WO2021187242A1 - Light irradiation device - Google Patents

Light irradiation device Download PDF

Info

Publication number
WO2021187242A1
WO2021187242A1 PCT/JP2021/009312 JP2021009312W WO2021187242A1 WO 2021187242 A1 WO2021187242 A1 WO 2021187242A1 JP 2021009312 W JP2021009312 W JP 2021009312W WO 2021187242 A1 WO2021187242 A1 WO 2021187242A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
irradiation device
arc tube
light irradiation
light
Prior art date
Application number
PCT/JP2021/009312
Other languages
French (fr)
Japanese (ja)
Inventor
将人 大図
法隆 竹添
一樹 有川
将志 山口
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to KR1020227026899A priority Critical patent/KR20220124745A/en
Priority to CN202180008006.1A priority patent/CN114902375A/en
Priority to JP2022508242A priority patent/JP7283629B2/en
Publication of WO2021187242A1 publication Critical patent/WO2021187242A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps

Definitions

  • the present invention relates to a light irradiation device.
  • ultraviolet light has been used for manufacturing semiconductors and liquid crystal panels and for generating ozone for air purification.
  • a light source that emits ultraviolet light for example, an excimer lamp as described in Patent Document 1 below is used.
  • ultraviolet light sources include, for example, low-pressure mercury lamps.
  • the arc tube forming these light emitting spaces is made of quartz glass, which is a material having transparency to ultraviolet light. As the temperature of quartz glass rises, its transparency to light having a short wavelength gradually decreases. Therefore, in order to maintain the irradiation amount of ultraviolet light above a certain level, the low-pressure mercury lamp is provided with a cooling mechanism so that the temperature does not rise above a predetermined temperature when lit.
  • the heat capacity of the arc tube increases as the size of the arc tube increases. Further, when the voltage applied to the electrodes is increased, the energy of the discharge is increased and the amount of ultraviolet light generated is increased, but at the same time, the amount of heat generated by the discharge is also increased. For this reason, the temperature at which the excimer lamp is lit has gradually become an issue in response to the demand for larger size and higher output.
  • Patent Documents 1 and 2 disclose a light irradiation device configured to inject cooling gas onto an excimer lamp from a side surface to cool the entire arc tube and lower the temperature at which the excimer lamp is lit. There is.
  • an object of the present invention is to provide a light irradiation device capable of cooling an excimer lamp more efficiently.
  • the light irradiation device of the present invention An excimer tube extending in the first direction and having transparency to ultraviolet light and a pair of electrodes facing each other via the wall surface of the excimer tube are provided and face each other in a second direction orthogonal to the first direction.
  • An excimer lamp having one wall surface of the wall surface of the arc tube as a light emitting surface, A pair of side wall plates extending in the first direction and facing each other via the arc tube in the first direction and the third direction orthogonal to the second direction.
  • the arc tube has a shape extending in the first direction between the arc tube and one of the side wall plates, and toward the outer wall surface of the arc tube on the side opposite to the light emitting surface.
  • a blower mechanism with an injection port that injects cooling gas An intake mechanism having an intake port extending in the first direction between the arc tube and the side wall plate on the side opposite to the ventilation mechanism in the second direction. It extends in the first direction and is arranged in the second direction on the side of the arc tube opposite to the light emitting surface so as to be separated from the arc tube, and the pair of side wall plates can be directly attached or other members can be attached. It is characterized by being provided with a partition plate that is indirectly contacted via a partition plate.
  • the ventilation mechanism is a mechanism that injects the cooling gas to be sent toward the excimer lamp.
  • the "injection port extending in the first direction” means that the openings functioning as the injection port are continuously formed in the first direction or discretely formed in the first direction. Including the case where there is.
  • the injection port only needs to be formed between the arc tube and one side wall plate in the third direction, and the entire ventilation mechanism fits between the arc tube and the side wall plate in the third direction. It doesn't have to be.
  • the intake mechanism is a mechanism that extends in the first direction and has an intake port that takes in gas around the excimer lamp.
  • the "intake port extending in the first direction” means that the openings functioning as the intake ports are continuously formed in the first direction or discretely formed in the first direction. Including the case where there is.
  • the intake port may be formed between the arc tube and the side wall plate on the side opposite to the injection port of the blower mechanism in the third direction, and the entire intake mechanism may be formed with the arc tube in the third direction. It does not have to fit between the side wall plate and the side wall plate.
  • the cooling gas hits the outer wall surface on the side opposite to the light emitting surface of the arc tube extending in the first direction over a wide range, and the entire excimer lamp is cooled.
  • the cooling gas injected from one side wall plate side toward the outer wall surface on the side opposite to the light emitting surface of the arc tube is the other side wall along the outer wall surface on the opposite side of the light emitting surface of the arc tube. It flows toward the plate side and is sucked out by the intake mechanism. Therefore, the hot gas does not remain around the excimer lamp and is cooled by the cooling gas sent one after another by the ventilation mechanism.
  • the cooling gas is injected toward the outer wall surface opposite to the light emitting surface of the arc tube, passes through the outer wall surface opposite to the light emitting surface of the arc tube, and is taken in by the intake mechanism. , It becomes difficult to go around to the light emitting surface side, and the amount of heat propagated to the irradiation target is minimized.
  • the flow rate of the cooling gas injected from the blower mechanism and the intake amount of the intake mechanism so as not to wrap around to the light emitting surface side or to draw in gas from the light emitting surface side. It is preferable that the amounts of and are substantially the same.
  • the term "almost the same" as used herein means that the flow rate of the gas that can be taken in by the intake mechanism is within ⁇ 20% of the flow rate of the cooling gas that is injected from the ventilation mechanism within a predetermined time.
  • the above light irradiation device A windshield may be provided that projects from the side wall plate toward the arc tube and is arranged so that the tip end portion is in close proximity to or in contact with the arc tube.
  • the cooling gas injected from the ventilation mechanism is shielded from the wind, and it is possible to further suppress the progress toward the light emitting surface side.
  • the term "proximity" as used herein means that the separation distance is 3.0 mm or less.
  • an ultraviolet light source that emits short ultraviolet light having a wavelength of 200 nm or less is used.
  • ultraviolet light having a main emission wavelength of 172 nm is encapsulated with xenon gas as a light emitting gas.
  • An excimer lamp that emits light is used.
  • the oxygen concentration between the light emitting surface and the irradiation target is as low as possible in order to sufficiently irradiate the irradiation target with ultraviolet light. It is preferable that Therefore, for example, the oxygen concentration of nitrogen gas or the like is set between the light emitting surface and the irradiation target at a predetermined flow rate so that the oxygen concentration between the light emitting surface and the irradiation target is equal to or less than a predetermined concentration. Control is usually performed to allow low inert gas to flow through.
  • the intake mechanism may not be able to reliably suck out the cooling gas or turbulence may occur. For this reason, the gas existing on the side opposite to the light emitting surface of the arc tube is mixed, or the nitrogen gas flows into a region different from the light emitting surface and the irradiation target, and the light emitting surface and the light emitting surface. It becomes difficult to control the oxygen concentration with the irradiation target.
  • the cooling gas toward the light irradiation surface side is shielded from wind, so that the influence on the oxygen concentration between the light emission surface and the irradiation target is suppressed, and the flow rate and flow velocity of the cooling gas are conventionally reduced.
  • the cooling gas may be air taken in from the outside.
  • the cooling gas various gases can be adopted as long as they are inert gases, and as described above, air taken in from the outside can be adopted at low cost.
  • the ventilation mechanism includes a first retention portion extending in the first direction and a second retention portion extending in the first direction downstream of the first retention portion and having a volume smaller than that of the first retention portion. It may have and.
  • the cooling gas does not flow directly from the first retention portion toward the second retention portion, but gradually fills the entire first retention portion. Then, the air pressure in the first stagnant part rises due to the cooling gas sent one after another from the inflow port that introduces the cooling gas toward the inside of the blower mechanism, and the cooling gas filling the first stagnant part gradually stays in the second stagnant part. Pass through so that it is pushed out toward the part. Therefore, even when the cooling gas flows in from a part of the inflow port, the cooling gas can be guided to the entire light emitting surface extending in the first direction.
  • each retention portion means a part of the space through which the cooling gas flows, which is formed between the inflow port and the injection port, and the cooling gas does not necessarily have to stay inside.
  • the second retaining portion extends in the first direction means that the second retaining portion is continuously formed in the first direction or is formed discretely in the first direction. Including the case of.
  • the volume of the first retention portion is configured to be larger than the total volume of the second retention portions.
  • the ventilation mechanism may have a plurality of inlets for the cooling gas along the first direction.
  • the temperature of the excimer lamp extending in the first direction is higher on the central side in the first direction than on the end side. Therefore, with the above configuration, the flow rate of the cooling gas introduced from each inflow port can be adjusted so as to match the temperature distribution of the excimer lamp.
  • the above light irradiation device A plurality of the blower mechanisms may be arranged along the first direction.
  • the flow rate and direction of the cooling gas injected onto the light emitting surface can be finely adjusted according to the respective positions in the first direction. Therefore, the central portion of the arc tube in the first direction, which tends to be hot, can be cooled more strongly, and uneven irradiation of ultraviolet light to the irradiation target can be suppressed.
  • a light irradiation device capable of cooling an excimer lamp more efficiently is realized.
  • FIG. 1 It is a perspective view which shows one Embodiment of a light irradiation apparatus typically. It is a perspective view which removed the partition plate from the light irradiation apparatus of FIG. It is sectional drawing when the light irradiation apparatus of FIG. 1 is seen in the Z direction. It is sectional drawing when one Embodiment of an excimer lamp is seen in the Y direction. It is sectional drawing when the excimer lamp of FIG. 3 is seen in the Z direction. It is a side view when the excimer lamp of FIG. 3 is seen in the X direction. It is a drawing which disassembled one Embodiment of a blast mechanism for each member.
  • FIG. 17 It is a perspective view which shows another embodiment of a light irradiation apparatus schematically. It is a perspective view which shows another embodiment of a light irradiation apparatus schematically. It is sectional drawing when the excimer lamp of FIG. 17 is seen in the Z direction. It is an enlarged cross-sectional view around one excimer lamp of FIG. It is sectional drawing when the excimer lamp is seen in the Z direction.
  • FIG. 1 is a perspective view schematically showing an embodiment of the light irradiation device 1
  • FIG. 2 is a perspective view in which the partition plate 6 is removed from the light irradiation device 1 of FIG.
  • FIG. 3 is a cross-sectional view of the light irradiation device 1 of FIG. 1 when viewed in the Z direction.
  • the light irradiation device 1 of the present embodiment includes an excimer lamp 2, a blower mechanism 3, an intake mechanism 4 between the excimer lamps 2, and each excimer in the Y direction.
  • a side wall plate 5 for partitioning the lamp 2 in the Y direction, a partition plate 6 for partitioning the space in the X direction, and a windbreak plate 7 protruding from the side wall plate 5 toward the excimer lamp 2 are provided.
  • the light irradiation device 1 is equipped with two identical excimer lamps 2, and emits light to an irradiation target object W1 arranged on the light emitting surface 13 side of each excimer lamp 2. It irradiates ultraviolet light emitted from the space 10c.
  • the direction in which the excimer lamp 2 extends is the Z direction (first direction), and the direction in which the electrodes 11 of the excimer lamp 2 face each other is the X direction (second direction).
  • Direction the direction orthogonal to the X direction and the Z direction is defined as the Y direction (third direction).
  • the direction when distinguishing between the positive and negative directions, it is described with positive and negative signs such as "+ Z direction” and "-Z direction", and the positive and negative directions are not distinguished.
  • the direction in it is simply described as "Z direction”.
  • each direction of the ventilation mechanism 3 and the intake mechanism 4 is defined corresponding to a direction determined by the state in which the excimer lamp 2 is mounted on the light irradiation device 1.
  • FIG. 4 is a cross-sectional view of an embodiment of the excimer lamp 2 when viewed in the Y direction.
  • the excimer lamp 2 includes an arc tube 10, a pair of electrodes 11, and a reflective film 12.
  • the arc tube 10 is made of a material that is transparent to ultraviolet light, for example, quartz glass, and extends in the Z direction as shown in FIG. Further, a light emitting space 10c in which the light emitting gas G1 is sealed is provided inside the light emitting tube 10.
  • the wall surface on the ⁇ X side of the arc tube 10 is the light emitting surface 13 for extracting ultraviolet light radiated from the light emitting space 10c
  • the outer wall surface on the + X side of the arc tube 10 is the surface to be cooled 14. Is.
  • the light irradiation device 1 used in the manufacturing process of the liquid crystal panel or the like has a very large excimer lamp 2 having a length in the Z direction of about 500 mm to 3000 mm in order to cope with the increase in size of the liquid crystal panel. Is installed.
  • the length of the arc tube 10 in the Z direction is 1500 mm.
  • the light emitting gas G1 is xenon gas and emits ultraviolet light having a main light emitting wavelength of 172 nm.
  • the main light emitting wavelength is ultraviolet light other than 172 nm. It may be configured to emit light.
  • FIG. 5 is a cross-sectional view of the excimer lamp 2 of FIG. 4 when viewed in the Z direction.
  • the arc tube 10 is formed so that the cross section of the arc tube 10 when cut in the XY plane is rectangular when viewed from the Z direction.
  • the cross-sectional shape of the arc tube 10 may be, for example, an oval shape in which the wall surface facing the Y direction has an arc shape, or another polygonal shape such as a hexagon or an octagon.
  • FIG. 6 is a side view of the excimer lamp 2 of FIG. 4 when viewed in the X direction.
  • the electrodes 11 are formed in a mesh shape on the outer wall surface 10a of the arc tube 10.
