WO2021186669A1 - Can package-type optical module - Google Patents

Can package-type optical module Download PDF

Info

Publication number
WO2021186669A1
WO2021186669A1 PCT/JP2020/012291 JP2020012291W WO2021186669A1 WO 2021186669 A1 WO2021186669 A1 WO 2021186669A1 JP 2020012291 W JP2020012291 W JP 2020012291W WO 2021186669 A1 WO2021186669 A1 WO 2021186669A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem
flexible substrate
optical module
type optical
package type
Prior art date
Application number
PCT/JP2020/012291
Other languages
French (fr)
Japanese (ja)
Inventor
諒太 藤原
瑞基 白尾
誠希 中村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020554556A priority Critical patent/JP6825756B1/en
Priority to PCT/JP2020/012291 priority patent/WO2021186669A1/en
Publication of WO2021186669A1 publication Critical patent/WO2021186669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings

Definitions

  • This disclosure relates to a CAN package type optical joule used for optical communication and the like.
  • Patent Document 1 In the optical module, it is necessary to secure high frequency characteristics in order to transmit the high frequency signal to the optical semiconductor. Therefore, good frequency characteristics have been realized by bringing the ground wiring portion of the flexible substrate into close contact with the stem.
  • the ground conductor of the flexible substrate can be brought into close contact with the stem by pressing the flexible substrate against the stem with a reinforcing plate.
  • the CAN package type optical module is composed of a stem having a first surface having a protrusion at a position connected to the flexible substrate and a second surface opposite to the first surface, and a stem from the first surface of the stem.
  • a signal pin that penetrates toward the second surface and protrudes from the first surface, an insulating material enclosed between the stem and the signal pin, an optical semiconductor that connects the signal pin and the stem on the second surface side, and a second It is provided with a ground pin provided on the surface of 1.
  • the ground conductor of the flexible board can be brought into close contact with the stem, and high frequency characteristics can be ensured.
  • FIG. 1 It is sectional drawing of the CAN package type optical module 100 which concerns on Embodiment 1.
  • FIG. It is a perspective view of the vicinity of the stem 1 of the CAN package type optical module 100 which concerns on Embodiment 1.
  • FIG. It is sectional drawing around the stem 1 of the CAN package type optical module 100 which concerns on Embodiment 1.
  • FIG. It is a perspective view of the flexible substrate 20 of the CAN package type optical module 100 which concerns on Embodiment 1.
  • FIG. It is a perspective view of the vicinity of the stem 1a of the CAN package type optical module 100 which concerns on Embodiment 1.
  • FIG. It is a perspective view of the vicinity of the stem 1b of the CAN package type optical module 100 which concerns on Embodiment 1.
  • FIG. 1 It is sectional drawing around the stem 1 of the CAN package type optical module 101 which concerns on modification 1 of Embodiment 1.
  • FIG. It is sectional drawing around the stem 41 of the CAN package type optical module 102 which concerns on modification 2 of Embodiment 1.
  • FIG. It is a perspective view of the flexible substrate 22 of the CAN package type optical module 102 which concerns on the modification 2 of Embodiment 1.
  • Embodiment 1 the CAN package type optical module 100 according to the first embodiment will be described in detail with reference to the drawings.
  • the following first embodiment shows a specific example. Therefore, the shape, arrangement, material, etc. of each component are examples and are not intended to be limited. Moreover, each figure is a schematic view and is not exactly illustrated. Further, in each figure, the same components are designated by the same reference numerals.
  • FIG. 1 is a cross-sectional view of the CAN package type optical module 100 according to the first embodiment.
  • FIG. 2 is a perspective view of the vicinity of the stem 1 of the CAN package type optical module 100 according to the first embodiment.
  • FIG. 2 shows the stem 1 of FIG. 1 turned upside down.
  • FIG. 3 is a cross-sectional view of the CAN package type optical module 100 according to the first embodiment in the vicinity of the stem 1.
  • FIG. 4 is a perspective view of the flexible substrate 20 of the CAN package type optical module 100 according to the first embodiment.
  • the cross-sectional views of FIGS. 1 and 3 are cross-sectional views including the signal pin 2 and the ground pin 4 so that the arrangement state of the signal pin 2 and the ground pin 4 can be easily understood. Therefore, the cross section is not flat.
  • the CAN package type optical module 100 includes a stem 1, a signal pin 2, and a ground pin 4.
  • the CAN package type optical module 100 includes an insulating material 3, an optical semiconductor 5, a submount 6, a pedestal 7, a thermoelectric cooler 8, a dielectric substrate 9, a gold wire 10, a lens 11, a lens holder 12, a receptacle 13, a ferrule 14, and a receptacle.
  • the holder 15, the solder 16, and the flexible substrate 20 may be provided.
  • Stem 1 is a substrate.
  • the shape of the stem 1 is based on, for example, a flat plate shape, a disk shape, a columnar shape, or the like, and has a partially protruding portion.
  • Stem 1 is made of metal.
  • Stem 1 has conductivity.
  • the stem 1 has a through hole in the thickness direction of the flat plate-shaped substrate. The protruding portion exists on the surface having the through hole.
  • the signal pin 2 is a rod-shaped metal conductor.
  • the signal pin 2 is a terminal for inputting or outputting an electric signal.
  • the signal pin 2 is arranged in the through hole of the stem 1.
  • the signal pin 2 protrudes from the surface of the stem 1 having the protruding portion.
  • the insulating material 3 is a non-conductive material.
  • the insulating material 3 is, for example, insulating glass.
  • the insulating material 3 is sealed between the through hole of the stem 1 and the signal pin 2.
  • the insulating material 3 seals the signal pin 2 into the through hole of the stem 1 without contacting the stem 1.
  • the ground pin 4 is a ground terminal.
  • the ground pin 4 is grounded. Further, the stem 1 is grounded via the ground pin 4.
  • the optical semiconductor 5 is an optical semiconductor element.
  • the optical semiconductor 5 is, for example, a semiconductor laser or the like. In this case, the optical semiconductor 5 emits light.
  • the optical semiconductor 5 is, for example, a light receiving element or the like. In this case, the optical semiconductor detects light.
  • Submant 6 is a substrate.
  • the submount 6 mounts the optical semiconductor 5.
  • the submount 6 includes a wiring pattern.
  • the optical semiconductor 5 is connected to the wiring pattern on the submount 6.
  • the pedestal 7 supports the submount 6.
  • the pedestal 7 is electrically conductive with the stem 1.
  • thermoelectric cooler 8 is an element for adjusting the temperature.
  • the thermoelectric cooler 8 has, for example, a Perche type temperature control mechanism.
  • the thermoelectric cooler 8 keeps the optical semiconductor 5 warm.
  • the thermoelectric cooler 8 can have not only a heat retaining function but also a cooling function.
  • the dielectric substrate 9 is a substrate.
  • the dielectric substrate 9 includes a wiring pattern.
  • the dielectric substrate 9 makes an electrical connection between the submount 6 and the signal pin 2.
  • the gold wire 10 is a conducting wire.
  • the gold wire 10 is, for example, a gold conductor.
  • the gold wire 10 electrically connects, for example, the wiring pattern of the optical semiconductor 5, the submount 6, and the wiring pattern of the dielectric substrate 9.
  • the lens 11 is a lens for collecting light.
  • the lens 3 collects the light emitted from the optical semiconductor 5.
  • the lens holder 12 supports the lens 11.
  • the lens holder 12 has, for example, a can shape.
  • the receptacle 13 is a connector.
  • the receptacle 13 is, for example, a connector for connecting to an optical fiber.
  • the ferrule 14 is a component for transmitting light to an optical fiber.
  • the ferrule 14 is, for example, a cylindrical ceramic component.
  • the receptacle holder 15 supports the receptacle 13.
  • the receptacle holder 15 is fixed to the lens holder 12.
  • solder 16 is a bonding medium.
  • the solder 16 connects the signal pin 2 and the flexible substrate 20.
  • the solder 16 connects the ground pin 4 and the flexible substrate 20.
  • the flexible substrate 20 is a flexible substrate.
  • the flexible substrate 20 can be repeatedly deformed with a weak force. If no force is applied to the flexible substrate 20, the flexible substrate 20 returns to its original shape.
  • the flexible substrate 20 includes a ground wiring 31, a signal wiring 32, and an insulating layer 33.
  • the flexible substrate 20 may include a protective film 34.
  • the ground wiring 31 is a wiring for grounding.
  • the ground wiring 31 is connected to the ground pin 4. As shown in FIG. 4, the ground wiring 31 is exposed on the upper surface of the flexible substrate 20.
  • the signal wiring 32 is wiring for signal transmission.
  • the signal wiring 32 is connected to the signal pin 2.
  • the signal wiring 32 is arranged so as not to be connected to the stem 1.
  • the insulating layer 33 is a non-conductive layer.
  • the insulating layer 33 insulates the ground wiring 31 and the signal wiring 32.
  • the protective film 34 is a film that protects the flexible substrate 20 from scratches, moisture, and the like.
  • the through holes 35 and 36 are holes made in the flexible substrate 20.
  • the through hole 35 is a hole through which the signal pin 2 passes.
  • the edge of the through hole 35 is connected to the signal wiring 32.
  • the edge of the through hole 35 is a signal wiring 32, an insulating layer 33, and a ground wiring 31 from the inside.
  • the through hole 36 is a hole through which the ground pin 4 passes.
  • the edge of the through hole 36 is connected to the ground wiring 31.
  • An electric signal is input to the signal wiring 32 of the flexible board 20.
  • the input electric signal is transmitted from the through hole 35 to the signal pin 2.
  • the ground wiring 31 of the flexible substrate 20 is grounded.
  • the ground wiring 31 grounds the ground pin 4 via the through hole 36.
  • the ground pin 4 grounds the stem 1.
  • the signal pin 2 is insulated from the grounded stem 1 by the insulating material 3.
