WO2021186914A1 - モータ及び作業機械 - Google Patents

モータ及び作業機械 Download PDF

Info

Publication number
WO2021186914A1
WO2021186914A1 PCT/JP2021/003309 JP2021003309W WO2021186914A1 WO 2021186914 A1 WO2021186914 A1 WO 2021186914A1 JP 2021003309 W JP2021003309 W JP 2021003309W WO 2021186914 A1 WO2021186914 A1 WO 2021186914A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
supply port
supply passage
supply
cooling medium
Prior art date
Application number
PCT/JP2021/003309
Other languages
English (en)
French (fr)
Inventor
康彦 松木
明浩 永松
志門 森川
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2021186914A1 publication Critical patent/WO2021186914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • This disclosure relates to motors and work machines.
  • a motor may be used as a power source for a work machine.
  • the coil of the motor generates heat. Therefore, it is necessary to efficiently cool the coil with a cooling medium.
  • the purpose of this disclosure is to efficiently cool the coil.
  • the rotor includes a rotor that rotates about a rotation axis and a stator that is arranged around the rotor, and the stator has a stator core and a coil that is supported by the stator.
  • a motor comprising a coil end projecting from the stator core in an axial direction parallel to the rotation axis, the rotor having a first supply port for supplying a cooling medium to the axial end face of the coil end.
  • the coil can be cooled efficiently.
  • FIG. 1 is a diagram schematically showing a work machine according to an embodiment.
  • FIG. 2 is a diagram schematically showing a drive system of a work machine according to an embodiment.
  • FIG. 3 is a cross-sectional view showing the motor according to the embodiment.
  • FIG. 4 is a perspective view showing a rotor according to the embodiment.
  • FIG. 5 is a perspective view showing a nozzle portion provided with the first supply port according to the embodiment.
  • FIG. 6 is a perspective view showing a nozzle portion provided with the second supply port according to the embodiment.
  • FIG. 7 is a perspective view showing a balance ring according to the embodiment.
  • FIG. 8 is a cross-sectional view showing the motor according to the embodiment.
  • FIG. 1 is a diagram schematically showing a work machine 100 according to an embodiment.
  • the work machine 100 is a wheel loader.
  • the work machine 100 includes a vehicle body 101, a work machine 102 attached to the front portion of the vehicle body 101, a hydraulic cylinder 103 for driving the work machine 102, and a traveling device 104 for supporting the vehicle body 101.
  • the vehicle body 101 has a cab 101A on which the driver is boarded.
  • the working machine 102 includes a lift arm 102A attached to the front portion of the vehicle body 101 and a bucket 102B attached to the tip end portion of the lift arm 102A.
  • the hydraulic cylinder 103 has an arm cylinder for driving the lift arm 102A and a bucket cylinder for driving the bucket 102B.
  • the traveling device 104 has a front wheel 104F and a rear wheel 104R.
  • FIG. 2 is a diagram schematically showing a drive system of the work machine 100 according to the embodiment.
  • the working machine 100 has an engine 106 and a motor 1.
  • Examples of the engine 106 include a diesel engine or a gasoline engine.
  • Each of the engine 106 and the motor 1 is a power source for the work machine 100.
  • the traveling device 104 includes a transmission 104A, a propeller shaft 104B, a differential gear 104C, and a drive shaft 104D.
  • the propeller shaft 104B is connected to each of the front and rear parts of the transmission 104A.
  • the differential gear 104C is arranged at each of the front portion and the rear portion of the vehicle body 101.
  • the drive shaft 104D is arranged at each of the front portion and the rear portion of the vehicle body 101.
  • the outputs of the engine 106 and the motor 1 are input to the transmission 104A.
  • the transmission 104A combines the outputs of the engine 106 and the motor 1 and then outputs the outputs to each of the pair of propeller shafts 104B.
  • the output of one propeller shaft 104B is transmitted to the front wheels 104F via the differential gear 104C and the drive shaft 104D arranged at the front portion of the vehicle body 101.
  • the output of the other propeller shaft 104B is transmitted to the rear wheels 104R via the differential gear 104C and the drive shaft 104D arranged at the rear of the vehicle body 101.
  • the work machine 100 runs by rotating the front wheels 104F and the rear wheels 104R.
  • the work machine 100 does not have to have the engine 106. Only the motor 1 may be mounted on the work machine 100 as a power source for the work machine 100.
  • FIG. 3 is a cross-sectional view showing the motor 1 according to the embodiment.
  • the motor 1 includes a rotor 2 that rotates about a rotation shaft AX, a stator 3 that is arranged around the rotor 2, and a housing 4 that is arranged around the stator 3.
  • the motor 1 is placed horizontally on the vehicle body 101. That is, the motor 1 is arranged on the vehicle body 101 so that the rotation axis AX and the traveling direction of the work machine 100 when traveling straight are orthogonal to each other. In the embodiment, the rotation shaft AX extends in the left-right direction of the vehicle body 101.
  • the direction parallel to the rotation axis AX of the rotor 2 is appropriately referred to as an axial direction
  • the direction orbiting around the rotation axis AX is appropriately referred to as a circumferential direction or a rotation direction
  • the radial direction of the rotation axis AX is appropriately referred to as radial direction.
  • a position separated from the center of the motor 1 to one side (right side) or a position far from the center is appropriately referred to as one side in the axial direction, and a direction separated from the center of the motor 1 to the other side (left side) or far away. The position is appropriately referred to as the other side in the axial direction.