  • a voltage required for light emission is applied to the electrode 11, a discharge is generated in the light emitting space 10c, and ultraviolet light is emitted.
  • the ultraviolet light generated in the light emitting space 10c is emitted to the outside of the light emitting tube 10 through the mesh of the electrode 11 with the wall surface on the ⁇ X side as the light emitting surface 13.
  • the ⁇ X side electrode 11 is formed so as to face the same shape as the illustrated electrode 11.
  • the shape of the electrodes 11 may be different from each other, and the electrodes 11 on the + X side do not need to pass ultraviolet light, and may be formed in a solid shape. Further, the electrode 11 on the ⁇ X side may have a shape that allows light to pass through, and may be, for example, an electrode 11 provided with a slit.
  • the pair of electrodes 11 of the present embodiment are all made of the same material, printed on the outer wall surface 10a of the arc tube 10 by screen printing, and formed by firing. It may be formed. Further, as the material for forming the electrode 11, for example, gold, platinum, or the like, or an alloy containing these, or the like can be adopted.
  • the reflective film 12 is formed on the inner wall surface 10b on the side (+ X side) opposite to the light emitting surface 13 of the arc tube 10, is generated in the light emitting space 10c, and faces the + X side.
  • the ultraviolet light that travels is reflected toward the -X side.
  • the material for forming the reflective film 12 for example, a material formed by applying a suspension containing particulate silica (SiO 2 ), alumina (Al 2 O 3 ), or the like and firing the film is adopted. obtain.
  • the reflective film 12 of the present embodiment is formed only on the inner wall surface 10b on the + X side, but may be formed on the inner wall surface 10b facing the Y direction on which the electrode 11 is not formed, or is formed at all. It doesn't have to be.
  • the configuration of the ventilation mechanism 3 will be described.
  • the light irradiation device 1 as shown in FIGS. 1 and 2, two ventilation mechanisms 3 arranged along the Z direction are separately arranged for each excimer lamp 2. That is, the light irradiation device 1 is equipped with a total of four ventilation mechanisms 3.
  • FIG. 7 is a drawing of the blower mechanism 3 disassembled for each member.
  • the ventilation mechanism 3 includes a flow pipe 30, a blow pipe 31, a bottom plate 32, and a flow path limiting plate 33 provided with a plurality of notches 33a.
  • FIG. 8 is a cross-sectional perspective view of one embodiment of the blower mechanism 3 cut along the XY plane.
  • a plurality of flow pipes 30 are arranged in the Z direction with respect to one ventilation mechanism 3, and a flow path for passing the cooling gas C1 is formed inside.
  • a pipe, a hose, or the like is connected to each of the flow pipes 30, and air taken in from the outside of the light irradiation device 1 as the cooling gas C1 is sent into the ventilation mechanism 3 through the inflow port 34.
  • the flow pipe 30 is configured to penetrate the partition plate 6, but the partition plate 6 is not shown in FIGS. 7 and 8 for the sake of explanation.
  • the number of through pipes 30 provided in one ventilation mechanism 3 may be one.
  • the cooling gas C1 may be other than air as long as it is an inert gas.
  • the blow pipe 31 extends in the Z direction and forms a first retention portion 35 in which the cooling gas C1 that has passed through the flow pipe 30 stays. Further, the blow pipe 31 is provided with a protruding portion 31a that protrudes in a direction away from the pipe shaft 31c and forms a part of the injection port 37.
  • the bottom plate 32 has a plurality of second retaining portions 36 on which the blow pipe 31 and the flow path limiting plate 33 are placed and which are discretely extended in the Z direction between the bottom plate 32 and the notch 33a of the flow path limiting plate 33.
  • the bottom plate 32 is formed with a wind guide portion 32a that is slightly separated from the protruding portion 31a of the blow pipe 31 and is parallel to the blow pipe 31 when the blow pipe 31 is placed.
  • the total value of the volumes of each second retaining portion 36 is configured to be smaller than the volume of the first retaining portion 35.
  • the cooling gas C1 sent from the flow pipe 30 into the ventilation mechanism 3 passes through the flow pipe 30 and flows into the first retention portion 35.
  • the cooling gas C1 Since the volume of the cooling gas C1 that has flowed into the first retention portion 35 is smaller than that of the first retention portion 35, the cooling gas C1 does not flow directly toward the second retention portion 36, and the first retention portion 35 It spreads in the Z direction so as to diffuse inside.
  • each of the second stagnant portions 36 gradually pushes out the cooling gas C1 that has spread in the first stagnant portion 35. Flow into.
  • the cooling gas C1 that has flowed into the second retention portion 36 flows from the second retention portion 36 toward the injection port 37, and is injected from the injection port 37 toward the cooled surface 14 (see FIG. 11) of the excimer lamp 2. NS.
  • FIGS. 1 and 2 two light irradiation devices 1 are arranged between the excimer lamps 2 along the Z direction.
  • FIG. 9 is a drawing in which one embodiment of the intake mechanism 4 is disassembled for each member.
  • the intake mechanism 4 includes an exhaust pipe 40 and an intake box 41.
  • the exhaust pipe 40 is integrally configured with the partition plate 6, but may be configured separately from the partition plate 6.
  • FIG. 10 is a cross-sectional perspective view of one embodiment of the intake mechanism 4 cut along the XY plane.
  • the exhaust pipe 40 is formed with an exhaust port 42, and the exhaust port 42 is connected to a pipe, a hose, or the like to exhaust the cooling gas C1 taken into the outside of the light irradiation device 1.
  • the intake box 41 is formed so that the intake port 41a for sucking the cooling gas C1 is discretely extended in the Z direction on the surface on the ⁇ X side.
  • a partition plate 6 is placed on the + X side of the intake box 41 to communicate with the opening 40a of the exhaust pipe 40.
  • the intake box 41 is mounted on the side wall plate 5, and the intake ports 41a that are discretely extended in the Z direction are provided at the intake port 41a on the ⁇ Y side and the intake port 41a on the + Y side. Divided.
  • the intake mechanism 4 absorbs heat from the excimer lamp 2 arranged on the ⁇ Y side and the cooling gas C1 arranged on the + Y side, and cools by absorbing heat from the excimer lamp 2 arranged on the + Y side.
  • the gas C1 and the gas C1 are collectively taken in and exhausted from the exhaust port 42.
  • the intake mechanism 4 may be individually provided on each excimer lamp 2.
  • FIG. 11 is an enlarged cross-sectional view of the periphery of one excimer lamp 2 of FIG. 2, and FIG. 12 is an enlarged cross-sectional view of the periphery of the blower mechanism 3 of FIG.
  • the blower mechanism 3 has a cooling surface of the arc tube 10 between the arc tube 10 of the excimer lamp 2 and the side wall plate 5 on the Y side when viewed from the excimer lamp 2 in the Y direction.
  • An injection port 37 for injecting the cooling gas C1 toward the 14 is arranged.
  • the intake port 41a of the intake mechanism 4 is arranged between the arc tube 10 of the excimer lamp 2 and the side wall plate 5 on the + Y side when viewed from the excimer lamp 2 in the Y direction.
  • the side wall plates 5 are arranged so as to divide the excimer lamps 2 mounted on the light irradiation device 1 in the Y direction, and for each excimer lamp 2, a pair of side wall plates 5 are the arc tubes 10. They are arranged so as to face each other via. Further, the side wall plate 5 between the two excimer lamps 2 also functions as a support base for supporting the intake box 41 of the intake mechanism 4.
  • the partition plate 6 is arranged so as to face the cooled surface 14 of the arc tube 10, and indirectly communicates with the side wall plate 5 sandwiched between the two excimer lamps 2 via the intake mechanism 4, and the other side walls. It is arranged so as to be in direct contact with the board 5.
  • the windshield 7 extends in the Z direction, and as shown in FIG. 12, the excimer lamp 2 has a side wall plate 5 on the + Y side and ⁇ Y side of the excimer lamp 2. It is configured to project toward the outer wall surface 10a of the arc tube 10.
  • the windbreak plate 7 of the present embodiment projects parallel to the Y direction toward the outer wall surface 10a of the arc tube 10, but is not parallel to the Y direction so as to go from the side wall plate 5 to the arc tube 10. It does not matter if it protrudes into. Further, the windshield 7 projects toward the ⁇ X side end of the arc tube 10, but is configured to project toward the + X side end of the arc tube 10 and the central portion in the X direction. It doesn't matter if it is done.
  • the tip portion 7a of the windbreak plate 7 is arranged close to the outer wall surface 10a of the arc tube 10. With this configuration, the cooling gas C1 is shielded from wind so as not to flow into the light emitting surface 13 side.
  • the term "proximity" as used herein means that the separation distance is 3.0 mm or less, as described above. Specifically, in the light irradiation device 1 of the present embodiment, the separation distance d1 between the windshield 7 and the arc tube 10 is 2.0 mm. The separation distance d2 between the blow pipe 31 and the bottom plate 32 at the injection port 37 of the blower mechanism 3 is 1.5 mm.
  • the tip portion 7a of the windshield 7 and the outer wall surface 10a of the arc tube 10 may be arranged so as to be in contact with each other.
  • the cooling gas C1 injected from the blower mechanism 3 does not flow to the light emitting surface 13 side, and heat is transferred along the cooled surface 14 of the arc tube 10. While absorbing, it flows in the + Y direction, that is, toward the intake mechanism 4 side, and cools the entire surface to be cooled 14.
  • the cooling gas C1 hardly flows into the space between the light emitting surface 13 of the excimer lamp 2 and the irradiation target W1 by the windshield 7, the control of the oxygen concentration in the space is not affected. , The excimer lamp 2 can be cooled.
  • the flow rate and the flow velocity of the cooling gas C1 are individually set in each blower mechanism 3. Can be adjusted. For example, it can be adjusted so that the flow rate and the flow velocity of the cooling gas C1 injected on the central portion side of the excimer lamp 2 in the Z direction, which tends to be higher in temperature, are larger than those on the end portion side.
  • the cooling gas C1 When the flow rate of the cooling gas C1 injected from the blower mechanism 3 within a certain period of time is smaller than the flow rate of the cooling gas C1 injected by the intake mechanism 4 within a certain period of time, the cooling gas C1 is formed through a gap between the excimer lamp 2 and the windshield 7. It takes in a gas other than the above, and reduces the cooling effect of the cooling gas C1. Further, the oxygen concentration between the arc tube 10 and the irradiation target W1 is affected.
  • the flow rate of the cooling gas C1 injected from the blower mechanism 3 within a fixed time and the flow rate taken by the intake mechanism 4 within a fixed time are adjusted to be substantially the same.
  • the flow pipe 30 of the ventilation mechanism 3 and the exhaust pipe 40 of the intake mechanism 4 may be provided with cocks, valves, and the like for adjusting the flow rate, respectively.
  • the cooling gas C1 is between the light emitting surface 13 and the irradiation target W1. It can also be configured to have little effect on the oxygen concentration. In such a case, the light irradiation device 1 may not include the windshield 7.
  • FIG. 13 is an exploded view of another embodiment of the blower mechanism 3 for each part
  • FIG. 14 is a cross-sectional perspective view of another embodiment of the blower mechanism 3 cut in an XY plane.
  • the ventilation mechanism 3 is not provided with the flow path limiting plate 33, and is formed with a flow pipe 30, a blow pipe 31 having a protruding portion 31a, and a groove 32b extending in the Y direction. It may be composed of the bottom plate 32.
  • the space formed by the protruding portion 31a and the groove 32b of the blow pipe 31 constitutes the second retention portion 36. Further, at each end in the ⁇ Y direction, the injection port 37 having the bottom surface of the groove 32b as the air guide portion 32a is formed so as to extend discretely in the Z direction.
  • FIG. 15 is a drawing in which another embodiment of the ventilation mechanism 3 is disassembled for each member.
  • the groove 32b formed in the bottom plate 32 may be formed so as to extend continuously in the Z direction. With this configuration, although not shown, a second retention portion 36 extending in the Z direction and an injection port 37 are formed.
  • FIG. 16 is a perspective view schematically showing another embodiment of the light irradiation device 1.
  • the blower mechanism 3 may be configured such that the partition plate 6 is provided with the through hole 6a and the through hole 6a is simply connected to the through pipe 30 without providing the blow pipe 31 or the like.
  • the intake mechanism 4 may also have a configuration in which the partition plate 6 is similarly provided with a through hole 6a and the exhaust pipe 40 is simply connected.
  • FIG. 17 is a perspective view schematically showing another embodiment of the light irradiation device 1
  • FIG. 18 is a cross-sectional view of the excimer lamp 2 of FIG. 17 when viewed in the Z direction.
  • the excimer lamp 2 included in the light irradiation device 1 has an inner tube (referred to as an inner tube 10p) and an outer tube (outer tube 10q) having a cross section when the arc tube 10 is cut in the XY plane. It may be a configuration also referred to as a double tube shape, which is composed of (referred to as).
  • a pair of electrodes 11 are formed on the inner wall surface 10d of the inner tube 10p and the outer wall surface 10e of the outer tube 10q so as to face each other via an arc tube (10p, 10q).
  • the inner electrode 11 is formed in a solid shape, and the outer electrode 11 emits ultraviolet light generated in the light emitting space 10c. It is formed in a mesh shape so that it can be used.
  • the reflective film 12 is formed on the inner wall surface 10f on the + X side of the outer tube 10q, and the ultraviolet light generated between the arc tubes (10p, 10q) is emitted to the ⁇ X side. It is configured to emit toward. As a result, of the wall surfaces of the outer tube 10q facing each other in the X direction, the wall surface on the ⁇ X side becomes the light emitting surface 13.
  • FIG. 19 is an enlarged cross-sectional view of the periphery of one excimer lamp 2 of FIG.
  • the cooling gas C1 injected from the blower mechanism 3 does not flow to the light emitting surface 13 side, and absorbs heat from the outer wall surface 10e of the outer tube 10q in the + Y direction, that is, intake air.
  • the outer pipe 10q is cooled by flowing toward the mechanism 4 side. In this way, the heat generated by the excimer lamp 2 is sequentially exhausted from the outer tube 10q, so that the entire excimer lamp 2 is cooled.
  • FIG. 20 is a cross-sectional view of an excimer lamp 2 having a configuration different from that of FIG. 18 when viewed in the Z direction.
  • the excimer lamp 2 is also referred to as a single tube shape in which a pair of electrodes 11 facing each other via the wall surface of the arc tube 10 are provided in the outer wall surface 10a of the arc tube 10 and the light emitting space 10c. It may be configured to be used.
  • two ventilation mechanisms 3 are arranged along the Z direction for each excimer lamp 2, but one may be used, and three or more may be provided. It doesn't matter. Further, the two excimer lamps 2 may be configured to share the same ventilation mechanism 3. Any number of intake mechanisms 4 may be arranged along the Z direction, and may be arranged separately for each excimer lamp 2.
  • the intake mechanism 4 of the present embodiment is discretely extended in the Z direction on each of the + Y side and the ⁇ Y side.
  • An intake port 41a is provided.
  • the intake port 41a of the intake mechanism 4 may be only one of them. Further, the intake port 41a may be one opening continuously formed in the Z direction.
  • the total value of the respective volumes of the second retention portion 36 may be formed to be larger than the volume of the first retention portion 35. Further, the volume of the second retention portion 36 may be formed to be larger than the volume of the first retention portion 35.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

