WO2021186590A1 - ネットワーク検査システムおよびネットワーク検査方法 - Google Patents

ネットワーク検査システムおよびネットワーク検査方法 Download PDF

Info

Publication number
WO2021186590A1
WO2021186590A1 PCT/JP2020/011824 JP2020011824W WO2021186590A1 WO 2021186590 A1 WO2021186590 A1 WO 2021186590A1 JP 2020011824 W JP2020011824 W JP 2020011824W WO 2021186590 A1 WO2021186590 A1 WO 2021186590A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplification
signal
network
bus
inspection
Prior art date
Application number
PCT/JP2020/011824
Other languages
English (en)
French (fr)
Inventor
康宏 大森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021573180A priority Critical patent/JP7038934B2/ja
Priority to CN202080098231.4A priority patent/CN115280289A/zh
Priority to PCT/JP2020/011824 priority patent/WO2021186590A1/ja
Priority to DE112020006506.5T priority patent/DE112020006506T5/de
Publication of WO2021186590A1 publication Critical patent/WO2021186590A1/ja
Priority to US17/876,957 priority patent/US20220365858A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3041Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is an input/output interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/11Locating faults in cables, transmission lines, or networks using pulse reflection methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/26Functional testing
    • G06F11/273Tester hardware, i.e. output processing circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3058Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations
    • G06F11/3062Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations where the monitored property is the power consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing

