WO2021186607A1 - 測位システム、無線基地局装置、及び測位方法 - Google Patents

測位システム、無線基地局装置、及び測位方法 Download PDF

Info

Publication number
WO2021186607A1
WO2021186607A1 PCT/JP2020/011945 JP2020011945W WO2021186607A1 WO 2021186607 A1 WO2021186607 A1 WO 2021186607A1 JP 2020011945 W JP2020011945 W JP 2020011945W WO 2021186607 A1 WO2021186607 A1 WO 2021186607A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeater
base station
terminal
estimation unit
signal
Prior art date
Application number
PCT/JP2020/011945
Other languages
English (en)
French (fr)
Inventor
匡史 岩渕
智明 小川
友規 村上
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/011945 priority Critical patent/WO2021186607A1/ja
Priority to JP2022508698A priority patent/JP7359290B2/ja
Priority to US17/911,522 priority patent/US20230362877A1/en
Publication of WO2021186607A1 publication Critical patent/WO2021186607A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/68Marker, boundary, call-sign, or like beacons transmitting signals not carrying directional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0242Determining the position of transmitters to be subsequently used in positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0273Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves using multipath or indirect path propagation signals in position determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to a technique for estimating the position of a wireless terminal.
  • location information is expected to be used in various services, its accuracy is also an issue.
  • positioning is performed using the received power, the arrival time of radio waves, and the direction of arrival of radio waves.
  • radio waves in the low frequency band are used, positioning based on the arrival time of the radio waves is effective, but the area where the electric power is equivalent becomes wide, and it is difficult to estimate the arrival direction with high accuracy.
  • highly accurate positioning is difficult. Therefore, attention is focused on positioning using radio waves in the high frequency band.
  • By forming a narrow beam it is possible to estimate the arrival direction with relatively high accuracy, and since the radio wave attenuation is large, the area where the electric power is equivalent is relatively narrow. Further, since positioning can be performed based on the arrival time of radio waves as in the low frequency band, the positioning accuracy can be improved by using the high frequency band.
  • radio waves in the high frequency band are vulnerable to shielding, and it is difficult to perform highly accurate positioning in areas outside the line of sight of the base station.
  • a plurality of base stations are required. It is necessary to install base stations to the extent that terminals can connect to multiple base stations while reducing areas outside the line of sight, which increases network equipment costs.
  • synchronization between base stations is required.
  • the present invention has been made in view of the above circumstances, and provides a technique that enables highly accurate positioning without depending on the performance of the terminal even when the terminal is located in a non-line-of-sight area of the base station.
  • the purpose is to do.
  • the positioning system includes a wireless base station apparatus that communicates with a wireless terminal, one or more repeaters that relay signals between the wireless terminal and the wireless base station apparatus, and the wireless base.
  • the first signal received from the radio terminal via the first repeater, which is one of the one or more repeaters, the position of the one or more repeaters, and the radio base station.
  • a positioning device that estimates the position of the wireless terminal based on the position of the device is provided.
  • the terminal even when the terminal is located in a non-line-of-sight area of the base station, highly accurate positioning is possible without depending on the performance of the terminal.
  • FIG. 1 is a diagram showing a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of the base station shown in FIG.
  • FIG. 3 is a block diagram showing a configuration example of the positioning unit shown in FIG.
  • FIG. 4 is a flowchart showing a positioning process executed by the positioning unit having the configuration shown in FIG.
  • FIG. 5 is a block diagram showing a configuration example of the positioning unit shown in FIG.
  • FIG. 6 is a flowchart showing a positioning process executed by the positioning unit having the configuration shown in FIG.
  • FIG. 7 is a block diagram showing a configuration example of the positioning unit shown in FIG.
  • FIG. 8 is a flowchart showing a positioning process executed by the positioning unit having the configuration shown in FIG. 7.
  • FIG. 9 is a block diagram showing a hardware configuration example of the base station shown in FIG.
  • FIG. 1 schematically shows a wireless communication system 10 including a positioning system according to an embodiment of the present invention.
  • the wireless communication system 10 includes a wireless base station device 11, a repeater 12, and a wireless terminal 13.
  • the wireless base station device may be simply described as a base station
  • the wireless terminal may be simply described as a terminal.
  • the base station 11 wirelessly communicates with the terminal 13.
  • the base station 11 can be, for example, a base station of a mobile communication network.
  • the base station 11 has a function of positioning the communicating terminal 13.
  • the terminal 13 can be, for example, a mobile terminal such as a mobile phone, a smartphone, a notebook computer, or a game machine.
  • the repeater 12 relays a radio signal (radio wave) between the base station 11 and the terminal 13.
  • the repeater 12 receives the radio signal from the terminal 13 and retransmits it to the base station.
  • the repeater 12 receives the radio signal from the base station 11 and retransmits it to the terminal 13.
  • the repeater 12 can be, but is not limited to, a reflector or a repeater. When the repeater 12 includes a reflector, the repeater 12 retransmits the radio signal by reflection.
  • the reflector for example, a meta-surface reflector that can control the angle at which the radio signal is reflected can be used.
  • the repeater 12 receives the radio signal at the first antenna and re-radiates the radio signal at the second antenna.
  • a repeater capable of beamforming can be used. The repeater 12 retransmits the incoming wave in any direction by mechanically moving or rotating, or by electrically controlling the phase or amplitude.
  • the repeater 12 is connected to the base station 11 by wire or wireless communication.
  • the repeater 12 may be fixed.
  • the repeater 12 may be movable.
  • the repeater 12 may be mounted on a moving body such as an automobile, a train, or a drone.
  • four repeaters 12 are fixed and connected to the base station 11 by wired communication, and one repeater 12 is mounted on the drone and connected to the base station 11 by wireless communication. Will be done.
  • the number of repeaters 12 is not limited to five. It suffices if one or more repeaters 12 are provided.
  • the base station 11 and the terminal 13 may communicate with each other via the repeater 12.
  • the non-line-of-sight area is formed by obstacles such as buildings and trees.
  • the base station 11 and the terminal 13 may communicate directly with each other or may communicate with each other via the repeater 12.
  • the base station 11 controls the repeater 12.
  • the base station 11 controls the retransmission direction of the repeater 12.
  • the retransmission direction of the repeater 12 is a direction in which the repeater 12 performs retransmission.
  • the retransmission direction of the repeater 12 is determined by the reflection angle and the installation angle (posture) of the repeater 12.
  • the base station 11 may further control the movement of the mobile body. The mobile body may move autonomously without being controlled by the base station 11.
  • the base station 11 collects the repeater information from the repeater 12.
  • the repeater information is information about the repeater 12, and may include state information indicating the state of the repeater 12 and sensing information acquired by the sensing function of the repeater 12.
  • the sensing information may include position information indicating the position of the repeater 12 acquired by a GPS sensor or the like, and / or installation angle information indicating an installation angle of the repeater 12 acquired by a gyro sensor or the like.
  • FIG. 2 schematically shows a configuration example of the base station 11.
  • the base station 11 includes a signal processing unit 21, an RF (Radio Frequency) antenna unit 22, a repeater control unit 23, a positioning unit 24, and an upper layer 25.
  • RF Radio Frequency
  • the signal processing unit 21 generates a signal to be transmitted.
  • the signal processing unit 21 may receive information addressed to the terminal 13 from the upper layer 25 and generate a signal including the received information.
  • the signal processing unit 21 may receive control information addressed to the repeater 12 from the repeater control unit 23 and generate a signal including the received control information.
  • the RF antenna unit 22 receives a signal from the signal processing unit 21 and performs transmission processing on the received signal. For example, the RF antenna unit 22 up-converts the signal received from the signal processing unit 21 into the system band by a frequency upconverter to obtain an RF signal.
  • the RF antenna unit 22 power-amplifies the RF signal by an amplifier (Power Amplifier) and radiates it through the antenna.
  • an amplifier Power Amplifier
  • the RF antenna unit 22 receives the RF signal via the antenna, amplifies the received RF signal with a low noise amplifier, and downconverts it with a frequency down converter.
  • the signal processing unit 21 decodes the signal received from the RF antenna unit 22, and passes the obtained information to the repeater control unit 23 or the upper layer 25. For example, when the signal processing unit 21 obtains the repeater information transmitted from the repeater 12, the signal processing unit 21 passes the repeater information to the repeater control unit 23.
  • the RF antenna unit 22 may include a plurality of antennas and a plurality of RF circuit units associated with each of the plurality of antennas.
  • analog beamforming may be formed by using a variable phase controller and a variable gain controller.
  • the repeater control unit 23 controls the repeater 12.
  • the repeater control unit 23 dynamically controls the retransmission direction of the repeater 12.
  • the repeater control unit 23 selects the repeater 12 used for communication with the terminal 13 from the repeaters 12, and determines the re-radiation direction of the selected repeater 12.
  • the repeater control unit 23 generates control information for controlling the repeater 12 and transmits it to the repeater 12 via the signal processing unit 21 and the RF antenna unit 22.
  • the control information includes instructions for controlling the retransmission direction.
  • the control information may further include instructions for controlling the mobile body on which the repeater 12 is mounted.
  • the repeater 12 operates according to the control information from the repeater control unit 23.
  • the repeater control unit 23 receives repeater information from the repeater 12 via the signal processing unit 21 and the RF antenna unit 22. As described above, the repeater information may include the state information and the sensing information of the repeater 12. The repeater control unit 23 stores information about the repeater 12, such as position information and retransmission direction information. The information stored in the repeater control unit 23 can be referred to by the positioning unit 24.
