに記載の加工装置。
(付記25)
前記加工室は、さらに、前記加工室内に投光可能な照明ユニットを含む、付記15から24のいずれかに記載の加工室。
(付記26)
前記加工室と前記第2領域との間において、気体の移動が抑制されている、付記15から25のいずれかに記載の加工装置。
(付記27)
前記加工室は、さらに、吸引吐出ユニットおよび前記吸引吐出ユニットを移動させる吸引吐出移動ユニットを含み、
前記制御ユニットは、前記吸引吐出ユニットによる吸引吐出および前記吸引吐出移動ユニットによる前記吸引吐出ユニットの移動を制御する吸引吐出制御部を含む、付記15から26のいずれかに記載の加工装置。
(付記28)
前記加工室は、前記吸引吐出ユニットにより吸引した吸引液を排液する排液容器を配置可能な排液容器配置部を含み、
前記細胞培養器具の配置面に対し略平行な平面における、前記吸引吐出移動ユニットの移動方向にそって、前記器具配置部および前記排液容器配置部が配置されている、付記27記載の加工装置。
(付記29)
前記加工室は、
 前記吸引吐出ユニットに着脱可能な先端部材が収容された先端部材収容容器を配置可能な収容容器配置部と、
 前記先端部材を前記吸引吐出ユニットから脱離させる先端部材脱離ユニットとを含む、付記27または28記載の加工装置。
(付記30)
前記加工室は、前記加工室内を撮像可能な第1の撮像ユニットを含み、
前記制御ユニットは、前記第1の撮像ユニットによる前記加工室内の撮像を制御する第1の撮像制御部を含む、付記15から29のいずれかに記載の加工装置。
(付記31)
前記第2領域は、前記器具配置部に配置された培養器具内を撮像可能な第2の撮像ユニットを含み、
前記制御ユニットは、前記第2の撮像ユニットによる撮像を制御する第2の撮像制御部を含み、
前記第2の撮像ユニットは、複数の倍率で撮像可能である、付記15から30のいずれかに記載の加工装置。
(付記32)
前記レーザ照射ユニットは、レーザ光源およびレーザ出射部を含み、
前記レーザ光源は、前記第2領域において、他のユニットが配置された領域以外の領域に配置される、付記15から31のいずれかに記載の加工装置。
(付記33)
前記第2領域は、
 前記器具配置部に配置された細胞培養器具を撮像可能な第2の撮像ユニットと、
 前記レーザ照射ユニットを移動させるレーザ移動ユニットと、
 前記第2の撮像ユニットを移動させる第2の撮像移動ユニットとを含み、
前記制御ユニットは、
 前記レーザ照射ユニットによるレーザ照射および前記レーザ移動ユニットによる前記レーザ照射ユニットの移動を制御する照射制御部と、
 前記第2の撮像ユニットによる撮像および前記第2の撮像移動ユニットによる前記第2の撮像ユニットの移動を制御する第2の撮像制御部を含み、
前記レーザ移動ユニットは、前記器具配置部の配置面に対し略平行な平面において、第1方向に前記レーザ照射ユニットを移動可能であり、
前記第2の撮像移動ユニットは、前記器具配置部の配置面に対し略平行な平面において、第1方向に前記第2の撮像ユニットを移動可能であり、
前記レーザ移動ユニットによる前記レーザ照射ユニットの第1方向の移動と、前記第2の撮像移動ユニットによる前記第2の撮像ユニットの第1方向の移動とが、同一直線上の移動である、付記15から32のいずれかに記載の加工装置。
(付記34)
前記レーザ移動ユニットは、前記レーザ照射ユニットを配置する台車および前記台車が移動し、かつ前記第1方向にそって配置された移動路を含み、
前記第2の撮像移動ユニットは、前記第2の撮像ユニットを配置する台車および前記台車が移動し、かつ前記第1方向にそって配置された移動路を含み、
前記レーザ移動ユニットの移動路と、前記第2の撮像移動ユニットの移動路は、同じである、付記33記載の加工装置。
(付記35)
前記レーザ移動ユニットは、さらに、前記器具配置部の配置面の略直交方向に前記レーザ照射ユニットを移動可能である、付記33または34記載の加工装置。
(付記36)
前記レーザ移動ユニットは、前記器具配置部の配置面に略平行な平面において、前記第1方向の略直交方向である第2方向に、前記レーザ照射ユニットを移動可能である、付記33から35のいずれかに記載の加工装置。
(付記37)
前記器具配置部の底面は、前記細胞培養器具を配置する凹部を含み、
前記凹部は、前記第2領域端側において、前記凹部の内側方向に突出する突出部を含み、
前記凹部の側面は、前記加工室の内部から前記加工室の外部方向に向かって狭まる逆テーパ状である、付記15から36のいずれかに記載の加工装置。
(付記38)
前記細胞培養器具内を観察(撮像)可能な観察(撮像)ユニットを備える、付記1から37のいずれかに記載の加工装置。
 本発明の加工装置によれば、細胞培養基材層および光熱変換層を有する細胞培養器具において、細胞の接着可能な領域を制御できる。このため本発明は、例えば、再生医療、創薬等の分野において、極めて有用である。