Provided is a light irradiation device which enables more efficient cooling of an excimer lamp. The present invention comprises a light emitting tube that extends in a first direction and that has transmissivity with respect to ultraviolet light, and a pair of electrodes that are opposite each other with the wall surfaces of the light emitting tube therebetween, and comprises: an excimer lamp that has, as a light emission surface, one wall surface among the wall surfaces of the light emitting tube which are opposite each other in a second direction; a pair of side wall plates that extend in the first direction and that, in a third direction, are opposite each other with the light emitting tube therebetween; a blower mechanism that has a jet opening which is formed to extend in the first direction so as to be, in the second direction, between the light emitting tube and one of the side wall plates, and which jets cooling gas toward the outer wall surface of the light emitting tube on the opposite side from the light emission surface; a suction mechanism that has a suction opening which is formed to extend in the first direction so as to be, in the second direction, between the light emitting tube and the side wall plate on the opposite side from the blower mechanism; and a divider plate that extends in the first direction, that in the second direction is disposed on the opposite side from the light emission surface of the light emitting tube and away from the light emitting tube, and that directly or indirectly connects the pair of side wall plates.

Description

光照射装置Light irradiation device
 本発明は、光照射装置に関する。 The present invention relates to a light irradiation device.
 従来、半導体や液晶パネルの製造や、空気清浄用のオゾンの生成に、紫外光が用いられている。紫外光を出射する光源としては、例えば、下記特許文献1に記載されているようなエキシマランプが利用されている。 Conventionally, ultraviolet light has been used for manufacturing semiconductors and liquid crystal panels and for generating ozone for air purification. As a light source that emits ultraviolet light, for example, an excimer lamp as described in Patent Document 1 below is used.
特開2015-230838号公報JP-A-2015-230838 特許第5534344号公報Japanese Patent No. 5534344
 紫外光光源は、エキシマランプの他に、例えば、低圧水銀ランプがある。これらの発光空間を形成する発光管は、紫外光に対して透過性を有する材料である石英ガラスで形成される。石英ガラスは、温度が上昇すると、波長が短い光に対する透過性が徐々に低下してしまう。このため、低圧水銀ランプは、紫外光の照射量を一定以上に維持するために、点灯時に所定の温度以上まで上昇しないように冷却機構が設けられる。 In addition to excimer lamps, ultraviolet light sources include, for example, low-pressure mercury lamps. The arc tube forming these light emitting spaces is made of quartz glass, which is a material having transparency to ultraviolet light. As the temperature of quartz glass rises, its transparency to light having a short wavelength gradually decreases. Therefore, in order to maintain the irradiation amount of ultraviolet light above a certain level, the low-pressure mercury lamp is provided with a cooling mechanism so that the temperature does not rise above a predetermined temperature when lit.
 エキシマランプは、低圧水銀ランプ等に比べると、点灯時の発熱量が非常に少ない。このため、従来のエキシマランプは、冷却機構を考慮せずとも、上述したような発熱による課題は、ほとんど発生していなかった。 Excimer lamps generate much less heat when lit than low-pressure mercury lamps. Therefore, in the conventional excimer lamp, the above-mentioned problem due to heat generation hardly occurs even if the cooling mechanism is not taken into consideration.
 近年、液晶パネルの大型化や紫外光による処理時間の短縮に対応するために、エキシマランプの大型化や高出力化の要求が高まっている。そのため、エキシマランプは、徐々に大型化し、電極に印加される電圧も大きくなってきている。 In recent years, there has been an increasing demand for larger excimer lamps and higher output in order to cope with larger LCD panels and shorter processing time due to ultraviolet light. Therefore, excimer lamps are gradually increasing in size, and the voltage applied to the electrodes is also increasing.
 エキシマランプは、発光管のサイズが大きくなると、発光管の熱容量が増大する。また、電極に印加する電圧を高くすると、放電のエネルギーが大きくなり、発生する紫外光の光量が大きくなるが、同時に放電によって発生する熱量も大きくなる。このため、大型化や高出力化の要求に対応することで、エキシマランプの点灯時の温度が徐々に課題となってきている。 In excimer lamps, the heat capacity of the arc tube increases as the size of the arc tube increases. Further, when the voltage applied to the electrodes is increased, the energy of the discharge is increased and the amount of ultraviolet light generated is increased, but at the same time, the amount of heat generated by the discharge is also increased. For this reason, the temperature at which the excimer lamp is lit has gradually become an issue in response to the demand for larger size and higher output.
 そこで、エキシマランプにおいても、紫外光の照射量を一定以上に維持するために、冷却機構を設ける検討が行われている。例えば、上記特許文献1及び2には、エキシマランプに側面から冷却ガスを噴射し、発光管全体を冷却してエキシマランプの点灯時の温度を下げるように構成された光照射装置が開示されている。 Therefore, even in excimer lamps, consideration is being given to providing a cooling mechanism in order to maintain the irradiation amount of ultraviolet light above a certain level. For example, Patent Documents 1 and 2 disclose a light irradiation device configured to inject cooling gas onto an excimer lamp from a side surface to cool the entire arc tube and lower the temperature at which the excimer lamp is lit. There is.
 しかし、本発明者らは、エキシマランプの大型化や高出力化について鋭意検討していたところ、エキシマランプをより効率的に冷却するためには、エキシマランプから熱を吸収して高温となったガスが、エキシマランプ周辺に残留することなく、より確実に光照射装置の外側へと排気する必要がある、ということを見出した。 However, the present inventors have been diligently studying the increase in size and output of the excimer lamp, and in order to cool the excimer lamp more efficiently, the heat is absorbed from the excimer lamp and the temperature becomes high. It has been found that the gas needs to be more reliably exhausted to the outside of the light irradiation device without remaining around the excimer lamp.
 本発明は、上記課題に鑑み、エキシマランプをより効率的に冷却できる光照射装置を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a light irradiation device capable of cooling an excimer lamp more efficiently.
 本発明の光照射装置は、
 第一方向に延伸し、紫外光に対して透過性を有する発光管と、前記発光管の壁面を介して対向する一対の電極とを備え、前記第一方向と直交する第二方向において対向する前記発光管の壁面のうちの、一方の壁面を光出射面とするエキシマランプと、
 前記第一方向に延伸し、前記第一方向及び前記第二方向と直交する第三方向において、前記発光管を介して対向する一対の側壁板と、
 前記第二方向において、前記発光管と、一方の前記側壁板との間に、前記第一方向に延伸する形状を呈し、前記発光管の前記光出射面とは反対側の外壁面に向かって冷却ガスを噴射する噴射口を有する送風機構と、
 前記第二方向において、前記発光管と、前記送風機構とは反対側の前記側壁板との間に、前記第一方向に延伸する形状を呈する吸気口を有する吸気機構と、
 前記第一方向に延伸し、前記第二方向において、前記発光管の前記光出射面とは反対側に前記発光管と離間して配置され、前記一対の側壁板を直接、又は他の部材を介して間接的に連絡する仕切り板とを備えることを特徴とする。
The light irradiation device of the present invention
An excimer tube extending in the first direction and having transparency to ultraviolet light and a pair of electrodes facing each other via the wall surface of the excimer tube are provided and face each other in a second direction orthogonal to the first direction. An excimer lamp having one wall surface of the wall surface of the arc tube as a light emitting surface,
A pair of side wall plates extending in the first direction and facing each other via the arc tube in the first direction and the third direction orthogonal to the second direction.
In the second direction, the arc tube has a shape extending in the first direction between the arc tube and one of the side wall plates, and toward the outer wall surface of the arc tube on the side opposite to the light emitting surface. A blower mechanism with an injection port that injects cooling gas,
An intake mechanism having an intake port extending in the first direction between the arc tube and the side wall plate on the side opposite to the ventilation mechanism in the second direction.
It extends in the first direction and is arranged in the second direction on the side of the arc tube opposite to the light emitting surface so as to be separated from the arc tube, and the pair of side wall plates can be directly attached or other members can be attached. It is characterized by being provided with a partition plate that is indirectly contacted via a partition plate.
 送風機構は、送り込まれる冷却ガスを、エキシマランプに向かって噴射する機構である。なお、「第一方向に延伸する噴射口」とは、噴射口として機能する開口が第一方向に向かって連続的に形成されている場合や、第一方向に向かって離散的に形成されている場合を含む。当該噴射口が、第三方向において、発光管と、一方の側壁板との間に形成されていればよく、送風機構全体が、第三方向において、発光管と当該側壁板との間に収まっていなくても構わない。 The ventilation mechanism is a mechanism that injects the cooling gas to be sent toward the excimer lamp. The "injection port extending in the first direction" means that the openings functioning as the injection port are continuously formed in the first direction or discretely formed in the first direction. Including the case where there is. The injection port only needs to be formed between the arc tube and one side wall plate in the third direction, and the entire ventilation mechanism fits between the arc tube and the side wall plate in the third direction. It doesn't have to be.
 吸気機構は、第一方向に延伸し、エキシマランプ周辺のガスを吸気する吸気口が形成された機構である。なお、「第一方向に延伸する吸気口」とは、吸気口として機能する開口が第一方向に向かって連続的に形成されている場合や、第一方向に向かって離散的に形成されている場合を含む。当該吸気口が、第三方向において、発光管と、送風機構の噴射口とは反対側の側壁板との間に形成されていればよく、吸気機構全体が、第三方向において、発光管と当該側壁板との間に収まっていなくても構わない。 The intake mechanism is a mechanism that extends in the first direction and has an intake port that takes in gas around the excimer lamp. The "intake port extending in the first direction" means that the openings functioning as the intake ports are continuously formed in the first direction or discretely formed in the first direction. Including the case where there is. The intake port may be formed between the arc tube and the side wall plate on the side opposite to the injection port of the blower mechanism in the third direction, and the entire intake mechanism may be formed with the arc tube in the third direction. It does not have to fit between the side wall plate and the side wall plate.
 上記構成とすることで、第一方向に延伸する発光管の光出射面とは反対側の外壁面には、広範囲にわたって冷却ガスが当たり、エキシマランプ全体が冷却される。また、一方の側壁板側から発光管の光出射面とは反対側の外壁面に向かって噴射された冷却ガスは、発光管の光出射面とは反対側の外壁面に沿って他方の側壁板側に向かって通流し、吸気機構によって吸い出される。したがって、エキシマランプの周辺には、高温となったガスが残留することなく、送風機構によって次々に送り込まれてくる冷却ガスによって冷却される。 With the above configuration, the cooling gas hits the outer wall surface on the side opposite to the light emitting surface of the arc tube extending in the first direction over a wide range, and the entire excimer lamp is cooled. Further, the cooling gas injected from one side wall plate side toward the outer wall surface on the side opposite to the light emitting surface of the arc tube is the other side wall along the outer wall surface on the opposite side of the light emitting surface of the arc tube. It flows toward the plate side and is sucked out by the intake mechanism. Therefore, the hot gas does not remain around the excimer lamp and is cooled by the cooling gas sent one after another by the ventilation mechanism.