  • the positioning unit 24 performs positioning of the terminal 13.
  • the positioning unit 24 acquires information on the radio signal transmitted by the terminal 13 and received by the base station 11 from the signal processing unit 21, and based on the acquired information, the arrival direction, arrival time, and / or reception of the radio signal. Estimate the power.
  • the positioning unit 24 is based on the estimated value of the arrival direction, the arrival time, and / or the received power, the information about the repeater 12 obtained by referring to the repeater control unit 23, and the position information of the base station 11.
  • the geographical position of the terminal 13 is estimated.
  • the positioning unit 24 notifies the upper layer 25 of the estimated position (position estimation result) of the terminal 13 as necessary.
  • FIG. 3 schematically shows a first configuration example of the positioning unit 24.
  • the positioning unit 24 includes an arrival direction estimation unit 31 and a terminal position estimation unit 32.
  • the arrival direction estimation unit 31 takes the information output from the signal processing unit 21 as an input, and estimates the arrival direction (arrival angle) of the radio signal received by the base station 11.
  • the direction of arrival estimation may be performed in any way.
  • the arrival direction estimation unit 31 may estimate the arrival direction based on the direction of the beam used by the base station 11 for reception.
  • the arrival direction estimation unit 31 outputs the arrival direction information indicating the estimated arrival direction (estimation result of the arrival direction) to the terminal position estimation unit 32.
  • the terminal position estimation unit 32 receives the arrival direction information from the arrival direction estimation unit 31, and acquires the position information and the retransmission direction information of each repeater 12 from the repeater control unit 23.
  • the terminal position estimation unit 32 holds the position information of the base station 11.
  • the terminal position estimation unit 32 estimates the position of the terminal 13 based on the arrival direction information, the position information of the repeater 12, the retransmission direction information, and the position information of the base station 11.
  • the terminal position estimation unit 32 includes a repeater identification unit 321, a direction estimation unit 322, and a position estimation unit 323.
  • the repeater identification unit 321 identifies the repeater 12 via which the radio signal received by the base station 11 has passed, based on the estimated arrival direction of the radio signal, the position of the base station 11, and the position of the repeater 12.
  • the repeater 12 via which the radio signal received by the base station 11 has passed refers to the repeater 12 in the path (propagation path) between the base station 11 and the terminal 13.
  • the terminal 13 transmits a plurality of radio signals to the base station 11 via different repeaters 12.
  • the terminal 13 transmits a first radio signal to the base station 11 via the first repeater 12, which is one of the repeaters 12, and is another one of the repeaters 12.
  • a second radio signal is transmitted to the base station 11 via the second repeater 12.
  • the direction estimation unit 322 estimates the direction of the terminal 13 from the repeater 12 based on the re-radiation direction of the repeater 12. Direction estimation is performed for each of the repeaters 12 identified by the repeater identification unit 321.
  • the position estimation unit 323 estimates the position of the terminal 13 based on the position of the repeater 12 and the estimation direction obtained by the direction estimation unit 322. For example, the position at the intersection of the direction from the first repeater 12 toward the terminal 13 and the direction from the second repeater 12 toward the terminal 13 is estimated as the position of the terminal 13.
  • FIG. 4 schematically shows a positioning process executed by the positioning unit 24 having the configuration shown in FIG.
  • the terminal 13 transmits the first radio signal to the base station 11 via the first repeater 12, and the second radio signal is transmitted to the second repeater 12 different from the first repeater 12. It shall be transmitted to the base station 11 via.
  • the arrival direction estimation unit 31 estimates the arrival direction of the radio signal received by the base station 11. For example, the arrival direction estimation unit 31 receives information from the signal processing unit 21 indicating the direction of the beam used for receiving the first radio signal and the direction of the beam used for receiving the second radio signal, and the first The arrival direction of the first radio signal is estimated from the direction of the beam used for receiving the radio signal, and the arrival direction of the second radio signal is estimated from the direction of the beam used for receiving the second radio signal.
  • the repeater identification unit 321 identifies the repeater 12 via which the radio signal has passed, based on the estimated arrival direction obtained by the arrival direction estimation unit 31, the position of the base station 11, and the position of the repeater 12. do.
  • the repeater 12 through which the first radio signal has passed is the first, based on the estimated arrival direction of the first radio signal, the position of the base station 11, and the position of the repeater 12.
  • Identifying the repeater 12, the repeater 12 via which the second radio signal has passed is the second, based on the estimated arrival direction of the second radio signal, the position of the base station 11, and the position of the repeater 12. It is specified that it is the repeater 12.
  • the direction estimation unit 322 estimates the direction of the terminal 13 from the repeater 12 for each repeater 12 specified by the repeater identification unit 321 based on the retransmission direction of the repeater 12. For example, the direction estimation unit 322 estimates the direction of the terminal 13 from the first repeater 12 based on the retransmission direction of the first repeater 12, and based on the retransmission direction of the second repeater 12. The direction of the terminal 13 from the second repeater 12 is estimated.
  • step S44 the position estimation unit 323 estimates the position of the terminal 13 based on the estimation direction obtained by the direction estimation unit 322 and the position of the repeater 12. For example, the position estimation unit 323 passes through the position of the first repeater 12, a line segment parallel to the estimation direction of the terminal 13 from the first repeater 12, and the position of the second repeater 12, and the second repeater 12. The position of the terminal 13 is estimated to be the point where the line segment parallel to the estimation direction of the terminal 13 from the repeater 12 intersects.
  • FIG. 5 schematically shows a second configuration example of the positioning unit 24.
  • the positioning unit 24 includes an arrival time estimation unit 51 and a terminal position estimation unit 52.
  • the arrival time estimation unit 51 receives the information output from the signal processing unit 21 as an input, and estimates the arrival time of the radio signal received by the base station 11 based on the received information.
  • the arrival time estimation may be performed in any way.
  • the terminal 13 adds the time information to the signal, and the arrival time estimation unit 51 receives the time indicated by the time information included in the radio signal received by the base station 11 and the time when the base station 11 receives the signal.
  • the arrival time may be calculated by comparing with the time.
  • the arrival time estimation unit 51 outputs the arrival time information indicating the estimated arrival time (estimation result of the arrival time) of the radio signal to the terminal position estimation unit 52.
  • the terminal position estimation unit 52 receives arrival time information from the arrival time estimation unit 51.
  • the terminal position estimation unit 52 acquires the position information of each repeater 12 from the repeater control unit 23.
  • the terminal position estimation unit 52 holds the position information of the base station 11.
  • the terminal position estimation unit 52 estimates the position of the terminal 13 based on the arrival time information, the position information of the repeater 12, and the position information of the base station 11.
  • the terminal position estimation unit 52 includes a distance estimation unit 521 and a position estimation unit 522.
  • the distance estimation unit 521 estimates the distance between the repeater 12 and the terminal 13 via which the radio signal has passed, based on the estimated arrival time of the radio signal, the position of the base station 11, and the position of the repeater 12. Specifically, the distance estimation unit 521 calculates the arrival time from the repeater 12 to the base station 11 from the position of the base station 11 and the position of the repeater 12 via which the radio signal has passed. The distance estimation unit 521 calculates the arrival time from the terminal 13 to the repeater 12 by subtracting the calculated arrival time from the repeater 12 to the base station 11 from the estimated arrival time indicated by the arrival time information. The distance estimation unit 521 calculates the distance between the terminal 13 and the repeater 12 from the calculated arrival time from the terminal 13 to the repeater 12. The distance estimation unit 521 may specify the repeater 12 through which the radio signal has passed, as described in connection with FIG. Distance estimation is performed for each of the identified repeaters 12.
  • the position estimation unit 522 estimates the position of the terminal 13 based on the estimated distance between the terminal 13 and the repeater 12 obtained by the distance estimation unit 521 and the position of the repeater 12. For example, when the estimated distance between the first repeater 12 and the terminal 13 and the estimated distance between the second repeater 12 and the terminal 13 are obtained, the first repeater 12 is centered on the position of the first repeater 12. The first circle with the estimated distance between the repeater 12 and the terminal 13 as the radius and the position of the second repeater 12 as the center, and the estimated distance between the second repeater 12 and the terminal 13 as the radius. The intersection with the second circle is estimated as the position of the terminal 13. There are two intersections of these two circles, but a plausible intersection is selected as the position of the terminal 13 from the retransmittable range of the repeater 12 and the installation angle of the repeater 12.
  • FIG. 6 schematically shows the positioning process executed by the positioning unit 24 having the configuration shown in FIG.
  • the terminal 13 transmits the first radio signal to the base station 11 via the first repeater 12, and the second radio signal is transmitted to the second repeater 12 different from the first repeater 12. It shall be transmitted to the base station 11 via.
  • the arrival time estimation unit 51 estimates the arrival time of the radio signal received by the base station 11. For example, the arrival time estimation unit 51 receives information indicating the transmission time and reception time of the first radio signal from the signal processing unit 21, and subtracts the transmission time from the reception time to obtain the arrival time of the first radio signal. obtain. Further, the arrival time estimation unit 51 receives information indicating the transmission time and reception time of the second radio signal from the signal processing unit 21, and subtracts the transmission time from the reception time to obtain the arrival time of the second radio signal. obtain.