Definitions

  • the present disclosure relates to a technology for detecting an unauthorized node connected to a network such as an in-vehicle network.
  • TDR is a technique for detecting a failure of a node on a transmission line by passing a pulse signal of an arbitrary length through a transmission line such as a transmission line. A node failure is detected when the waveform of the pulse signal changes from the normal waveform.
  • TDR is an abbreviation for Time Domain Reflectmentry.
  • Patent Document 1 discloses a technique of applying TDR to an in-vehicle network to detect an unauthorized node connected to the in-vehicle network.
  • the voltage of the detection pulse signal drops. Along with this, the reflected wave indicating the existence of the node connected to the network becomes smaller. Therefore, it becomes difficult to detect the reflected wave. Therefore, it becomes difficult to detect an unauthorized node connected to the network.
  • the purpose of this disclosure is to enable detection of an unauthorized node connected to a network even when the network bus is branched.
  • the network inspection system of the present disclosure is A signal output unit that outputs a basic signal, which is a pulse signal for inspecting a network composed of buses branched at one or more points and to which one or more nodes are connected to each branch destination.
  • An amplification condition determining unit that determines an amplification period for amplifying the basic signal and an amplification factor in the amplification period based on a parameter indicating information about the branching of the bus.
  • a signal amplification unit that amplifies the basic signal at a determined amplification factor during a determined amplification period, It is provided with an inspection unit that receives a basic signal whose waveform has changed as it flows through the bus as an inspection signal and determines the presence or absence of a new node connected to the bus based on the waveform of the inspection signal.
  • FIG. 1 The block diagram of the network inspection system 100 in Embodiment 1.
  • FIG. 2 The block diagram of the network inspection apparatus 200 in Embodiment 1.
  • FIG. The flowchart of the network inspection method in Embodiment 1. The explanatory view of the determination method in Embodiment 1.
  • the explanatory view of the determination method in Embodiment 1. The explanatory view of the amplification control (S110) in Embodiment 1.
  • FIG. 1 The block diagram of the network inspection system 100 in Embodiment 1.
  • FIG. 2 The block diagram of the network inspection apparatus 200 in Embodiment 2.
  • FIG. The explanatory view of the voltage monitoring in Embodiment 2.
  • the flowchart of voltage monitoring in Embodiment 2. The block diagram of the network inspection system 100 in Embodiment 3.
  • FIG. The flowchart of parameter generation in Embodiment 3.
  • the explanatory view of the generation method in Embodiment 3. The hardware block diagram of the network inspection apparatus 200 in embodiment.
  • the same element or the corresponding element is designated by the same reference numeral.
  • the description of the elements with the same reference numerals as the described elements will be omitted or abbreviated as appropriate.
  • the arrows in the figure mainly indicate the flow of data or the flow of processing.
  • Embodiment 1 The network inspection system 100 will be described with reference to FIGS. 1 to 9.
  • the configuration of the network inspection system 100 will be described with reference to FIG.
  • the network inspection system 100 is realized by the network inspection device 200.
  • the network inspection device 200 may be composed of a plurality of devices.
  • the network inspection device 200 is connected to the network 101.
  • a specific example of the network 101 is an in-vehicle network.
  • communication is performed using a protocol called a controller area network (CAN).
  • CAN controller area network
  • the network 101 is composed of buses branched at one or more points. One or more nodes are connected to each branch destination. In the network 101 of FIG. 1, black circles represent branch points. Each node is, for example, a device called an ECU, controller or device. ECU is an abbreviation for Electronic Control Unit. An ECU for power windows, an ECU for power steering, an ECU for braking, an ECU for key unlocking, and the like are connected to the in-vehicle network.
  • the configuration of the network inspection device 200 will be described with reference to FIG.
  • the network inspection device 200 is a computer including hardware such as a processor 201, a memory 202, an auxiliary storage device 203, an input / output interface 204, and a communication interface 205. Further, the network inspection device 200 includes hardware such as a pulse signal circuit 281, a switch circuit 282, an amplifier group 283, and an AD conversion circuit 284. These hardware are connected to each other via signal lines.
  • the processor 201 is an IC that performs arithmetic processing and controls other hardware.
  • the processor 201 is a CPU or DSP.
  • IC is an abbreviation for Integrated Circuit.
  • CPU is an abbreviation for Central Processing Unit.
  • DSP is an abbreviation for Digital Signal Processor.
  • the memory 202 is a volatile or non-volatile storage device.
  • the memory 202 is also referred to as a main storage device or a main memory.
  • the memory 202 is a RAM.
  • the data stored in the memory 202 is stored in the auxiliary storage device 203 as needed.
  • RAM is an abbreviation for Random Access Memory.
  • the auxiliary storage device 203 is a non-volatile storage device.
  • the auxiliary storage device 203 is a ROM, HDD or flash memory.
  • the data stored in the auxiliary storage device 203 is loaded into the memory 202 as needed.
  • ROM is an abbreviation for Read Only Memory.
  • HDD is an abbreviation for Hard Disk Drive.
  • the input / output interface 204 is a port to which an input device and an output device are connected.
  • the input / output interface 204 is a USB terminal
  • the input device is a keyboard and a mouse
  • the output device is a display.
  • USB is an abbreviation for Universal Serial Bus.
  • Communication interface 205 is an interface for communication.
  • the communication interface 205 is a communication port. Input / output of signals to the network 101 is performed via the communication interface 205.
  • the pulse signal circuit 281 is a circuit that generates a pulse signal.
  • the pulse signal is also called a step wave.
  • the switch circuit 282 is a circuit for switching the output destination of the pulse signal.
  • the amplifier group 283 is a plurality of amplifiers.
  • the plurality of amplifiers amplify the pulse signal at different amplification factors.
  • the AD conversion circuit 284 is a circuit that converts an analog signal into a digital signal.
  • the AD conversion circuit 284 is also referred to as an AD converter or a converter.
  • the network inspection device 200 includes elements such as an amplification control unit 210 and an inspection control unit 220.
  • the amplification control unit 210 includes elements such as an amplification condition determination unit 211 and a signal amplification unit 212.
  • the inspection control unit 220 includes elements such as a signal output unit 221, an inspection unit 222, and a result output unit 223. These elements are realized in software.
  • the auxiliary storage device 203 stores a network inspection program for operating the computer as the amplification control unit 210 and the inspection control unit 220.
  • the network inspection program is loaded into memory 202 and executed by processor 201.
  • the OS is further stored in the auxiliary storage device 203. At least part of the OS is loaded into memory 202 and executed by processor 201.
  • the processor 201 executes the network inspection program while executing the OS.
  • OS is an abbreviation for Operating System.
  • the input / output data of the network inspection program is stored in the storage unit 290.
  • the parameter 291 that is the input of the network inspection program is stored in the storage unit 290.
  • the memory 202 functions as a storage unit 290.
  • a storage device such as an auxiliary storage device 203, a register in the processor 201, and a cache memory in the processor 201 may function as a storage unit 290 instead of the memory 202 or together with the memory 202.
  • the network inspection device 200 may include a plurality of processors that replace the processor 201.
  • the plurality of processors share the functions of the processor 201.
  • the network inspection program can be computer-readablely recorded (stored) on a non-volatile recording medium such as an optical disk or flash memory.
  • the operation procedure of the network inspection system 100 corresponds to the network inspection method. Further, the operation procedure of the network inspection system 100 corresponds to the processing procedure by the network inspection program.
  • step S101 the signal output unit 221 outputs a basic signal.