 さらに、冷却ガスは、発光管の光出射面とは反対側の外壁面に向かって噴射されて、発光管の光出射面とは反対側の外壁面を通流して吸気機構によって吸気されるため、光出射面側へ回り込みにくくなり、照射対象物に伝搬する熱量が最小限に抑えられる。なお、光出射面側へ回り込まないように、又は、光出射面側からガスを引き込まないように、本発明の構成においては、送風機構から噴射される冷却ガスの流量と、吸気機構の吸気量とがほぼ同じ量となるように構成されていることが好ましい。ここでの「ほぼ同じ」とは、所定時間内に送風機構から噴射される冷却ガスの流量に対して、吸気機構が吸気できるガスの流量が±20%以内の範囲である。 Further, the cooling gas is injected toward the outer wall surface opposite to the light emitting surface of the arc tube, passes through the outer wall surface opposite to the light emitting surface of the arc tube, and is taken in by the intake mechanism. , It becomes difficult to go around to the light emitting surface side, and the amount of heat propagated to the irradiation target is minimized. In the configuration of the present invention, the flow rate of the cooling gas injected from the blower mechanism and the intake amount of the intake mechanism so as not to wrap around to the light emitting surface side or to draw in gas from the light emitting surface side. It is preferable that the amounts of and are substantially the same. The term "almost the same" as used herein means that the flow rate of the gas that can be taken in by the intake mechanism is within ± 20% of the flow rate of the cooling gas that is injected from the ventilation mechanism within a predetermined time.
 上記光照射装置は、
 前記側壁板から前記発光管に向かって突出し、先端部が前記発光管と近接、又は接触するように配置された遮風板を備えていても構わない。
The above light irradiation device
A windshield may be provided that projects from the side wall plate toward the arc tube and is arranged so that the tip end portion is in close proximity to or in contact with the arc tube.
 上記構成とすることで、送風機構から噴射される冷却ガスが遮風され、光出射面側に向かって進行することをさらに抑制することができる。なお、ここでいう「近接」とは、離間距離が3.0mm以下のことをいう。 With the above configuration, the cooling gas injected from the ventilation mechanism is shielded from the wind, and it is possible to further suppress the progress toward the light emitting surface side. The term "proximity" as used herein means that the separation distance is 3.0 mm or less.
 また、半導体や液晶パネルの製造等では、200nm以下の波長の短い紫外光を出射する紫外光光源が用いられており、特に、発光ガスとしてキセノンガスが封入されて、主たる発光波長が172nmの紫外光を出射するエキシマランプが用いられている。 Further, in the manufacture of semiconductors and liquid crystal panels, an ultraviolet light source that emits short ultraviolet light having a wavelength of 200 nm or less is used. In particular, ultraviolet light having a main emission wavelength of 172 nm is encapsulated with xenon gas as a light emitting gas. An excimer lamp that emits light is used.
 172nmの紫外光は、空気中の酸素に吸収されやすいため、照射対象物に対して、十分に紫外光を照射するために、光出射面と照射対象物との間の酸素濃度ができる限り低くなっていることが好ましい。このため、光出射面と照射対象物との間の酸素濃度が所定の濃度以下となるように、例えば、光出射面と照射対象物との間に、所定の流量で窒素ガス等の酸素濃度が低い不活性ガスを通流させるような制御が通常行われる。 Since ultraviolet light of 172 nm is easily absorbed by oxygen in the air, the oxygen concentration between the light emitting surface and the irradiation target is as low as possible in order to sufficiently irradiate the irradiation target with ultraviolet light. It is preferable that Therefore, for example, the oxygen concentration of nitrogen gas or the like is set between the light emitting surface and the irradiation target at a predetermined flow rate so that the oxygen concentration between the light emitting surface and the irradiation target is equal to or less than a predetermined concentration. Control is usually performed to allow low inert gas to flow through.
 しかし、冷却能力を高めるために、送風機構から噴射する冷却ガスの流量や流速を大きくすると、吸気機構が確実に冷却ガスを吸い出せなかったり、乱流が発生したりする。このため、発光管の光出射面とは反対側に存在するガスが混ざり込んだり、窒素ガスが光出射面と照射対象物との間とは異なる領域に流れ込んだりしてしまい、光出射面と照射対象物との間の酸素濃度の制御が困難になってしまう。 However, if the flow rate or flow velocity of the cooling gas injected from the ventilation mechanism is increased in order to increase the cooling capacity, the intake mechanism may not be able to reliably suck out the cooling gas or turbulence may occur. For this reason, the gas existing on the side opposite to the light emitting surface of the arc tube is mixed, or the nitrogen gas flows into a region different from the light emitting surface and the irradiation target, and the light emitting surface and the light emitting surface. It becomes difficult to control the oxygen concentration with the irradiation target.
 上記構成とすることで、光照射面側に向かう冷却ガスが遮風されるため、光出射面と照射対象物との間の酸素濃度への影響が抑制され、冷却ガスの流量や流速を従来よりも大きくすることができる。 With the above configuration, the cooling gas toward the light irradiation surface side is shielded from wind, so that the influence on the oxygen concentration between the light emission surface and the irradiation target is suppressed, and the flow rate and flow velocity of the cooling gas are conventionally reduced. Can be larger than.
 さらに、上記光照射装置において、
 前記冷却ガスは、外部から取り込まれた空気であっても構わない。
Further, in the above light irradiation device,
The cooling gas may be air taken in from the outside.
 上述したように、遮風板を設けることで、冷却ガスが光出射面と照射対象物との間の酸素濃度に対する影響が抑制される。このため、冷却ガスとしては、不活性ガスであれば様々な気体をも採用することができ、上記のように、コストのかからない外部から取り込んだ空気を採用することができる。 As described above, by providing the windshield, the influence of the cooling gas on the oxygen concentration between the light emitting surface and the irradiation target is suppressed. Therefore, as the cooling gas, various gases can be adopted as long as they are inert gases, and as described above, air taken in from the outside can be adopted at low cost.
 上記光照射装置において、
 前記送風機構は、前記第一方向に延伸する第一滞留部と、前記第一滞留部よりも下流に、前記第一方向に延伸し、前記第一滞留部よりも容積が小さい第二滞留部とを有していても構わない。
In the above light irradiation device
The ventilation mechanism includes a first retention portion extending in the first direction and a second retention portion extending in the first direction downstream of the first retention portion and having a volume smaller than that of the first retention portion. It may have and.
 上記構成とすることで、冷却ガスは、第一滞留部から直接第二滞留部に向かって流れ込むことなく、徐々に第一滞留部全体に充満する。そして、冷却ガスを送風機構内に向けて導入する流入口から次々と送り込まれる冷却ガスによって第一滞留部内の気圧が上昇し、第一滞留部に充満している冷却ガスは、徐々に第二滞留部に向かって押し出されるように通流する。したがって、一部の流入口から冷却ガスが流入する場合であっても、第一方向に延伸する光出射面全体に対して、冷却ガスを導風することができる。 With the above configuration, the cooling gas does not flow directly from the first retention portion toward the second retention portion, but gradually fills the entire first retention portion. Then, the air pressure in the first stagnant part rises due to the cooling gas sent one after another from the inflow port that introduces the cooling gas toward the inside of the blower mechanism, and the cooling gas filling the first stagnant part gradually stays in the second stagnant part. Pass through so that it is pushed out toward the part. Therefore, even when the cooling gas flows in from a part of the inflow port, the cooling gas can be guided to the entire light emitting surface extending in the first direction.
 なお、それぞれの滞留部は、流入口から噴射口までの間に形成された、冷却ガスが通流する一部の空間を意味し、必ずしも、内側で冷却ガスが留まり続けていなくてもよい。また、「第二滞留部が第一方向に延伸する」とは、第二滞留部が第一方向に向かって連続的に形成されている場合や、第一方向に向かって離散的に形成されている場合を含む。そして、第二滞留部が複数形成される場合、第一滞留部の容積は、第二滞留部の容積の合計値よりも大きくなるように構成される。 Note that each retention portion means a part of the space through which the cooling gas flows, which is formed between the inflow port and the injection port, and the cooling gas does not necessarily have to stay inside. Further, "the second retaining portion extends in the first direction" means that the second retaining portion is continuously formed in the first direction or is formed discretely in the first direction. Including the case of. When a plurality of second retention portions are formed, the volume of the first retention portion is configured to be larger than the total volume of the second retention portions.
 上記光照射装置において、
 前記送風機構は、前記第一方向に沿って複数の前記冷却ガスの流入口を有していても構わない。
In the above light irradiation device
The ventilation mechanism may have a plurality of inlets for the cooling gas along the first direction.
 第一方向に延伸するエキシマランプは、第一方向における中央部側が端部側に比べて温度が高くなる。そこで、上記構成とすることで、エキシマランプの温度分布に合わせるように、それぞれの流入口から導入する冷却ガスの流量を調整することができる。 The temperature of the excimer lamp extending in the first direction is higher on the central side in the first direction than on the end side. Therefore, with the above configuration, the flow rate of the cooling gas introduced from each inflow port can be adjusted so as to match the temperature distribution of the excimer lamp.
 上記光照射装置は、
 複数の前記送風機構が、前記第一方向に沿って配置されていても構わない。
The above light irradiation device
A plurality of the blower mechanisms may be arranged along the first direction.
 上記構成とすることで、それぞれの送風機構に流入する冷却ガスの流量や流速を調整することができる。 With the above configuration, the flow rate and flow velocity of the cooling gas flowing into each ventilation mechanism can be adjusted.
 したがって、光出射面に噴射する冷却ガスの流量や向きを、第一方向におけるそれぞれの位置によって微調整することができる。このため、高温になりやすい第一方向における発光管の中央部側をより強力に冷却することができ、照射対象物に対する紫外光の照射ムラが抑制される。 Therefore, the flow rate and direction of the cooling gas injected onto the light emitting surface can be finely adjusted according to the respective positions in the first direction. Therefore, the central portion of the arc tube in the first direction, which tends to be hot, can be cooled more strongly, and uneven irradiation of ultraviolet light to the irradiation target can be suppressed.
 本発明によれば、エキシマランプをより効率的に冷却できる光照射装置が実現される。 According to the present invention, a light irradiation device capable of cooling an excimer lamp more efficiently is realized.
光照射装置の一実施形態を模式的に示す斜視図である。It is a perspective view which shows one Embodiment of a light irradiation apparatus typically. 図1の光照射装置から仕切り板を取り除いた斜視図である。It is a perspective view which removed the partition plate from the light irradiation apparatus of FIG. 図1の光照射装置をZ方向に見たときの断面図である。It is sectional drawing when the light irradiation apparatus of FIG. 1 is seen in the Z direction. エキシマランプの一実施形態をY方向に見たときの断面図である。It is sectional drawing when one Embodiment of an excimer lamp is seen in the Y direction. 図3のエキシマランプをZ方向に見たときの断面図である。It is sectional drawing when the excimer lamp of FIG. 3 is seen in the Z direction. 図3のエキシマランプをX方向に見たときの側面図である。It is a side view when the excimer lamp of FIG. 3 is seen in the X direction. 送風機構の一実施形態を部材ごとに分解した図面である。It is a drawing which disassembled one Embodiment of a blast mechanism for each member. 送風機構の一実施形態をXY平面で切断したときの断面斜視図である。It is sectional drawing when one Embodiment of a blowing mechanism is cut in the XY plane. 吸気機構の一実施形態を部材ごとに分解した図面である。It is a drawing which disassembled one Embodiment of an intake mechanism for each member. 吸気機構の一実施形態をXY平面で切断したときの断面斜視図である。It is sectional drawing when one Embodiment of an intake mechanism is cut in the XY plane. 図3の一つのエキシマランプ周辺の拡大断面図である。It is an enlarged cross-sectional view around one excimer lamp of FIG. 図3の送風機構周辺の拡大断面図である。It is an enlarged cross-sectional view around the ventilation mechanism of FIG. 送風機構の別実施形態を部材ごとに分解した図面である。It is a drawing which disassembled another embodiment of a blowing mechanism for each member. 送風機構の別実施形態をXY平面で切断したときの断面斜視図である。It is sectional drawing when another embodiment of a blowing mechanism is cut in the XY plane. 送風機構の別実施形態を部材ごとに分解した図面である。It is a drawing which disassembled another embodiment of a blowing mechanism for each member. 光照射装置の別実施形態を模式的に示す斜視図である。It is a perspective view which shows another embodiment of a light irradiation apparatus schematically. 光照射装置の別実施形態を模式的に示す斜視図である。It is a perspective view which shows another embodiment of a light irradiation apparatus schematically. 図17のエキシマランプをZ方向に見たときの断面図である。It is sectional drawing when the excimer lamp of FIG. 17 is seen in the Z direction. 図17の一つのエキシマランプ周辺の拡大断面図である。It is an enlarged cross-sectional view around one excimer lamp of FIG. エキシマランプをZ方向に見たときの断面図である。It is sectional drawing when the excimer lamp is seen in the Z direction.