  • the transmission time of the radio signal refers to the time when the terminal 13 transmits the radio signal, and can be determined based on the time information included in the radio signal.
  • step S62 the positioning unit 24 identifies the repeater 12 via which the wireless signal has passed. This process may be similar to that described in steps S41 and S42 of FIG. For example, the positioning unit 24 identifies that the first radio signal has passed through the first repeater 12, and identifies that the second radio signal has passed through the second repeater 12.
  • step S63 the distance estimation unit 521 sets the repeater 12 and the terminal 13 on the repeater 12 and the terminal 13 based on the estimated arrival time, the position of the base station 11, and the position of the repeater 12 for each repeater 12 specified in step S62. Estimate the distance. For example, the distance estimation unit 521 calculates the distance between the base station 11 and the first repeater 12 from the position of the base station 11 and the position of the first repeater 12, and divides the calculated distance by the speed of light. , The arrival time from the first repeater 12 to the base station 11 is obtained.
  • the distance estimation unit 521 subtracts the calculated arrival time from the first repeater 12 to the base station 11 from the estimated arrival time of the first radio signal obtained in step S61, so that the first radio signal from the terminal 13 can be first arrived.
  • the arrival time of the first radio signal to the repeater 12 is calculated.
  • the distance estimation unit 521 calculates the distance between the terminal 13 and the first repeater 12 by multiplying the calculated arrival time by the speed of light. Similarly, the distance estimation unit 521 calculates the distance between the terminal 13 and the second repeater 12.
  • the position estimation unit 522 estimates the position of the terminal 13 based on the estimated distance obtained by the distance estimation unit 521 and the position of the repeater 12.
  • the position estimation unit 522 has a first circle centered on the position of the first repeater 12 and a radius of the estimated distance between the first repeater 12 and the terminal 13, and a second repeater 12.
  • the position of the terminal 13 is determined at the intersection of the second repeater 12 and the second circle whose radius is the estimated distance between the terminal 13 and the center of the position.
  • FIG. 7 schematically shows a third configuration example of the positioning unit 24.
  • the positioning unit 24 includes an arrival direction estimation unit 71, an arrival time estimation unit 72, a received power estimation unit 73, and a terminal position estimation unit 74.
  • the arrival direction estimation unit 71 receives the information output from the signal processing unit 21 as an input, and estimates the arrival direction of the radio signal received by the base station 11 based on the received information.
  • the direction of arrival estimation may be performed in any way.
  • the arrival direction estimation unit 71 may estimate the arrival direction based on the direction of the beam used by the base station 11 for reception.
  • the arrival direction estimation unit 71 outputs the arrival direction information indicating the estimated arrival direction to the terminal position estimation unit 74.
  • the arrival time estimation unit 72 receives the information output from the signal processing unit 21 as an input, and estimates the arrival time of the radio signal received by the base station 11 based on the received information.
  • the arrival time estimation may be performed in any way.
  • the terminal 13 adds time information to the signal, and the arrival time estimation unit 72 calculates the arrival time by comparing the time indicated by the time information included in the signal received by the base station 11 with the reception time. You can do it.
  • the arrival time estimation unit 72 determines the difference between the reception time of the radio signal and the reception time of the next radio signal. Based on this, the arrival time of the next radio signal may be estimated.
  • the timing at which the terminal 13 transmits the radio signal is pre-scheduled by the base station 11.
  • An example of a method of determining whether or not a plurality of radio signals have passed through different repeaters 12 has passed through repeaters 12 having different radio signals when the beams used by the base station 11 to receive the signals are different. Includes how to determine.
  • the arrival time estimation unit 72 outputs the arrival time information indicating the estimated arrival time to the terminal position estimation unit 74.
  • the received power estimation unit 73 receives the information output from the signal processing unit 21 as an input, and estimates the received power of the radio signal received by the base station 11 based on the received information.
  • the reception power estimation unit 73 outputs the reception power information indicating the estimated reception power (estimation result of the reception power) to the terminal position estimation unit 74.
  • the terminal position estimation unit 74 includes a first position estimation unit 741, a second position estimation unit 742, and a position correction unit 743.
  • the terminal position estimation unit 74 holds the position information of the base station 11.
  • the first position estimation unit 741 receives the arrival direction information from the arrival direction estimation unit 71, and receives the arrival time information from the arrival time estimation unit 72.
  • the first position estimation unit 741 acquires the position information and the retransmission direction information of each repeater 12 from the repeater control unit 23.
  • the first position estimation unit 741 estimates the position of the terminal 13 based on the arrival direction information, the arrival time information, the position information of the repeater 12, the retransmission direction information, and the position information of the base station 11.
  • the first position estimation unit 741 identifies the base station through which the radio signal has passed, based on the estimated arrival direction of the radio signal.
  • the first position estimation unit 741 may specify the base station to which the radio signal has passed in the same manner as the repeater identification unit 321 shown in FIG.
  • the first position estimation unit 741 estimates the direction of the terminal 13 from the specified repeater 12 based on the re-radiation direction of the specified repeater 12.
  • the first position estimation unit 741 estimates the distance between the specified repeater 12 and the terminal 13 based on the estimated arrival time of the radio signal, the position of the specified repeater 12, and the position of the base station 11.
  • the distance estimation can be performed in the same manner as that described for the distance estimation unit 521 shown in FIG.
  • the first position estimation unit 741 of the terminal 13 is based on the estimation direction of the terminal 13 from the specified repeater 12, the estimated distance between the specified repeater 12 and the terminal 13, and the position of the specified repeater 12. Estimate the position. In this case, the position of the terminal 13 can be estimated using one repeater 12.
  • the first position estimation unit 741 may perform position estimation by the same method as the terminal position estimation unit 32 described with reference to FIG. 3, and the terminal position estimation unit 52 described with reference to FIG. 5 may be used.
  • the position may be estimated by the same method as in.
  • the second position estimation unit 742 receives the arrival direction information from the arrival direction estimation unit 71, and receives the received power information from the reception power estimation unit 73.
  • the second position estimation unit 742 acquires the position information and the retransmission direction information of the repeater 12 from the repeater control unit 23.
  • the second position estimation unit 742 estimates the position of the terminal 13 based on the estimated arrival direction and estimated reception power of the radio signal, the position and retransmission direction of the repeater 12, and the position of the base station 11.
  • the second position estimation unit 742 estimates the propagation distance of the radio signal based on the estimated received power of the radio signal.
  • the second position estimation unit 742 identifies the repeater 12 through which the radio signal has passed, based on the estimated arrival direction of the radio signal, the position of the base station 11, and the position of the repeater 12.
  • the second position estimation unit 742 estimates the position of the terminal 13 based on the position of the base station 11, the position and the retransmission direction of the specified repeater 12, and the estimated propagation distance.
  • the position correction unit 743 corrects the estimated position obtained by the first position estimation unit 741 by using the estimated position obtained by the second position estimation unit 742. For example, the position correction unit 743 determines the intermediate point between the estimated position obtained by the first position estimation unit 741 and the estimated position obtained by the second position estimation unit 742 as the final estimated position of the terminal 13. do.
  • the position correction unit 743 may determine the final estimated position of the terminal 13 by weighted averaging the estimated positions.
  • the estimation accuracy of the position estimation based on the arrival time is higher than that of the position estimation based on the received power.
  • the estimated position obtained by the first position estimation unit 741 is likely to be more accurate than the estimated position obtained by the second position estimation unit 742.
  • weighting may be performed so that the final estimated position is closer to the estimated position obtained by the first position estimation unit 741 than the estimated position obtained by the second position estimation unit 742.
  • FIG. 8 schematically shows the positioning process executed by the positioning unit 24 having the configuration shown in FIG. 7.
  • the terminal 13 transmits the first radio signal to the base station 11 via the first repeater 12, and the second radio signal is transmitted to the second repeater 12 different from the first repeater 12. It shall be transmitted to the base station 11 via.
  • the arrival direction estimation unit 71 estimates the arrival direction of the radio signal received by the base station 11. For example, the arrival direction estimation unit 71 receives and receives information from the signal processing unit 21 indicating the direction of the beam used for receiving the first radio signal and the direction of the beam used for receiving the second radio signal. The arrival directions of the first radio signal and the second radio signal are estimated based on the information.
  • the arrival time estimation unit 72 estimates the arrival time of the radio signal. For example, the arrival time estimation unit 72 receives information indicating the transmission time and reception time of the first radio signal from the signal processing unit 21, and subtracts the transmission time from the reception time to obtain the arrival time of the first radio signal. presume.