Claims (15)

  1. 細胞培養基材層および光熱変換層を有する細胞培養器具における光熱変換層に対して、レーザを照射可能なレーザ照射ユニットと、
    前記レーザ照射ユニットを制御する制御ユニットとを備え、
    前記制御ユニットは、設定部と、照射制御部とを備え、
    前記設定部は、前記細胞培養器具において、前記レーザを照射する照射領域を設定し、
    前記照射制御部は、前記照射領域に基づき、対応する領域の光熱変換層に対して、レーザを照射するように、前記レーザ照射ユニットを制御する、細胞培養器具の加工装置。
  2. 前記制御ユニットは、分割部を備え、
    前記分割部は、前記照射領域を前記レーザの照射幅で分割し、
    前記照射制御部は、分割された各照射領域に基づき、対応する領域の光熱変換層に対して、レーザを照射するように、前記レーザ照射ユニットを制御する、請求項1記載の加工装置。
  3. 前記レーザ照射ユニットは、位置取得部を備え、
    前記位置取得部は、分割された各照射領域における端点の位置を取得し、各照射領域と紐付け、
    前記照射制御部は、分割された各照射領域と、各照射領域の端点の位置とに基づき、対応する領域の光熱変換層に対して、分割された照射領域の一端の端点から他端の端点方向にレーザを照射するように、前記レーザ照射ユニットを制御する、請求項2記載の加工装置。
  4. 前記照射制御部は、
     分割された各照射領域と、各照射領域の端点の位置とに基づき、対応する領域の光熱変換層に対して、分割された照射領域の一端の端点から他端の端点方向にレーザを照射するように、前記レーザ照射ユニットを制御し、
     つぎの分割された照射領域において、前の分割された照射領域の他端側の端点から前の分割された照射領域の一端側の端点方向にレーザを照射するように、前記レーザ照射ユニットを制御し、
     前記照射領域の全面に対して、前記制御を実施する、請求項3記載の加工装置。
  5. 前記位置取得部は、分割された各照射領域について、レーザのONまたはOFFの切替え位置を取得し、
    前記照射制御部は、
     分割された各照射領域と、各照射領域の端点の位置とに基づき、対応する領域の光熱変換層に対して、分割された照射領域の一端の端点から他端の端点方向にレーザを照射し、
     前記レーザのONまたはOFFの切替え位置に基づき、レーザの照射のONまたはOFFするように、前記レーザ照射ユニットを制御する、請求項3または4記載の加工装置。
  6. 前記分割部は、前記照射領域を前記レーザの照射幅で略円状またはらせん状に分割する、請求項2から5のいずれか一項に記載の加工装置。
  7. 前記制御ユニットは、取得部を備え、
    前記取得部は、前記照射領域が規定された照射領域情報を取得し、
    前記設定部は、前記照射領域情報から前記照射領域を設定する、請求項1から6のいずれか一項に記載の加工装置。
  8. 前記照射領域情報は、前記照射領域が規定された画像を含み、
    前記設定部は、前記照射領域が規定された画像の輝度値から前記照射領域を設定する、請求項7記載の加工装置。
  9. 前記照射領域情報は、ユーザにより指定された照射領域の情報を含み、
    前記設定部は、前記ユーザにより指定された照射領域の情報から前記照射領域を設定する、請求項8記載の加工装置。
  10. 前記制御ユニットは、取得部を備え、
    前記取得部は、
     前記細胞培養器具を含む画像を取得し、
     前記画像から前記照射領域を抽出して、前記照射領域が規定された照射領域情報を取得し、
    前記設定部は、前記照射領域情報から前記照射領域を設定する、請求項1から6のいずれか一項に記載の加工装置。
  11. 前記制御ユニットは、取得部を備え、
    前記取得部は、
     前記画像から前記細胞培養器具を識別し、
     得られた細胞培養器具の識別情報から、前記細胞培養器具に紐付けられた照射領域情報を取得し、
    前記設定部は、前記照射領域情報から前記照射領域を設定する、請求項1から6のいずれか一項に記載の加工装置。
  12. 前記制御ユニットは、識別情報取得部および取得部を備え、
    前記識別情報取得部は、前記細胞培養器具の識別情報を取得し、
    前記取得部は、前記細胞培養器具の識別情報から、前記細胞培養器具に紐付けられた照射領域情報を取得し、
    前記設定部は、前記照射領域情報から前記照射領域を設定する、請求項1から6のいずれか一項に記載の加工装置。
  13. 変位測定部を備え、
    前記変位測定部は、前記細胞培養器具までの距離を測定可能である、請求項1から12のいずれか一項に記載の加工装置。
  14. 前記制御ユニットは、変位調整部を備え、
    前記変位調整部は、前記細胞培養器具までの距離に基づき、前記レーザ照射ユニットの位置を調整する、請求項13記載の加工装置。
  15. 第1領域、第2領域および第3領域を含み、
    前記第1領域および前記第2領域は、連続して配置され、
    前記第1領域は、細胞培養器具を加工する加工室であり、
    前記加工室は、前記加工室外から閉鎖可能であり、かつ細胞培養器具を配置する器具配置部を含み、
    前記第2領域は、前記レーザ照射ユニットを備え、かつ前記レーザ照射ユニットは、前記器具配置部に配置された細胞培養器具に対し、レーザを照射可能であり、
    前記第3領域は、前記制御ユニットを含み、
    前記器具配置部は、前記加工室において、前記第2領域と隣接するように配置され、
    前記器具配置部における前記第2領域との隣接部は、透光可能である、請求項1から14のいずれか一項に記載の加工装置。
PCT/JP2021/010165 2020-03-14 2021-03-12 細胞培養器具の加工装置 WO2021187383A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022508328A JPWO2021187383A1 (ja) 2020-03-14 2021-03-12
US17/911,527 US20230140027A1 (en) 2020-03-14 2021-03-12 Cell-culturing instrument-machining device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-044841 2020-03-14
JP2020044841 2020-03-14