  • the electric signal is transmitted from the signal pin 2 to the dielectric substrate 9.
  • the electric signal is further transmitted from the wiring pattern on the dielectric substrate 9 to the submount 6 via the gold wire 10.
  • An electric signal is input to the optical semiconductor 5 on the submount 6, and the optical semiconductor 5 emits light.
  • the light emitted from the optical semiconductor 5 is collected by the lens 11 and incident on the ferrule 14 in the receptacle 13.
  • the light propagating in the ferrule 14 is input to an optical fiber (not shown) connected to the ferrule 14.
  • the grounded stem 1 grounds the optical semiconductor 5 via the pedestal 7 and the submount 6.
  • the thermoelectric cooler 8 controls the temperature of the optical semiconductor 5.
  • the thermoelectric cooler 8 keeps the operating characteristics of the optical semiconductor 5 constant by keeping the temperature of the optical semiconductor 5 constant.
  • a high frequency electric signal is input to the optical semiconductor 5. If there is a gap between the stem 1 and the flexible substrate 20, resonance or multiple reflection occurs, and there is a possibility that a high frequency electric signal cannot be transmitted.
  • the stem 1 By providing the stem 1 with a protruding portion, the flexible substrate 20 is ensured to be in contact with the protruding portion.
  • a ground wiring 31 is provided on the upper surface of the flexible substrate 20.
  • the ground wiring 31 comes to the position of the protruding portion.
  • the flexible substrate 20 is pushed to the root position of the signal pin 2, the flexible substrate 20 is bent downward by the protruding portion of the stem 1. Since the flexible substrate 20 tries to return to its original shape, the bent portion of the flexible substrate 20 has an upward repulsive force. Due to this repulsive force, the ground wiring 31 of the flexible substrate 20 and the protruding portion of the stem 1 are brought into close contact with each other and are electrically connected to each other.
  • the ground wiring 31 of the flexible substrate 20 can be electrically connected to the stem 1. As a result, high frequency transmission characteristics can be ensured.
  • the ground wiring 31 of the flexible board 20 is electrically connected to the protruding portion of the stem 1. Even if the assembly accuracy at the time of assembly is lowered in this way, the ground wiring 31 is electrically connected to the stem 1.
  • the signal pin 2 and the through hole 35 are soldered, the signal pin 2 and the signal wiring 32 are electrically connected, and at the same time, the stem 1 and the ground wiring 31 are electrically connected. That is, it is not necessary to solder other than the signal pin 2. In this way, the efficiency of the assembly work can be improved.
  • the shape of the protruding portion does not matter as long as the flexible substrate 20 can be bent by the protruding portion of the stem 1.
  • the protruding portion has a surface angled with respect to the surface on which the ground pin 4 of the stem 1 protrudes so that the area in contact between the protruding portion and the ground wiring 31 of the flexible substrate 20 becomes large.
  • the protruding portion has a shape in which a right triangle has a thickness.
  • the thickness direction of the protruding portion is the width direction of the ground wiring 31 of the flexible substrate 30.
  • FIG. 5 is a perspective view of the CAN package type optical module 100 according to the first embodiment in the vicinity of the stem 1a.
  • the stem 1a has a different shape of the protruding portion from the stem 1.
  • the shape of the protruding portion of the stem 1a is a shape in which a quadrangular prism is added to the lower portion of the shape of the protruding portion of the stem 1.
  • FIG. 6 is a perspective view of the CAN package type optical module 100 according to the first embodiment in the vicinity of the stem 1b.
  • the stem 1b has a different shape of the protruding portion from the stem 1.
  • the shape of the protruding portion of the stem 1b is a flat shape in which the upper part of the rectangle is raised in a crescent shape and has a thickness.
  • the thickness direction of the protruding portion is the width direction of the ground wiring 31 of the flexible substrate 30.
  • the half-moon shaped portion has a shape that makes it easy to adhere to the ground wiring 31.
  • the CAN package type optical module 101 according to the first modification includes a leaf spring 37 on a flexible substrate 21.
  • FIG. 7 is a cross-sectional view of the CAN package type optical module 101 according to the first modification of the first embodiment in the vicinity of the stem 1.
  • the components common to the CAN package type optical module 100 are designated by the same reference numerals, and the description thereof will be omitted.
  • the cross-sectional view of FIG. 7 is a cross-sectional view including the signal pin 2 and the ground pin 4 so that the arrangement state of the signal pin 2 and the ground pin 4 can be easily understood. Therefore, the cross section is not flat.
  • the CAN package type optical module 101 includes a flexible substrate 21.
  • the flexible substrate 21 is a flexible substrate 20 to which a leaf spring 37 is added.
  • the position of the leaf spring 37 in the flexible substrate 21 may be any of the upper surface, the lower surface, and the inside of the flexible substrate 21.
  • the leaf spring 37 is arranged on the lower surface of the flexible substrate 21.
  • the leaf spring 37 is arranged so as to straddle both the protruding portion and the non-protruding portion of the stem 1. Further, it is desirable that the leaf spring 37 is arranged up to the periphery of the through hole 35.
  • the leaf spring 37 is a plate-shaped spring.
  • the leaf spring 37 is, for example, a thin leaf spring.
  • CAN package type optical module 101 Similar to the CAN package type optical module 100, the CAN package type optical module 101 inputs an electric signal from the flexible substrate 21 to cause the optical semiconductor 5 to emit light. At that time, the ground wiring 31 of the flexible substrate 21 is brought into close contact with the protruding portion of the stem 1 to ensure high frequency transmission characteristics.
  • the strength and repulsive force of the flexible substrate 21 are strengthened by adding the leaf spring 37 to the flexible substrate 21.
  • the flexible substrate 21 having increased strength can suppress the degree of sagging against gravity. Therefore, the ground wiring 31 of the flexible substrate 21 can be brought into close contact with the protruding portion of the stem 1.
  • the strength of the flexible substrate 21 is increased. Due to the increased strength, the ground wiring 31 of the flexible substrate 21 and the protruding portion of the stem 1 are in close contact with each other and are electrically connected to each other. As a result, high frequency transmission characteristics can be ensured.
  • FIG. 8 is a cross-sectional view of the CAN package type optical module 102 near the stem 41 according to the second modification of the first embodiment.
  • the components common to the CAN package type optical module 100 are designated by the same reference numerals, and the description thereof will be omitted.
  • the cross-sectional view of FIG. 8 is a cross-sectional view including the signal pin 2 and the ground pin 4 so that the arrangement state of the signal pin 2 and the ground pin 4 can be easily understood. Therefore, the cross section is not flat.
  • the CAN package type optical module 102 includes a stem 41 and a flexible substrate 22.
  • the CAN package type optical module 102 replaced the stem 1 and the flexible substrate 20 of the CAN package type optical module 100 with the stem 41 and the flexible substrate 22, respectively.
  • the stem 41 is obtained by removing the protruding portion from the stem 1.
  • the shape of the stem 41 is, for example, a flat plate shape, a disk shape, a columnar shape, or the like.
  • the stem 41 is made of metal.
  • the stem 41 has conductivity.
  • the stem 41 has a through hole in the thickness direction of the flat plate-shaped substrate.
  • FIG. 9 is a perspective view of the flexible substrate 22 of the CAN package type optical module 102 according to the second modification of the first embodiment.
  • the flexible substrate 22 is a flexible substrate 20 to which a conductor block 38 is added.
  • the conductor block 38 is a conductive block.
  • the conductor block 38 is arranged on the ground wiring 31 on the upper surface of the flexible substrate 22. It is desirable that the conductor block 38 is arranged near the through hole 35.
  • CAN package type optical module 102 Similar to the CAN package type optical module 100, the CAN package type optical module 102 inputs an electric signal from the flexible substrate 22 to cause the optical semiconductor 5 to emit light. At that time, the conductor block 38 of the flexible substrate 22 is brought into close contact with the stem 41 to ensure high frequency transmission characteristics.
  • the conductor block 38 on the ground wiring 31 of the flexible substrate 22 and the stem 41 are in close contact with each other and are electrically connected to each other. As a result, high frequency transmission characteristics can be ensured.
  • the shape of the conductor block 38 is, for example, the same shape as the protruding portion of the stem 1.
  • the shape of the conductor block 38 is, for example, a shape in which the side surface of the triangular prism is the bottom surface. Further, the shape of the conductor block 38 may be the same as the shape of the protruding portion of the stem 1a in FIG. Further, the shape of the conductor block 38 may be the same as the shape of the protruding portion of the stem 1b in FIG.
  • the leaf spring 37 used in the first modification is added to the flexible substrate 22, so that the conductor block 38 and the stem 41 on the ground wiring 31 of the flexible substrate 22 can be connected to each other. In close contact. As a result, high frequency transmission characteristics can be ensured.
  • 1,1a, 1b stem, 2 signal pin, 3 insulation material, 4 ground pin, 5 optical semiconductor, 6 submount, 7 pedestal, 8 thermoelectric cooler, 9 dielectric substrate, 10 gold wire, 11 lens, 12 lens holder, 13 receptacles, 14 ferrules, 15 receptacle holders, 16 solders, 20, 21, 22, flexible boards, 31 ground wirings, 32 signal wirings, 33 insulating layers, 34 protective films, 35, 36 through holes, 37 leaf springs, 38 conductor blocks. , 41 stem, 100, 101, 102 CAN package type optical module.