  • the direction approaching or near the rotation axis AX is appropriately referred to as the inside in the radial direction, and the direction away from or far from the rotation axis AX is appropriately referred to as the outside in the radial direction.
  • FIG. 4 is a perspective view showing the rotor 2 according to the embodiment.
  • the rotor 2 includes a rotor shaft 21, a rotor core 22 arranged around the rotor shaft 21, and an end face on one side in the axial direction and an end face on the other side in the axial direction of the rotor core 22, respectively. It has a balance ring 23 arranged in.
  • the rotor shaft 21 is a rod-shaped member that extends in the axial direction.
  • the rotor core 22 is a cylindrical member arranged around the rotor shaft 21.
  • a plurality of permanent magnets are arranged inside the rotor core 22.
  • the rotor core 22 is formed by laminating a plurality of annular steel plates.
  • the rotor shaft 21 and the rotor core 22 are fixed.
  • the balance ring 23 is connected to each of the end face on one side (right side) of the rotor core 22 in the axial direction and the end face on the other side (left side) in the axial direction of the rotor core 22.
  • the rotor core 22 is sandwiched between a pair of balance rings 23.
  • the rotor shaft 21, the rotor core 22, and the balance ring 23 are fixed.
  • the balance ring 23 has a plate portion 23A connected to the end surface of the rotor core 22 and a nozzle portion 23B protruding in the axial direction from the plate portion 23A.
  • the nozzle portion 23B projects from the plate portion 23A on one side (right side) in the axial direction.
  • the nozzle portion 23B projects from the plate portion 23A to the other side (left side) in the axial direction.
  • the stator 3 has a stator core 31 and a plurality of coils 32 supported by the stator core 31.
  • the stator core 31 is a cylindrical member arranged around the rotor core 22.
  • the stator core 31 is formed by laminating a plurality of annular steel plates.
  • the coil 32 is wound around the teeth of the stator core 31.
  • the coil 32 includes a coil end 33 that projects axially from the stator core 31.
  • the coil ends 33 are arranged on one side in the axial direction and the other side in the axial direction of the stator core 31, respectively.
  • the housing 4 accommodates at least a part of the rotor 2 and the stator 3.
  • the stator core 31 is fixed to the inner surface of the housing 4.
  • the rotor shaft 21 is rotatably supported by a pair of bearings 41.
  • the bearing 41 is supported by the housing 4.
  • One bearing 41 is arranged on one side (right side) in the axial direction with respect to the balance ring 23 connected to the end face on one side (right side) in the axial direction of the rotor core 22.
  • the other bearing 41 is arranged on the other side (left side) in the axial direction with respect to the balance ring 23 connected to the end face on the other side (left side) in the axial direction of the rotor core 22.
  • a seal member 42 is provided between the outer surface of the rotor shaft 21 and the housing 4.
  • the rotor 2 has a first supply port 51 that supplies a cooling medium to the axial end surface 33T of the coil end 33, and a second supply port 52 that supplies a cooling medium to the inner surface 33C inside the coil end 33 in the radial direction. ..
  • a plurality of first supply ports 51 are provided.
  • a plurality of second supply ports 52 are provided.
  • the cooling medium is oil.
  • the first supply port 51 is arranged outside the end face 33T of the coil end 33.
  • the first supply port 51 can face the end surface 33T of the coil end 33.
  • the first supply port 51 that supplies the cooling medium to the end surface 33T of the coil end 33 on one side (right side) in the axial direction is one side (right side) in the axial direction with respect to the end surface 33T of the coil end 33 on one side (right side) in the axial direction. Is placed in.
  • the first supply port 51 for supplying the cooling medium to the end surface 33T of the coil end 33 on the other side (left side) in the axial direction is the other side (left side) in the axial direction with respect to the end surface 33T of the coil end 33 on the other side (left side) in the axial direction. Is placed in.
  • the first supply port 51 is arranged radially inside the coil 32.
  • the first supply port 51 is arranged radially inside the outer surface 22S facing the radial outside of the rotor core 22.
  • the first supply port 51 is arranged so as to face outward in the radial direction.
  • the first supply port 51 injects a cooling medium from the inside in the radial direction of the coil end 33 toward the end surface 33T of the coil end 33.
  • the second supply port 52 is arranged inside the end face 33T of the coil end 33.
  • the second supply port 52 can face the inner surface 33C of the coil end 33.
  • the second supply port 52 that supplies the cooling medium to the inner surface 33C of the coil end 33 on one side (right side) in the axial direction is on the other side (left side) in the axial direction with respect to the end surface 33T of the coil end 33 on one side (right side) in the axial direction. Is placed in.
  • the second supply port 52 that supplies the cooling medium to the inner surface 33C of the coil end 33 on the other side (left side) in the axial direction is one side (right side) in the axial direction with respect to the end surface 33T of the coil end 33 on the other side (left side) in the axial direction. Is placed in.
  • the second supply port 52 is arranged radially inside the coil 32.
  • the second supply port 52 is arranged radially inside the outer surface 22S facing the radial outside of the rotor core 22.
  • the second supply port 52 is arranged so as to face outward in the radial direction.
  • the second supply port 52 injects a cooling medium from the inside in the radial direction of the coil end 33 toward the inner surface 33C of the coil end 33.
  • a plurality of first supply ports 51 are arranged at intervals in the circumferential direction.
  • a plurality of second supply ports 52 are arranged at intervals in the circumferential direction.