  • the basic signal is a pulse signal for inspecting the network 101.
  • the signal output unit 221 inputs a signal output command to the pulse signal circuit 281.
  • the pulse signal circuit 281 generates a pulse signal.
  • the generated pulse signal is the basic signal.
  • the basic signal is input to the switch circuit 282.
  • step S110 If the bus of the network 101 is branched, the process proceeds to step S110. In the first embodiment, the process proceeds to step S110. If the bus of the network 101 is not branched, the process proceeds to step S102.
  • step S110 the amplification control unit 210 amplifies the basic signal during the amplification period determined by the parameter 291. The details of step S110 will be described later.
  • step S102 the inspection unit 222 receives the basic signal whose waveform has changed as it flows through the bus of the network 101.
  • the accepted basic signal is referred to as an "inspection signal”.
  • the basic signal flows through the bus of the network 101 and is input to the AD conversion circuit 284.
  • the AD conversion circuit 284 converts a basic signal, which is an analog signal, into a digital signal and outputs the signal.
  • the converted basic signal is input to the inspection unit 222.
  • the inspection unit 222 receives the input basic signal.
  • step S103 the inspection unit 222 determines the presence or absence of a new node connected to the bus of the network 101 based on the waveform of the inspection signal.
  • a technique called TDR is applied to the determination.
  • the determination method in step S103 will be described with reference to FIGS. 4 and 5.
  • three nodes are connected to the network 101. These nodes are normal nodes.
  • the waveform of the inspection signal 111 includes a number of reflected waves corresponding to the number of nodes connected to the bus of the network 101. Therefore, the waveform of the inspection signal 111 includes three reflected waves corresponding to the three nodes (see the broken line portion).
  • the inspection unit 222 compares the waveform of the inspection signal 111 with the waveform of the reference signal 112.
  • the waveform of the reference signal 112 corresponds to the waveform of the inspection signal obtained when only normal nodes are connected to the bus of the network 101. Data showing the waveform of the reference signal 112 is prepared in advance.
  • the waveform of the inspection signal 111 matches the waveform of the reference signal 112. Therefore, the inspection unit 222 determines that an unauthorized node is not connected to the bus of the network 101. That is, the inspection unit 222 determines that there is no new node connected to the bus of the network 101.
  • FIG. 5 four nodes are connected to the bus of the network 101.
  • One node is an illegal node.
  • the waveform of the inspection signal 111 contains four reflected waves corresponding to the four nodes (see the dashed line portion). Therefore, the waveform of the inspection signal 111 does not match the waveform of the reference signal 112. Therefore, the inspection unit 222 determines that an invalid node is connected to the bus of the network 101. That is, the inspection unit 222 determines that there is a new node connected to the bus of the network 101.
  • step S104 the result output unit 223 outputs the inspection result.
  • the inspection result indicates the presence or absence of a new node connected to the bus of the network 101.
  • the result output unit 223 displays the inspection result on the display.
  • the outline of the amplification control (S110) will be described with reference to FIGS. 6 to 8. The description will begin with reference to FIG.
  • the bus of network 101 is branched.
  • in-vehicle networks usually have branches.
  • the voltage of the inspection signal 111 drops for a specific period depending on the state of branching. Along with that, the reflected wave becomes smaller. Therefore, it becomes difficult to detect the reflected wave.
  • the magnitude of the voltage drop, (2) the length of the period until the voltage drops, and (3) the length of the period until the voltage drops are determined by the state of the bus branch.
  • the magnitude of the voltage drop is determined by the number of branches.
  • the length of the period until the voltage drops is determined by the length from the network inspection device 200 to the branch point.
  • the length of the period during which the voltage drops is determined by the length from the branch point to the end of the bus.
  • the basic signal 113 is amplified according to the state of bus branching.
  • an inspection signal 111 similar to the inspection signal when the bus is not branched is obtained. Since the reflected wave is not small, it does not become difficult to detect the reflected wave.
  • Step S111 may be executed before the output of the basic signal (step S101 in FIG. 3).
  • the amplification condition determination unit 211 determines the amplification condition based on the parameter 291.
  • Specific amplification conditions are amplification period and amplification factor.
  • Parameter 291 indicates branch information.
  • the branch information is information about the branch of the bus of the network 101.
  • the amplification period is the period during which the basic signal is amplified.
  • the amplification period is specified by the amplification timing and period length.
  • the amplification timing is the timing at which the amplification period starts.
  • the period length is the length of the amplification period.
  • the amplification factor is the magnitude of amplification.
  • the branch information includes the number of branches.
  • the number of branches is the number of branch points or the number of bus ends.
  • the amplification condition determination unit 211 determines a higher amplification factor as the number of branches increases. That is, the larger the number of branches, the higher the amplification factor.
  • the amplification factor is, for example, n times.
  • the amplification condition determination unit 211 selects one amplifier corresponding to the number of branches.
  • the amplification factor of the selected amplifier becomes the determined amplification factor. For example, the first amplifier is selected when the number of branches is 1 or more and 5 or less, the second amplifier is selected when the number of branches is 6 or more and 10 or less, and the third amplifier is selected when the number of branches is 11 or more. Is selected.
  • the branch information includes the branch point distance.
  • the branch point distance is the distance from the base point to the branch point.
  • the branch point distance is the distance from the output port for the basic signal (of the network inspection device 200) to the first branch point (first branch point).
  • the input point of the basic signal is the place where the basic signal is input on the bus.
  • the amplification condition determination unit 211 determines a slower amplification period as the branch point distance becomes longer. That is, the longer the branch point distance, the later the amplification timing.
  • the amplification timing is, for example, 10 nanoseconds after the output of the basic signal.
  • the branch information includes the end distance.
  • the terminal distance is the distance from the branch point to the end of the bus.
  • the end distance is the distance from the first branch point to the farthest end.
  • the amplification condition determination unit 211 determines a longer amplification period as the terminal distance becomes longer. That is, the longer the terminal distance, the longer the amplification period. If the end distance is 2 meters, the length of the amplification period is, for example, 20 nanoseconds.
  • step S112 the signal amplification unit 212 waits until the start of the determined amplification period (amplification timing). During this time, the basic signal output from the pulse signal circuit 281 is input to the switch circuit 282 and is sent from the switch circuit 282 to the bus of the network 101 without passing through the amplifier. That is, an unamplified basic signal flows through the bus of the network 101.
  • step S113 the signal amplification unit 212 amplifies the basic signal at the determined amplification factor. Specifically, the signal amplification unit 212 inputs a switching command designated by the amplifier selected by the amplification condition determination unit 211 to the switch circuit 282. The switch circuit 282 switches the output destination of the basic signal to the amplifier specified by the switching instruction. The basic signal is input to the amplifier and amplified by the amplifier.
  • step S114 the signal amplification unit 212 waits until the end of the determined amplification period. That is, the signal amplification unit 212 waits from the start of the amplification period until the length of the amplification period elapses. During this time, the basic signal output from the pulse signal circuit 281 is input to the switch circuit 282 and is sent from the switch circuit 282 to the bus of the network 101 via the amplifier. That is, the amplified basic signal flows through the bus of the network 101.