Abstract

In order to firmly adhere a ground conductor of a flexible board to a stem, this CAN package-type optical module is provided with: a stem having a first surface which has a projection at a position for connection to the flexible board and a second surface which is a surface opposite to the first surface; a signal pin that penetrates the stem from the first surface to the second surface and projects from the first surface; an insulating material filled in between the stem and the signal pin; an optical semiconductor connected to the signal pin on the second-surface side of the stem; and a ground pin provided to the first surface.

Description

CANパッケージ型光モジュールCAN package type optical module
 本開示は、光通信などに用いるCANパッケージ型光ジュールに関する。 This disclosure relates to a CAN package type optical joule used for optical communication and the like.
 光モジュールでは、光半導体への高周波信号を伝えるため、高周波特性を確保する必要がある。そのため、フレキシブル基板のグランド配線部とステムとを密着させることで良好な周波数特性を実現していた。(例えば、特許文献1) In the optical module, it is necessary to secure high frequency characteristics in order to transmit the high frequency signal to the optical semiconductor. Therefore, good frequency characteristics have been realized by bringing the ground wiring portion of the flexible substrate into close contact with the stem. (For example, Patent Document 1)
 特許文献1に記載の光モジュールは、補強板でフレキシブル基板をステムに押し付けることにより、フレキシブル基板の接地導体をステムに密着させることができる。 In the optical module described in Patent Document 1, the ground conductor of the flexible substrate can be brought into close contact with the stem by pressing the flexible substrate against the stem with a reinforcing plate.
特開2012-256692号公報(第4頁0013~0019、図2)Japanese Unexamined Patent Publication No. 2012-256692 (Page 4, 0013-0019, FIG. 2)
 従来の光モジュールでは、補強板での押さえつけが弱い、または補強板で押さえつけた後はんだ付けする前に補強板が浮いてしまうなどにより、フレキシブル基板の接地導体をステムに密着できないことがあるという課題があった。 In the conventional optical module, there is a problem that the grounding conductor of the flexible substrate may not be able to adhere to the stem because the reinforcing plate is weakly pressed or the reinforcing plate floats after being pressed by the reinforcing plate and before soldering. was there.
 上述のような課題を解決するためになされたもので、フレキシブル基板の接地導体をステムに密着させることを目的とする。 It was made to solve the above-mentioned problems, and the purpose is to bring the ground conductor of the flexible substrate into close contact with the stem.
 CANパッケージ型光モジュールは、フレキシブル基板と接続する位置に突起部分を有する第1の面と第1面と反対側の面である第2の面とを有するステムと、ステムの第1の面から第2の面に向けて貫通し第1の面から突出する信号ピンと、ステムと信号ピンとの間に封入される絶縁素材と、信号ピンとステムの第2の面側で接続する光半導体と、第1の面に設けられたグランドピンとを備える。 The CAN package type optical module is composed of a stem having a first surface having a protrusion at a position connected to the flexible substrate and a second surface opposite to the first surface, and a stem from the first surface of the stem. A signal pin that penetrates toward the second surface and protrudes from the first surface, an insulating material enclosed between the stem and the signal pin, an optical semiconductor that connects the signal pin and the stem on the second surface side, and a second It is provided with a ground pin provided on the surface of 1.
 フレキシブル基板の接地導体をステムに密着させることができ、高周波特性を確保できる。 The ground conductor of the flexible board can be brought into close contact with the stem, and high frequency characteristics can be ensured.
実施の形態1に係るCANパッケージ型光モジュール100の断面図である。It is sectional drawing of the CAN package type optical module 100 which concerns on Embodiment 1. FIG. 実施の形態1に係るCANパッケージ型光モジュール100のステム1付近の斜視図である。It is a perspective view of the vicinity of the stem 1 of the CAN package type optical module 100 which concerns on Embodiment 1. FIG. 実施の形態1に係るCANパッケージ型光モジュール100のステム1付近の断面図である。It is sectional drawing around the stem 1 of the CAN package type optical module 100 which concerns on Embodiment 1. FIG. 実施の形態1に係るCANパッケージ型光モジュール100のフレキシブル基板20の斜視図である。It is a perspective view of the flexible substrate 20 of the CAN package type optical module 100 which concerns on Embodiment 1. FIG. 実施の形態1に係るCANパッケージ型光モジュール100のステム1a付近の斜視図である。It is a perspective view of the vicinity of the stem 1a of the CAN package type optical module 100 which concerns on Embodiment 1. FIG. 実施の形態1に係るCANパッケージ型光モジュール100のステム1b付近の斜視図である。It is a perspective view of the vicinity of the stem 1b of the CAN package type optical module 100 which concerns on Embodiment 1. FIG. 実施の形態1の変形例1に係るCANパッケージ型光モジュール101のステム1付近の断面図である。It is sectional drawing around the stem 1 of the CAN package type optical module 101 which concerns on modification 1 of Embodiment 1. FIG. 実施の形態1の変形例2に係るCANパッケージ型光モジュール102のステム41付近の断面図である。It is sectional drawing around the stem 41 of the CAN package type optical module 102 which concerns on modification 2 of Embodiment 1. FIG. 実施の形態1の変形例2に係るCANパッケージ型光モジュール102のフレキシブル基板22の斜視図である。It is a perspective view of the flexible substrate 22 of the CAN package type optical module 102 which concerns on the modification 2 of Embodiment 1. FIG.
実施の形態1.
 以下、実施の形態1に係るCANパッケージ型光モジュール100について、図面を用いて詳細に説明する。なお、以下の実施の形態1は、一具体例を示すものである。したがって、各構成要素の形状、配置および材料などは一例であり、限定する趣旨はない。また、各図は模式図であり、厳密に図示されたものではない。また、各図において、同じ構成要素については同じ符号を付している。
Embodiment 1.
Hereinafter, the CAN package type optical module 100 according to the first embodiment will be described in detail with reference to the drawings. The following first embodiment shows a specific example. Therefore, the shape, arrangement, material, etc. of each component are examples and are not intended to be limited. Moreover, each figure is a schematic view and is not exactly illustrated. Further, in each figure, the same components are designated by the same reference numerals.
<CANパッケージ型光モジュール100の構成>
 図1は、実施の形態1に係るCANパッケージ型光モジュール100の断面図である。図2は、実施の形態1に係るCANパッケージ型光モジュール100のステム1付近の斜視図である。図2は、図1のステム1を上下反転させている。図3は、実施の形態1に係るCANパッケージ型光モジュール100のステム1付近の断面図である。図4は、実施の形態1に係るCANパッケージ型光モジュール100のフレキシブル基板20の斜視図である。なお、図1および図3の断面図は、信号ピン2およびグランドピン4の配置状態がわかりやすいように、信号ピン2およびグランドピン4を含む断面とした。そのため、断面は平面ではない。
<Configuration of CAN package type optical module 100>
FIG. 1 is a cross-sectional view of the CAN package type optical module 100 according to the first embodiment. FIG. 2 is a perspective view of the vicinity of the stem 1 of the CAN package type optical module 100 according to the first embodiment. FIG. 2 shows the stem 1 of FIG. 1 turned upside down. FIG. 3 is a cross-sectional view of the CAN package type optical module 100 according to the first embodiment in the vicinity of the stem 1. FIG. 4 is a perspective view of the flexible substrate 20 of the CAN package type optical module 100 according to the first embodiment. The cross-sectional views of FIGS. 1 and 3 are cross-sectional views including the signal pin 2 and the ground pin 4 so that the arrangement state of the signal pin 2 and the ground pin 4 can be easily understood. Therefore, the cross section is not flat.
 CANパッケージ型光モジュール100は、ステム1、信号ピン2、およびグランドピン4を備える。CANパッケージ型光モジュール100は、絶縁素材3、光半導体5、サブマウント6、台座7、熱電クーラー8、誘電体基板9、金線10、レンズ11、レンズホルダ12、レセプタクル13、フェルール14、レセプタクルホルダ15、はんだ16、およびフレキシブル基板20を備えてもよい。 The CAN package type optical module 100 includes a stem 1, a signal pin 2, and a ground pin 4. The CAN package type optical module 100 includes an insulating material 3, an optical semiconductor 5, a submount 6, a pedestal 7, a thermoelectric cooler 8, a dielectric substrate 9, a gold wire 10, a lens 11, a lens holder 12, a receptacle 13, a ferrule 14, and a receptacle. The holder 15, the solder 16, and the flexible substrate 20 may be provided.
≪ステム1≫
 ステム1は、基体である。ステム1の形状は、例えば、平板状、円盤状、円柱状などをベースに、一部突起部分を有している。ステム1は金属から構成される。ステム1は導通性を有する。ステム1は平板状の基体の厚さ方向に貫通孔を有する。突起部分は貫通孔のある面に存在する。
Stem 1≫
Stem 1 is a substrate. The shape of the stem 1 is based on, for example, a flat plate shape, a disk shape, a columnar shape, or the like, and has a partially protruding portion. Stem 1 is made of metal. Stem 1 has conductivity. The stem 1 has a through hole in the thickness direction of the flat plate-shaped substrate. The protruding portion exists on the surface having the through hole.
≪信号ピン2≫
 信号ピン2は、棒状の金属導体である。信号ピン2は電気信号を入力、もしくは出力する端子である。信号ピン2はステム1の貫通孔に配置される。信号ピン2は、ステム1の突起部分を有する面から突出している。
Signal pin 2≫
The signal pin 2 is a rod-shaped metal conductor. The signal pin 2 is a terminal for inputting or outputting an electric signal. The signal pin 2 is arranged in the through hole of the stem 1. The signal pin 2 protrudes from the surface of the stem 1 having the protruding portion.
≪絶縁素材3≫