  • the first supply port 51 is provided on the balance ring 23 of the rotor 2.
  • the first supply port 51 is provided in the nozzle portion 23B of the balance ring 23.
  • the second supply port 52 is provided on the balance ring 23 of the rotor 2.
  • the second supply port 52 is provided in the nozzle portion 23B of the balance ring 23.
  • a plurality of nozzle portions 23B are arranged at intervals in the circumferential direction. As shown in FIG. 4, in the embodiment, the balance ring 23 has four nozzle portions 23B.
  • the nozzle portion 23B includes a first nozzle portion 23B1 provided with a first supply port 51 and a second nozzle portion 23B2 provided with a second supply port 52.
  • FIG. 5 is a perspective view showing the nozzle portion 23B1 provided with the first supply port 51 according to the embodiment.
  • FIG. 6 is a perspective view showing the nozzle portion 23B2 provided with the second supply port 52 according to the embodiment.
  • two nozzle portions 23B1 provided with the first supply port 51 are arranged in the balance ring 23 on one side in the axial direction.
  • two nozzle portions 23B2 provided with the second supply port 52 are arranged.
  • One first supply port 51 is provided in the nozzle portion 23B1.
  • One second supply port 52 is provided in the nozzle portion 23B2. That is, in the embodiment, two first supply ports 51 are arranged in the circumferential direction.
  • the first supply port 51 has a rectangular shape that is long in the circumferential direction.
  • the second supply port 52 has a rectangular shape that is long in the axial direction.
  • the shape of the first supply port 51 and the shape of the second supply port 52 are arbitrary. The same applies to the balance ring 23 on the other side in the axial direction.
  • the rotor 2 includes a first supply passage 61 provided on the rotor shaft 21, a second supply passage 63 provided on the balance ring 23, and a first supply passage 61 provided on the rotor core 22. It has a third supply passage 62 that connects to the second supply passage 63.
  • the first supply passage 61 is provided inside the rotor shaft 21.
  • the second supply passage 63 is provided inside the balance ring 23.
  • the third supply passage 62 is provided inside the rotor core 22.
  • Each of the first supply port 51 and the second supply port 52 supplies the cooling medium supplied through the first supply passage 61, the third supply passage 62, and the second supply passage 63 to the coil end 33.
  • the first supply passage 61 has a straight portion 61A extending in the axial direction and a radiation portion 61B connected to the straight portion 61A.
  • the straight portion 61A is formed so as to include the rotation axis AX.
  • One end of the straight portion 61A in the axial direction is connected to an inflow port 61C provided on the end surface of the rotor shaft 21.
  • the axially opposite end of the straight portion 61A is connected to the radiating portion 61B at the axially intermediate portion of the rotor shaft 21.
  • the radiating portion 61B extends radially outward from the straight portion 61A.
  • a plurality of radiation portions 61B are provided.
  • the third supply passage 62 includes a first portion 62A connecting the radiating portion 61B and the first supply port 51, and a second portion 62B connecting the radiating portion 61B and the second supply port 52.
  • the refrigerant supply unit such as a pump and the inflow port 61C are connected.
  • the cooling medium flows into the first supply passage 61 from the inflow port 61C.
  • At least a part of the cooling medium flowing through the first supply passage 61 is supplied to the first supply port 51 via the first portion 62A and the second supply passage 63 of the third supply passage 62.
  • the first supply port 51 supplies the cooling medium supplied through the first supply passage 61, the third supply passage 62, and the second supply passage 63 to the end surface 33T of the coil end 33.
  • At least a part of the cooling medium flowing through the first supply passage 61 is supplied to the second supply port 52 via the second portion 62B and the second supply passage 63 of the third supply passage 62.
  • the second supply port 52 supplies the cooling medium supplied through the first supply passage 61, the third supply passage 62, and the second supply passage 63 to the inner surface 33C of the coil end 33.
  • the cooling medium is injected from the first supply port 51 to the end surface 33T of the coil end 33. As a result, the cooling medium is uniformly supplied to each of the end faces 33T of the plurality of coils 32. While the rotor 2 is rotating, the cooling medium is injected from the second supply port 52 to the inner surface 33C of the coil end 33. As a result, the cooling medium is uniformly supplied to each of the inner surfaces 33C of the plurality of coils 32.
  • the cooling medium is supplied from the first supply port 51 to the end surface 33T of the coil end 33.
  • the coil 32 is efficiently cooled.
  • the first supply port 51 is provided in the rotor 2.
  • the cooling medium is uniformly supplied from the first supply port 51 to each of the plurality of coils 32 as the rotor 2 rotates. Therefore, the plurality of coils 32 are uniformly and efficiently cooled.
  • the first supply port 51 is provided in the rotor 2, the cooling medium can be efficiently supplied to the end surface 33T of the coil end 33 while suppressing the complexity of the structure of the motor 1. According to the embodiment, the coil 32 is efficiently cooled even when the motor 1 is placed horizontally.
  • the first supply port 51 is arranged outside the end face 33T of the coil end 33. Therefore, the cooling medium injected from the first supply port 51 is sufficiently supplied to the end face 33T of the coil end 33.
  • the first supply port 51 is arranged radially inside the coil 32. Therefore, the cooling medium can be efficiently supplied to the end surface 33T of the coil end 33 while suppressing the increase in size of the motor 1.