 以下、本発明の光照射装置について、図面を参照して説明する。なお、以下の各図面は、いずれも模式的に図示されたものであり、図面上の寸法比や個数は、実際の寸法比や個数と必ずしも一致していない。 Hereinafter, the light irradiation device of the present invention will be described with reference to the drawings. In addition, each of the following drawings is schematically illustrated, and the dimensional ratio and the number on the drawings do not always match the actual dimensional ratio and the number.
 図1は、光照射装置1の一実施形態を模式的に示す斜視図であり、図2は、図1の光照射装置1から仕切り板6を取り除いた斜視図である。図3は、図1の光照射装置1をZ方向に見たときの断面図である。図1~図3に示すように、本実施形態の光照射装置1は、エキシマランプ2と、送風機構3と、それぞれのエキシマランプ2の間に吸気機構4と、Y方向において、それぞれのエキシマランプ2をY方向において区画する側壁板5と、X方向において空間を仕切る仕切り板6と、側壁板5からエキシマランプ2に向かって突出する遮風板7とを備える。 FIG. 1 is a perspective view schematically showing an embodiment of the light irradiation device 1, and FIG. 2 is a perspective view in which the partition plate 6 is removed from the light irradiation device 1 of FIG. FIG. 3 is a cross-sectional view of the light irradiation device 1 of FIG. 1 when viewed in the Z direction. As shown in FIGS. 1 to 3, the light irradiation device 1 of the present embodiment includes an excimer lamp 2, a blower mechanism 3, an intake mechanism 4 between the excimer lamps 2, and each excimer in the Y direction. A side wall plate 5 for partitioning the lamp 2 in the Y direction, a partition plate 6 for partitioning the space in the X direction, and a windbreak plate 7 protruding from the side wall plate 5 toward the excimer lamp 2 are provided.
 光照射装置1は、図3に示すように、同一のエキシマランプ2が二つ搭載されており、それぞれのエキシマランプ2の光出射面13側に配置された照射対象物W1に対して、発光空間10cから放射される紫外光を照射する。 As shown in FIG. 3, the light irradiation device 1 is equipped with two identical excimer lamps 2, and emits light to an irradiation target object W1 arranged on the light emitting surface 13 side of each excimer lamp 2. It irradiates ultraviolet light emitted from the space 10c.
 以下の説明においては、図1に示すように、エキシマランプ2が延伸する方向(管軸方向)をZ方向(第一方向)、エキシマランプ2の電極11が対向する方向をX方向(第二方向)、X方向及びZ方向に直交する方向をY方向(第三方向)とする。そして、方向を表現する際に、正負の向きを区別する場合には、「+Z方向」、「-Z方向」のように、正負の符号を付して記載され、正負の向きを区別せずに方向を表現する場合には、単に「Z方向」と記載される。なお、送風機構3及び吸気機構4における各方向は、図1に示すように、エキシマランプ2が光照射装置1に搭載された状態で決まる方向に対応して規定される。 In the following description, as shown in FIG. 1, the direction in which the excimer lamp 2 extends (tube axis direction) is the Z direction (first direction), and the direction in which the electrodes 11 of the excimer lamp 2 face each other is the X direction (second direction). Direction), the direction orthogonal to the X direction and the Z direction is defined as the Y direction (third direction). When expressing the direction, when distinguishing between the positive and negative directions, it is described with positive and negative signs such as "+ Z direction" and "-Z direction", and the positive and negative directions are not distinguished. When expressing the direction in, it is simply described as "Z direction". As shown in FIG. 1, each direction of the ventilation mechanism 3 and the intake mechanism 4 is defined corresponding to a direction determined by the state in which the excimer lamp 2 is mounted on the light irradiation device 1.
 まず、エキシマランプ2の構成を説明する。図4は、エキシマランプ2の一実施形態をY方向に見たときの断面図である。図4に示すように、エキシマランプ2は、発光管10と、一対の電極11と、反射膜12とを備える。 First, the configuration of the excimer lamp 2 will be described. FIG. 4 is a cross-sectional view of an embodiment of the excimer lamp 2 when viewed in the Y direction. As shown in FIG. 4, the excimer lamp 2 includes an arc tube 10, a pair of electrodes 11, and a reflective film 12.
 発光管10は、紫外光に対して透過性を有する材料、例えば、石英ガラスで形成されており、図4に示すように、Z方向に延伸している。また、発光管10の内側には、発光ガスG1が封入される発光空間10cが設けられている。そして、本実施形態においては、発光管10の-X側の壁面が発光空間10cから放射された紫外光を取り出す光出射面13であり、発光管10の+X側の外壁面が被冷却面14である。 The arc tube 10 is made of a material that is transparent to ultraviolet light, for example, quartz glass, and extends in the Z direction as shown in FIG. Further, a light emitting space 10c in which the light emitting gas G1 is sealed is provided inside the light emitting tube 10. In the present embodiment, the wall surface on the −X side of the arc tube 10 is the light emitting surface 13 for extracting ultraviolet light radiated from the light emitting space 10c, and the outer wall surface on the + X side of the arc tube 10 is the surface to be cooled 14. Is.
 上述したように、液晶パネルの製造工程等に用いられる光照射装置1は、液晶パネルの大型化等に対応するため、Z方向における長さが、500mm~3000mm程度の非常に大型のエキシマランプ2が搭載されている。本実施形態においては、発光管10のZ方向における長さは、1500mmである。 As described above, the light irradiation device 1 used in the manufacturing process of the liquid crystal panel or the like has a very large excimer lamp 2 having a length in the Z direction of about 500 mm to 3000 mm in order to cope with the increase in size of the liquid crystal panel. Is installed. In the present embodiment, the length of the arc tube 10 in the Z direction is 1500 mm.
 本実施形態のエキシマランプ2は、発光ガスG1がキセノンガスであり、主たる発光波長が172nmの紫外光を出射するが、キセノンガス以外の発光ガスG1を用いて、主たる発光波長が172nm以外の紫外光を出射するように構成されていても構わない。 In the excimer lamp 2 of the present embodiment, the light emitting gas G1 is xenon gas and emits ultraviolet light having a main light emitting wavelength of 172 nm. However, using a light emitting gas G1 other than xenon gas, the main light emitting wavelength is ultraviolet light other than 172 nm. It may be configured to emit light.
 図5は、図4のエキシマランプ2をZ方向に見たときの断面図である。図4に示すように、発光管10は、Z方向から見たときに、XY平面で切断したときの断面が、矩形状を呈するように形成されている。しかし、発光管10の断面形状は、例えば、Y方向に対向する壁面が円弧状を呈する長円形状や、六角形や八角形等の他の多角形状であっても構わない。 FIG. 5 is a cross-sectional view of the excimer lamp 2 of FIG. 4 when viewed in the Z direction. As shown in FIG. 4, the arc tube 10 is formed so that the cross section of the arc tube 10 when cut in the XY plane is rectangular when viewed from the Z direction. However, the cross-sectional shape of the arc tube 10 may be, for example, an oval shape in which the wall surface facing the Y direction has an arc shape, or another polygonal shape such as a hexagon or an octagon.
 図6は、図4のエキシマランプ2をX方向に見たときの側面図である。電極11は、図6に示すように、発光管10の外壁面10aに網目状に形成されている。電極11に対して、発光に必要な電圧が印加されると、発光空間10c内で放電が発生し、紫外光が放射される。 FIG. 6 is a side view of the excimer lamp 2 of FIG. 4 when viewed in the X direction. As shown in FIG. 6, the electrodes 11 are formed in a mesh shape on the outer wall surface 10a of the arc tube 10. When a voltage required for light emission is applied to the electrode 11, a discharge is generated in the light emitting space 10c, and ultraviolet light is emitted.
 発光空間10c内で発生した紫外光は、-X側の壁面を光出射面13として、電極11の網目を通して発光管10の外側に出射される。図6には、+X側の電極11のみが示されているが、-X側の電極11は、図示されている電極11と同一の形状で対向するように形成されている。 The ultraviolet light generated in the light emitting space 10c is emitted to the outside of the light emitting tube 10 through the mesh of the electrode 11 with the wall surface on the −X side as the light emitting surface 13. Although only the + X side electrode 11 is shown in FIG. 6, the −X side electrode 11 is formed so as to face the same shape as the illustrated electrode 11.
 なお、電極11の形状は、それぞれ異なっていてもよく、+X側の電極11は、紫外光を通過させる必要がないため、ベタ状に形成されていても構わない。また、-X側の電極11は、光を通過させることができる形状であればよく、例えば、スリットが設けられた電極11等であっても構わない。 The shape of the electrodes 11 may be different from each other, and the electrodes 11 on the + X side do not need to pass ultraviolet light, and may be formed in a solid shape. Further, the electrode 11 on the −X side may have a shape that allows light to pass through, and may be, for example, an electrode 11 provided with a slit.
 また、本実施形態の一対の電極11は、いずれも同じ材料で、発光管10の外壁面10a上にスクリーン印刷によって印刷され、焼成されて形成されているが、それぞれ異なる材料で、異なる方法によって形成されていてもよい。また、電極11を形成する材料は、例えば、金や白金等、又はこれらの含む合金等を採用し得る。 Further, the pair of electrodes 11 of the present embodiment are all made of the same material, printed on the outer wall surface 10a of the arc tube 10 by screen printing, and formed by firing. It may be formed. Further, as the material for forming the electrode 11, for example, gold, platinum, or the like, or an alloy containing these, or the like can be adopted.
 反射膜12は、図3に示すように、発光管10の光出射面13とは反対側(+X側)の内壁面10bに形成されており、発光空間10c内で発生し、+X側に向かって進行する紫外光を、-X側に向かうように反射する。 As shown in FIG. 3, the reflective film 12 is formed on the inner wall surface 10b on the side (+ X side) opposite to the light emitting surface 13 of the arc tube 10, is generated in the light emitting space 10c, and faces the + X side. The ultraviolet light that travels is reflected toward the -X side.
 反射膜12を形成する材料は、例えば、粒子状のシリカ(SiO2)、アルミナ(Al23)等が含まれる懸濁液等を塗布し、焼成することで形成されたものを採用し得る。 As the material for forming the reflective film 12, for example, a material formed by applying a suspension containing particulate silica (SiO 2 ), alumina (Al 2 O 3 ), or the like and firing the film is adopted. obtain.
 本実施形態の反射膜12は、+X側の内壁面10bのみに形成されているが、電極11が形成されていない、Y方向に対向する内壁面10bに形成されていてもよく、全く形成されていなくても構わない。 The reflective film 12 of the present embodiment is formed only on the inner wall surface 10b on the + X side, but may be formed on the inner wall surface 10b facing the Y direction on which the electrode 11 is not formed, or is formed at all. It doesn't have to be.
 次に、送風機構3の構成を説明する。光照射装置1は、図1及び図2に示すように、それぞれのエキシマランプ2に対して、Z方向に沿って配置された二つの送風機構3が別々に配置されている。すなわち、光照射装置1には、送風機構3が合計四つ搭載されている。 Next, the configuration of the ventilation mechanism 3 will be described. In the light irradiation device 1, as shown in FIGS. 1 and 2, two ventilation mechanisms 3 arranged along the Z direction are separately arranged for each excimer lamp 2. That is, the light irradiation device 1 is equipped with a total of four ventilation mechanisms 3.
 図7は、送風機構3を部材ごとに分解した図面である。図7に示すように、送風機構3は、通流管30と、ブロー管31と、底板32と、複数の切欠き33aが設けられた流路制限板33とを備える。 FIG. 7 is a drawing of the blower mechanism 3 disassembled for each member. As shown in FIG. 7, the ventilation mechanism 3 includes a flow pipe 30, a blow pipe 31, a bottom plate 32, and a flow path limiting plate 33 provided with a plurality of notches 33a.
 図8は、送風機構3の一実施形態をXY平面で切断したときの断面斜視図である。通流管30は、一つの送風機構3に対して、Z方向に複数配置されており、内側には冷却ガスC1を通流させるための流路が形成されている。それぞれの通流管30は、パイプやホース等が接続され、冷却ガスC1として光照射装置1の外部から取り込まれた空気が、流入口34を通して送風機構3内に送り込まれる。なお、本実施形態では、通流管30は、仕切り板6を貫通するように構成されるが、図7及び図8では、説明のために、仕切り板6は図示されていない。 FIG. 8 is a cross-sectional perspective view of one embodiment of the blower mechanism 3 cut along the XY plane. A plurality of flow pipes 30 are arranged in the Z direction with respect to one ventilation mechanism 3, and a flow path for passing the cooling gas C1 is formed inside. A pipe, a hose, or the like is connected to each of the flow pipes 30, and air taken in from the outside of the light irradiation device 1 as the cooling gas C1 is sent into the ventilation mechanism 3 through the inflow port 34. In the present embodiment, the flow pipe 30 is configured to penetrate the partition plate 6, but the partition plate 6 is not shown in FIGS. 7 and 8 for the sake of explanation.
 なお、一つの送風機構3に設けられる通流管30は、一つであってもよい。また、冷却ガスC1は、不活性ガスであれば、空気以外であっても構わない。 Note that the number of through pipes 30 provided in one ventilation mechanism 3 may be one. Further, the cooling gas C1 may be other than air as long as it is an inert gas.
 ブロー管31は、Z方向に延伸し、通流管30を通流してきた冷却ガスC1が滞留する第一滞留部35を形成している。また、ブロー管31は、管軸31cから離れる方向に突出し、噴射口37の一部を構成する突出部31aを備える。 The blow pipe 31 extends in the Z direction and forms a first retention portion 35 in which the cooling gas C1 that has passed through the flow pipe 30 stays. Further, the blow pipe 31 is provided with a protruding portion 31a that protrudes in a direction away from the pipe shaft 31c and forms a part of the injection port 37.