 絶縁素材3は、導通性のない素材である。絶縁素材3は、例えば絶縁性ガラスなどである。絶縁素材3は、ステム1の貫通孔と信号ピン2との間に封入される。絶縁素材3によって、信号ピン2はステム1に接触せずにステム1の貫通孔に封着される。
Insulation material 3≫
The insulating material 3 is a non-conductive material. The insulating material 3 is, for example, insulating glass. The insulating material 3 is sealed between the through hole of the stem 1 and the signal pin 2. The insulating material 3 seals the signal pin 2 into the through hole of the stem 1 without contacting the stem 1.
≪グランドピン4≫
 グランドピン4は、接地端子である。グランドピン4は、接地される。また、グランドピン4を介して、ステム1は接地される。
≪Grand pin 4≫
The ground pin 4 is a ground terminal. The ground pin 4 is grounded. Further, the stem 1 is grounded via the ground pin 4.
≪光半導体5≫
 光半導体5は、光半導体素子である。光半導体5は、例えば、半導体レーザなどである。この場合、光半導体5は、光を発する。光半導体5は、例えば、受光素子などである。この場合、光半導体は、光を検出する。
≪Optical semiconductor 5≫
The optical semiconductor 5 is an optical semiconductor element. The optical semiconductor 5 is, for example, a semiconductor laser or the like. In this case, the optical semiconductor 5 emits light. The optical semiconductor 5 is, for example, a light receiving element or the like. In this case, the optical semiconductor detects light.
≪サブマウント6≫
 サブマント6は、基板である。サブマウント6は、光半導体5を搭載する。サブマウント6は、配線パターンを備える。光半導体5は、サブマウント6上で配線パターンと接続されている。
≪Submount 6≫
Submant 6 is a substrate. The submount 6 mounts the optical semiconductor 5. The submount 6 includes a wiring pattern. The optical semiconductor 5 is connected to the wiring pattern on the submount 6.
≪台座7≫
 台座7は、サブマウント6を支持する。台座7は、ステム1と電気的な導通がある。
≪Pedestal 7≫
The pedestal 7 supports the submount 6. The pedestal 7 is electrically conductive with the stem 1.
≪熱電クーラー8≫
 熱電クーラー8は、温度調整のための素子である。熱電クーラー8は、例えば、ペルチェ式の温度調整機構を有する。熱電クーラー8は、光半導体5を保温する。熱電クーラー8は、保温機能だけでなく冷却機能も備えることができる。
≪Thermoelectric cooler 8≫
The thermoelectric cooler 8 is an element for adjusting the temperature. The thermoelectric cooler 8 has, for example, a Perche type temperature control mechanism. The thermoelectric cooler 8 keeps the optical semiconductor 5 warm. The thermoelectric cooler 8 can have not only a heat retaining function but also a cooling function.
≪誘電体基板9≫
 誘電体基板9は、基板である。誘電体基板9は、配線パターンを備える。誘電体基板9は、サブマウント6と信号ピン2との間の電気的接続を行う。
Dielectric substrate 9≫
The dielectric substrate 9 is a substrate. The dielectric substrate 9 includes a wiring pattern. The dielectric substrate 9 makes an electrical connection between the submount 6 and the signal pin 2.
≪金線10≫
 金線10は、導線である。金線10は、例えば金の導線である。金線10は、例えば、光半導体5、サブマウント6の配線パターン、および誘電体基板9の配線パターンを電気的に接続する。
≪Gold wire 10≫
The gold wire 10 is a conducting wire. The gold wire 10 is, for example, a gold conductor. The gold wire 10 electrically connects, for example, the wiring pattern of the optical semiconductor 5, the submount 6, and the wiring pattern of the dielectric substrate 9.
≪レンズ11≫
 レンズ11は、集光するためのレンズである。レンズ3は、光半導体5からの出射される光を集光する。
≪Lens 11≫
The lens 11 is a lens for collecting light. The lens 3 collects the light emitted from the optical semiconductor 5.
≪レンズホルダ12≫
 レンズホルダ12は、レンズ11を支持する。レンズホルダ12は、例えば、缶形状である。
≪Lens holder 12≫
The lens holder 12 supports the lens 11. The lens holder 12 has, for example, a can shape.
≪レセプタクル13≫
 レセプタクル13は、コネクタである。レセプタクル13は、例えば、光ファイバとの接続用コネクタである。
≪Receptacle 13≫
The receptacle 13 is a connector. The receptacle 13 is, for example, a connector for connecting to an optical fiber.
≪フェルール14≫
 フェルール14は、光ファイバへ光を伝達するための部品である。フェルール14は、例えば、円筒形のセラミックス製の部品である。
≪Ferrule 14≫
The ferrule 14 is a component for transmitting light to an optical fiber. The ferrule 14 is, for example, a cylindrical ceramic component.
≪レセプタクルホルダ15≫
 レセプタクルホルダ15は、レセプタクル13を支持する。レセプタクルホルダ15は、レンズホルダ12に固定される。
≪Receptacle holder 15≫
The receptacle holder 15 supports the receptacle 13. The receptacle holder 15 is fixed to the lens holder 12.
≪はんだ16≫
 はんだ16は、接合媒体である。はんだ16は、信号ピン2とフレキシブル基板20とを接続する。はんだ16は、グランドピン4とフレキシブル基板20とを接続する。
≪Solder 16≫
The solder 16 is a bonding medium. The solder 16 connects the signal pin 2 and the flexible substrate 20. The solder 16 connects the ground pin 4 and the flexible substrate 20.
≪フレキシブル基板20≫
 フレキシブル基板20は、柔軟性のある基板である。フレキシブル基板20は、弱い力で繰り返し変形させることが可能である。フレキシブル基板20に力を加えなければ、フレキシブル基板20は、元の形状に戻る。フレキシブル基板20は、グランド配線31、信号配線32、および絶縁層33を備える。フレキシブル基板20は保護膜34を備えても良い。
≪Flexible substrate 20≫
The flexible substrate 20 is a flexible substrate. The flexible substrate 20 can be repeatedly deformed with a weak force. If no force is applied to the flexible substrate 20, the flexible substrate 20 returns to its original shape. The flexible substrate 20 includes a ground wiring 31, a signal wiring 32, and an insulating layer 33. The flexible substrate 20 may include a protective film 34.
≪グランド配線31≫
 グランド配線31は、接地用の配線である。グランド配線31は、グランドピン4と接続される。図4に示すように、グランド配線31は、フレキシブル基板20の上面に露出している。
≪Ground wiring 31≫
The ground wiring 31 is a wiring for grounding. The ground wiring 31 is connected to the ground pin 4. As shown in FIG. 4, the ground wiring 31 is exposed on the upper surface of the flexible substrate 20.
≪信号配線32≫
 信号配線32は、信号伝送用の配線である。信号配線32は、信号ピン2と接続される。信号配線32は、ステム1と接続しないように配置される。
≪Signal wiring 32≫
The signal wiring 32 is wiring for signal transmission. The signal wiring 32 is connected to the signal pin 2. The signal wiring 32 is arranged so as not to be connected to the stem 1.
≪絶縁層33≫
 絶縁層33は、導通性のない層である。絶縁層33は、グランド配線31と信号配線32とを絶縁する。
≪Insulation layer 33≫
The insulating layer 33 is a non-conductive layer. The insulating layer 33 insulates the ground wiring 31 and the signal wiring 32.
≪保護膜34≫
 保護膜34は、フレキシブル基板20を傷や湿気などから守る膜である。
≪Protective film 34≫
The protective film 34 is a film that protects the flexible substrate 20 from scratches, moisture, and the like.
≪スルーホール35,36≫
 スルーホール35,36は、フレキシブル基板20に空けた穴である。スルーホール35は信号ピン2を通す穴である。スルーホール35の淵は、信号配線32につながっている。スルーホール35の淵は、内側から、信号配線32、絶縁層33、グランド配線31となっている。スルーホール36はグランドピン4を通す穴である。スルーホール36の淵は、グランド配線31につながっている。
≪Through holes 35, 36≫
The through holes 35 and 36 are holes made in the flexible substrate 20. The through hole 35 is a hole through which the signal pin 2 passes. The edge of the through hole 35 is connected to the signal wiring 32. The edge of the through hole 35 is a signal wiring 32, an insulating layer 33, and a ground wiring 31 from the inside. The through hole 36 is a hole through which the ground pin 4 passes. The edge of the through hole 36 is connected to the ground wiring 31.
<CANパッケージ型光モジュール100の動作>
 次に、CANパッケージ型光モジュール100の動作について説明する。
<Operation of CAN package type optical module 100>
Next, the operation of the CAN package type optical module 100 will be described.
 フレキシブル基板20の信号配線32に、電気信号が入力される。入力された電気信号は、スルーホール35から信号ピン2へ伝送される。フレキシブル基板20のグランド配線31は接地される。グランド配線31は、スルーホール36を介してグランドピン4を接地する。グランドピン4は、ステム1を接地する。 An electric signal is input to the signal wiring 32 of the flexible board 20. The input electric signal is transmitted from the through hole 35 to the signal pin 2. The ground wiring 31 of the flexible substrate 20 is grounded. The ground wiring 31 grounds the ground pin 4 via the through hole 36. The ground pin 4 grounds the stem 1.
 信号ピン2は、絶縁素材3によって、接地されたステム1と絶縁されている。電気信号は、信号ピン2から誘電体基板9へ伝えられる。電気信号は、さらに、誘電体基板9上の配線パターンから金線10を介してサブマウント6へ伝えられる。サブマウント6上の光半導体5へ電気信号が入力され、光半導体5は発光する。 The signal pin 2 is insulated from the grounded stem 1 by the insulating material 3. The electric signal is transmitted from the signal pin 2 to the dielectric substrate 9. The electric signal is further transmitted from the wiring pattern on the dielectric substrate 9 to the submount 6 via the gold wire 10. An electric signal is input to the optical semiconductor 5 on the submount 6, and the optical semiconductor 5 emits light.
 光半導体5から出射された光は、レンズ11で集光され、レセプタクル13内のフェルール14へ入射する。フェルール14内を伝搬する光は、フェルール14に接続される光ファイバ(図示せず)へ入力される。 The light emitted from the optical semiconductor 5 is collected by the lens 11 and incident on the ferrule 14 in the receptacle 13. The light propagating in the ferrule 14 is input to an optical fiber (not shown) connected to the ferrule 14.
 接地されているステム1は、台座7およびサブマウント6を介して、光半導体5を接地する。熱電クーラー8は、光半導体5の温度を制御する。熱電クーラー8は光半導体5の温度を一定に保つことによって、光半導体5の動作特性を一定に保っている。 The grounded stem 1 grounds the optical semiconductor 5 via the pedestal 7 and the submount 6. The thermoelectric cooler 8 controls the temperature of the optical semiconductor 5. The thermoelectric cooler 8 keeps the operating characteristics of the optical semiconductor 5 constant by keeping the temperature of the optical semiconductor 5 constant.