  • the received power estimation unit 73 estimates the received power of the radio signal. For example, the received power estimation unit 73 detects the received power of the second radio signal.
  • the first position estimation unit 741 estimates the position of the terminal 13 based on the estimated arrival direction obtained by the arrival direction estimation unit 71 and the estimated arrival time obtained by the arrival time estimation unit 72. For example, in the first position estimation unit 741, the repeater 12 via which the first radio signal has passed is the first repeater 12 from the estimated arrival direction, the position of the base station 11, and the position of the repeater 12. Is specified, and the direction of the terminal 13 from the first repeater 12 is estimated from the position of the first repeater 12 and the retransmission direction. Further, the first position estimation unit 741 determines the distance between the first repeater 12 and the terminal 13 from the estimated arrival time of the first radio signal, the position of the base station 11, and the position of the first repeater 12. Is calculated. The first position estimation unit 741 determines the terminal 13 from the estimation direction of the terminal 13 from the first repeater 12, the estimated distance between the first repeater 12 and the terminal 13, and the position of the first repeater 12. Calculate the position of.
  • the second position estimation unit 742 estimates the position of the terminal 13 based on the estimated arrival direction obtained by the arrival direction estimation unit 71 and the received power value obtained by the received power estimation unit 73. For example, in the second position estimation unit 742, the repeater 12 via which the second radio signal has passed is the second repeater 12 from the estimated arrival direction, the position of the base station 11, and the position of the repeater 12. To identify. The second position estimation unit 742 estimates the direction of the terminal 13 from the second repeater 12 from the position and the retransmission direction of the second repeater 12. Further, the second position estimation unit 742 estimates the distance between the second repeater 12 and the terminal 13 from the received power value, the position of the base station 11, and the position of the second repeater 12.
  • the second position estimation unit 742 calculates the propagation distance of the radio signal from the received power value.
  • the second position estimation unit 742 calculates the distance between the base station 11 and the second repeater 12 from the position of the base station 11 and the position of the second repeater 12.
  • the second position estimation unit 742 estimates the distance between the second repeater 12 and the terminal 13 by subtracting the calculated distance between the base station 11 and the second repeater 12 from the calculated propagation distance. Subsequently, the second position estimation unit 742 starts from the estimation direction of the terminal 13 from the second repeater 12, the estimated distance between the second repeater 12 and the terminal 13, and the position of the second repeater 12. , Calculate the position of the terminal 13.
  • step S86 the position correction unit 743 determines the final position of the terminal 13 based on the estimated positions obtained by the first position estimation unit 741 and the second position estimation unit 742. For example, the position correction unit 743 determines the intermediate point of the estimated position as the final position.
  • FIG. 9 schematically shows a hardware configuration example of the base station 11.
  • the base station 11 is a computer device including a CPU (Central Processing Unit) 91, a RAM (Random Access Memory) 92, a program memory 93, an auxiliary storage device 94, a communication interface 95, and an input / output interface 96.
  • the CPU 91 communicates with the RAM 92, the program memory 93, the auxiliary storage device 94, the communication interface 95, and the input / output interface 96 via the bus 97.
  • the CPU 91 is an example of a general-purpose processor.
  • the RAM 92 is used by the CPU 91 as a working memory.
  • the RAM 92 includes a volatile memory such as an SDRAM (Synchronous Dynamic Random Access Memory).
  • the program memory 93 non-temporarily stores various programs including a positioning program and a repeater control program, and setting data necessary for executing the programs.
  • Each program stored in the program memory 93 includes a computer-executable instruction.
  • the program memory 93 for example, a ROM (Read-Only Memory), an auxiliary storage device 94, or a combination thereof is used.
  • the auxiliary storage device 94 stores data non-temporarily.
  • the auxiliary storage device 94 includes a non-volatile memory such as a hard disk drive (HDD) or a solid state drive (SSD).
  • the CPU 91 When the positioning program is executed by the CPU 91, the CPU 91 is made to execute the above-mentioned positioning process.
  • the CPU 91 functions as an arrival direction estimation unit 31 and a terminal position estimation unit 32 according to a positioning program.
  • the CPU 91 functions as an arrival time estimation unit 51 and a terminal position estimation unit 52 according to a positioning program.
  • the CPU 91 functions as an arrival direction estimation unit 71, an arrival time estimation unit 72, a received power estimation unit 73, and a terminal position estimation unit 74 according to the positioning program.
  • the repeater control program When the repeater control program is executed by the CPU 91, the repeater control program causes the CPU 91 to execute the above-mentioned control process.
  • the CPU 91 functions as the repeater control unit 23 according to the repeater control program.
  • the communication interface 95 is an interface for communicating with another device.
  • the communication interface 95 includes a wireless module for communicating with the terminal 13.
  • the radio module may be used to communicate with some repeaters 12.
  • the wireless module includes a signal processing unit 21 and an RF antenna unit 22.
  • the wireless module may be provided as an IC chipset.
  • the communication interface 95 further includes a wired module.
  • the radio module is used to communicate with other devices, such as some repeaters 12, a base station control device that controls a base station 11.
  • the input / output interface 96 includes a plurality of terminals for connecting an input device and an output device.
  • input devices include keyboards, mice, microphones and the like.
  • output devices include display devices, speakers, and the like.
  • the program may be provided to the base station 11 in a state of being stored in a computer-readable storage medium.
  • the base station 11 further includes a drive (not shown) for reading data from the storage medium, and acquires a program from the storage medium.
  • storage media include magnetic disks, optical disks (CD-ROM, CD-R, DVD-ROM, DVD-R, etc.), photomagnetic disks (MO, etc.), and semiconductor memories.
  • the program may be stored in a server on the communication network, and the base station 11 may download the program from the server using the communication interface 95.
  • the processing described in the embodiment is not limited to being performed by a general-purpose processor such as a CPU 91 executing a program, but is performed by a dedicated processor such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). You may.
  • the processing circuitry includes a general-purpose processor, a dedicated processor, or a combination of a general-purpose processor and a dedicated processor.
  • the repeater 12 is provided in the wireless channel between the base station 11 and the terminal 13.
  • the positioning unit 24 of the base station 11 estimates the arrival direction, arrival time, and / or received power of the radio signal received from the terminal 13 by the base station 11 via the repeater 12, and estimates the arrival direction, arrival time, and /.
  • the position of the terminal 13 is estimated based on the estimated value of the received power, the position of the repeater 12, and the position of the base station 11.
  • the terminal 13 can be measured even when the terminal 13 is located in the non-line-of-sight area of the base station 11. Further, since the base station 11 performs positioning, the terminal 13 can be measured independently of the performance of the terminal 13. Further, the positioning of the terminal 13 becomes possible with a single base station 11. Therefore, it is not necessary to install a large number of base stations for positioning. As a result, an increase in network equipment cost can be suppressed. Therefore, the positioning area can be expanded at low cost.
  • the positioning unit 24 may estimate the arrival direction of the radio signal received by the base station 11 and specify the repeater 12 through which the radio signal has passed based on the estimation result of the arrival direction.
  • the positioning unit 24 estimates the direction of the terminal 13 as seen from the specified repeater 12 based on the retransmission direction of the specified repeater 12, and determines the position of the terminal 13 based on the estimation result of the direction of the terminal 13. You may estimate. Since the arrival direction is used to identify the repeater 12 via which the radio signal has passed, the positioning can be robustly performed with respect to the estimation accuracy of the arrival direction. Therefore, positioning can be performed with high accuracy even if radio waves in a low frequency band are used.
  • the positioning unit 24 estimates the arrival time of the radio signal received by the base station 11, estimates the distance between the repeater 12 and the terminal 13 via which the radio signal has passed, and estimates the distance based on the estimation result of the arrival time. Based on the result, the position of the terminal 13 may be estimated. Positioning can be performed with high accuracy by performing positioning based on the arrival time.
  • the positioning unit 24 estimates the direction of the terminal 13 from the repeater 12 based on the retransmission direction of the repeater 12 via which the radio signal received by the base station 11 has passed, estimates the arrival time of the radio signal, and arrives.
  • the distance between the repeater 12 and the terminal 13 may be estimated based on the time estimation result, and the position of the terminal 13 may be estimated based on the direction estimation result and the distance estimation result. As a result, the positioning of the terminal 13 can be performed using a single repeater 12.
  • the positioning unit 24 may estimate the received power of the radio signal and correct the estimated position of the terminal 13 obtained by any of the above methods based on the estimated result of the received power. Thereby, the positioning accuracy can be improved.
  • the positioning unit 24 exists in the base station 11. In other embodiments, the positioning unit 24 may be implemented as a device separate from the base station 11.
  • the present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof.
  • each embodiment may be carried out in combination as appropriate as possible, and in that case, the combined effect can be obtained.
  • the above-described embodiment includes inventions at various stages, and various inventions can be extracted by an appropriate combination in a plurality of disclosed constitutional requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本発明の一態様に係る測位システムは、無線端末と通信する無線基地局装置と、前記無線端末と前記無線基地局装置との間で信号を中継する1つ以上の中継器と、前記無線基地局装置が前記1つ以上の中継器のうちの1つである第1の中継器を介して前記無線端末から受信した第1信号、前記1つ以上の中継器の位置、及び前記無線基地局装置の位置に基づいて、前記無線端末の位置を推定する測位装置と、を備える。