  • the first supply port 51 is arranged so as to face outward in the radial direction. Therefore, the cooling medium injected from the first supply port 51 is sufficiently supplied to the end face 33T of the coil end 33.
  • a plurality of first supply ports 51 are arranged at intervals in the circumferential direction. As a result, the cooling medium is sufficiently supplied to each of the plurality of coils 32.
  • the first supply port 51 is provided on the balance ring 23. As a result, the cooling medium is sufficiently supplied to the end face 33T of the coil end 33.
  • the first supply port 51 is arranged radially inside the outer surface 22S of the rotor core 22. As a result, the cooling medium can be efficiently supplied to the end face 33T of the coil end 33 while suppressing the increase in size of the motor 1.
  • the balance ring 23 has a nozzle portion 23B1 provided with a first supply port 51. As a result, the cooling medium is properly supplied to the end face 33T of the coil end 33.
  • the cooling medium is supplied from the second supply port 52 to the inner surface 33C of the coil end 33.
  • the cooling medium is supplied not only to the end surface 33T of the coil end 33 but also to the inner surface 33C, the coil 32 is effectively cooled.
  • the second supply port 52 is provided in the rotor 2. As a result, the cooling medium is uniformly supplied from the second supply port 52 to each of the plurality of coils 32 as the rotor 2 rotates.
  • the balance ring 23 has a nozzle portion 23B2 provided with a second supply port 52. As a result, the cooling medium is properly supplied to the inner surface 33C of the coil end 33. Further, a plurality of second supply ports 52 are arranged at intervals in the circumferential direction. As a result, the cooling medium is sufficiently supplied to each of the plurality of coils 32.
  • the rotor 2 has a first supply passage 61 provided on the rotor shaft 21, a second supply passage 63 provided on the balance ring 23, and a first supply passage 61 and a second supply passage 63 provided on the rotor core 22. It has a third supply passage 62 for connecting.
  • Each of the first supply port 51 and the second supply port 52 supplies the cooling medium supplied through the first supply passage 61, the third supply passage 62, and the second supply passage 63 to the coil end 33.
  • the cooling medium can be efficiently supplied to the coil end 33 while suppressing the increase in size of the motor 1 and the complexity of the structure of the motor 1.
  • the rotor core 22 is cooled by the cooling medium flowing through the third supply passage 62.
  • FIG. 7 is a perspective view showing the balance ring 230 according to the embodiment.
  • the balance ring 230 has a plate portion 230A and a nozzle portion 230B.
  • the plate portion 230A and the nozzle portion 230B are integrated.
  • the balance ring 230 is manufactured by, for example, a die casting method. Brass or aluminum is exemplified as the material formed with the balance ring 230.
  • FIG. 8 is a cross-sectional view showing the motor 10 according to the embodiment.
  • the first supply port 51 and the second supply port 52 are provided in the first supply passage 61 provided in the rotor shaft 21, the third supply passage 62 provided in the rotor core 22, and the balance ring 23. It was decided to supply the cooling medium supplied through the provided second supply passage 63 to the coil end 33.
  • the rotor core 22 may not be provided with the third supply passage 62.
  • the first supply port 51 and the second supply port 52 are supplied via the first supply passage 61 provided in the rotor shaft 21 and the second supply passage 63 provided in the balance ring 23.
  • the cooling medium may be supplied to the coil end 33.
  • FIG. 8 is a cross-sectional view showing the motor 10 according to the embodiment.
  • the first supply port 51 and the second supply port 52 are provided in the first supply passage 61 provided in the rotor shaft 21, the third supply passage 62 provided in the rotor core 22, and the balance ring 23. It was decided to supply the cooling medium
  • the first supply passage 61 is provided inside the rotor shaft 21.
  • the second supply passage 63 includes a groove formed on the facing surface of the balance ring 23 facing the end face of the rotor core 22.
  • the second supply passage 63 is formed between the inner surface of the groove formed on the facing surface of the balance ring 23 and the end surface of the rotor core 22.
  • the second supply passage 63 may be formed inside the balance ring 23.
  • the relative positions of the plurality of first supply ports 51, the relative positions of the plurality of second supply ports 52, and the relative positions of the first supply port 51 and the second supply port 52 are the specifications of the motor 1. It can be set as appropriate according to. Further, the position of the first supply port 51 on the balance ring 23, the position of the second supply port 52 on the balance ring 23, and the combination of the first supply port 51 and the second supply port 52 also depend on the specifications of the motor 1. It can be set as appropriate. Further, the number of the first supply ports 51 and the number of the second supply ports 52 can be appropriately set according to the specifications of the motor 1.
  • the second supply port 52 may be omitted.
  • the motor 1 is placed horizontally on the vehicle body 101. That is, the motor 1 is arranged on the vehicle body 101 so that the rotation shaft AX extends in the left-right direction of the vehicle body 101.
  • the motor 1 may be arranged on the vehicle body 101 so that the rotation shaft AX extends in the front-rear direction of the vehicle body 101.
  • the motor 1 may be arranged on the vehicle body 101 so that the rotation shaft AX extends in the vertical direction of the vehicle body 101.
  • the work machine 100 may be a hydraulic excavator or a bulldozer having a work machine. Further, the working machine 100 does not have to have a working machine.
  • the work machine 100 may be, for example, a dump truck which is a kind of transport vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