 光半導体5へは高周波の電気信号が入力される。ステム1とフレキシブル基板20との間に隙間があると、共振または多重反射が発生し、高周波の電気信号が伝送できない可能性が生じる。ステム1に突起部分をもたせることで、フレキシブル基板20は突起部分と確実に接するようにした。 A high frequency electric signal is input to the optical semiconductor 5. If there is a gap between the stem 1 and the flexible substrate 20, resonance or multiple reflection occurs, and there is a possibility that a high frequency electric signal cannot be transmitted. By providing the stem 1 with a protruding portion, the flexible substrate 20 is ensured to be in contact with the protruding portion.
 図4に示すように、フレキシブル基板20の上面にグランド配線31を設けている。図1のように、フレキシブル基板20のスルーホール35,36にそれぞれ信号ピン2、グランドピン4を通すと、グランド配線31は突起部分の位置にくる。フレキシブル基板20を信号ピン2の根本の位置まで押し込むと、フレキシブル基板20はステム1の突起部分によって下側に折れ曲がる。フレキシブル基板20は元の形状に戻ろうとするため、フレキシブル基板20の折れ曲がった部分は上方向に反発力を有する。この反発力によって、フレキシブル基板20のグランド配線31とステム1の突起部分とが密着し、電気的に接続された状態となる。 As shown in FIG. 4, a ground wiring 31 is provided on the upper surface of the flexible substrate 20. As shown in FIG. 1, when the signal pin 2 and the ground pin 4 are passed through the through holes 35 and 36 of the flexible substrate 20, the ground wiring 31 comes to the position of the protruding portion. When the flexible substrate 20 is pushed to the root position of the signal pin 2, the flexible substrate 20 is bent downward by the protruding portion of the stem 1. Since the flexible substrate 20 tries to return to its original shape, the bent portion of the flexible substrate 20 has an upward repulsive force. Due to this repulsive force, the ground wiring 31 of the flexible substrate 20 and the protruding portion of the stem 1 are brought into close contact with each other and are electrically connected to each other.
 このように、ステム1に突起部分を設けることで、フレキシブル基板20のグランド配線31はステム1と電気的に接続できる。これによって、高周波の伝送特性を確保できる。 By providing the protruding portion on the stem 1 in this way, the ground wiring 31 of the flexible substrate 20 can be electrically connected to the stem 1. As a result, high frequency transmission characteristics can be ensured.
 フレキシブル基板20のスルーホール35が、信号ピン2の根本まで押し込まれなく場合でも、フレキシブル基板20のグランド配線31はステム1の突起部分と電気的に接続する。このように組み立て時の組み立て精度が低下しても、グランド配線31はステム1と電気的に接続が保たれる。 Even if the through hole 35 of the flexible board 20 is not pushed to the root of the signal pin 2, the ground wiring 31 of the flexible board 20 is electrically connected to the protruding portion of the stem 1. Even if the assembly accuracy at the time of assembly is lowered in this way, the ground wiring 31 is electrically connected to the stem 1.
 また、信号ピン2とスルーホール35をはんだ付けすれば、信号ピン2と信号配線32が電気的に接続され、同時にステム1とグランド配線31が電気的に接続される。つまり、信号ピン2以外のはんだ付けをする必要がなくなる。このように、組み立て作業の効率化が図れる。 Further, if the signal pin 2 and the through hole 35 are soldered, the signal pin 2 and the signal wiring 32 are electrically connected, and at the same time, the stem 1 and the ground wiring 31 are electrically connected. That is, it is not necessary to solder other than the signal pin 2. In this way, the efficiency of the assembly work can be improved.
 ステム1の突起部分によってフレキシブル基板20を折り曲げることができれば、突起部分の形状は問わない。図2に示すように、突起部分とフレキシブル基板20のグランド配線31とが接する面積が大きくなるように、突起部分はステム1のグランドピン4が突出している面に対して角度をつけた面を有する。図2において、突起部分は、直角三角形に厚みを持たせた形状である。突起部分の厚み方向は、フレキシブル基板30のグランド配線31の幅方向となる。 The shape of the protruding portion does not matter as long as the flexible substrate 20 can be bent by the protruding portion of the stem 1. As shown in FIG. 2, the protruding portion has a surface angled with respect to the surface on which the ground pin 4 of the stem 1 protrudes so that the area in contact between the protruding portion and the ground wiring 31 of the flexible substrate 20 becomes large. Have. In FIG. 2, the protruding portion has a shape in which a right triangle has a thickness. The thickness direction of the protruding portion is the width direction of the ground wiring 31 of the flexible substrate 30.
 図5は、実施の形態1に係るCANパッケージ型光モジュール100のステム1a付近の斜視図である。ステム1aは、ステム1に対して突起部分の形状が異なる。ステム1aの突起部分の形状は、ステム1の突起部分の形状の下部に四角柱を追加した形状である。 FIG. 5 is a perspective view of the CAN package type optical module 100 according to the first embodiment in the vicinity of the stem 1a. The stem 1a has a different shape of the protruding portion from the stem 1. The shape of the protruding portion of the stem 1a is a shape in which a quadrangular prism is added to the lower portion of the shape of the protruding portion of the stem 1.
 図6は、実施の形態1に係るCANパッケージ型光モジュール100のステム1b付近の斜視図である。ステム1bは、ステム1に対して突起部分の形状が異なる。ステム1bの突起部分の形状は、長方形の上部が半月形に盛り上がった平面形状に厚みを持たせた形状である。突起部分の厚み方向は、フレキシブル基板30のグランド配線31の幅方向となる。半月形の部分がグランド配線31と密着しやすい形状となっている。 FIG. 6 is a perspective view of the CAN package type optical module 100 according to the first embodiment in the vicinity of the stem 1b. The stem 1b has a different shape of the protruding portion from the stem 1. The shape of the protruding portion of the stem 1b is a flat shape in which the upper part of the rectangle is raised in a crescent shape and has a thickness. The thickness direction of the protruding portion is the width direction of the ground wiring 31 of the flexible substrate 30. The half-moon shaped portion has a shape that makes it easy to adhere to the ground wiring 31.
<変形例1>
 次に、実施の形態1の変形例1について説明する。変形例1に係るCANパッケージ型光モジュール101は、フレキシブル基板21に板ばね37を備える。
<Modification example 1>
Next, a modification 1 of the first embodiment will be described. The CAN package type optical module 101 according to the first modification includes a leaf spring 37 on a flexible substrate 21.
<CANパッケージ型光モジュール101の構成>
 図7は、実施の形態1の変形例1に係るCANパッケージ型光モジュール101のステム1付近の断面図である。CANパッケージ型光モジュール101において、CANパッケージ型光モジュール100と共通する構成要素には同じ符号を付し、その説明を省略する。なお、図7の断面図は、信号ピン2およびグランドピン4の配置状態がわかりやすいように、信号ピン2およびグランドピン4を含む断面とした。そのため、断面は平面ではない。
<Configuration of CAN package type optical module 101>
FIG. 7 is a cross-sectional view of the CAN package type optical module 101 according to the first modification of the first embodiment in the vicinity of the stem 1. In the CAN package type optical module 101, the components common to the CAN package type optical module 100 are designated by the same reference numerals, and the description thereof will be omitted. The cross-sectional view of FIG. 7 is a cross-sectional view including the signal pin 2 and the ground pin 4 so that the arrangement state of the signal pin 2 and the ground pin 4 can be easily understood. Therefore, the cross section is not flat.
 CANパッケージ型光モジュール101は、フレキシブル基板21を備える。 The CAN package type optical module 101 includes a flexible substrate 21.
≪フレキシブル基板21≫
 フレキシブル基板21は、フレキシブル基板20に板ばね37を追加したものである。フレキシブル基板21内における板ばね37の位置は、フレキシブル基板21の上面、下面、基板内のいずれでも構わない。図7において、板ばね37はフレキシブル基板21の下面に配置されている。板ばね37は、ステム1の突起部分と突起部分でない部分との両方にまたがるように配置される。さらにスルーホール35の周囲まで板ばね37が配置されている方が望ましい。
<< Flexible Substrate 21 >>
The flexible substrate 21 is a flexible substrate 20 to which a leaf spring 37 is added. The position of the leaf spring 37 in the flexible substrate 21 may be any of the upper surface, the lower surface, and the inside of the flexible substrate 21. In FIG. 7, the leaf spring 37 is arranged on the lower surface of the flexible substrate 21. The leaf spring 37 is arranged so as to straddle both the protruding portion and the non-protruding portion of the stem 1. Further, it is desirable that the leaf spring 37 is arranged up to the periphery of the through hole 35.
≪板ばね37≫
 板ばね37は板形状のバネである。板ばね37は、例えば、薄板ばねである。
≪Leaf spring 37≫
The leaf spring 37 is a plate-shaped spring. The leaf spring 37 is, for example, a thin leaf spring.
<CANパッケージ型光モジュール101の動作>
 次に、CANパッケージ型光モジュール101の動作について説明する。CANパッケージ型光モジュール101は、CANパッケージ型光モジュール100と同様に、フレキシブル基板21から電気信号を入力し、光半導体5を発光させる。その際、フレキシブル基板21のグランド配線31をステム1の突起部分に密着させることで、高周波の伝送特性を確保する。
<Operation of CAN package type optical module 101>
Next, the operation of the CAN package type optical module 101 will be described. Similar to the CAN package type optical module 100, the CAN package type optical module 101 inputs an electric signal from the flexible substrate 21 to cause the optical semiconductor 5 to emit light. At that time, the ground wiring 31 of the flexible substrate 21 is brought into close contact with the protruding portion of the stem 1 to ensure high frequency transmission characteristics.
 図3において、フレキシブル基板20のスルーホール35を信号ピン2にはんだ付けした際に、フレキシブル基板20の強度が十分でない場合、フレキシブル基板20は信号ピン2の付近で重力によって下方に垂れ下がる。つまり、フレキシブル基板20のグランド配線31は、ステム1の突起部分に接触しない。 In FIG. 3, when the through hole 35 of the flexible substrate 20 is soldered to the signal pin 2, if the strength of the flexible substrate 20 is not sufficient, the flexible substrate 20 hangs downward due to gravity near the signal pin 2. That is, the ground wiring 31 of the flexible substrate 20 does not come into contact with the protruding portion of the stem 1.