 底板32は、ブロー管31と流路制限板33が載置され、流路制限板33の切欠き33aとの底板32との間にZ方向に離散的に延伸する複数の第二滞留部36を形成する。また、底板32は、ブロー管31が載置された時に、ブロー管31の突出部31aと僅かに離間し、かつ、平行となる導風部32aが形成されている。ブロー管31が底板32に載置された時に、ブロー管31の突出部31aと、底板32の導風部32aによって形成されるZ方向に延伸する間隙が、冷却ガスC1を噴出する噴射口37となる。 The bottom plate 32 has a plurality of second retaining portions 36 on which the blow pipe 31 and the flow path limiting plate 33 are placed and which are discretely extended in the Z direction between the bottom plate 32 and the notch 33a of the flow path limiting plate 33. To form. Further, the bottom plate 32 is formed with a wind guide portion 32a that is slightly separated from the protruding portion 31a of the blow pipe 31 and is parallel to the blow pipe 31 when the blow pipe 31 is placed. When the blow pipe 31 is placed on the bottom plate 32, the gap formed by the protruding portion 31a of the blow pipe 31 and the air guiding portion 32a of the bottom plate 32 extending in the Z direction is an injection port 37 for ejecting the cooling gas C1. It becomes.
 本実施形態では、各第二滞留部36の容積の合計値が、第一滞留部35の容積よりも小さくなるように構成されている。 In the present embodiment, the total value of the volumes of each second retaining portion 36 is configured to be smaller than the volume of the first retaining portion 35.
 通流管30から送風機構3内に送り込まれた冷却ガスC1は、通流管30内を通流して第一滞留部35に流れ込む。 The cooling gas C1 sent from the flow pipe 30 into the ventilation mechanism 3 passes through the flow pipe 30 and flows into the first retention portion 35.
 第一滞留部35に流れ込んだ冷却ガスC1は、第二滞留部36が第一滞留部35よりも容積が小さいため、第二滞留部36に直接向かうように通流せず、第一滞留部35内を拡散するようにZ方向に向かって拡がる。 Since the volume of the cooling gas C1 that has flowed into the first retention portion 35 is smaller than that of the first retention portion 35, the cooling gas C1 does not flow directly toward the second retention portion 36, and the first retention portion 35 It spreads in the Z direction so as to diffuse inside.
 流れ込んでくる冷却ガスC1によって第一滞留部35内の圧力が上昇してくると、第一滞留部35内に拡がっていた冷却ガスC1が押し出されるように、徐々にそれぞれの第二滞留部36に流れ込む。 When the pressure in the first stagnant portion 35 rises due to the cooling gas C1 flowing in, each of the second stagnant portions 36 gradually pushes out the cooling gas C1 that has spread in the first stagnant portion 35. Flow into.
 第二滞留部36に流れ込んだ冷却ガスC1は、第二滞留部36から噴射口37に向かって通流し、噴射口37からエキシマランプ2の被冷却面14(図11参照)に向かって噴射される。 The cooling gas C1 that has flowed into the second retention portion 36 flows from the second retention portion 36 toward the injection port 37, and is injected from the injection port 37 toward the cooled surface 14 (see FIG. 11) of the excimer lamp 2. NS.
 次に、吸気機構4の構成を説明する。光照射装置1は、図1及び図2に示すように、エキシマランプ2の間に、Z方向に沿って二つ配置されている。 Next, the configuration of the intake mechanism 4 will be described. As shown in FIGS. 1 and 2, two light irradiation devices 1 are arranged between the excimer lamps 2 along the Z direction.
 図9は、吸気機構4の一実施形態を部材ごとに分解した図面である。図9に示すように、吸気機構4は、排気管40と、吸気ボックス41とを備える。なお、本実施形態では、排気管40は、仕切り板6と一体的に構成されているが、仕切り板6とは別々に構成されていても構わない。 FIG. 9 is a drawing in which one embodiment of the intake mechanism 4 is disassembled for each member. As shown in FIG. 9, the intake mechanism 4 includes an exhaust pipe 40 and an intake box 41. In the present embodiment, the exhaust pipe 40 is integrally configured with the partition plate 6, but may be configured separately from the partition plate 6.
 図10は、吸気機構4の一実施形態をXY平面で切断したときの断面斜視図である。図10に示すように、排気管40は、排気口42が形成されており、排気口42とパイプやホース等が接続されて、光照射装置1の外部に吸気した冷却ガスC1を排気する。 FIG. 10 is a cross-sectional perspective view of one embodiment of the intake mechanism 4 cut along the XY plane. As shown in FIG. 10, the exhaust pipe 40 is formed with an exhaust port 42, and the exhaust port 42 is connected to a pipe, a hose, or the like to exhaust the cooling gas C1 taken into the outside of the light irradiation device 1.
 吸気ボックス41は、図9に示すように、冷却ガスC1を吸気する吸気口41aが、-X側の面にZ方向に離散的に延伸するように形成されている。吸気ボックス41の+X側は、図10に示すように、仕切り板6が載置されて、排気管40の開口部40aと連絡される。 As shown in FIG. 9, the intake box 41 is formed so that the intake port 41a for sucking the cooling gas C1 is discretely extended in the Z direction on the surface on the −X side. As shown in FIG. 10, a partition plate 6 is placed on the + X side of the intake box 41 to communicate with the opening 40a of the exhaust pipe 40.
 吸気ボックス41は、図10に示すように、側壁板5に載置され、Z方向に離散的に延伸する吸気口41aが、-Y側の吸気口41aと、+Y側の吸気口41aとに分けられる。これにより、図3に示すように、吸気機構4は、-Y側に配置されたエキシマランプ2から熱を吸収した冷却ガスC1と、+Y側に配置されたエキシマランプ2から熱を吸収した冷却ガスC1とをまとめて吸気し、排気口42から排気する。なお、吸気機構4は、それぞれのエキシマランプ2に個別に設けられていても構わない。 As shown in FIG. 10, the intake box 41 is mounted on the side wall plate 5, and the intake ports 41a that are discretely extended in the Z direction are provided at the intake port 41a on the −Y side and the intake port 41a on the + Y side. Divided. As a result, as shown in FIG. 3, the intake mechanism 4 absorbs heat from the excimer lamp 2 arranged on the −Y side and the cooling gas C1 arranged on the + Y side, and cools by absorbing heat from the excimer lamp 2 arranged on the + Y side. The gas C1 and the gas C1 are collectively taken in and exhausted from the exhaust port 42. The intake mechanism 4 may be individually provided on each excimer lamp 2.
 図11は、図2の一つのエキシマランプ2周辺の拡大断面図であり、図12は、図11の送風機構3周辺の拡大断面図である。図11に示すように、送風機構3は、Y方向に関して、エキシマランプ2の発光管10と、エキシマランプ2から見て-Y側の側壁板5との間に、発光管10の被冷却面14に向かって冷却ガスC1を噴射する噴射口37が配置されている。また、吸気機構4は、Y方向に関して、エキシマランプ2の発光管10と、エキシマランプ2から見て+Y側の側壁板5との間に吸気機構4の吸気口41aが配置されている。 FIG. 11 is an enlarged cross-sectional view of the periphery of one excimer lamp 2 of FIG. 2, and FIG. 12 is an enlarged cross-sectional view of the periphery of the blower mechanism 3 of FIG. As shown in FIG. 11, the blower mechanism 3 has a cooling surface of the arc tube 10 between the arc tube 10 of the excimer lamp 2 and the side wall plate 5 on the Y side when viewed from the excimer lamp 2 in the Y direction. An injection port 37 for injecting the cooling gas C1 toward the 14 is arranged. Further, in the intake mechanism 4, the intake port 41a of the intake mechanism 4 is arranged between the arc tube 10 of the excimer lamp 2 and the side wall plate 5 on the + Y side when viewed from the excimer lamp 2 in the Y direction.
 側壁板5は、光照射装置1に搭載されるエキシマランプ2を、Y方向にそれぞれ区分けするように配置されており、それぞれのエキシマランプ2に対しては、一対の側壁板5が発光管10を介して対向するように配置されている。また、二つのエキシマランプ2の間の側壁板5は、さらに、吸気機構4の吸気ボックス41を支える支持台としても機能している。 The side wall plates 5 are arranged so as to divide the excimer lamps 2 mounted on the light irradiation device 1 in the Y direction, and for each excimer lamp 2, a pair of side wall plates 5 are the arc tubes 10. They are arranged so as to face each other via. Further, the side wall plate 5 between the two excimer lamps 2 also functions as a support base for supporting the intake box 41 of the intake mechanism 4.
 仕切り板6は、発光管10の被冷却面14と対向するように配置され、二つのエキシマランプ2に挟まれた側壁板5とは吸気機構4を介して間接的に連絡し、その他の側壁板5とは直接連絡するように配置されている。 The partition plate 6 is arranged so as to face the cooled surface 14 of the arc tube 10, and indirectly communicates with the side wall plate 5 sandwiched between the two excimer lamps 2 via the intake mechanism 4, and the other side walls. It is arranged so as to be in direct contact with the board 5.
 遮風板7は、図2に示すように、Z方向に延伸しており、図12に示すように、エキシマランプ2の+Y側と-Y側のそれぞれの側壁板5から、エキシマランプ2の発光管10の外壁面10aに向かって突出するように構成されている。 As shown in FIG. 2, the windshield 7 extends in the Z direction, and as shown in FIG. 12, the excimer lamp 2 has a side wall plate 5 on the + Y side and −Y side of the excimer lamp 2. It is configured to project toward the outer wall surface 10a of the arc tube 10.
 なお、本実施形態の遮風板7は、発光管10の外壁面10aに向かってY方向と平行に突出しているが、側壁板5から発光管10に向かうように、Y方向とは非平行に突出していても構わない。また、遮風板7は、発光管10の-X側端部に向かって突出しているが、発光管10の+X側の端部や、X方向における中央部側に向かって突出するように構成されていても構わない。 The windbreak plate 7 of the present embodiment projects parallel to the Y direction toward the outer wall surface 10a of the arc tube 10, but is not parallel to the Y direction so as to go from the side wall plate 5 to the arc tube 10. It does not matter if it protrudes into. Further, the windshield 7 projects toward the −X side end of the arc tube 10, but is configured to project toward the + X side end of the arc tube 10 and the central portion in the X direction. It doesn't matter if it is done.
 遮風板7の先端部7aは、図12に示すように、発光管10の外壁面10aと近接して配置されている。この構成により、冷却ガスC1は、光出射面13側へと流れ込まないように遮風される。なお、ここでいう「近接」とは、上述したように、離間距離が3.0mm以下のことをいう。本実施形態の光照射装置1は、具体的には、遮風板7と発光管10との離間距離d1は2.0mmである。送風機構3の噴射口37におけるブロー管31と、底板32との離間距離d2は1.5mmである。なお、遮風板7の先端部7aと発光管10の外壁面10aは、接触するように配置されていても構わない。 As shown in FIG. 12, the tip portion 7a of the windbreak plate 7 is arranged close to the outer wall surface 10a of the arc tube 10. With this configuration, the cooling gas C1 is shielded from wind so as not to flow into the light emitting surface 13 side. The term "proximity" as used herein means that the separation distance is 3.0 mm or less, as described above. Specifically, in the light irradiation device 1 of the present embodiment, the separation distance d1 between the windshield 7 and the arc tube 10 is 2.0 mm. The separation distance d2 between the blow pipe 31 and the bottom plate 32 at the injection port 37 of the blower mechanism 3 is 1.5 mm. The tip portion 7a of the windshield 7 and the outer wall surface 10a of the arc tube 10 may be arranged so as to be in contact with each other.
 上記構成とすることで、図11に示すように、送風機構3から噴射された冷却ガスC1は、光出射面13側には通流せず、発光管10の被冷却面14に沿って熱を吸収しながら、+Y方向、すなわち、吸気機構4側に向かって通流し、被冷却面14全体を冷却する。 With the above configuration, as shown in FIG. 11, the cooling gas C1 injected from the blower mechanism 3 does not flow to the light emitting surface 13 side, and heat is transferred along the cooled surface 14 of the arc tube 10. While absorbing, it flows in the + Y direction, that is, toward the intake mechanism 4 side, and cools the entire surface to be cooled 14.
 さらに、遮風板7によって、冷却ガスC1がエキシマランプ2の光出射面13と、照射対象物W1との間の空間にほとんど流れ込まないため、当該空間の酸素濃度の制御に影響を与えることなく、エキシマランプ2を冷却することができる。 Further, since the cooling gas C1 hardly flows into the space between the light emitting surface 13 of the excimer lamp 2 and the irradiation target W1 by the windshield 7, the control of the oxygen concentration in the space is not affected. , The excimer lamp 2 can be cooled.
 さらに、本実施形態の光照射装置1は、図2に示すように、送風機構3がZ方向に複数配置されているため、それぞれの送風機構3において、冷却ガスC1の流量や流速を個別に調整することができる。例えば、より高温になりやすい、エキシマランプ2のZ方向における中央部側において、端部側よりも噴射される冷却ガスC1の流量や流速を大きくするように調整することができる。 Further, in the light irradiation device 1 of the present embodiment, as shown in FIG. 2, since a plurality of blower mechanisms 3 are arranged in the Z direction, the flow rate and the flow velocity of the cooling gas C1 are individually set in each blower mechanism 3. Can be adjusted. For example, it can be adjusted so that the flow rate and the flow velocity of the cooling gas C1 injected on the central portion side of the excimer lamp 2 in the Z direction, which tends to be higher in temperature, are larger than those on the end portion side.