Description

測位システム、無線基地局装置、及び測位方法
 本発明は、無線端末の位置を推定する技術に関する。
 IoT(Internet of Things)やビッグデータ技術の進展に伴い、位置情報の重要性が増している。屋外ではGPS(Global Positioning System)による測位、屋内ではWi-Fi又はセンサを用いた測位の検討が行われ、3GPP(登録商標)やIEEE802.11などの標準化規格において、無線通信システムへの測位機能の追加が議論されている。
 これまでは、無線端末が測位を行うユースケースが中心である。しかし、ビッグデータ技術の進展により、ユーザによりよいサービスを提供するために、ネットワーク側で無線端末の測位を実施し、それにより得られた位置情報を様々なサービスに活用することへの期待が高まっている。ネットワーク側での端末の測位(以降、ネットワーク測位と記載する)が可能になると、端末の性能に依存せずに高精度な測位が可能になるなどのメリットがある。
 様々なサービスにおいて位置情報の活用が期待されているため、その精度も課題である。無線測位では、受信電力、電波到来時間、電波到来方向を用いて測位を行う。低周波数帯の電波を用いた場合、電波到来時間による測位は有効であるが、電力が同等になるエリアが広くなり、また到来方向も高精度に推定することが難しい。結果として高精度な測位が難しい。そこで高周波数帯の電波を用いた測位に注目が集まっている。狭ビーム形成により比較的精度の高い到来方向推定が可能であり、電波減衰が大きいことから電力が同等になるエリアは比較的狭い。また、低周波数帯と同様に電波到来時間による測位も可能であるため、高周波数帯の利用により測位精度を高めることができる。
日本国特開2017-191098号公報
 しかしながら、高周波数帯の電波は遮蔽に弱く、基地局の見通し外のエリアに対して高精度な測位を行うことが難しい。また、ネットワーク測位を行う場合、複数の基地局が必要になる。見通し外のエリアを減らしつつ、端末が複数の基地局に接続できる程度に基地局を設置する必要があり、ネットワーク設備コストが増大する。加えて、電波到来時間を用いて測位を行う場合、基地局間の同期が必要である。また、複数の基地局が同一の端末から電波を受信する必要がある。そのため、端末は帰属先の基地局を切り替えて信号を送信しなければならない。
 本発明は、上記の事情を鑑みてなされたものであり、端末が基地局の見通し外エリアに位置するときにも、端末の性能に依存することなく高精度な測位を可能にする技術を提供することを目的とする。
 本発明の一態様に係る測位システムは、無線端末と通信する無線基地局装置と、前記無線端末と前記無線基地局装置との間で信号を中継する1つ以上の中継器と、前記無線基地局装置が前記1つ以上の中継器のうちの1つである第1の中継器を介して前記無線端末から受信した第1信号、前記1つ以上の中継器の位置、及び前記無線基地局装置の位置に基づいて、前記無線端末の位置を推定する測位装置と、を備える。
 本発明によれば、端末が基地局の見通し外エリアに位置するときにも、端末の性能に依存することなく高精度な測位を可能になる。
図1は、本発明の実施形態に係る無線通信システムを示す図である。 図2は、図1に示した基地局の構成例を示すブロック図である。 図3は、図2に示した測位部の構成例を示すブロック図である。 図4は、図3に示した構成を有する測位部により実行される測位処理を示すフローチャートである。 図5は、図2に示した測位部の構成例を示すブロック図である。 図6は、図5に示した構成を有する測位部により実行される測位処理を示すフローチャートである。 図7は、図2に示した測位部の構成例を示すブロック図である。 図8は、図7に示した構成を有する測位部により実行される測位処理を示すフローチャートである。 図9は、図1に示した基地局のハードウェア構成例を示すブロック図である。
 以下、図面を参照しながら本発明の実施形態を説明する。
 図1は、本発明の一実施形態に係る測位システムを含む無線通信システム10を概略的に示している。図1に示すように、無線通信システム10は、無線基地局装置11、中継器12、及び無線端末13を備える。ここでは、無線基地局装置を単に基地局と記載し、無線端末を単に端末と記載することもある。
 基地局11は端末13と無線通信する。基地局11は、例えば、移動体通信ネットワークの基地局であり得る。基地局11は、通信している端末13の測位を行う機能を有する。端末13は、例えば、携帯電話機、スマートフォン、ノートパソコン、ゲーム機などのモバイル端末であり得る。
 中継器12は基地局11と端末13との間で無線信号(電波)を中継する。端末13が送信局であり、基地局11が受信局である場合、中継器12は、端末13から無線信号を受信し、それを基地局へ再送信する。基地局11が送信局であり、端末13が受信局である場合、中継器12は、基地局11から無線信号を受信し、それを端末13へ再送信する。中継器12は、反射板又はリピータであり得るが、これらに限定されない。中継器12が反射板を含む場合、中継器12は反射により無線信号を再送信する。反射板としては、例えば、無線信号を反射する角度を制御可能なメタサーフェス反射板を使用することができる。中継器12がリピータを含む場合、中継器12は、第1のアンテナで無線信号を受信し、第2のアンテナで当該無線信号を再放射する。リピータとしては、例えば、ビームフォーミングが可能なリピータを使用することができる。中継器12は、機械的に移動若しくは回転することにより、又は、電気的に位相若しくは振幅を制御することにより、到来波を任意の方向に再送信する。
 中継器12は有線又は無線通信により基地局11に接続される。中継器12は固定されていてもよい。中継器12は移動可能であってもよい。例えば、中継器12は、自動車、電車、ドローンなどの移動体に搭載されてよい。図1に示される例では、4つの中継器12が固定されたものであって有線通信により基地局11に接続され、1つの中継器12がドローンに搭載されて無線通信により基地局11に接続される。なお、中継器12は5つに限らない。1つ以上の中継器12が設けられていればよい。
 端末13が基地局11の見通し外エリアに位置する状況では、基地局11及び端末13は中継器12を介して互いに通信してよい。見通し外エリアは、例えば、ビルや樹木などの障害物により形成される。一方、端末13が基地局11の見通し内エリアに位置する状況では、基地局11及び端末13は、互いに直接に通信してもよく、中継器12を介して互いに通信してもよい。
 基地局11は中継器12を制御する。基地局11は、中継器12の再送信方向を制御する。中継器12の再送信方向は、中継器12が再送信を行う方向である。中継器12が反射板である場合、中継器12の再送信方向は、中継器12の反射角度及び設置角度(姿勢)により定まる。中継器12が移動体に搭載される場合、基地局11は移動体の移動をさらに制御してよい。移動体は、基地局11による制御なしに自律的に移動するものであってもよい。
 さらに、基地局11は中継器12から中継器情報を収集する。中継器情報は、中継器12に関する情報であり、中継器12の状態を示す状態情報、及び中継器12のセンシング機能により取得されたセンシング情報を含み得る。センシング情報は、GPSセンサなどにより取得された、中継器12の位置を示す位置情報、及び/又は、ジャイロセンサなどにより取得された、中継器12の設置角度を示す設置角度情報を含んでよい。
 図2は、基地局11の構成例を概略的に示している。図2に示すように、基地局11は、信号処理部21、RF(Radio Frequency)アンテナ部22、中継器制御部23、測位部24、及び上位レイヤ25を備える。
 信号処理部21は、送信する信号を生成する。信号処理部21は、上位レイヤ25から端末13宛ての情報を受け取り、受け取った情報を含む信号を生成してよい。信号処理部21は、中継器制御部23から中継器12宛ての制御情報を受け取り、受け取った制御情報を含む信号を生成してよい。RFアンテナ部22は、信号処理部21から信号を受け取り、受け取った信号に対して送信処理を行う。例えば、RFアンテナ部22は、信号処理部21から受け取った信号を周波数アップコンバータによりシステム帯域にアップコンバージョンしてRF信号を得る。RFアンテナ部22は、増幅器(Power Amplifier)によりRF信号を電力増幅して、アンテナを介して放射する。
 受信処理では、RFアンテナ部22は、アンテナを介してRF信号を受信し、受信したRF信号を低雑音信号増幅器(Low Noise Amplifier)により増幅し、周波数ダウンコンバータによりダウンコンバージョンする。信号処理部21は、RFアンテナ部22から受け取った信号を復号し、得られた情報を中継器制御部23又は上位レイヤ25に渡す。例えば、信号処理部21は、中継器12から送信された中継器情報を得た場合、中継器情報を中継器制御部23に渡す。
 RFアンテナ部22は、複数のアンテナ及び複数のアンテナのそれぞれに関連付けられた複数のRF回路部を含んでいてよい。RFアンテナ部22の送受信処理において、可変位相器及び可変利得制御器を用いてアナログビームフォーミングを形成してもよい。
 中継器制御部23は、中継器12を制御する。中継器制御部23は、中継器12の再送信方向を動的に制御する。中継器制御部23は、中継器12の中から端末13との通信に用いる中継器12を選択し、選択した中継器12の再放射方向を決定する。
 中継器制御部23は、中継器12を制御するための制御情報を生成し、信号処理部21及びRFアンテナ部22を介して中継器12に送信する。制御情報は再送信方向を制御するための指示を含む。制御情報は、中継器12を搭載する移動体を制御するための指示をさらに含んでよい。中継器12は中継器制御部23からの制御情報に従って動作する。
 中継器制御部23は、信号処理部21及びRFアンテナ部22を介して中継器12から中継器情報を受信する。中継器情報は、上述したように、中継器12の状態情報及びセンシング情報を含み得る。中継器制御部23は、位置情報及び再送信方向情報など、中継器12に関する情報を記憶する。中継器制御部23に記憶された情報は測位部24により参照可能である。
 測位部24は、端末13の測位を行う。測位部24は、端末13により送信されて基地局11により受信された無線信号に関する情報を信号処理部21から取得し、取得した情報に基づいて無線信号の到来方向、到来時間、及び/又は受信電力を推定する。測位部24は、到来方向、到来時間、及び/又は受信電力の推定値と、中継器制御部23を参照することで得られる中継器12に関する情報と、基地局11の位置情報と、に基づいて、端末13の地理的位置を推定する。測位部24は、必要に応じて、端末13の推定位置(位置の推定結果)を上位レイヤ25に通知する。
 図3は、測位部24の第1の構成例を概略的に示している。図3に示される例では、測位部24は、到来方向推定部31及び端末位置推定部32を備える。
 到来方向推定部31は、信号処理部21から出力された情報を入力とし、基地局11が受信した無線信号の到来方向(到来角)を推定する。到来方向の推定はいかなる方法で実行されてよい。例えば、到来方向推定部31は、基地局11が受信に用いたビームの方向に基づいて到来方向を推定してよい。到来方向推定部31は、推定到来方向(到来方向の推定結果)を示す到来方向情報を端末位置推定部32に出力する。
 端末位置推定部32は、到来方向推定部31から到来方向情報を受け取り、中継器制御部23から、各中継器12の位置情報及び再送信方向情報を取得する。端末位置推定部32は基地局11の位置情報を保持する。端末位置推定部32は、到来方向情報、中継器12の位置情報及び再送信方向情報、並びに、基地局11の位置情報に基づいて、端末13の位置を推定する。端末位置推定部32は、中継器特定部321、方向推定部322、及び位置推定部323を備える。
 中継器特定部321は、無線信号の推定到来方向、基地局11の位置、及び中継器12の位置に基づいて、基地局11が受信した無線信号が経由した中継器12を特定する。基地局11が受信した無線信号が経由した中継器12は、基地局11と端末13との間の経路(伝搬パス)における中継器12を指す。ここでは、端末13が複数の無線信号を異なる中継器12を介して基地局11に送信することを想定する。例えば、端末13は、中継器12のうちの1つである第1の中継器12を介して基地局11に第1の無線信号を送信し、中継器12のうちの別の1つである第2の中継器12を介して基地局11に第2の無線信号を送信する。