 そのため、図7において、フレキシブル基板21に板ばね37を追加することで、フレキシブル基板21の強度および反発力を強化する。強度を増したフレキシブル基板21は、重力に対抗して、垂れ下がる度合いを抑えることができる。そのため、フレキシブル基板21のグランド配線31をステム1の突起部分に密着することができる。 Therefore, in FIG. 7, the strength and repulsive force of the flexible substrate 21 are strengthened by adding the leaf spring 37 to the flexible substrate 21. The flexible substrate 21 having increased strength can suppress the degree of sagging against gravity. Therefore, the ground wiring 31 of the flexible substrate 21 can be brought into close contact with the protruding portion of the stem 1.
 以上のように、フレキシブル基板21に板ばね37を追加することで、フレキシブル基板21の強度が増す。強度が増したことによって、フレキシブル基板21のグランド配線31とステム1の突起部分とが密着し、電気的に接続された状態となる。これによって、高周波の伝送特性を確保できる。 As described above, by adding the leaf spring 37 to the flexible substrate 21, the strength of the flexible substrate 21 is increased. Due to the increased strength, the ground wiring 31 of the flexible substrate 21 and the protruding portion of the stem 1 are in close contact with each other and are electrically connected to each other. As a result, high frequency transmission characteristics can be ensured.
<変形例2>
 次に、実施の形態1の変形例2について説明する。変形例2に係るCANパッケージ型光モジュール102は、突起部分をステム1ではなく、フレキシブル基板22に設ける。
<Modification 2>
Next, a modification 2 of the first embodiment will be described. In the CAN package type optical module 102 according to the second modification, the protruding portion is provided not on the stem 1 but on the flexible substrate 22.
<CANパッケージ型光モジュール102の構成>
 図8は、実施の形態1の変形例2に係るCANパッケージ型光モジュール102のステム41付近の断面図である。CANパッケージ型光モジュール102において、CANパッケージ型光モジュール100と共通する構成要素には同じ符号を付し、その説明を省略する。なお、図8の断面図は、信号ピン2およびグランドピン4の配置状態がわかりやすいように、信号ピン2およびグランドピン4を含む断面とした。そのため、断面は平面ではない。
<Configuration of CAN package type optical module 102>
FIG. 8 is a cross-sectional view of the CAN package type optical module 102 near the stem 41 according to the second modification of the first embodiment. In the CAN package type optical module 102, the components common to the CAN package type optical module 100 are designated by the same reference numerals, and the description thereof will be omitted. The cross-sectional view of FIG. 8 is a cross-sectional view including the signal pin 2 and the ground pin 4 so that the arrangement state of the signal pin 2 and the ground pin 4 can be easily understood. Therefore, the cross section is not flat.
 CANパッケージ型光モジュール102は、ステム41とフレキシブル基板22を備える。CANパッケージ型光モジュール102は、CANパッケージ型光モジュール100のステム1およびフレキシブル基板20を、それぞれステム41およびフレキシブル基板22に置き換えた。 The CAN package type optical module 102 includes a stem 41 and a flexible substrate 22. The CAN package type optical module 102 replaced the stem 1 and the flexible substrate 20 of the CAN package type optical module 100 with the stem 41 and the flexible substrate 22, respectively.
≪ステム41≫
 ステム41は、ステム1から突起部分を取り除いたものである。ステム41の形状は、例えば、平板状、円盤状、円柱状などである。ステム41は金属から構成される。ステム41は導通性を有する。ステム41は平板状の基体の厚さ方向に貫通孔を有する。
≪Stem 41≫
The stem 41 is obtained by removing the protruding portion from the stem 1. The shape of the stem 41 is, for example, a flat plate shape, a disk shape, a columnar shape, or the like. The stem 41 is made of metal. The stem 41 has conductivity. The stem 41 has a through hole in the thickness direction of the flat plate-shaped substrate.
≪フレキシブル基板22≫
 図9は、実施の形態1の変形例2に係るCANパッケージ型光モジュール102のフレキシブル基板22の斜視図である。フレキシブル基板22は、フレキシブル基板20に導体ブロック38を追加したものである。
≪Flexible board 22≫
FIG. 9 is a perspective view of the flexible substrate 22 of the CAN package type optical module 102 according to the second modification of the first embodiment. The flexible substrate 22 is a flexible substrate 20 to which a conductor block 38 is added.
≪導体ブロック38≫
 導体ブロック38は、導通性のあるブロックである。導体ブロック38は、フレキシブル基板22の上面のグランド配線31上に配置される。導体ブロック38は、スルーホール35の近くに配置するのが望ましい。
≪Conductor block 38≫
The conductor block 38 is a conductive block. The conductor block 38 is arranged on the ground wiring 31 on the upper surface of the flexible substrate 22. It is desirable that the conductor block 38 is arranged near the through hole 35.
<CANパッケージ型光モジュール102の動作>
 次に、CANパッケージ型光モジュール102の動作について説明する。CANパッケージ型光モジュール102は、CANパッケージ型光モジュール100と同様に、フレキシブル基板22から電気信号を入力し、光半導体5を発光させる。その際、フレキシブル基板22の導体ブロック38をステム41に密着させることで、高周波の伝送特性を確保する。
<Operation of CAN package type optical module 102>
Next, the operation of the CAN package type optical module 102 will be described. Similar to the CAN package type optical module 100, the CAN package type optical module 102 inputs an electric signal from the flexible substrate 22 to cause the optical semiconductor 5 to emit light. At that time, the conductor block 38 of the flexible substrate 22 is brought into close contact with the stem 41 to ensure high frequency transmission characteristics.
 図9に示すように、フレキシブル基板22のスルーホール35,36にそれぞれ信号ピン2、グランドピン4を通すと、グランド配線31上の導体ブロック38はステム41の真下にくる。フレキシブル基板22を信号ピン2の根本の位置まで押し込むと、フレキシブル基板22は、導体ブロック38がステム41にぶつかり、下側に折れ曲がる。フレキシブル基板22は元の形状に戻ろうとするため、フレキシブル基板22の折れ曲がった部分は上方向に反発力を有する。この反発力によって、フレキシブル基板22のグランド配線31上の導体ブロック38とステム41とが密着し、電気的に接続された状態となる。 As shown in FIG. 9, when the signal pin 2 and the ground pin 4 are passed through the through holes 35 and 36 of the flexible substrate 22, the conductor block 38 on the ground wiring 31 comes directly under the stem 41. When the flexible substrate 22 is pushed to the root position of the signal pin 2, the conductor block 38 of the flexible substrate 22 hits the stem 41 and bends downward. Since the flexible substrate 22 tries to return to its original shape, the bent portion of the flexible substrate 22 has an upward repulsive force. Due to this repulsive force, the conductor block 38 on the ground wiring 31 of the flexible substrate 22 and the stem 41 are brought into close contact with each other and are electrically connected to each other.
 以上のように、フレキシブル基板22に導体ブロック38を追加することで、フレキシブル基板22のグランド配線31上の導体ブロック38とステム41とが密着し、電気的に接続された状態となる。これによって、高周波の伝送特性を確保できる。 As described above, by adding the conductor block 38 to the flexible substrate 22, the conductor block 38 on the ground wiring 31 of the flexible substrate 22 and the stem 41 are in close contact with each other and are electrically connected to each other. As a result, high frequency transmission characteristics can be ensured.
 導体ブロック38の形状は、例えば、ステム1の突起部分と同じ形状である。導体ブロック38の形状は、例えば、三角柱の側面を底面にした形状である。また、導体ブロック38の形状は、図5のステム1aの突起部分の形状と同じ形状でもよい。さらに、導体ブロック38の形状は、図6のステム1bの突起部分の形状と同じ形状でもよい。 The shape of the conductor block 38 is, for example, the same shape as the protruding portion of the stem 1. The shape of the conductor block 38 is, for example, a shape in which the side surface of the triangular prism is the bottom surface. Further, the shape of the conductor block 38 may be the same as the shape of the protruding portion of the stem 1a in FIG. Further, the shape of the conductor block 38 may be the same as the shape of the protruding portion of the stem 1b in FIG.
 また、フレキシブル基板22の強度が足りない場合には、変形例1で用いた板ばね37をフレキシブル基板22に追加することで、フレキシブル基板22のグランド配線31上の導体ブロック38とステム41とが密着する。これによって、高周波の伝送特性を確保できる。 When the strength of the flexible substrate 22 is insufficient, the leaf spring 37 used in the first modification is added to the flexible substrate 22, so that the conductor block 38 and the stem 41 on the ground wiring 31 of the flexible substrate 22 can be connected to each other. In close contact. As a result, high frequency transmission characteristics can be ensured.
 また、以上のように実施の形態について説明したが、これらの実施の形態は一例である。 Although the embodiments have been described above, these embodiments are examples.
 1,1a,1b ステム、2 信号ピン、3 絶縁素材、4 グランドピン、5 光半導体、6 サブマウント、7 台座、8 熱電クーラー、9 誘電体基板、10 金線、11 レンズ、12 レンズホルダ、13 レセプタクル、14 フェルール、15 レセプタクルホルダ、16 はんだ、20,21,22 フレキシブル基板、31 グランド配線、32 信号配線、33 絶縁層、34 保護膜、35,36 スルーホール、37 板ばね、38 導体ブロック、41 ステム、100,101,102 CANパッケージ型光モジュール。 1,1a, 1b stem, 2 signal pin, 3 insulation material, 4 ground pin, 5 optical semiconductor, 6 submount, 7 pedestal, 8 thermoelectric cooler, 9 dielectric substrate, 10 gold wire, 11 lens, 12 lens holder, 13 receptacles, 14 ferrules, 15 receptacle holders, 16 solders, 20, 21, 22, flexible boards, 31 ground wirings, 32 signal wirings, 33 insulating layers, 34 protective films, 35, 36 through holes, 37 leaf springs, 38 conductor blocks. , 41 stem, 100, 101, 102 CAN package type optical module.