  • step S115 the signal amplification unit 212 ends the amplification of the basic signal. Specifically, the signal amplification unit 212 inputs a switching command in which an amplifier is not specified to the switch circuit 282. The switch circuit 282 switches the output destination of the basic signal to the signal line to which the amplifier is not connected.
  • the network inspection system 100 can supplement the voltage drop of the inspection signal due to the branching of the bus. As a result, inspection accuracy is maintained.
  • the network inspection system 100 determines the amplification period and the amplification factor according to the branching state, it can be applied to various networks having different branching states.
  • Embodiment 2 The mode of monitoring the voltage of the basic signal flowing through the bus of the network 101 will be described mainly different from the first embodiment with reference to FIGS. 10 to 13.
  • the configuration of the network inspection device 200 will be described with reference to FIGS. 10 and 11.
  • the network inspection device 200 further includes a voltage monitoring unit 230.
  • the network inspection program further causes the computer to function as a voltage monitoring unit 230.
  • the voltage monitoring is a process executed by the voltage monitoring unit 230.
  • the basic signal 114 is a basic signal flowing through the bus of the network 101.
  • the inspection signal is the basic signal 114.
  • the AD conversion circuit 284 is a reception device. If the branched bus is disconnected, the voltage of the basic signal 114 does not drop. Therefore, when the basic signal input to the bus is amplified, the voltage of the basic signal 114 may exceed the input rated voltage. If the basic signal 114 exceeding the input rated voltage is input to the reception device, the reception device will be destroyed. Therefore, the voltage of the basic signal 114 is monitored. Then, when the voltage of the basic signal 114 rises to the dangerous voltage, the output of the basic signal is stopped. The hazardous voltage is greater than the voltage of the underlying signal before amplification and less than the input rated voltage of the receiving device.
  • step S201 the voltage monitoring unit 230 measures the voltage of the basic signal flowing through the bus of the network 101.
  • the value obtained by measurement, that is, the voltage value of the basic signal is referred to as "measured value”.
  • step S202 the voltage monitoring unit 230 compares the measured value with the threshold value.
  • the threshold value is a value representing the magnitude of the dangerous voltage and is predetermined. If the measured value is equal to or greater than the threshold value, the process proceeds to step S203. If the measured value is less than the threshold value, the process proceeds to step S201.
  • step S203 the voltage monitoring unit 230 stops the output of the basic signal. Specifically, the voltage monitoring unit 230 inputs an output stop command to the pulse signal circuit 281. Then, the pulse signal circuit 281 stops the output of the basic signal.
  • the network inspection system 100 monitors the voltage of the basic signal flowing through the bus of the network 101, predicts that the voltage of the basic signal will rise to the voltage at which the device is destroyed, and stops the output of the basic signal. This can prevent the device from being destroyed.
  • Embodiment 3 A mode for determining the amplification condition without using the parameter 291 will be described mainly different from the first embodiment with reference to FIGS. 14 to 16.
  • the configuration of the network inspection system 100 will be described with reference to FIG.
  • the components of the network inspection system 100 are the same as the components in the first embodiment (see FIG. 1). However, the operation of the amplification condition determination unit 211 of the amplification control unit 210 is different from the operation in the first embodiment.
  • the network inspection system 100 may include a voltage monitoring unit 230 (see the second embodiment).
  • the amplification condition determination is an alternative process to step S111 (see FIG. 9). However, the amplification condition determination is executed before the output of the basic signal (step S101 in FIG. 3).
  • step S301 the amplification condition determination unit 211 sends the basic signal to the bus of the network 101 without amplifying it. Specifically, the amplification condition determination unit 211 inputs a signal output command to the pulse signal circuit 281. Then, the pulse signal circuit 281 generates a pulse signal. The generated pulse signal is the basic signal. The basic signal is input to the switch circuit 282, and is input from the switch circuit 282 to the bus of the network 101 without passing through the amplifier.
  • step S302 the amplification condition determination unit 211 receives the basic signal whose waveform is deformed by flowing through the bus.
  • the accepted basic signal is referred to as a "test signal”.
  • step S303 the amplification condition determination unit 211 determines the amplification condition based on the waveform of the test signal. That is, the amplification condition determination unit 211 calculates the amplification period and the amplification factor.
  • the determination method in step S303 will be described with reference to FIG.
  • the waveform of the reference signal 116 corresponds to the waveform of the inspection signal obtained when the bus of the network 101 does not branch, the node is not connected to the bus of the network 101, and the basic signal is not amplified. However, there may be no condition that the node is not connected to the bus of the network 101. Data showing the waveform of the reference signal 116 is prepared in advance.
  • the amplification condition determination unit 211 compares the waveform of the test signal 115 with the waveform of the reference signal 116. Then, based on the comparison result, the amplification condition determination unit 211 determines (1) the magnitude of the voltage drop, (2) the period until the voltage drops, and (3) the length of the period during which the voltage drops. calculate.
  • the network inspection system 100 can determine the amplification conditions without the parameter 291. This saves the trouble of manually creating the parameter 291. Even among networks 101 of the same vehicle type, the lengths of buses and the like do not completely match. However, the network inspection system 100 can determine the optimum amplification conditions for each vehicle. As a result, the detection accuracy of unauthorized connection is improved.
  • the network inspection device 200 includes a processing circuit 209.
  • the processing circuit 209 is hardware that realizes the amplification control unit 210, the inspection control unit 220, and the voltage monitoring unit 230.
  • the processing circuit 209 may be dedicated hardware or a processor 201 that executes a program stored in the memory 202.
  • the processing circuit 209 is dedicated hardware, the processing circuit 209 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • ASIC is an abbreviation for Application Special Integrated Circuit.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • the network inspection device 200 may include a plurality of processing circuits that replace the processing circuit 209.
  • the plurality of processing circuits share the functions of the processing circuit 209.
  • processing circuit 209 some functions may be realized by dedicated hardware, and the remaining functions may be realized by software or firmware.
  • the functions of the network inspection device 200 can be realized by hardware, software, firmware, or a combination thereof.
  • Each embodiment is an example of a preferred embodiment and is not intended to limit the technical scope of the present disclosure. Each embodiment may be partially implemented or may be implemented in combination with other embodiments. The procedure described using the flowchart or the like may be appropriately changed.
  • the "part” which is an element of the network inspection device 200 may be read as “processing” or "process”.
  • 100 network inspection system 101 network, 111 inspection signal, 112 reference signal, 113 basic signal, 114 basic signal, 115 test signal, 116 reference signal, 200 network inspection device, 201 processor, 202 memory, 203 auxiliary storage device, 204 Output interface, 205 communication interface, 209 processing circuit, 210 amplification control unit, 211 amplification condition determination unit, 212 signal amplification unit, 220 inspection control unit, 221 signal output unit, 222 inspection unit, 223 result output unit, 230 voltage monitoring unit , 281 pulse signal circuit, 282 switch circuit, 283 amplifier group, 284 AD conversion circuit, 290 storage unit, 291 parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Small-Scale Networks (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)