モータは、回転軸を中心に回転するロータと、ロータの周囲に配置されるステータと、を備える。ステータは、ステータコアと、ステータに支持されるコイルとを有する。コイルは、ステータコアから回転軸と平行な軸方向に突出するコイルエンドを含む。ロータは、コイルエンドの軸方向の端面に冷却媒体を供給する第1供給口を有する。

Description

モータ及び作業機械
 本開示は、モータ及び作業機械に関する。
 特許文献1に開示されているように、作業機械の動力源としてモータが使用される場合がある。
特開2012-182952号公報
 モータのコイルは発熱する。そのため、冷却媒体によりコイルを効率良く冷却する必要がある。
 本開示は、コイルを効率良く冷却することを目的とする。
 本開示に従えば、回転軸を中心に回転するロータと、ロータの周囲に配置されるステータと、を備え、前記ステータは、ステータコアと、前記ステータに支持されるコイルとを有し、前記コイルは、前記ステータコアから前記回転軸と平行な軸方向に突出するコイルエンドを含み、前記ロータは、前記コイルエンドの軸方向の端面に冷却媒体を供給する第1供給口を有する、モータが提供される。
 本開示によれば、コイルを効率良く冷却することができる。
図1は、実施形態に係る作業機械を模式的に示す図である。 図2は、実施形態に係る作業機械の駆動系を模式的に示す図である。 図3は、実施形態に係るモータを示す断面図である。 図4は、実施形態に係るロータを示す斜視図である。 図5は、実施形態に係る第1供給口が設けられたノズル部を示す斜視図である。 図6は、実施形態に係る第2供給口が設けられたノズル部を示す斜視図である。 図7は、実施形態に係るバランスリングを示す斜視図である。 図8は、実施形態に係るモータを示す断面図である。
 以下、本開示に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
[作業機械]
 図1は、実施形態に係る作業機械100を模式的に示す図である。実施形態において、作業機械100は、ホイールローダである。
 図1に示すように、作業機械100は、車体101と、車体101の前部に取り付けられた作業機102と、作業機102を駆動する油圧シリンダ103と、車体101を支持する走行装置104とを備える。車体101は、運転者が搭乗するキャブ101Aを有する。作業機102は、車体101の前部に取り付けられたリフトアーム102Aと、リフトアーム102Aの先端部に取り付けられたバケット102Bとを含む。油圧シリンダ103は、リフトアーム102Aを駆動するアームシリンダと、バケット102Bを駆動するバケットシリンダとを有する。走行装置104は、前輪104F及び後輪104Rを有する。
 図2は、実施形態に係る作業機械100の駆動系を模式的に示す図である。作業機械100は、エンジン106と、モータ1とを有する。エンジン106として、ディーゼルエンジン又はガソリンエンジンが例示される。エンジン106及びモータ1のそれぞれは、作業機械100の動力源である。
 走行装置104は、変速機104Aと、プロペラシャフト104Bと、デファレンシャルギア104Cと、ドライブシャフト104Dとを有する。プロペラシャフト104Bは、変速機104Aの前部及び後部のそれぞれに接続される。デファレンシャルギア104Cは、車体101の前部及び後部のそれぞれに配置される。ドライブシャフト104Dは、車体101の前部及び後部のそれぞれに配置される。
 エンジン106及びモータ1の出力は、変速機104Aに入力される。変速機104Aは、エンジン106及びモータ1の出力を合成した後、一対のプロペラシャフト104Bのそれぞれに出力する。一方のプロペラシャフト104Bの出力は、車体101の前部に配置されたデファレンシャルギア104C及びドライブシャフト104Dを介して前輪104Fに伝達される。他方のプロペラシャフト104Bの出力は、車体101の後部に配置されたデファレンシャルギア104C及びドライブシャフト104Dを介して後輪104Rに伝達される。前輪104F及び後輪104Rが回転することにより、作業機械100は走行する。
 なお、作業機械100は、エンジン106を有しなくてもよい。作業機械100の動力原としてモータ1のみが作業機械100に搭載されてもよい。
[モータ]
 図3は、実施形態に係るモータ1を示す断面図である。モータ1は、回転軸AXを中心に回転するロータ2と、ロータ2の周囲に配置されるステータ3と、ステータ3の周囲に配置されるハウジング4とを備える。
 実施形態において、モータ1は、車体101に横置きされる。すなわち、モータ1は、回転軸AXと作業機械100の直進時における進行方向とが直交するように、車体101に配置される。実施形態において、回転軸AXは、車体101の左右方向に延伸する。
 実施形態において、ロータ2の回転軸AXと平行な方向を適宜、軸方向、と称し、回転軸AXの周囲を周回する方向を適宜、周方向又は回転方向、と称し、回転軸AXの放射方向を適宜、径方向、と称する。また、軸方向において、モータ1の中心から一方側(右側)に離隔する方向又は遠い位置を適宜、軸方向一方側、と称し、モータ1の中心から他方側(左側)に離隔する方向又は遠い位置を適宜、軸方向他方側、と称する。また、径方向において、回転軸AXに接近する方向又は近い位置を適宜、径方向内側、と称し、回転軸AXから離隔する方向又は遠い位置を適宜、径方向外側、と称する。
 図4は、実施形態に係るロータ2を示す斜視図である。図3及び図4に示すように、ロータ2は、ロータシャフト21と、ロータシャフト21の周囲に配置されるロータコア22と、ロータコア22の軸方向一方側の端面及び軸方向他方側の端面のそれぞれに配置されるバランスリング23とを有する。
 ロータシャフト21は、軸方向に延伸する棒状の部材である。ロータコア22は、ロータシャフト21の周囲に配置される円筒状の部材である。ロータコア22の内部に複数の永久磁石が配置される。ロータコア22は、円環状の複数の鋼板を積層することにより形成される。ロータシャフト21とロータコア22とは固定される。バランスリング23は、ロータコア22の軸方向一方側(右側)の端面及びロータコア22の軸方向他方側(左側)の端面のそれぞれに接続される。ロータコア22は、一対のバランスリング23で挟まれる。ロータシャフト21とロータコア22とバランスリング23とは固定される。
 バランスリング23は、ロータコア22の端面に接続されるプレート部23Aと、プレート部23Aから軸方向に突出するノズル部23Bとを有する。ロータコア22の軸方向一方側(右側)の端面に接続されているバランスリング23において、ノズル部23Bは、プレート部23Aから軸方向一方側(右側)に突出する。ロータコア22の軸方向他方側(左側)の端面に接続されているバランスリング23において、ノズル部23Bは、プレート部23Aから軸方向他方側(左側)に突出する。
 ステータ3は、ステータコア31と、ステータコア31に支持される複数のコイル32とを有する。ステータコア31は、ロータコア22の周囲に配置される円筒状の部材である。ステータコア31は、円環状の複数の鋼板を積層することにより形成される。コイル32は、ステータコア31のティースに巻かれている。コイル32は、ステータコア31から軸方向に突出するコイルエンド33を含む。コイルエンド33は、ステータコア31の軸方向一方側及び軸方向他方側のそれぞれに配置される。