Claims (5)

  1.  フレキシブル基板と接続する位置に突起部分を有する第1の面と前記第1面と反対側の面である第2の面とを有するステムと、
     前記ステムの前記第1の面から前記第2の面に向けて貫通し、前記第1の面から突出する信号ピンと、
     前記ステムと前記信号ピンとの間に封入される絶縁素材と、
     前記信号ピンと前記ステムの前記第2の面側で接続する光半導体と、
     前記第1の面に設けられたグランドピンと
    を備えたCANパッケージ型光モジュール。
    A stem having a first surface having a protrusion at a position connected to the flexible substrate and a second surface which is a surface opposite to the first surface.
    A signal pin that penetrates from the first surface of the stem toward the second surface and projects from the first surface.
    An insulating material sealed between the stem and the signal pin,
    An optical semiconductor connected to the signal pin on the second surface side of the stem,
    A CAN package type optical module provided with a ground pin provided on the first surface.
  2.  前記信号ピンと前記グランドピンとが貫通するスルーホールを有し、前記突起部分と接続する位置にグランド配線を有する前記フレキシブル基板
    を備えた請求項1記載のCANパッケージ型光モジュール。
    The CAN package type optical module according to claim 1, further comprising the flexible substrate having a through hole through which the signal pin and the ground pin penetrate and having a ground wiring at a position connected to the protruding portion.
  3.  前記フレキシブル基板は、板バネを備えた請求項2記載のCANパッケージ型光モジュール。 The CAN package type optical module according to claim 2, wherein the flexible substrate is provided with a leaf spring.
  4.  第1の面と前記第1面と反対側の面である第2の面とを有するステムと、
     前記ステムの前記第1の面から前記第2の面に向けて貫通し、前記第1の面から突出する信号ピンと、
     前記ステムと前記信号ピンとの間に封入される絶縁素材と、
     前記信号ピンと前記第2の面側で接続する光半導体と、
     前記第1の面に設けられたグランドピンと、
     前記第1の面と接続し、前記信号ピンと前記グランドピンとが貫通するスルーホールを有し、前記第1の面と接続する部分の一部に突起部分のある導体ブロックを有し、前記導体ブロックと接続する位置にグランド配線を有するフレキシブル基板と
    を備えたCANパッケージ型光モジュール
    A stem having a first surface and a second surface that is a surface opposite to the first surface,
    A signal pin that penetrates from the first surface of the stem toward the second surface and projects from the first surface.
    An insulating material sealed between the stem and the signal pin,
    An optical semiconductor connected to the signal pin on the second surface side,
    With the ground pin provided on the first surface,
    The conductor block is connected to the first surface, has a through hole through which the signal pin and the ground pin penetrate, and has a conductor block having a protrusion in a part of the portion connected to the first surface. CAN package type optical module with a flexible board having ground wiring at the position to connect with
  5.  前記フレキシブル基板は、板バネを備えた請求項4記載のCANパッケージ型光モジュール。 The CAN package type optical module according to claim 4, wherein the flexible substrate is provided with a leaf spring.
PCT/JP2020/012291 2020-03-19 2020-03-19 Can package-type optical module WO2021186669A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020554556A JP6825756B1 (en) 2020-03-19 2020-03-19 CAN package type optical module
PCT/JP2020/012291 WO2021186669A1 (en) 2020-03-19 2020-03-19 Can package-type optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012291 WO2021186669A1 (en) 2020-03-19 2020-03-19 Can package-type optical module