Abstract

ネットワーク(101)は、1つ以上の箇所で分岐したバスで構成されて各分岐先に1つ以上のノードが接続される。検査制御部(220)は基礎信号を出力する。増幅制御部(210)は、パラメータに基づいて増幅期間と増幅率とを決定し、決定された増幅期間に前記基礎信号を決定された増幅率で増幅する。検査制御部(220)は、前記バスを流れることによって波形が変化した基礎信号を検査信号として受け付け、前記検査信号の波形に基づいて前記バスに接続された新たなノードの有無を判定する。

Description

ネットワーク検査システムおよびネットワーク検査方法
 本開示は、車載ネットワークのようなネットワークに接続された不正なノードを検知する技術に関するものである。
 TDRと呼ばれる技術が存在する。
 TDRは、送電線などの伝送線路に任意の長さのパルス信号を流して伝送線路上のノードの故障を検知する技術である。パルス信号の波形が正常時の波形から変化した場合にノードの故障が検知される。
 TDRは、Time Domain Reflectmetryの略称である。
 特許文献1は、TDRを車載ネットワークに応用して車載ネットワークに接続された不正なノードを検知する技術を開示している。
国際公開第2018/146747号
 ネットワークのバスが分岐している場合、検知用のパルス信号の電圧が低下する。それに伴い、ネットワークに接続されたノードの存在を表す反射波が小さくなる。そのため、反射波の検出が困難になる。したがって、ネットワークに接続された不正なノードを検知することが困難になる。
 本開示は、ネットワークのバスが分岐している場合であってもネットワークに接続された不正なノードを検知できるようにすることを目的とする。
 本開示のネットワーク検査システムは、
 1つ以上の箇所で分岐したバスで構成されて各分岐先に1つ以上のノードが接続されるネットワークを検査するためのパルス信号である基礎信号を出力する信号出力部と、
 前記バスの分岐についての情報を示すパラメータに基づいて、前記基礎信号を増幅する増幅期間と、前記増幅期間における増幅率と、を決定する増幅条件決定部と、
 決定された増幅期間に前記基礎信号を決定された増幅率で増幅する信号増幅部と、
 前記バスを流れることによって波形が変化した基礎信号を検査信号として受け付け、前記検査信号の波形に基づいて前記バスに接続された新たなノードの有無を判定する検査部と、を備える。
 本開示によれば、ネットワークのバスが分岐している場合であってもネットワークに接続された不正なノードを検知することが可能となる。
実施の形態1におけるネットワーク検査システム100の構成図。 実施の形態1におけるネットワーク検査装置200の構成図。 実施の形態1におけるネットワーク検査方法のフローチャート。 実施の形態1における判定方法の説明図。 実施の形態1における判定方法の説明図。 実施の形態1における増幅制御(S110)の説明図。 実施の形態1における増幅制御(S110)の説明図。 実施の形態1における増幅制御(S110)の説明図。 実施の形態1における増幅制御(S110)のフローチャート。 実施の形態2におけるネットワーク検査システム100の構成図。 実施の形態2におけるネットワーク検査装置200の構成図。 実施の形態2における電圧監視の説明図。 実施の形態2における電圧監視のフローチャート。 実施の形態3におけるネットワーク検査システム100の構成図。 実施の形態3におけるパラメータ生成のフローチャート。 実施の形態3における生成方法の説明図。 実施の形態におけるネットワーク検査装置200のハードウェア構成図。
 実施の形態および図面において、同じ要素または対応する要素には同じ符号を付している。説明した要素と同じ符号が付された要素の説明は適宜に省略または簡略化する。図中の矢印はデータの流れ又は処理の流れを主に示している。
 実施の形態1.
 ネットワーク検査システム100について、図1から図9に基づいて説明する。
***構成の説明***
 図1に基づいて、ネットワーク検査システム100の構成を説明する。
 ネットワーク検査システム100は、ネットワーク検査装置200によって実現される。なお、ネットワーク検査装置200は、複数の装置で構成されてもよい。
 ネットワーク検査装置200は、ネットワーク101に接続される。
 ネットワーク101の具体例は車載ネットワークである。車載ネットワークでは、例えば、controller area network(CAN)と呼ばれるプロトコルを用いて通信が行われる。
 実施の形態1において、ネットワーク101は、1つ以上の箇所で分岐したバスで構成される。各分岐先には、1つ以上のノードが接続される。図1のネットワーク101において、黒丸は分岐点を表している。
 各ノードは、例えば、ECU、コントローラまたはデバイスと呼ばれる機器である。ECUは、Electronic Control Unitの略称である。
 車載ネットワークには、パワーウインドウ用のECU、パワーステアリング用のECU、ブレーキ用のECUおよびキーアンロック用のECUなどが接続される。
 図2に基づいて、ネットワーク検査装置200の構成を説明する。
 ネットワーク検査装置200は、プロセッサ201とメモリ202と補助記憶装置203と入出力インタフェース204と通信インタフェース205といったハードウェアを備えるコンピュータである。さらに、ネットワーク検査装置200は、パルス信号回路281とスイッチ回路282と増幅器群283とAD変換回路284といったハードウェアを備える。
 これらのハードウェアは、信号線を介して互いに接続されている。
 プロセッサ201は、演算処理を行うICであり、他のハードウェアを制御する。例えば、プロセッサ201は、CPUまたはDSPである。
 ICは、Integrated Circuitの略称である。
 CPUは、Central Processing Unitの略称である。
 DSPは、Digital Signal Processorの略称である。
 メモリ202は揮発性または不揮発性の記憶装置である。メモリ202は、主記憶装置またはメインメモリとも呼ばれる。例えば、メモリ202はRAMである。メモリ202に記憶されたデータは必要に応じて補助記憶装置203に保存される。
 RAMは、Random Access Memoryの略称である。
 補助記憶装置203は不揮発性の記憶装置である。例えば、補助記憶装置203は、ROM、HDDまたはフラッシュメモリである。補助記憶装置203に記憶されたデータは必要に応じてメモリ202にロードされる。
 ROMは、Read Only Memoryの略称である。
 HDDは、Hard Disk Driveの略称である。
 入出力インタフェース204は、入力装置および出力装置が接続されるポートである。例えば、入出力インタフェース204はUSB端子であり、入力装置はキーボードおよびマウスであり、出力装置はディスプレイである。
 USBは、Universal Serial Busの略称である。
 通信インタフェース205は、通信用のインタフェースである。例えば、通信インタフェース205は通信ポートである。ネットワーク101に対する信号の入出力は通信インタフェース205を介して行われる。
 パルス信号回路281は、パルス信号を発生させる回路である。パルス信号はステップ波ともいう。
 スイッチ回路282は、パルス信号の出力先を切り替える回路である。
 増幅器群283は、複数の増幅器である。複数の増幅器は、互いに異なる増幅率でパルス信号を増幅する。
 AD変換回路284は、アナログ信号をデジタル信号に変換する回路である。AD変換回路284は、ADコンバータまたはコンバータともいう。
 ネットワーク検査装置200は、増幅制御部210と検査制御部220といった要素を備える。増幅制御部210は増幅条件決定部211と信号増幅部212といった要素を備える。検査制御部220は信号出力部221と検査部222と結果出力部223といった要素を備える。これらの要素はソフトウェアで実現される。
 補助記憶装置203には、増幅制御部210と検査制御部220としてコンピュータを機能させるためのネットワーク検査プログラムが記憶されている。ネットワーク検査プログラムは、メモリ202にロードされて、プロセッサ201によって実行される。
 補助記憶装置203には、さらに、OSが記憶されている。OSの少なくとも一部は、メモリ202にロードされて、プロセッサ201によって実行される。
 プロセッサ201は、OSを実行しながら、ネットワーク検査プログラムを実行する。
 OSは、Operating Systemの略称である。
 ネットワーク検査プログラムの入出力データは記憶部290に記憶される。例えば、ネットワーク検査プログラムの入力となるパラメータ291が記憶部290に記憶される。