 方向推定部322は、中継器12の再放射方向に基づいて、中継器12からの端末13の方向を推定する。方向の推定は、中継器特定部321により特定された中継器12の各々について実行される。
 位置推定部323は、中継器12の位置及び方向推定部322により得られた推定方向に基づいて、端末13の位置を推定する。例えば、第1の中継器12から端末13へ向けた方向と第2の中継器12から端末13へ向けた方向との交点となる位置が端末13の位置として推定される。
 図4は、図3に示した構成を有する測位部24により実行される測位処理を概略的に示している。ここでは、端末13が第1の無線信号を第1の中継器12を介して基地局11に送信し、第2の無線信号を第1の中継器12とは異なる第2の中継器12を介して基地局11に送信するものとする。
 図4のステップS41において、到来方向推定部31は、基地局11が受信した無線信号の到来方向を推定する。例えば、到来方向推定部31は、信号処理部21から、第1の無線信号の受信に用いたビームの方向及び第2の無線信号の受信に用いたビームの方向を示す情報を受け取り、第1の無線信号の受信に用いたビームの方向から第1の無線信号の到来方向を推定し、第2の無線信号の受信に用いたビームの方向から第2の無線信号の到来方向を推定する。
 ステップS42において、中継器特定部321は、到来方向推定部31により得られた推定到来方向、基地局11の位置、及び中継器12の位置に基づいて、無線信号が経由した中継器12を特定する。例えば、中継器特定部321は、第1の無線信号の推定到来方向、基地局11の位置、及び中継器12の位置に基づいて、第1の無線信号が経由した中継器12が第1の中継器12であることを特定し、第2の無線信号の推定到来方向、基地局11の位置、及び中継器12の位置に基づいて、第2の無線信号が経由した中継器12が第2の中継器12であることを特定する。
 ステップS43において、方向推定部322は、中継器特定部321により特定された中継器12ごとに、中継器12の再送信方向に基づいて中継器12からの端末13の方向を推定する。例えば、方向推定部322は、第1の中継器12の再送信方向に基づいて第1の中継器12からの端末13の方向を推定し、第2の中継器12の再送信方向に基づいて第2の中継器12からの端末13の方向を推定する。
 ステップS44において、位置推定部323は、方向推定部322により得られた推定方向、及び中継器12の位置に基づいて、端末13の位置を推定する。例えば、位置推定部323は、第1の中継器12の位置を通り第1の中継器12からの端末13の推定方向に平行な線分と第2の中継器12の位置を通り第2の中継器12からの端末13の推定方向に平行な線分とが交わる点を端末13の位置と推定する。
 図5は、測位部24の第2の構成例を概略的に示している。図5に示される例では、測位部24は、到来時間推定部51及び端末位置推定部52を備える。
 到来時間推定部51は、信号処理部21から出力された情報を入力として受け取り、受け取った情報に基づいて、基地局11が受信した無線信号の到来時間を推定する。到来時間の推定はいかなる方法で実行されてもよい。例えば、端末13が時刻情報を信号に付加し、到来時間推定部51は、基地局11が受信した無線信号に含まれる時刻情報により示される時刻と基地局11が信号を受信した時刻である受信時刻とを比較することにより、到来時間を算出してよい。到来時間推定部51は、無線信号の推定到来時間(到来時間の推定結果)を示す到来時間情報を端末位置推定部52に出力する。
 端末位置推定部52は、到来時間推定部51から到来時間情報を受け取る。端末位置推定部52は、中継器制御部23から各中継器12の位置情報を取得する。端末位置推定部52は基地局11の位置情報を保持する。端末位置推定部52は、到来時間情報、中継器12の位置情報、及び基地局11の位置情報に基づいて、端末13の位置を推定する。端末位置推定部52は、距離推定部521及び位置推定部522を備える。
 距離推定部521は、無線信号の推定到来時間、基地局11の位置、及び中継器12の位置に基づいて、無線信号が経由した中継器12と端末13との距離を推定する。具体的には、距離推定部521は、基地局11の位置及び無線信号が経由した中継器12の位置から、中継器12から基地局11までの到来時間を算出する。距離推定部521は、到来時間情報により示される推定到来時間から中継器12から基地局11までの算出された到来時間を減算することにより、端末13から中継器12までの到来時間を算出する。距離推定部521は、端末13から中継器12までの算出された到来時間から、端末13と中継器12との間の距離を算出する。距離推定部521は、図3に関連して説明したようにして、無線信号が経由した中継器12を特定してよい。距離の推定は、特定した中継器12の各々について実行される。
 位置推定部522は、距離推定部521により得られた端末13と中継器12との間の推定距離、及び中継器12の位置に基づいて、端末13の位置を推定する。例えば、第1の中継器12と端末13との推定距離及び第2の中継器12と端末13との推定距離が得られている場合、第1の中継器12の位置を中心とし、第1の中継器12と端末13との推定距離を半径とした第1の円と、第2の中継器12の位置を中心とし、第2の中継器12と端末13との推定距離を半径とした第2の円と、の交点が端末13の位置として推定される。これら2つの円の交点は2点存在するが、中継器12の再送信可能な範囲と中継器12の設置角度から尤もらしい交点を端末13の位置として選択する。
 図6は、図5に示した構成を有する測位部24により実行される測位処理を概略的に示している。ここでは、端末13が第1の無線信号を第1の中継器12を介して基地局11に送信し、第2の無線信号を第1の中継器12とは異なる第2の中継器12を介して基地局11に送信するものとする。
 図6のステップS61において、到来時間推定部51は、基地局11が受信した無線信号の到来時間を推定する。例えば、到来時間推定部51は、信号処理部21から第1の無線信号の送信時刻及び受信時刻を示す情報を受け取り、受信時刻から送信時刻を引くことにより、第1の無線信号の到来時間を得る。さらに、到来時間推定部51は、信号処理部21から第2の無線信号の送信時刻及び受信時刻を示す情報を受け取り、受信時刻から送信時刻を引くことにより、第2の無線信号の到来時間を得る。無線信号の送信時刻は、端末13が無線信号を送信した時刻を指し、無線信号に含まれる時刻情報に基づいて決定され得る。
 ステップS62において、測位部24は、無線信号が経由した中継器12を特定する。この処理は、図4のステップS41、S42において説明したものと同様であり得る。例えば、測位部24は、第1の無線信号が第1の中継器12を経由したことを特定し、第2の無線信号が第2の中継器12を経由したことを特定する。
 ステップS63において、距離推定部521は、ステップS62で特定された中継器12ごとに、推定到来時刻、基地局11の位置、及び中継器12の位置に基づいて、中継器12と端末13との距離を推定する。例えば、距離推定部521は、基地局11の位置及び第1の中継器12の位置から、基地局11と第1の中継器12との距離を算出し、算出した距離を光速で割ることにより、第1の中継器12から基地局11までの到来時間を得る。距離推定部521は、ステップS61で得られた第1の無線信号の推定到来時間から第1の中継器12から基地局11までの算出された到来時間を引くことにより、端末13から第1の中継器12までの第1の無線信号の到来時間を算出する。距離推定部521は、算出した到来時間に光速を乗じることにより、端末13と第1の中継器12との距離を算出する。同様にして、距離推定部521は、端末13と第2の中継器12との距離を算出する。
 ステップS64において、位置推定部522は、距離推定部521により得られた推定距離及び中継器12の位置に基づいて、端末13の位置を推定する。例えば、位置推定部522は、第1の中継器12の位置を中心とし、第1の中継器12と端末13との推定距離を半径とした第1の円と、第2の中継器12の位置を中心とし、第2の中継器12と端末13との推定距離を半径とした第2の円と、が交わる点を端末13の位置と決定する。
 図7は、測位部24の第3の構成例を概略的に示している。図7に示される例では、測位部24は、到来方向推定部71、到来時間推定部72、受信電力推定部73、及び端末位置推定部74を備える。
 到来方向推定部71は、信号処理部21から出力された情報を入力として受け取り、受け取った情報に基づいて、基地局11が受信した無線信号の到来方向を推定する。到来方向の推定はいかなる方法で実行されてよい。例えば、到来方向推定部71は、基地局11が受信に用いたビームの方向に基づいて到来方向を推定してよい。到来方向推定部71は、推定到来方向を示す到来方向情報を端末位置推定部74に出力する。
 到来時間推定部72は、信号処理部21から出力された情報を入力として受け取り、受け取った情報に基づいて、基地局11が受信した無線信号の到来時間を推定する。到来時間の推定はいかなる方法で実行されてもよい。例えば、端末13が信号に時刻情報を付加し、到来時間推定部72は、基地局11が受信した信号に含まれる時刻情報により示される時刻と受信時刻とを比較することにより、到来時間を算出してよい。代替として、基地局11が異なる中継器12を介して端末13から複数の無線信号を受信した場合、到来時間推定部72は、無線信号の受信時刻と次の無線信号の受信時刻との差分に基づいて、当該次の無線信号の到来時間を推定してよい。この場合、端末13が無線信号を送信するタイミングは、基地局11により予めスケジューリングされるものとする。複数の無線信号が異なる中継器12を経由したか否かを判断する方法の例は、基地局11が信号を受信する際に用いたビームが異なる場合に無線信号が異なる中継器12を経由したと判断する方法を含む。到来時間推定部72は、推定到来時間を示す到来時間情報を端末位置推定部74に出力する。
 受信電力推定部73は、信号処理部21から出力された情報を入力として受け取り、受け取った情報に基づいて、基地局11が受信した無線信号の受信電力を推定する。受信電力推定部73は、推定受信電力(受信電力の推定結果)を示す受信電力情報を端末位置推定部74に出力する。
 端末位置推定部74は、第1の位置推定部741、第2の位置推定部742、及び位置補正部743を備える。端末位置推定部74は基地局11の位置情報を保持する。
 第1の位置推定部741は、到来方向推定部71から到来方向情報を受け取り、到来時間推定部72から到来時間情報を受け取る。第1の位置推定部741は、中継器制御部23から各中継器12の位置情報及び再送信方向情報を取得する。第1の位置推定部741は、到来方向情報、到来時間情報、中継器12の位置情報及び再送信方向情報、並びに、基地局11の位置情報に基づいて、端末13の位置を推定する。第1の位置推定部741は、無線信号の推定到来方向に基づいて、無線信号が経由した基地局を特定する。第1の位置推定部741は、図3に示した中継器特定部321と同様にして、無線信号が経由した基地局を特定してよい。第1の位置推定部741は、特定した中継器12の再放射方向に基づいて、特定した中継器12からの端末13の方向を推定する。第1の位置推定部741は、無線信号の推定到来時間、特定した中継器12の位置、及び基地局11の位置に基づいて、特定した中継器12と端末13との距離を推定する。距離の推定は、図5に示した距離推定部521に関して説明したものと同様の方法で実行することができる。第1の位置推定部741は、特定した中継器12からの端末13の推定方向、特定した中継器12と端末13との推定距離、及び特定した中継器12の位置に基づいて、端末13の位置を推定する。この場合、1台の中継器12を用いて端末13の位置を推定することができる。
 なお、第1の位置推定部741は、図3を参照して説明した端末位置推定部32と同様の方法により位置推定を行ってもよく、図5を参照して説明した端末位置推定部52と同様の方法により位置推定を行ってもよい。
 第2の位置推定部742は、到来方向推定部71から到来方向情報を受け取り、受信電力推定部73から受信電力情報を受け取る。第2の位置推定部742は、中継器制御部23から中継器12の位置情報及び再送信方向情報を取得する。第2の位置推定部742は、無線信号の推定到来方向及び推定受信電力、中継器12の位置及び再送信方向、並びに、基地局11の位置に基づいて、端末13の位置を推定する。