Publications (1)

Publication Number Publication Date
WO2021186669A1 true WO2021186669A1 (en) 2021-09-23

Family

ID=74228021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012291 WO2021186669A1 (en) 2020-03-19 2020-03-19 Can package-type optical module

Country Status (2)

Country Link
JP (1) JP6825756B1 (en)
WO (1) WO2021186669A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058547U (en) * 1991-07-17 1993-02-05 旭光学工業株式会社 Film information reading device
JP2009004460A (en) * 2007-06-19 2009-01-08 Opnext Japan Inc Optical communication module and forming method of wiring pattern
JP2009130263A (en) * 2007-11-27 2009-06-11 Mitsubishi Electric Corp Optical module
JP2009302438A (en) * 2008-06-17 2009-12-24 Opnext Japan Inc Optical semiconductor device
JP2016018969A (en) * 2014-07-11 2016-02-01 日本オクラロ株式会社 Optical module, optical transmitter receiver module and flexible substrate
JP2018018995A (en) * 2016-07-29 2018-02-01 株式会社ヨコオ Optical module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058547U (en) * 1991-07-17 1993-02-05 旭光学工業株式会社 Film information reading device
JP2009004460A (en) * 2007-06-19 2009-01-08 Opnext Japan Inc Optical communication module and forming method of wiring pattern
JP2009130263A (en) * 2007-11-27 2009-06-11 Mitsubishi Electric Corp Optical module
JP2009302438A (en) * 2008-06-17 2009-12-24 Opnext Japan Inc Optical semiconductor device
JP2016018969A (en) * 2014-07-11 2016-02-01 日本オクラロ株式会社 Optical module, optical transmitter receiver module and flexible substrate
JP2018018995A (en) * 2016-07-29 2018-02-01 株式会社ヨコオ Optical module

Also Published As

Publication number Publication date
JP6825756B1 (en) 2021-02-03
JPWO2021186669A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
US9507109B2 (en) Optical modules
CN103370644B (en) Optical circuit board
US9063310B2 (en) Optical transceiver implementing with flexible printed circuit connecting optical subassembly to circuit board
EP1394586B1 (en) Optical transmission module with a heat radiator
CN112993055B (en) Optical module
JP2000012948A (en) High-frequency laser module, photoelectrocnic element, and manufacture of the high-frequency laser module
CN1242552C (en) Sonic surface wave filter
CN113707729A (en) Optical module
WO2021186669A1 (en) Can package-type optical module
JP5232559B2 (en) Optical semiconductor device module
JP2019186379A (en) Optical module
JP2022088061A (en) Optical module
US6922344B2 (en) Device for connecting the terminal pins of a package for an optical transmitting and/or receiving device to a printed circuit board and conductor arrangement for such a device
US5657409A (en) Optoelectric interconnect and method for interconnecting an optical fiber with an optoelectric device
JP2009253176A (en) Photoelectric conversion module and optical subassembly
US20230319993A1 (en) Optical apparatus
JP6923474B2 (en) Semiconductor device packages and semiconductor devices
JP7372754B2 (en) Optical/electrical hybrid board
JP2934685B2 (en) Optical components
JP2002296459A (en) Optical connector and shield case
TW202245203A (en) Optical semiconductor device
JP4434627B2 (en) Coaxial semiconductor laser module
JP2021141302A (en) Optical module
JP2005159060A (en) Coaxial semiconductor laser module
CN116417892A (en) Packaging structure and optical module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020554556

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926220

Country of ref document: EP

Kind code of ref document: A1