 メモリ202は記憶部290として機能する。但し、補助記憶装置203、プロセッサ201内のレジスタおよびプロセッサ201内のキャッシュメモリなどの記憶装置が、メモリ202の代わりに、又は、メモリ202と共に、記憶部290として機能してもよい。
 ネットワーク検査装置200は、プロセッサ201を代替する複数のプロセッサを備えてもよい。複数のプロセッサは、プロセッサ201の機能を分担する。
 ネットワーク検査プログラムは、光ディスクまたはフラッシュメモリ等の不揮発性の記録媒体にコンピュータ読み取り可能に記録(格納)することができる。
***動作の説明***
 ネットワーク検査システム100の動作の手順はネットワーク検査方法に相当する。また、ネットワーク検査システム100の動作の手順はネットワーク検査プログラムによる処理の手順に相当する。
 図3に基づいて、ネットワーク検査方法を説明する。
 ステップS101において、信号出力部221は基礎信号を出力する。基礎信号は、ネットワーク101を検査するためのパルス信号である。
 具体的には、信号出力部221は、信号出力命令をパルス信号回路281に入力する。そして、パルス信号回路281がパルス信号を発生される。発生したパルス信号が基礎信号である。
 基礎信号は、スイッチ回路282に入力される。
 ネットワーク101のバスが分岐している場合、処理はステップS110に進む。実施の形態1において処理はステップS110に進む。
 ネットワーク101のバスが分岐していない場合、処理はステップS102に進む。
 ステップS110において、増幅制御部210は、パラメータ291によって決まる増幅期間の間、基礎信号を増幅する。
 ステップS110の詳細について後述する。
 ステップS102において、検査部222は、ネットワーク101のバスを流れることによって波形が変化した基礎信号を受け付ける。受け付けられる基礎信号を「検査信号」と称する。
 具体的には、基礎信号がネットワーク101のバスを流れてAD変換回路284に入力される。AD変換回路284は、アナログ信号である基礎信号をデジタル信号に変換して出力する。変換後の基礎信号は検査部222に入力される。そして、検査部222は、入力された基礎信号を受け付ける。
 ステップS103において、検査部222は、検査信号の波形に基づいて、ネットワーク101のバスに接続された新たなノードの有無を判定する。判定には、TDRと呼ばれる技術が応用される。
 図4および図5に基づいて、ステップS103における判定方法を説明する。
 図4において、ネットワーク101には、3つのノードが接続されている。これらのノードは正常なノードである。
 検査信号111の波形は、ネットワーク101のバスに接続されたノードの数に対応する数の反射波を含む。そのため、検査信号111の波形は、3つのノードに対応する3つの反射波を含んでいる(破線部分を参照)。
 検査部222は、検査信号111の波形を参照信号112の波形と比較する。参照信号112の波形は、ネットワーク101のバスに正常なノードだけが接続されている場合に得られる検査信号の波形に相当する。参照信号112の波形を示すデータは予め用意される。
 検査信号111の波形は、参照信号112の波形と合致する。したがって、検査部222は、ネットワーク101のバスに不正なノードが接続されていないと判定する。つまり、検査部222は、ネットワーク101のバスに接続された新たなノードが無いと判定する。
 図5において、ネットワーク101のバスには、4つのノードが接続されている。1つのノードは不正なノードである。
 検査信号111の波形は、4つのノードに対応する4つの反射波を含んでいる(破線部分を参照)。そのため、検査信号111の波形は、参照信号112の波形と合致しない。したがって、検査部222は、ネットワーク101のバスに不正なノードが接続されていると判定する。つまり、検査部222は、ネットワーク101のバスに接続された新たなノードが有ると判定する。
 図3に戻り、ステップS104を説明する。
 ステップS104において、結果出力部223は検査結果を出力する。検査結果は、ネットワーク101のバスに接続された新たなノードの有無を示す。
 例えば、結果出力部223は、検査結果をディスプレイに表示する。
 図6から図8に基づいて、増幅制御(S110)の概要を説明する。
 図6に基づいて説明を始める。
 ネットワーク101のバスは分岐している。例えば、車載ネットワークには、通常、分岐が存在する。
 ネットワーク101のバスが分岐している場合、分岐の状態に応じて、特定の期間、検査信号111の電圧が低下する。それに伴い、反射波が小さくなる。そのため、反射波の検出が困難になる。
 図7に基づいて説明を続ける。
 (1)電圧の低下の大きさ、(2)電圧が低下するまでの期間の長さ、および、(3)電圧が低下する期間の長さは、バスの分岐の状態によって決まる。
 (1)電圧の低下の大きさは、分岐数によって決まる。
 (2)電圧が低下するまでの期間の長さは、ネットワーク検査装置200から分岐点までの長さによって決まる。
 (3)電圧が低下する期間の長さは、分岐点からバスの末端までの長さによって決まる。
 図8に基づいて説明を続ける。
 そこで、増幅制御(S110)では、バスの分岐の状態に応じて、基礎信号113が増幅される。
 その結果、バスが分岐していない場合の検査信号と同様の検査信号111が得られる。反射波が小さくないため、反射波の検出が困難にならない。
 図9に基づいて、増幅制御(S110)の手順を説明する。
 ステップS111は、基礎信号の出力(図3のステップS101)の前に実行されてもよい。
 ステップS111において、増幅条件決定部211は、パラメータ291に基づいて増幅条件を決定する。具体的な増幅条件は、増幅期間および増幅率である。
 パラメータ291は、分岐情報を示す。分岐情報は、ネットワーク101のバスの分岐についての情報である。
 増幅期間は、基礎信号が増幅される期間である。例えば、増幅期間は、増幅タイミングと期間長によって特定される。増幅タイミングは、増幅期間が開始するタイミングである。期間長は、増幅期間の長さである。
 増幅率は、増幅の大きさである。
 分岐情報は、分岐数を含む。例えば、分岐数は、分岐点の数またはバスの末端の数である。
 増幅条件決定部211は、分岐数が多いほど高い増幅率を決定する。つまり、分岐数が多いほど増幅率は高い。分岐数がnである場合、増幅率は例えばn倍である。
 具体的には、増幅条件決定部211は、分岐数に対応する増幅器を1つ選択する。選択される増幅器の増幅率が決定される増幅率となる。例えば、分岐数が1以上5以下である場合に第1増幅器が選択され、分岐数が6以上10以下である場合に第2増幅器が選択され、分岐数が11以上である場合に第3増幅器が選択される。
 分岐情報は、分岐点距離を含む。分岐点距離は、基点から分岐点までの距離である。例えば、分岐点距離は、(ネットワーク検査装置200の)基礎信号用の出力ポートから1つ目の分岐点(第1分岐点)までの距離である。基礎信号の入力点は、バスにおいて基礎信号が入力される箇所である。
 増幅条件決定部211は、分岐点距離が長いほど遅い増幅期間を決定する。つまり、分岐点距離が長いほど増幅タイミングは遅い。分岐点距離が1メートルである場合、増幅タイミングは例えば基礎信号の出力から10ナノ秒後である。
 分岐情報は、末端距離を含む。末端距離は、分岐点からバスの末端までの距離である。例えば、末端距離は、第1分岐点から最遠の末端までの距離である。
 増幅条件決定部211は、末端距離が長いほど長い増幅期間を決定する。つまり、末端距離が長いほど増幅期間が長い。末端距離が2メートルである場合、増幅期間の長さは例えば20ナノ秒である。
 ステップS112において、信号増幅部212は、決定された増幅期間の開始(増幅タイミング)まで待機する。
 この間、パルス信号回路281から出力された基礎信号は、スイッチ回路282に入力され、スイッチ回路282から増幅器を経由せずにネットワーク101のバスへ流される。つまり、ネットワーク101のバスには、増幅されていない基礎信号が流れる。
 ステップS113において、信号増幅部212は、決定された増幅率で基礎信号を増幅する。
 具体的には、信号増幅部212は、増幅条件決定部211によって選択された増幅器が指定された切り替え命令をスイッチ回路282に入力する。スイッチ回路282は、基礎信号の出力先を切り替え命令で指定された増幅器に切り替える。基礎信号は、増幅器に入力され、増幅器によって増幅される。
 ステップS114において、信号増幅部212は、決定された増幅期間の終了まで待機する。つまり、信号増幅部212は、増幅期間の開始から増幅期間の期間長が経過するまで待機する。
 この間、パルス信号回路281から出力された基礎信号は、スイッチ回路282に入力され、スイッチ回路282から増幅器を経由してネットワーク101のバスへ流される。つまり、ネットワーク101のバスには、増幅された基礎信号が流れる。