 第2の位置推定部742は、無線信号の推定受信電力に基づいて無線信号の伝搬距離を推定する。第2の位置推定部742は、無線信号の推定到来方向、基地局11の位置、及び中継器12の位置に基づいて、無線信号が経由した中継器12を特定する。第2の位置推定部742は、基地局11の位置、特定した中継器12の位置及び再送信方向、並びに、推定伝搬距離に基づいて、端末13の位置を推定する。
 位置補正部743は、第2の位置推定部742で得られた推定位置を用いて第1の位置推定部741で得られた推定位置を補正する。例えば、位置補正部743は、第1の位置推定部741で得られた推定位置と第2の位置推定部742で得られた推定位置との中間地点を端末13の最終的な推定位置と決定する。
 なお、位置補正部743は、推定位置を重み付き平均することで端末13の最終的な推定位置を決定してもよい。受信電力に基づいた位置推定よりも到来時間に基づいた位置推定のほうが、推定精度が高い。言い換えると、第1の位置推定部741で得られた推定位置は、第2の位置推定部742で得られた推定位置よりも正確である可能性が高い。この場合、最終的な推定位置が第2の位置推定部742で得られた推定位置よりも第1の位置推定部741で得られた推定位置に近くなるように、重み付けがなされてよい。
 図8は、図7に示した構成を有する測位部24により実行される測位処理を概略的に示している。ここでは、端末13が第1の無線信号を第1の中継器12を介して基地局11に送信し、第2の無線信号を第1の中継器12とは異なる第2の中継器12を介して基地局11に送信するものとする。
 図8のステップS81において、到来方向推定部71は、基地局11が受信した無線信号の到来方向を推定する。例えば、到来方向推定部71は、信号処理部21から、第1の無線信号の受信に用いたビームの方向及び第2の無線信号の受信に用いたビームの方向を示す情報を受け取り、受け取った情報に基づいて第1の無線信号及び第2の無線信号の到来方向を推定する。
 ステップS82において、到来時間推定部72は、無線信号の到来時間を推定する。例えば、到来時間推定部72は、信号処理部21から第1の無線信号の送信時刻及び受信時刻を示す情報を受け取り、受信時刻から送信時刻を引くことにより、第1の無線信号の到来時間を推定する。
 ステップS83において、受信電力推定部73は、無線信号の受信電力を推定する。例えば、受信電力推定部73は、第2の無線信号の受信電力を検出する。
 ステップS84において、第1の位置推定部741は、到来方向推定部71により得られた推定到来方向及び到来時間推定部72により得られた推定到来時間に基づいて、端末13の位置を推定する。例えば、第1の位置推定部741は、推定到来方向、基地局11の位置、及び中継器12の位置から、第1の無線信号が経由した中継器12が第1の中継器12であることを特定し、第1の中継器12の位置及び再送信方向から、第1の中継器12からの端末13の方向を推定する。さらに、第1の位置推定部741は、第1の無線信号の推定到来時間、基地局11の位置、及び第1の中継器12の位置から、第1の中継器12と端末13との距離を算出する。第1の位置推定部741は、第1の中継器12からの端末13の推定方向、第1の中継器12と端末13との推定距離、及び第1の中継器12の位置から、端末13の位置を算出する。
 ステップS85において、第2の位置推定部742は、到来方向推定部71により得られた推定到来方向及び受信電力推定部73により得られた受信電力値に基づいて、端末13の位置を推定する。例えば、第2の位置推定部742は、推定到来方向、基地局11の位置、及び中継器12の位置から、第2の無線信号が経由した中継器12が第2の中継器12であることを特定する。第2の位置推定部742は、第2の中継器12の位置及び再送信方向から、第2の中継器12からの端末13の方向を推定する。さらに、第2の位置推定部742は、受信電力値、基地局11の位置、及び第2の中継器12の位置から、第2の中継器12と端末13との距離を推定する。例えば、第2の位置推定部742は、受信電力値から無線信号の伝搬距離を算出する。第2の位置推定部742は、基地局11の位置及び第2の中継器12の位置から基地局11と第2の中継器12との距離を算出する。第2の位置推定部742は、算出した伝搬距離から基地局11と第2の中継器12との算出した距離を引くことにより、第2の中継器12と端末13との距離を推定する。続いて、第2の位置推定部742は、第2の中継器12からの端末13の推定方向、第2の中継器12と端末13との推定距離、及び第2の中継器12の位置から、端末13の位置を算出する。
 ステップS86において、位置補正部743は、第1の位置推定部741及び第2の位置推定部742により得られた推定位置に基づいて、端末13の最終的な位置を決定する。例えば、位置補正部743は、推定位置の中間地点を最終的な位置に決定する。
 図9は、基地局11のハードウェア構成例を概略的に示している。図9に示すように、基地局11は、CPU(Central Processing Unit)91、RAM(Random Access Memory)92、プログラムメモリ93、補助記憶装置94、通信インタフェース95、及び入出力インタフェース96を備えるコンピュータ装置である。CPU91は、バス97を介して、RAM92、プログラムメモリ93、補助記憶装置94、通信インタフェース95、及び入出力インタフェース96と通信する。
 CPU91は汎用プロセッサの一例である。RAM92はワーキングメモリとしてCPU91に使用される。RAM92はSDRAM(Synchronous Dynamic Random Access Memory)などの揮発性メモリを含む。プログラムメモリ93は、測位プログラム及び中継器制御プログラムを含む種々のプログラム及びプログラムを実行するために必要な設定データを非一時的に記憶する。プログラムメモリ93に記憶されている各プログラムはコンピュータ実行可能命令を含む。プログラムは、CPU91により実行されると、CPU91に所定の処理を実行させる。プログラムメモリ93として、例えば、ROM(Read-Only Memory)、補助記憶装置94、又はその組み合わせが使用される。補助記憶装置94はデータを非一時的に記憶する。補助記憶装置94は、ハードディスクドライブ(HDD)又はソリッドステートドライブ(SSD)などの不揮発性メモリを含む。
 測位プログラムは、CPU91により実行されると、上述した測位処理をCPU91に実行させる。例えば、CPU91は、測位プログラムに従って、到来方向推定部31及び端末位置推定部32として機能する。例えば、CPU91は、測位プログラムに従って、到来時間推定部51及び端末位置推定部52として機能する。CPU91は、測位プログラムに従って、到来方向推定部71、到来時間推定部72、受信電力推定部73、及び端末位置推定部74として機能する。中継器制御プログラムは、CPU91により実行されると、上述した制御処理をCPU91に実行させる。CPU91は、中継器制御プログラムに従って、中継器制御部23として機能する。
 通信インタフェース95は、他の装置と通信するためのインタフェースである。通信インタフェース95は、端末13と通信するための無線モジュールを含む。無線モジュールは、いくつかの中継器12と通信するために使用されてよい。無線モジュールは信号処理部21及びRFアンテナ部22を含む。無線モジュールはICチップセットとして提供され得る。通信インタフェース95は、有線モジュールをさらに含む。無線モジュールは、他の装置、例えば、いくつかの中継器12、基地局11を制御する基地局制御装置などと通信するために使用される。
 入出力インタフェース96は、入力装置及び出力装置を接続するための複数の端子を備える。入力装置の例は、キーボード、マウス、マイクロフォンなどを含む。出力装置の例は、表示装置、スピーカなどを含む。
 プログラムは、コンピュータで読み取り可能な記憶媒体に記憶された状態で基地局11に提供されてよい。この場合、例えば、基地局11は、記憶媒体からデータを読み出すドライブ(図示せず)をさらに備え、記憶媒体からプログラムを取得する。記憶媒体の例は、磁気ディスク、光ディスク(CD-ROM、CD-R、DVD-ROM、DVD-Rなど)、光磁気ディスク(MOなど)、半導体メモリを含む。また、プログラムを通信ネットワーク上のサーバに格納し、基地局11が通信インタフェース95を使用してサーバからプログラムをダウンロードするようにしてもよい。
 実施形態において説明される処理は、CPU91などの汎用プロセッサがプログラムを実行することにより行われることに限らず、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などの専用プロセッサにより行われてもよい。処理回路(processing circuitry)は、汎用プロセッサ、専用プロセッサ、又は汎用プロセッサと専用プロセッサとの組み合わせを含む。
 以上のように、無線通信システム10では、基地局11と端末13との間の無線チャネル内に中継器12が設けられる。基地局11の測位部24は、基地局11が中継器12を介して端末13から受信した無線信号の到来方向、到来時間、及び/又は受信電力を推定し、到来方向、到来時間、及び/又は受信電力の推定値、中継器12の位置、並びに、基地局11の位置に基づいて、端末13の位置を推定する。
 中継器12を設けることにより、端末13が基地局11の見通し外エリアに位置するときにも、端末13の測定が可能となる。さらに、基地局11が測位を行うので、端末13の性能に依存せずに端末13の測定が可能となる。さらに、単一の基地局11で端末13の測位が可能になる。このため、測位のために多数の基地局を設置する必要がない。その結果、ネットワーク設備コストの増大を抑制することができる。よって、低コストで測位可能なエリアを拡大できる。
 測位部24は、基地局11が受信した無線信号の到来方向を推定し、到来方向の推定結果に基づいて無線信号が経由した中継器12を特定してよい。測位部24は、特定した中継器12の再送信方向に基づいて、特定した中継器12から見た端末13の方向を推定し、端末13の方向の推定結果に基づいて、端末13の位置を推定してよい。到来方向は無線信号が経由した中継器12を特定するために使用されるものであるので、到来方向の推定精度に対してロバストに測位を行うことができる。よって、低周波数帯の電波を用いても高精度に測位を行うことができる。
 測位部24は、基地局11が受信した無線信号の到来時間を推定し、到来時間の推定結果に基づいて、無線信号が経由した中継器12と端末13との距離を推定し、距離の推定結果に基づいて、端末13の位置を推定してよい。到来時間に基づいて測位を行うことにより、高精度に測位を行うことができる。
 測位部24は、基地局11が受信した無線信号が経由した中継器12の再送信方向に基づいて、中継器12からの端末13の方向を推定し、無線信号の到来時間を推定し、到来時間の推定結果に基づいて中継器12と端末13との距離を推定し、方向の推定結果及び距離の推定結果に基づいて端末13の位置を推定してよい。これにより、単一の中継器12を用いて端末13の測位を行うことができる。
 測位部24は、無線信号の受信電力を推定し、受信電力の推定結果に基づいて、上述したいずれかの方法で得られた端末13の推定位置を補正してもよい。これにより、測位精度を向上することができる。
 上述した実施形態では、測位部24は基地局11内に存在する。他の実施形態では、測位部24は基地局11とは別の装置として実施されてもよい。
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適当な組み合わせにより種々の発明が抽出され得る。
 10…無線通信システム
 11…無線基地局装置
 12…中継器
 13…無線端末
 21…信号処理部
 22…RFアンテナ部
 23…中継器制御部
 24…測位部
 25…上位レイヤ
 31…到来方向推定部
 32…端末位置推定部
 321…中継器特定部
 322…方向推定部
 323…位置推定部
 51…到来時間推定部
 52…端末位置推定部
 521…距離推定部
 522…位置推定部
 71…到来方向推定部
 72…到来時間推定部
 73…受信電力推定部
 74…端末位置推定部
 741…第1の位置推定部
 742…第2の位置推定部
 743…位置補正部
 91…CPU
 92…RAM
 93…プログラムメモリ
 94…補助記憶装置
 95…通信インタフェース
 96…入出力インタフェース
 97…バス