 ハウジング4は、ロータ2の少なくとも一部及びステータ3を収容する。ステータコア31は、ハウジング4の内面に固定される。ロータシャフト21は、一対の軸受41に回転可能に支持される。軸受41は、ハウジング4に支持される。一方の軸受41は、ロータコア22の軸方向一方側(右側)の端面に接続されているバランスリング23よりも、軸方向一方側(右側)に配置される。他方の軸受41は、ロータコア22の軸方向他方側(左側)の端面に接続されているバランスリング23よりも、軸方向他方側(左側)に配置される。また、ロータシャフト21の外面とハウジング4との間にシール部材42が設けられる。
 ロータ2は、コイルエンド33の軸方向の端面33Tに冷却媒体を供給する第1供給口51と、コイルエンド33の径方向内側の内面33Cに冷却媒体を供給する第2供給口52とを有する。第1供給口51は、複数設けられる。第2供給口52は、複数設けられる。実施形態において、冷却媒体は、油である。
 軸方向において、第1供給口51は、コイルエンド33の端面33Tよりも外側に配置される。第1供給口51は、コイルエンド33の端面33Tに対向可能である。軸方向一方側(右側)のコイルエンド33の端面33Tに冷却媒体を供給する第1供給口51は、軸方向一方側(右側)のコイルエンド33の端面33Tよりも軸方向一方側(右側)に配置される。軸方向他方側(左側)のコイルエンド33の端面33Tに冷却媒体を供給する第1供給口51は、軸方向他方側(左側)のコイルエンド33の端面33Tよりも軸方向他方側(左側)に配置される。
 第1供給口51は、コイル32よりも径方向内側に配置される。実施形態において、第1供給口51は、ロータコア22の径方向外側を向く外面22Sよりも径方向内側に配置される。第1供給口51は、径方向外側を向くように配置される。第1供給口51は、コイルエンド33よりも径方向内側から、コイルエンド33の端面33Tに向かって冷却媒体を噴射する。
 軸方向において、第2供給口52は、コイルエンド33の端面33Tよりも内側に配置される。第2供給口52は、コイルエンド33の内面33Cに対向可能である。軸方向一方側(右側)のコイルエンド33の内面33Cに冷却媒体を供給する第2供給口52は、軸方向一方側(右側)のコイルエンド33の端面33Tよりも軸方向他方側(左側)に配置される。軸方向他方側(左側)のコイルエンド33の内面33Cに冷却媒体を供給する第2供給口52は、軸方向他方側(左側)のコイルエンド33の端面33Tよりも軸方向一方側(右側)に配置される。
 第2供給口52は、コイル32よりも径方向内側に配置される。実施形態において、第2供給口52は、ロータコア22の径方向外側を向く外面22Sよりも径方向内側に配置される。第2供給口52は、径方向外側を向くように配置される。第2供給口52は、コイルエンド33よりも径方向内側から、コイルエンド33の内面33Cに向かって冷却媒体を噴射する。
 第1供給口51は、周方向に間隔をあけて複数配置される。第2供給口52は、周方向に間隔をあけて複数配置される。
 実施形態において、第1供給口51は、ロータ2のバランスリング23に設けられる。第1供給口51は、バランスリング23のノズル部23Bに設けられる。第2供給口52は、ロータ2のバランスリング23に設けられる。第2供給口52は、バランスリング23のノズル部23Bに設けられる。
 ノズル部23Bは、周方向に間隔をあけて複数配置される。図4に示すように、実施形態において、バランスリング23は、4つのノズル部23Bを有する。ノズル部23Bは、第1供給口51が設けられた第1のノズル部23B1と、第2供給口52が設けられた第2のノズル部23B2とを含む。
 図5は、実施形態に係る第1供給口51が設けられたノズル部23B1を示す斜視図である。図6は、実施形態に係る第2供給口52が設けられたノズル部23B2を示す斜視図である。図4、図5、及び図6に示すように、軸方向一方側のバランスリング23において、第1供給口51が設けられたノズル部23B1は、2つ配置される。軸方向一方側のバランスリング23において、第2供給口52が設けられたノズル部23B2は、2つ配置される。第1供給口51は、ノズル部23B1に1つ設けられる。第2供給口52は、ノズル部23B2に1つ設けられる。すなわち、実施形態において、第1供給口51は、周方向に2つ配置される。第2供給口52は、周方向に2つ配置される。第1供給口51は、周方向に長い矩形状である。第2供給口52は、軸方向に長い矩形状である。なお、第1供給口51の形状及び第2供給口52の形状は、任意である。軸方向他方側のバランスリング23についても同様である。
 図3に示すように、ロータ2は、ロータシャフト21に設けられた第1供給通路61と、バランスリング23に設けられた第2供給通路63と、ロータコア22に設けられ第1供給通路61と第2供給通路63とを繋ぐ第3供給通路62とを有する。実施形態において、第1供給通路61は、ロータシャフト21の内部に設けられる。第2供給通路63は、バランスリング23の内部に設けられる。第3供給通路62は、ロータコア22の内部に設けられる。第1供給口51及び第2供給口52のそれぞれは、第1供給通路61、第3供給通路62、及び第2供給通路63を介して供給された冷却媒体をコイルエンド33に供給する。
 第1供給通路61は、軸方向に延伸する直進部分61Aと、直進部分61Aに接続される放射部分61Bとを有する。直進部分61Aは、回転軸AXを含むように形成される。直進部分61Aの軸方向一方側の端部は、ロータシャフト21の端面に設けられた流入口61Cと接続される。直進部分61Aの軸方向他方側の端部は、ロータシャフト21の軸方向中間部において放射部分61Bと接続される。放射部分61Bは、直進部分61Aから径方向外側に延伸する。放射部分61Bは、複数設けられる。
 第3供給通路62は、放射部分61Bと第1供給口51とを結ぶ第1部分62Aと、放射部分61Bと第2供給口52とを結ぶ第2部分62Bとを含む。
 ポンプのような冷媒供給部と流入口61Cとが接続される。冷却媒体は、流入口61Cから第1供給通路61に流入する。第1供給通路61を流通した冷却媒体の少なくとも一部は、第3供給通路62の第1部分62A及び第2供給通路63を介して第1供給口51に供給される。第1供給口51は、第1供給通路61、第3供給通路62、及び第2供給通路63を介して供給された冷却媒体をコイルエンド33の端面33Tに供給する。第1供給通路61を流通した冷却媒体の少なくとも一部は、第3供給通路62の第2部分62B及び第2供給通路63を介して第2供給口52に供給される。第2供給口52は、第1供給通路61、第3供給通路62、及び第2供給通路63を介して供給された冷却媒体をコイルエンド33の内面33Cに供給する。
 ロータ2が回転している状態で、第1供給口51からコイルエンド33の端面33Tに冷却媒体が噴射される。これにより、複数のコイル32の端面33Tのそれぞれに冷却媒体が均一に供給される。ロータ2が回転している状態で、第2供給口52からコイルエンド33の内面33Cに冷却媒体が噴射される。これにより、複数のコイル32の内面33Cのそれぞれに冷却媒体が均一に供給される。
[効果]