 ステップS115において、信号増幅部212は、基礎信号の増幅を終了する。
 具体的には、信号増幅部212は、増幅器が指定されていない切り替え命令をスイッチ回路282に入力する。スイッチ回路282は、基礎信号の出力先を増幅器が接続されていない信号線に切り替える。
***実施の形態1の効果***
 ネットワーク101のバスが分岐している場合であってもネットワーク101に接続された不正なノードを検知することが可能となる。
 ネットワーク検査システム100は、バスの分岐による検査信号の電圧の落ち込みを補完することができる。その結果、検査精度が保たれる。
 ネットワーク検査システム100は、分岐の状態に応じて増幅期間および増幅率を決定するため、分岐の状態が異なる様々なネットワークに適用することができる。
 実施の形態2.
 ネットワーク101のバスを流れる基礎信号の電圧を監視する形態について、主に実施の形態1と異なる点を図10から図13に基づいて説明する。
***構成の説明***
 図10および図11に基づいて、ネットワーク検査装置200の構成を説明する。
 ネットワーク検査装置200は、さらに、電圧監視部230を備える。
 ネットワーク検査プログラムは、さらに、電圧監視部230としてコンピュータを機能させる。
***動作の説明***
 図12および図13に基づいて、ネットワーク検査方法における電圧監視を説明する。
 電圧監視は、電圧監視部230によって実行される処理である。
 図12に基づいて、電圧監視の概要を説明する。
 基礎信号114が入力されるデバイスを「受付デバイス」と称する。
 基礎信号114は、ネットワーク101のバスを流れる基礎信号である。検査信号は基礎信号114である。AD変換回路284は受付デバイスである。
 分岐したバスが断線した場合、基礎信号114の電圧は下がらない。そのため、バスに入力される基礎信号が増幅されると、基礎信号114の電圧が入力定格電圧を超える可能性がある。入力定格電圧を超えた基礎信号114が受付デバイスに入力されると、受付デバイスが破壊されてしまう。
 そこで、基礎信号114の電圧が監視される。そして、基礎信号114の電圧が危険電圧まで上がった場合、基礎信号の出力が停止される。
 危険電圧は、増幅される前の基礎信号の電圧より大きく受付デバイスの入力定格電圧より小さい。
 図13に基づいて、電圧監視の手順を説明する。電圧監視は、基礎信号がパルス信号回路281から出力されている間、継続される。
 ステップS201において、電圧監視部230は、ネットワーク101のバスを流れる基礎信号の電圧を計測する。計測によって得られた値すなわち基礎信号の電圧値を「計測値」と称する。
 ステップS202において、電圧監視部230は、計測値を閾値と比較する。閾値は、危険電圧の大きさを表す値であり、予め決められる。
 計測値が閾値以上である場合、処理はステップS203に進む。
 計測値が閾値未満である場合、処理はステップS201に進む。
 ステップS203において、電圧監視部230は、基礎信号の出力を停止させる。
 具体的には、電圧監視部230は、出力停止命令をパルス信号回路281に入力する。そして、パルス信号回路281は基礎信号の出力を停止する。
***実施の形態2の効果***
 ネットワーク検査システム100は、ネットワーク101のバスを流れる基礎信号の電圧を監視し、基礎信号の電圧がデバイスが破壊される電圧まで上昇することを予測し、基礎信号の出力を停止する。これにより、デバイスの破壊を防ぐことができる。
 実施の形態3.
 パラメータ291を用いずに増幅条件を決定する形態について、主に実施の形態1と異なる点を図14から図16に基づいて説明する。
***構成の説明***
 図14に基づいて、ネットワーク検査システム100の構成を説明する。
 ネットワーク検査システム100の構成要素は、実施の形態1における構成要素と同じである(図1を参照)。
 但し、増幅制御部210の増幅条件決定部211の動作が、実施の形態1における動作と異なる。
 なお、ネットワーク検査システム100は、電圧監視部230(実施の形態2を参照)を備えてもよい。
***動作の説明***
 図15に基づいて、ネットワーク検査方法における増幅条件決定を説明する。
 増幅条件決定は、ステップS111(図9参照)の代わりとなる処理である。但し、増幅条件決定は、基礎信号の出力(図3のステップS101)の前に実行される。
 ステップS301において、増幅条件決定部211は、基礎信号を増幅させずにネットワーク101のバスに流す。
 具体的には、増幅条件決定部211は、信号出力命令をパルス信号回路281に入力する。そして、パルス信号回路281がパルス信号を発生される。発生したパルス信号が基礎信号である。基礎信号は、スイッチ回路282に入力され、スイッチ回路282から増幅器を経由せずにネットワーク101のバスに入力される。
 ステップS302において、増幅条件決定部211は、バスを流れることによって波形が変形した基礎信号を受け付ける。受け付けられる基礎信号を「試験信号」と称する。
 ステップS303において、増幅条件決定部211は、試験信号の波形に基づいて増幅条件を決定する。つまり、増幅条件決定部211は、増幅期間と増幅率を算出する。
 図16に基づいて、ステップS303における決定方法を説明する。
 参照信号116の波形は、ネットワーク101のバスが分岐せず且つネットワーク101のバスにノードが接続されず且つ基礎信号が増幅されない場合に得られる検査信号の波形に相当する。但し、ネットワーク101のバスにノードが接続されないという条件は無くてもよい。参照信号116の波形を示すデータは予め用意される。
 増幅条件決定部211は、試験信号115の波形を参照信号116の波形と比較する。そして、増幅条件決定部211は、比較結果に基づいて、(1)電圧の低下の大きさ、(2)電圧が低下するまでの期間、および、(3)電圧が低下する期間の長さを算出する。
***実施の形態3の効果***
 ネットワーク検査システム100は、パラメータ291が無くても増幅条件を決定することができる。これにより、パラメータ291を人手で作成する手間が省ける。
 同じ車種のネットワーク101同士であっても、バスの長さなどが完全には一致しない。しかし、ネットワーク検査システム100は、車両ごとに最適な増幅条件を決定することができる。これにより、不正接続の検知精度が向上する。
***実施の形態の補足***
 図17に基づいて、ネットワーク検査装置200のハードウェア構成を説明する。
 ネットワーク検査装置200は処理回路209を備える。
 処理回路209は、増幅制御部210と検査制御部220と電圧監視部230とを実現するハードウェアである。
 処理回路209は、専用のハードウェアであってもよいし、メモリ202に格納されるプログラムを実行するプロセッサ201であってもよい。
 処理回路209が専用のハードウェアである場合、処理回路209は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。
 ASICは、Application Specific Integrated Circuitの略称である。
 FPGAは、Field Programmable Gate Arrayの略称である。
 ネットワーク検査装置200は、処理回路209を代替する複数の処理回路を備えてもよい。複数の処理回路は、処理回路209の機能を分担する。
 処理回路209において、一部の機能が専用のハードウェアで実現されて、残りの機能がソフトウェアまたはファームウェアで実現されてもよい。
 このように、ネットワーク検査装置200の機能はハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。
 各実施の形態は、好ましい形態の例示であり、本開示の技術的範囲を制限することを意図するものではない。各実施の形態は、部分的に実施してもよいし、他の形態と組み合わせて実施してもよい。フローチャート等を用いて説明した手順は、適宜に変更してもよい。
 ネットワーク検査装置200の要素である「部」は、「処理」または「工程」と読み替えてもよい。
 100 ネットワーク検査システム、101 ネットワーク、111 検査信号、112 参照信号、113 基礎信号、114 基礎信号、115 試験信号、116 参照信号、200 ネットワーク検査装置、201 プロセッサ、202 メモリ、203 補助記憶装置、204 入出力インタフェース、205 通信インタフェース、209 処理回路、210 増幅制御部、211 増幅条件決定部、212 信号増幅部、220 検査制御部、221 信号出力部、222 検査部、223 結果出力部、230 電圧監視部、281 パルス信号回路、282 スイッチ回路、283 増幅器群、284 AD変換回路、290 記憶部、291 パラメータ。