Claims (8)

  1.  無線端末と通信する無線基地局装置と、
     前記無線端末と前記無線基地局装置との間で信号を中継する1つ以上の中継器と、
     前記無線基地局装置が前記1つ以上の中継器のうちの1つである第1の中継器を介して前記無線端末から受信した第1信号、前記1つ以上の中継器の位置、及び前記無線基地局装置の位置に基づいて、前記無線端末の位置を推定する測位装置と、
     を備える測位システム。
  2.  前記測位装置は、
     前記第1信号の到来方向を推定し、
     前記第1信号の前記到来方向の推定結果、前記1つ以上の中継器の前記位置、及び前記無線基地局装置の前記位置に基づいて、前記第1の中継器を特定する、
     請求項1に記載の測位システム。
  3.  前記無線基地局装置は、前記1つ以上の中継器のうちの別の1つである第2の中継器を介して前記無線端末から第2信号を受信し、
     前記測位装置は、
     前記第1の中継器が信号の再送信を行う再送信方向に基づいて、前記第1の中継器からの前記無線端末の方向を推定し、
     前記第2の中継器が信号の再送信を行う再送信方向に基づいて、前記第2の中継器からの前記無線端末の方向を推定し、
     前記第1の中継器からの前記無線端末の方向の推定結果、前記第2の中継器からの前記無線端末の方向の推定結果、前記第1の中継器の位置、及び前記第2の中継器の位置に基づいて、前記無線端末の前記位置を推定する、
     請求項1又は2に記載の測位システム。
  4.  前記無線基地局装置は、前記1つ以上の中継器のうちの別の1つである第2の中継器を介して前記無線端末から第2信号を受信し、
     前記測位装置は、
     前記無線端末から前記無線基地局装置までの前記第1信号の到来時間を推定し、
     前記無線端末から前記無線基地局装置までの前記第1信号の前記到来時間の推定結果、前記無線基地局装置の前記位置、及び前記第1の中継器の位置に基づいて、前記第1の中継器と前記無線端末との距離を推定し、
     前記無線端末から前記無線基地局装置までの前記第2信号の到来時間を推定し、
     前記無線端末から前記無線基地局装置までの前記第2信号の前記到来時間の推定結果、前記無線基地局装置の前記位置、及び前記第2の中継器の位置に基づいて、前記第2の中継器と前記無線端末との距離を推定し、
     前記第1の中継器の前記位置、前記第1の中継器と前記無線端末との距離の推定結果、前記第2の中継器の前記位置、及び前記第2の中継器と前記無線端末との距離の推定結果に基づいて、前記無線端末の前記位置を推定する、
     請求項1に記載の測位システム。
  5.  前記測位装置は、
     前記第1の中継器が信号の再送信を行う再送信方向に基づいて、前記第1の中継器からの前記無線端末の方向を推定し、
     前記無線端末から前記無線基地局装置までの前記第1信号の到来時間を推定し、
     前記無線端末から前記無線基地局装置までの前記第1信号の前記到来時間の推定結果、前記無線基地局装置の前記位置、及び前記第1の中継器の位置に基づいて、前記第1の中継器と前記無線端末との距離を推定し、
     前記第1の中継器からの前記無線端末の方向の推定結果、前記第1の中継器と前記無線端末との距離の推定結果、及び前記第1の中継器の前記位置に基づいて、前記無線端末の前記位置を推定する、
     請求項1に記載の測位システム。
  6.  前記無線基地局装置は、前記1つ以上の中継器のうちの別の1つである第2の中継器を介して前記無線端末から第2信号を受信し、
     前記測位装置は、
     前記第2信号の受信電力を推定し、
     前記受信電力の推定結果に基づいて、前記無線端末の前記位置の推定結果を補正する、
     請求項1に記載の測位システム。
  7.  測位装置により実行される測位方法であって、
     無線基地局装置が1つ以上の中継器のうちの1つである第1の中継器を介して無線端末から受信した信号、前記1つ以上の中継器の位置、及び前記無線基地局装置の位置に基づいて、前記無線端末の位置を推定することと、
     を備える測位方法。
  8.  無線基地局装置であって、
     無線端末と通信する通信部であって、1つ以上の中継器のうちの1つである第1の中継器を介して前記無線端末から信号を受信する通信部と、
     前記信号、前記1つ以上の中継器の位置、及び前記無線基地局装置の位置に基づいて、前記無線端末の位置を推定する測位部と、
     を備える無線基地局装置。
PCT/JP2020/011945 2020-03-18 2020-03-18 測位システム、無線基地局装置、及び測位方法 WO2021186607A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/011945 WO2021186607A1 (ja) 2020-03-18 2020-03-18 測位システム、無線基地局装置、及び測位方法
JP2022508698A JP7359290B2 (ja) 2020-03-18 2020-03-18 測位システム、無線基地局装置、及び測位方法
US17/911,522 US20230362877A1 (en) 2020-03-18 2020-03-18 Positioning system, wireless base station apparatus, and positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/011945 WO2021186607A1 (ja) 2020-03-18 2020-03-18 測位システム、無線基地局装置、及び測位方法

Publications (1)

Publication Number Publication Date
WO2021186607A1 true WO2021186607A1 (ja) 2021-09-23

Family

ID=77771007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011945 WO2021186607A1 (ja) 2020-03-18 2020-03-18 測位システム、無線基地局装置、及び測位方法

Country Status (3)

Country Link
US (1) US20230362877A1 (ja)
JP (1) JP7359290B2 (ja)
WO (1) WO2021186607A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166353A1 (ja) * 2023-02-10 2024-08-15 日本電信電話株式会社 電波を中継装置によって中継する方法及びシステム、プログラム、及び制御装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230413012A1 (en) * 2022-06-21 2023-12-21 Qualcomm Incorporated Measurement of sounding reference signal via uplink relay

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222124A (ja) * 1993-01-21 1994-08-12 Tele Syst:Kk 電波発信位置測定装置
JP2011153997A (ja) * 2010-01-28 2011-08-11 Fujitsu Ltd 無線通信装置、無線通信装置における位置測位方法、及び無線通信システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222124A (ja) * 1993-01-21 1994-08-12 Tele Syst:Kk 電波発信位置測定装置
JP2011153997A (ja) * 2010-01-28 2011-08-11 Fujitsu Ltd 無線通信装置、無線通信装置における位置測位方法、及び無線通信システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166353A1 (ja) * 2023-02-10 2024-08-15 日本電信電話株式会社 電波を中継装置によって中継する方法及びシステム、プログラム、及び制御装置

Also Published As

Publication number Publication date
JP7359290B2 (ja) 2023-10-11
JPWO2021186607A1 (ja) 2021-09-23
US20230362877A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
JP4130923B2 (ja) 角度測定に基づいてモバイルユニットの位置測定を行うための方法およびシステム
US20110201357A1 (en) Method and system for refining a location of a base station and/or a mobile device based on signal strength measurements and corresponding transmitter and/or receiver antenna patterns
US20060025155A1 (en) Method and mobile station for autonomously determining an angel of arrival (A0A) estimation
US20090005083A1 (en) Position estimation system
US20180146449A1 (en) Method and system for determining a location of wireless device
WO2021186607A1 (ja) 測位システム、無線基地局装置、及び測位方法
TW202222091A (zh) 取決於頻率和狀態的用戶裝備波束模式
JP2020511813A (ja) 決定されたビーム構成に基づくメッセージ伝送
WO2020004010A1 (ja) 移動局制御方法及び移動局制御装置
US10951273B2 (en) Electronic device, method and storage medium for wireless communication system
US10531465B2 (en) Communication device, access node and methods thereof
JP4977077B2 (ja) 信号源位置推定方法
CN104507160A (zh) 无线网络定位方法、接入点及定位服务器
US7941163B2 (en) Determining the location of a wireless mobile communications device
KR101352361B1 (ko) 방향 탐지에 의한 이동 무선 네트워크에서 위치 결정 방법 및 이동 무선 단말기
JPWO2015004895A1 (ja) 無線通信システム、基地局および制御方法
US20160112112A1 (en) Method and apparatus for beamforming
CN107371228B (zh) 调整无线路由设备的发射参数的方法和电子设备
JP2006203674A (ja) 基地局装置
KR20110035989A (ko) 무선 측위 방법 및 장치
WO2011021321A1 (ja) 近距離無線システム、近距離無線装置及び近距離無線方法
US20220179036A1 (en) Method and apparatus for positioning
JP2007135228A (ja) 測位システム、測位サーバ、無線基地局及びそれに用いる端末位置推定方法
KR20150085720A (ko) 무선전송 장치의 전파 빔 방향 조정 방법
US20210014700A1 (en) Enhanced establishment of communication between nodes in a communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508698

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926218

Country of ref document: EP

Kind code of ref document: A1