 以上説明したように、実施形態によれば、第1供給口51からコイルエンド33の端面33Tに冷却媒体が供給される。コイルエンド33の端面33Tに冷却媒体が供給されることにより、コイル32は効率良く冷却される。また、第1供給口51は、ロータ2に設けられる。これにより、冷却媒体は、ロータ2の回転に伴って、第1供給口51から複数のコイル32のそれぞれに均一に供給される。したがって、複数のコイル32は均一に効率良く冷却される。また、第1供給口51がロータ2に設けられているので、モータ1の構造の複雑化を抑制しつつ、コイルエンド33の端面33Tに冷却媒体を効率良く供給することができる。実施形態によれば、モータ1が横置きでも、コイル32は効率良く冷却される。
 軸方向において、第1供給口51は、コイルエンド33の端面33Tよりも外側に配置される。したがって、第1供給口51から噴射された冷却媒体は、コイルエンド33の端面33Tに十分に供給される。
 第1供給口51は、コイル32よりも径方向内側に配置される。したがって、モータ1の大型化を抑制しつつ、コイルエンド33の端面33Tに冷却媒体を効率良く供給することができる。
 第1供給口51は、径方向外側を向くように配置される。したがって、第1供給口51から噴射された冷却媒体は、コイルエンド33の端面33Tに十分に供給される。
 第1供給口51は、周方向に間隔をあけて複数配置される。これにより、冷却媒体は、複数のコイル32のそれぞれに十分に供給される。
 第1供給口51は、バランスリング23に設けられる。これにより、冷却媒体は、コイルエンド33の端面33Tに十分に供給される。
 第1供給口51は、ロータコア22の外面22Sよりも径方向内側に配置される。これにより、モータ1の大型化を抑制しつつ、コイルエンド33の端面33Tに冷却媒体を効率良く供給することができる。
 バランスリング23は、第1供給口51が設けられるノズル部23B1を有する。これにより、冷却媒体は、コイルエンド33の端面33Tに適正に供給される。
 第2供給口52からコイルエンド33の内面33Cに冷却媒体が供給される。コイルエンド33の端面33Tのみならず内面33Cにも冷却媒体が供給されることにより、コイル32は効果的に冷却される。また、第2供給口52は、ロータ2に設けられる。これにより、冷却媒体は、ロータ2の回転に伴って、第2供給口52から複数のコイル32のそれぞれに均一に供給される。
 バランスリング23は、第2供給口52が設けられるノズル部23B2を有する。これにより、冷却媒体は、コイルエンド33の内面33Cに適正に供給される。また、第2供給口52は、周方向に間隔をあけて複数配置される。これにより、冷却媒体は、複数のコイル32のそれぞれに十分に供給される。
 ロータ2は、ロータシャフト21に設けられた第1供給通路61と、バランスリング23に設けられた第2供給通路63と、ロータコア22に設けられ第1供給通路61と第2供給通路63とを繋ぐ第3供給通路62とを有する。第1供給口51及び第2供給口52のそれぞれは、第1供給通路61、第3供給通路62、及び第2供給通路63を介して供給された冷却媒体をコイルエンド33に供給する。これにより、モータ1の大型化及びモータ1の構造の複雑化を抑制しつつ、コイルエンド33に冷却媒体を効率良く供給することができる。また、第3供給通路62を流れる冷却媒体により、ロータコア22が冷却される。
[その他の実施形態]
 図7は、実施形態に係るバランスリング230を示す斜視図である。図7に示すように、バランスリング230は、プレート部230Aとノズル部230Bとを有する。図7に示す例において、プレート部230Aとノズル部230Bとは一体である。バランスリング230は、例えばダイカスト製法により製造される。バランスリング230と形成する材料として、真鍮又はアルミニウムが例示される。
 図8は、実施形態に係るモータ10を示す断面図である。上述の実施形態においては、第1供給口51及び第2供給口52は、ロータシャフト21に設けられた第1供給通路61、ロータコア22に設けられた第3供給通路62、及びバランスリング23に設けられた第2供給通路63を介して供給された冷却媒体をコイルエンド33に供給することとした。ロータコア22に第3供給通路62は設けられなくてもよい。図8に示すように、第1供給口51及び第2供給口52は、ロータシャフト21に設けられた第1供給通路61及びバランスリング23に設けられた第2供給通路63を介して供給された冷却媒体をコイルエンド33に供給してもよい。図8に示す例において、第1供給通路61は、ロータシャフト21の内部に設けられる。第2供給通路63は、ロータコア22の端面と対向するバランスリング23の対向面に形成された溝を含む。第2供給通路63は、バランスリング23の対向面に形成された溝の内面とロータコア22の端面との間に形成される。ロータコア22を冷却する必要がない場合、図8に示す構造でもよい。なお、第2供給通路63は、バランスリング23の内部に形成されてもよい。
 上述の実施形態において、複数の第1供給口51の相対位置、複数の第2供給口52の相対位置、及び第1供給口51と第2供給口52との相対位置は、モータ1の仕様に応じて適宜設定可能である。また、バランスリング23における第1供給口51の位置、バランスリング23における第2供給口52の位置、及び第1供給口51と第2供給口52との組み合わせも、モータ1の仕様に応じて適宜設定可能である。また、第1供給口51の数及び第2供給口52の数も、モータ1の仕様に応じて適宜設定可能である。
 上述の実施形態において、第2供給口52は省略されてもよい。
 上述の実施形態において、モータ1は車体101に横置きされることとした。すなわち、モータ1は、回転軸AXが車体101の左右方向に延伸するように車体101に配置されることとした。モータ1は、回転軸AXが車体101の前後方向に延伸するように車体101に配置されてもよい。モータ1は、回転軸AXが車体101の上下方向に延伸するように車体101に配置されてもよい。
 上述の実施形態において、作業機械100は、作業機を有する油圧ショベル又はブルドーザでもよい。また、作業機械100は、作業機を有しなくてもよい。作業機械100は、例えば運搬車両の一種であるダンプトラックでもよい。
 1…モータ、2…ロータ、3…ステータ、4…ハウジング、10…モータ、21…ロータシャフト、22…ロータコア、22S…外面、23…バランスリング、23A…プレート部、23B…ノズル部、23B1…ノズル部、23B2…ノズル部、31…ステータコア、32…コイル、33…コイルエンド、33C…内面、33T…端面、41…軸受、42…シール部材、51…第1供給口、52…第2供給口、61…第1供給通路、61A…直進部分、61B…放射部分、61C…流入口、62…第3供給通路、62A…第1部分、62B…第2部分、63…第2供給通路、100…作業機械、101…車体、101A…キャブ、102…作業機、102A…リフトアーム、102B…バケット、103…油圧シリンダ、104…走行装置、104A…変速機、104B…プロペラシャフト、104C…デファレンシャルギア、104D…ドライブシャフト、104F…前輪、104R…後輪、106…エンジン、230…バランスリング、230A…プレート部、230B…ノズル部、AX…回転軸。