 なお、送風機構3から一定時間内に噴射される冷却ガスC1の流量が、吸気機構4が一定時間内に吸気する流量よりも多いと、吸気機構4が高温となった冷却ガスC1を吸気しきれず、エキシマランプ2を効率的に冷却できない。 If the flow rate of the cooling gas C1 injected from the blower mechanism 3 within a certain period of time is larger than the flow rate of the intake mechanism 4 inhaling within a certain period of time, the intake mechanism 4 takes in the high temperature cooling gas C1. Therefore, the excimer lamp 2 cannot be cooled efficiently.
 送風機構3から一定時間内に噴射される冷却ガスC1の流量が、吸気機構4が一定時間内に吸気する流量よりも少ないと、エキシマランプ2と遮風板7との隙間等から冷却ガスC1以外の気体を取り込んでしまい、冷却ガスC1による冷却の効果を低下させてしまう。さらには、発光管10と照射対象物W1との間の酸素濃度に影響が出てしまう。 When the flow rate of the cooling gas C1 injected from the blower mechanism 3 within a certain period of time is smaller than the flow rate of the cooling gas C1 injected by the intake mechanism 4 within a certain period of time, the cooling gas C1 is formed through a gap between the excimer lamp 2 and the windshield 7. It takes in a gas other than the above, and reduces the cooling effect of the cooling gas C1. Further, the oxygen concentration between the arc tube 10 and the irradiation target W1 is affected.
 つまり、本発明の光照射装置1は、送風機構3から一定時間内に噴射される冷却ガスC1の流量と、吸気機構4が一定時間内に吸気する流量とがほぼ同じに調整されていることが好ましい。そのため、送風機構3の通流管30や、吸気機構4の排気管40には、それぞれ流量を調整するためのコックやバルブ等が設けられていても構わない。 That is, in the light irradiation device 1 of the present invention, the flow rate of the cooling gas C1 injected from the blower mechanism 3 within a fixed time and the flow rate taken by the intake mechanism 4 within a fixed time are adjusted to be substantially the same. Is preferable. Therefore, the flow pipe 30 of the ventilation mechanism 3 and the exhaust pipe 40 of the intake mechanism 4 may be provided with cocks, valves, and the like for adjusting the flow rate, respectively.
 また、送風機構3に設けられる通流管30や、吸気機構4に設けられる排気管40の数や流量を調整することで、冷却ガスC1が光出射面13と照射対象物W1との間の酸素濃度にはほとんど影響を与えないように構成することもできる。このような場合には、光照射装置1は、遮風板7を備えていなくても構わない。 Further, by adjusting the number and flow rate of the flow pipe 30 provided in the ventilation mechanism 3 and the exhaust pipe 40 provided in the intake mechanism 4, the cooling gas C1 is between the light emitting surface 13 and the irradiation target W1. It can also be configured to have little effect on the oxygen concentration. In such a case, the light irradiation device 1 may not include the windshield 7.
 [別実施形態]
 以下、別実施形態につき説明する。
[Another Embodiment]
Hereinafter, another embodiment will be described.
 〈1〉 図13は、送風機構3の別実施形態を部品ごとに分解した図面であり、図14は、送風機構3の別実施形態をXY平面で切断したときの断面斜視図である。図13及び図14が示すように、送風機構3は、流路制限板33を備えず、通流管30と、突出部31aを有するブロー管31と、Y方向に延伸する溝32bが形成された底板32で構成されていても構わない。 <1> FIG. 13 is an exploded view of another embodiment of the blower mechanism 3 for each part, and FIG. 14 is a cross-sectional perspective view of another embodiment of the blower mechanism 3 cut in an XY plane. As shown in FIGS. 13 and 14, the ventilation mechanism 3 is not provided with the flow path limiting plate 33, and is formed with a flow pipe 30, a blow pipe 31 having a protruding portion 31a, and a groove 32b extending in the Y direction. It may be composed of the bottom plate 32.
 当該構成の場合は、ブロー管31の突出部31aと溝32bによって形成される空間が第二滞留部36を構成する。また、±Y方向のそれぞれの端部において、溝32bの底面が導風部32aとする噴射口37が、Z方向に離散的に延伸するように形成される。 In the case of this configuration, the space formed by the protruding portion 31a and the groove 32b of the blow pipe 31 constitutes the second retention portion 36. Further, at each end in the ± Y direction, the injection port 37 having the bottom surface of the groove 32b as the air guide portion 32a is formed so as to extend discretely in the Z direction.
 図15は、送風機構3の別実施形態を部材ごとに分解した図面である。底板32に形成される溝32bは、Z方向に連続的に延伸するように形成されていても構わない。当該構成とすることで、図示はしないが、Z方向に延伸する第二滞留部36と、噴射口37とが形成される。 FIG. 15 is a drawing in which another embodiment of the ventilation mechanism 3 is disassembled for each member. The groove 32b formed in the bottom plate 32 may be formed so as to extend continuously in the Z direction. With this configuration, although not shown, a second retention portion 36 extending in the Z direction and an injection port 37 are formed.
 〈2〉 図16は、光照射装置1の別実施形態を模式的に示す斜視図である。図16に示すように、送風機構3は、ブロー管31等を備えることなく、仕切り板6に貫通孔6aを設け、貫通孔6aに通流管30を連絡しただけの構成であっても構わない。また、吸気機構4も同様に仕切り板6に貫通孔6aを設け、排気管40を連絡しただけの構成であっても構わない。 <2> FIG. 16 is a perspective view schematically showing another embodiment of the light irradiation device 1. As shown in FIG. 16, the blower mechanism 3 may be configured such that the partition plate 6 is provided with the through hole 6a and the through hole 6a is simply connected to the through pipe 30 without providing the blow pipe 31 or the like. No. Further, the intake mechanism 4 may also have a configuration in which the partition plate 6 is similarly provided with a through hole 6a and the exhaust pipe 40 is simply connected.
 〈3〉 図17は、光照射装置1の別実施形態を模式的に示す斜視図であり、図18は、図17のエキシマランプ2をZ方向に見たときの断面図である。光照射装置1が備えるエキシマランプ2は、図18に示すように、発光管10をXY平面で切断したときの断面が、内側の管(内管10pと称する)と外側の管(外管10qと称する)とで構成された、二重管形状とも称される構成としても構わない。 <3> FIG. 17 is a perspective view schematically showing another embodiment of the light irradiation device 1, and FIG. 18 is a cross-sectional view of the excimer lamp 2 of FIG. 17 when viewed in the Z direction. As shown in FIG. 18, the excimer lamp 2 included in the light irradiation device 1 has an inner tube (referred to as an inner tube 10p) and an outer tube (outer tube 10q) having a cross section when the arc tube 10 is cut in the XY plane. It may be a configuration also referred to as a double tube shape, which is composed of (referred to as).
 内管10pの内壁面10dと外管10qの外壁面10eには、発光管(10p,10q)を介して対向するように一対の電極11が形成されている。図18に示す、二重管形状の発光管(10p,10q)を備えるエキシマランプ2は、内側の電極11がベタ状に形成され、外側の電極11が発光空間10cで発生した紫外光を出射するために網目状に形成されている。 A pair of electrodes 11 are formed on the inner wall surface 10d of the inner tube 10p and the outer wall surface 10e of the outer tube 10q so as to face each other via an arc tube (10p, 10q). In the excimer lamp 2 provided with the double tube-shaped arc tube (10p, 10q) shown in FIG. 18, the inner electrode 11 is formed in a solid shape, and the outer electrode 11 emits ultraviolet light generated in the light emitting space 10c. It is formed in a mesh shape so that it can be used.
 また、本実施形態におけるエキシマランプ2は、外管10qの+X側の内壁面10fに反射膜12が形成されており、発光管(10p,10q)の間で発生した紫外光を、-X側に向かって出射するように構成されている。これにより、外管10qのX方向において対向する壁面のうちの、-X側の壁面が光出射面13となる。 Further, in the excimer lamp 2 of the present embodiment, the reflective film 12 is formed on the inner wall surface 10f on the + X side of the outer tube 10q, and the ultraviolet light generated between the arc tubes (10p, 10q) is emitted to the −X side. It is configured to emit toward. As a result, of the wall surfaces of the outer tube 10q facing each other in the X direction, the wall surface on the −X side becomes the light emitting surface 13.
 図19は、図17の一つのエキシマランプ2周辺の拡大断面図である。図19に示すように、送風機構3から噴射された冷却ガスC1は、光出射面13側には通流せず、外管10qの外壁面10eから熱を吸収しながら、+Y方向、すなわち、吸気機構4側に向かって通流し、外管10qを冷却する。このように、外管10qからエキシマランプ2で発生した熱が順次排熱されることで、エキシマランプ2全体が冷却される。 FIG. 19 is an enlarged cross-sectional view of the periphery of one excimer lamp 2 of FIG. As shown in FIG. 19, the cooling gas C1 injected from the blower mechanism 3 does not flow to the light emitting surface 13 side, and absorbs heat from the outer wall surface 10e of the outer tube 10q in the + Y direction, that is, intake air. The outer pipe 10q is cooled by flowing toward the mechanism 4 side. In this way, the heat generated by the excimer lamp 2 is sequentially exhausted from the outer tube 10q, so that the entire excimer lamp 2 is cooled.
 図20は、図18とは別構成のエキシマランプ2をZ方向に見たときの断面図である。エキシマランプ2は、図20に示すように、発光管10の外壁面10aと発光空間10c内に、発光管10の壁面を介して対向する一対の電極11が設けられた、一重管形状とも称される構成としても構わない。 FIG. 20 is a cross-sectional view of an excimer lamp 2 having a configuration different from that of FIG. 18 when viewed in the Z direction. As shown in FIG. 20, the excimer lamp 2 is also referred to as a single tube shape in which a pair of electrodes 11 facing each other via the wall surface of the arc tube 10 are provided in the outer wall surface 10a of the arc tube 10 and the light emitting space 10c. It may be configured to be used.
 〈4〉 上述した各光照射装置1は、エキシマランプ2が二本配置されているが、エキシマランプ2は、一本だけ配置されていてもよく、三本以上配置されていても構わない。 <4> In each of the above-mentioned light irradiation devices 1, two excimer lamps 2 are arranged, but only one excimer lamp 2 may be arranged, or three or more excimer lamps 2 may be arranged.
 また、本実施形態の光照射装置1は、送風機構3が、それぞれのエキシマランプ2に対して、Z方向に沿って二つ配置されているが、一つであってもよく、三つ以上であっても構わない。さらに、二つのエキシマランプ2が、同じ送風機構3を共有するように構成されていても構わない。なお、吸気機構4が、Z方向に沿っていくつ配置されていてもよく、それぞれのエキシマランプ2に対して、別々に配置されていても構わない。 Further, in the light irradiation device 1 of the present embodiment, two ventilation mechanisms 3 are arranged along the Z direction for each excimer lamp 2, but one may be used, and three or more may be provided. It doesn't matter. Further, the two excimer lamps 2 may be configured to share the same ventilation mechanism 3. Any number of intake mechanisms 4 may be arranged along the Z direction, and may be arranged separately for each excimer lamp 2.
 〈5〉 本実施形態の吸気機構4は、光照射装置1において、±Y方向にそれぞれエキシマランプ2が配置されているため、+Y側と-Y側それぞれに、Z方向に離散的に延伸する吸気口41aが設けられている。しかし、配置されるエキシマランプ2が一本の場合等は、吸気機構4の吸気口41aは、いずれか一方のみであっても構わない。また、吸気口41aは、Z方向に連続的に形成された一つの開口であっても構わない。 <5> Since the excimer lamps 2 are arranged in the ± Y direction in the light irradiation device 1, the intake mechanism 4 of the present embodiment is discretely extended in the Z direction on each of the + Y side and the −Y side. An intake port 41a is provided. However, when there is only one excimer lamp 2 arranged, the intake port 41a of the intake mechanism 4 may be only one of them. Further, the intake port 41a may be one opening continuously formed in the Z direction.
 〈6〉 第二滞留部36は、それぞれの容積の合計値が第一滞留部35の容積よりも大きく形成されていても構わない。また、第二滞留部36は、容積が第一滞留部35の容積よりも大きく形成されていても構わない。 <6> The total value of the respective volumes of the second retention portion 36 may be formed to be larger than the volume of the first retention portion 35. Further, the volume of the second retention portion 36 may be formed to be larger than the volume of the first retention portion 35.
 〈7〉 上述した光照射装置1が備える構成は、あくまで一例であり、本発明は、図示された各構成に限定されない。 <7> The configuration provided in the light irradiation device 1 described above is merely an example, and the present invention is not limited to each of the illustrated configurations.
    1    :  光照射装置
    2    :  エキシマランプ
    3    :  送風機構
    4    :  吸気機構
    5    :  側壁板
    6    :  仕切り板
    6a   :  貫通孔
    7    :  遮風板
    7a   :  先端部
   10    :  発光管
   10a   :  外壁面
   10b   :  内壁面
   10c   :  発光空間
   10d   :  内壁面
   10e   :  外壁面
   10f   :  内壁面
   10p   :  内管
   10q   :  外管
   11    :  電極
   12    :  反射膜
   13    :  光出射面
   14    :  被冷却面
   30    :  通流管
   31    :  ブロー管
   31a   :  突出部
   32    :  底板
   32a   :  導風部
   32b   :  溝
   33    :  流路制限板
   33a   :  切欠き
   34    :  流入口
   35    :  第一滞留部
   36    :  第二滞留部
   37    :  噴射口
   40    :  排気管
   40a   :  開口部
   41    :  吸気ボックス
   41a   :  吸気口
   42    :  排気口
    C1   :  冷却ガス
    G1   :  発光ガス
    W1   :  照射対象物
    d1,d2   :  離間距離
 