Publications (1)

Publication Number Publication Date
WO2021187383A1 true WO2021187383A1 (ja) 2021-09-23

Family

ID=77768428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010165 WO2021187383A1 (ja) 2020-03-14 2021-03-12 細胞培養器具の加工装置

Country Status (3)

Country Link
US (1) US20230140027A1 (ja)
JP (1) JPWO2021187383A1 (ja)
WO (1) WO2021187383A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103227A1 (ja) * 2004-04-26 2005-11-03 Dai Nippon Printing Co., Ltd. 細胞培養用パターニング基板およびその製造方法
WO2011108503A1 (ja) * 2010-03-01 2011-09-09 独立行政法人科学技術振興機構 培養細胞の剥離方法及び同培養細胞の剥離方法に用いる細胞剥離装置並びに培養器
JP2014180255A (ja) * 2013-03-21 2014-09-29 Kinki Univ 細胞処理用基板
JP2017112923A (ja) * 2015-12-25 2017-06-29 株式会社Screenホールディングス 細胞剥離装置および細胞剥離方法
WO2020003883A1 (ja) * 2018-06-29 2020-01-02 株式会社片岡製作所 細胞処理装置および細胞のレーザ処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164487B (zh) * 2017-09-28 2022-04-15 株式会社片冈制作所 相位差观察装置及细胞处理装置
JP6541085B1 (ja) * 2018-06-29 2019-07-10 株式会社片岡製作所 細胞処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103227A1 (ja) * 2004-04-26 2005-11-03 Dai Nippon Printing Co., Ltd. 細胞培養用パターニング基板およびその製造方法
WO2011108503A1 (ja) * 2010-03-01 2011-09-09 独立行政法人科学技術振興機構 培養細胞の剥離方法及び同培養細胞の剥離方法に用いる細胞剥離装置並びに培養器
JP2014180255A (ja) * 2013-03-21 2014-09-29 Kinki Univ 細胞処理用基板
JP2017112923A (ja) * 2015-12-25 2017-06-29 株式会社Screenホールディングス 細胞剥離装置および細胞剥離方法
WO2020003883A1 (ja) * 2018-06-29 2020-01-02 株式会社片岡製作所 細胞処理装置および細胞のレーザ処理方法

Also Published As

Publication number Publication date
US20230140027A1 (en) 2023-05-04
JPWO2021187383A1 (ja) 2021-09-23

Similar Documents

Publication Publication Date Title
EP1882523B1 (en) selection of stem cells
JP6527273B2 (ja) 位相差観察装置および細胞処理装置
US11560540B2 (en) Cell treatment apparatus and method for treating cells with lasers
CN110291186B (zh) 细胞处理装置
WO2019064984A1 (ja) 位相差観察装置および細胞処理装置
WO2021187383A1 (ja) 細胞培養器具の加工装置
JP6541160B2 (ja) 細胞処理装置および対象物の処理方法
CN112368366B (zh) 细胞处理装置
JP6927596B2 (ja) 細胞処理装置および対象物の処理方法
CN111974470A (zh) 一种在异质衬底上实现微液滴输运的装置及方法
JP6927595B2 (ja) 細胞処理装置
WO2024166707A1 (ja) 細胞の分類に用いるための識別器の生成装置、細胞の分類に用いるための識別器、細胞分類装置、および細胞処理システム
CN108841725A (zh) 一种医用人体细胞调换方法与光镊装置
CN110487766A (zh) 荧光显微镜实时观察活细胞装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770714

Country of ref document: EP

Kind code of ref document: A1