Claims (9)

  1.  回転軸を中心に回転するロータと、
     ロータの周囲に配置されるステータと、を備え、
     前記ステータは、ステータコアと、前記ステータに支持されるコイルとを有し、
     前記コイルは、前記ステータコアから前記回転軸と平行な軸方向に突出するコイルエンドを含み、
     前記ロータは、前記コイルエンドの前記軸方向の端面に冷却媒体を供給する第1供給口を有する、
     モータ。
  2.  前記軸方向において、前記第1供給口は、前記コイルエンドの端面よりも外側に配置される、
     請求項1に記載のモータ。
  3.  前記第1供給口は、周方向に間隔をあけて複数配置される、
     請求項1又は請求項2に記載のモータ。
  4.  前記ロータは、ロータシャフトと、前記ロータシャフトの周囲に配置されるロータコアと、前記ロータコアの前記軸方向の端面に配置されるバランスリングとを有し、
     前記第1供給口は、前記バランスリングに設けられる、
     請求項1から請求項3のいずれか一項に記載のモータ。
  5.  前記バランスリングは、前記ロータコアに接続されるプレート部と、前記プレート部から前記軸方向に突出するノズル部とを有し、
     前記第1供給口は、前記ノズル部に設けられる、
     請求項4に記載のモータ。
  6.  前記ロータは、前記コイルエンドの径方向内側の内面に冷却媒体を供給する第2供給口を有し、
     前記ノズル部は、周方向に間隔をあけて複数配置され、
     第1の前記ノズル部に前記第1供給口が設けられ、
     第2の前記ノズル部に前記第2供給口が設けられる、
     請求項5に記載のモータ。
  7.  前記ロータは、前記ロータシャフトに設けられた第1供給通路と、前記バランスリングに設けられた第2供給通路とを有し、
     前記第1供給口は、前記第1供給通路及び前記第2供給通路を介して供給された冷却媒体を前記コイルエンドに供給する、
     請求項4から請求項6のいずれか一項に記載のモータ。
  8.  前記ロータは、前記ロータコアに設けられ前記第1供給通路と前記第2供給通路とを繋ぐ第3供給通路を有し、
     前記第1供給口は、前記第1供給通路、前記第3供給通路、及び前記第2供給通路を介して供給された冷却媒体を前記コイルエンドに供給する、
     請求項7に記載のモータ。
  9.  請求項1から請求項8のいずれか一項に記載のモータを備える作業機械。
PCT/JP2021/003309 2020-03-19 2021-01-29 モータ及び作業機械 WO2021186914A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-049983 2020-03-19
JP2020049983A JP2021151126A (ja) 2020-03-19 2020-03-19 モータ及び作業機械

Publications (1)

Publication Number Publication Date
WO2021186914A1 true WO2021186914A1 (ja) 2021-09-23

Family

ID=77771195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003309 WO2021186914A1 (ja) 2020-03-19 2021-01-29 モータ及び作業機械

Country Status (2)

Country Link
JP (1) JP2021151126A (ja)
WO (1) WO2021186914A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106338A1 (ja) * 2021-12-08 2023-06-15 株式会社小松製作所 モータ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082628A (ja) * 2014-10-10 2016-05-16 トヨタ自動車株式会社 回転電機
JP2019170082A (ja) * 2018-03-23 2019-10-03 本田技研工業株式会社 回転電機及びこれを備えた車両

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082628A (ja) * 2014-10-10 2016-05-16 トヨタ自動車株式会社 回転電機
JP2019170082A (ja) * 2018-03-23 2019-10-03 本田技研工業株式会社 回転電機及びこれを備えた車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106338A1 (ja) * 2021-12-08 2023-06-15 株式会社小松製作所 モータ

Also Published As

Publication number Publication date
JP2021151126A (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
JP5956203B2 (ja) 電動機
JP5738007B2 (ja) 電動機の冷却構造及び電動機
JP5374215B2 (ja) サイクロイド減速機、インホイールモータ駆動装置、および車両用モータ駆動装置
US11811296B2 (en) Electric machine with configurable stator/rotor cooling
US10279675B2 (en) In-wheel motor drive device
US2899005A (en) Electric-powered traction wheel
JP6620128B2 (ja) 回転電機の冷却装置
WO2010095610A1 (ja) ハイブリッド型電気自動車
WO2015019694A1 (ja) ホイールローダ
JP6065805B2 (ja) 電動機
WO2019208084A1 (ja) モータユニットおよびモータユニットの制御方法
WO2021186914A1 (ja) モータ及び作業機械
WO2019208081A1 (ja) モータユニットおよび車両駆動装置
WO2016002571A1 (ja) インホイールモータ駆動装置
JP2004114858A (ja) インホイールモータ
CN110185774B (zh) 润滑油供给装置
CN115142511A (zh) 减速器和施工机械
JP6160633B2 (ja) 駆動装置
JP7411153B2 (ja) 駆動装置
JP2007126065A (ja) ハイブリッド原動機におけるモータ回転軸の軸受け装置
JP2016175563A (ja) 2モータ車両駆動装置
JP7414755B2 (ja) 駆動装置
JP2010226790A (ja) ステータコアの支持構造およびその構造を有する車両駆動装置
WO2023112647A1 (ja) 駆動装置
US20230322062A1 (en) Power transmission unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772035

Country of ref document: EP

Kind code of ref document: A1