1: Light irradiation device 2: Excimer lamp 3: Blower mechanism 4: Intake mechanism 5: Side wall plate 6: Partition plate 6a: Through hole 7: Windshield plate 7a: Tip part 10: Light emitting tube 10a: Outer wall surface 10b: Inner wall surface 10c: Light emitting space 10d: Inner wall surface 10e: Outer wall surface 10f: Inner wall surface 10p: Inner tube 10q: Outer tube 11: Electrode 12: Reflective film 13: Light emitting surface 14: Cooled surface 30: Flow tube 31: Blow tube 31a: Protruding part 32: Bottom plate 32a: Air guide part 32b: Groove 33: Flow path limiting plate 33a: Notch 34: Inflow port 35: First stagnant part 36: Second stagnant part 37: Injection port 40: Excimer pipe 40a : Opening 41: Intake box 41a: Intake port 42: Exhaust port C1: Cooling gas G1: Luminous gas W1: Irradiated object d1, d2: Separation distance

Claims (6)

  1.  第一方向に延伸し、紫外光に対して透過性を有する発光管と、前記発光管の壁面を介して対向する一対の電極とを備え、前記第一方向と直交する第二方向において対向する前記発光管の壁面のうちの、一方の壁面を光出射面とするエキシマランプと、
     前記第一方向に延伸し、前記第一方向及び前記第二方向と直交する第三方向において、前記発光管を介して対向する一対の側壁板と、
     前記第二方向において、前記発光管と、一方の前記側壁板側の間に、前記第一方向に延伸する形状を呈し、前記発光管の前記光出射面とは反対側の外壁面に向かって冷却ガスを噴射する噴射口を有する送風機構と、
     前記第二方向において、前記発光管と、前記送風機構とは反対側の前記側壁板との間に、前記第一方向に延伸する形状を呈する吸気口を有する吸気機構と、
     前記第一方向に延伸し、前記第二方向において、前記発光管の前記光出射面とは反対側に前記発光管と離間して配置され、前記一対の側壁板を直接、又は他の部材を介して間接的に連絡する仕切り板とを備えることを特徴とする光照射装置。
    An excimer tube extending in the first direction and having transparency to ultraviolet light and a pair of electrodes facing each other via the wall surface of the excimer tube are provided and face each other in a second direction orthogonal to the first direction. An excimer lamp having one wall surface of the wall surface of the arc tube as a light emitting surface,
    A pair of side wall plates extending in the first direction and facing each other via the arc tube in the first direction and the third direction orthogonal to the second direction.
    In the second direction, it exhibits a shape extending in the first direction between the arc tube and one of the side wall plates, and toward the outer wall surface of the arc tube on the side opposite to the light emitting surface. A blower mechanism with an injection port that injects cooling gas,
    An intake mechanism having an intake port extending in the first direction between the arc tube and the side wall plate on the side opposite to the ventilation mechanism in the second direction.
    It extends in the first direction and is arranged in the second direction on the side of the arc tube opposite to the light emitting surface so as to be separated from the arc tube, and the pair of side wall plates can be directly attached or other members can be attached. A light irradiation device including a partition plate that indirectly communicates with the light irradiation device.
  2.  前記側壁板から前記発光管に向かって突出し、先端部が前記発光管と近接、又は接触するように配置された遮風板を備えることを特徴とする請求項1に記載の光照射装置。 The light irradiation device according to claim 1, further comprising a windshield plate that protrudes from the side wall plate toward the light emitting tube and whose tip is arranged so as to be close to or in contact with the light emitting tube.
  3.  前記冷却ガスは、外部から取り込まれた空気であることを特徴とする請求項2に記載の光照射装置。 The light irradiation device according to claim 2, wherein the cooling gas is air taken in from the outside.
  4.  前記送風機構は、前記第一方向に延伸する第一滞留部と、前記第一滞留部よりも下流に、前記第一方向に延伸し、前記第一滞留部よりも容積が小さい第二滞留部とを有していることを特徴とする請求項1~3のいずれか一項に記載の光照射装置。 The ventilation mechanism includes a first retention portion extending in the first direction and a second retention portion extending in the first direction downstream of the first retention portion and having a volume smaller than that of the first retention portion. The light irradiation device according to any one of claims 1 to 3, wherein the light irradiation device has.
  5.  前記送風機構は、前記第一方向に沿って複数の前記冷却ガスの流入口を有することを特徴とする請求項1~3のいずれか一項に記載の光照射装置。 The light irradiation device according to any one of claims 1 to 3, wherein the ventilation mechanism has a plurality of inlets for the cooling gas along the first direction.
  6.  複数の前記送風機構が、前記第一方向に沿って配置されていることを特徴とする請求項1~3のいずれか一項に記載の光照射装置。
     
    The light irradiation device according to any one of claims 1 to 3, wherein the plurality of blower mechanisms are arranged along the first direction.
PCT/JP2021/009312 2020-03-16 2021-03-09 Light irradiation device WO2021187242A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227026899A KR20220124745A (en) 2020-03-16 2021-03-09 light irradiation device
CN202180008006.1A CN114902375A (en) 2020-03-16 2021-03-09 Light irradiation device
JP2022508242A JP7283629B2 (en) 2020-03-16 2021-03-09 Light irradiation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020045377 2020-03-16
JP2020-045377 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021187242A1 true WO2021187242A1 (en) 2021-09-23

Family

ID=77771216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009312 WO2021187242A1 (en) 2020-03-16 2021-03-09 Light irradiation device

Country Status (4)

Country Link
JP (1) JP7283629B2 (en)
KR (1) KR20220124745A (en)
CN (1) CN114902375A (en)
WO (1) WO2021187242A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221621A (en) * 2011-04-05 2012-11-12 Harison Toshiba Lighting Corp Light irradiation device
JP2015230838A (en) * 2014-06-05 2015-12-21 ウシオ電機株式会社 Excimer light irradiation device
JP2017157458A (en) * 2016-03-03 2017-09-07 ウシオ電機株式会社 Ultraviolet irradiation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534344B2 (en) 1973-12-17 1980-09-05

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221621A (en) * 2011-04-05 2012-11-12 Harison Toshiba Lighting Corp Light irradiation device
JP2015230838A (en) * 2014-06-05 2015-12-21 ウシオ電機株式会社 Excimer light irradiation device
JP2017157458A (en) * 2016-03-03 2017-09-07 ウシオ電機株式会社 Ultraviolet irradiation device

Also Published As

Publication number Publication date
KR20220124745A (en) 2022-09-14
CN114902375A (en) 2022-08-12
JPWO2021187242A1 (en) 2021-09-23
JP7283629B2 (en) 2023-05-30

Similar Documents

Publication Publication Date Title
KR100333235B1 (en) Optical irradiation device
US9616469B2 (en) Light projection device
JP2007157583A (en) Light illumination device
WO2021187242A1 (en) Light irradiation device
JP5743160B2 (en) UV irradiation equipment
JP2021150041A (en) Light irradiation device
US6831419B1 (en) Exhaust system for a microwave excited ultraviolet lamp
JP2014042884A (en) Ultraviolet irradiator
TW201300177A (en) Ultraviolet radiation device
US20070242232A1 (en) Electronic device and guiding device
CN113658846A (en) Ultraviolet lamp
JP3744397B2 (en) UV irradiator
KR100539403B1 (en) Circulation air cooling system for light illuminating apparatus
JP2003144537A (en) Sterilization device
TWI453786B (en) Light irradiation device
JPH0487636A (en) Ultraviolet irradiator
CN215869295U (en) Waveguide device and microwave excitation high-energy C-section UV lamp
KR20130053373A (en) Irradiation device and irradiation method
WO2021203216A1 (en) Ultraviolet light curing device
JPH09201401A (en) Ultraviolet sterilization apparatus
WO2022137594A1 (en) Active energy irradiation device and active energy irradiation system
JPH0386234A (en) Ultraviolet ray irradiation device
JP4720154B2 (en) Flash lamp light emitting device
JP2005081738A (en) Ultraviolet ray-irradiating apparatus
KR20030069626A (en) air sterilizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508242

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227026899

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772313

Country of ref document: EP

Kind code of ref document: A1