Claims (9)

  1.  1つ以上の箇所で分岐したバスで構成されて各分岐先に1つ以上のノードが接続されるネットワークを検査するためのパルス信号である基礎信号を出力する信号出力部と、
     前記基礎信号を増幅する増幅期間と、前記増幅期間における増幅率と、を決定する増幅条件決定部と、
     決定された増幅期間に前記基礎信号を決定された増幅率で増幅する信号増幅部と、
     前記バスを流れることによって波形が変化した基礎信号を検査信号として受け付け、前記検査信号の波形に基づいて前記バスに接続された新たなノードの有無を判定する検査部と、
    を備えるネットワーク検査システム。
  2.  前記増幅条件決定部は、前記バスの分岐についての情報を示すパラメータに基づいて前記増幅期間と前記増幅率とを決定する
    請求項1に記載のネットワーク検査システム。
  3.  前記パラメータが、分岐数を示し、
     前記増幅条件決定部は、分岐数が多いほど高い増幅率を決定する
    請求項2に記載のネットワーク検査システム。
  4.  前記パラメータが、基点から分岐点までの距離である分岐点距離を示し、
     前記増幅条件決定部は、前記分岐点距離が長いほど遅い増幅期間を決定する
    請求項2または請求項3に記載のネットワーク検査システム。
  5.  前記パラメータが、分岐点から前記バスの末端までの距離である末端距離を示し、
     前記増幅条件決定部は、前記末端距離が長いほど長い増幅期間を決定する
    請求項2から請求項4のいずれか1項に記載のネットワーク検査システム。
  6.  前記バスを流れる基礎信号の電圧を監視する電圧監視部を備える
    請求項1から請求項5のいずれか1項に記載のネットワーク検査システム。
  7.  前記電圧監視部は、前記バスを流れる基礎信号の電圧値を計測し、前記バスを流れる基礎信号の電圧値が閾値まで上がった場合に基礎信号の出力を停止させる
    請求項6に記載のネットワーク検査システム。
  8.  前記増幅条件決定部は、基礎信号を増幅させずに前記バスに流し、前記バスを流れることによって波形が変形した基礎信号を試験信号として受け付け、前記試験信号の波形に基づいて前記増幅期間と前記増幅率とを決定する
    請求項1または請求項6または請求項7のいずれか1項に記載のネットワーク検査システム。
  9.  信号出力部が、1つ以上の箇所で分岐したバスで構成されて各分岐先に1つ以上のノードが接続されるネットワークを検査するためのパルス信号である基礎信号を出力し、
     増幅条件決定部が、前記基礎信号を増幅する増幅期間と、前記増幅期間における増幅率と、を決定し、
     信号増幅部が、決定された増幅期間に前記基礎信号を決定された増幅率で増幅し、
     検査部が、前記バスを流れることによって波形が変化した基礎信号を検査信号として受け付け、前記検査信号の波形に基づいて前記バスに接続された新たなノードの有無を判定する
    ネットワーク検査方法。
PCT/JP2020/011824 2020-03-17 2020-03-17 ネットワーク検査システムおよびネットワーク検査方法 WO2021186590A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021573180A JP7038934B2 (ja) 2020-03-17 2020-03-17 ネットワーク検査システムおよびネットワーク検査方法
CN202080098231.4A CN115280289A (zh) 2020-03-17 2020-03-17 网络检查系统和网络检查方法
PCT/JP2020/011824 WO2021186590A1 (ja) 2020-03-17 2020-03-17 ネットワーク検査システムおよびネットワーク検査方法
DE112020006506.5T DE112020006506T5 (de) 2020-03-17 2020-03-17 Netzwerkinspektionssystem und Netzwerkinspektionsverfahren
US17/876,957 US20220365858A1 (en) 2020-03-17 2022-07-29 Network inspection system and network inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/011824 WO2021186590A1 (ja) 2020-03-17 2020-03-17 ネットワーク検査システムおよびネットワーク検査方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/876,957 Continuation US20220365858A1 (en) 2020-03-17 2022-07-29 Network inspection system and network inspection method

Publications (1)

Publication Number Publication Date
WO2021186590A1 true WO2021186590A1 (ja) 2021-09-23

Family

ID=77771892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011824 WO2021186590A1 (ja) 2020-03-17 2020-03-17 ネットワーク検査システムおよびネットワーク検査方法

Country Status (5)

Country Link
US (1) US20220365858A1 (ja)
JP (1) JP7038934B2 (ja)
CN (1) CN115280289A (ja)
DE (1) DE112020006506T5 (ja)
WO (1) WO2021186590A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779239A (ja) * 1993-09-08 1995-03-20 Fujitsu Ten Ltd フェイルセーフ機能付通信バス
JPH07273728A (ja) * 1994-03-22 1995-10-20 Chrysler Corp トランシーバ
JP2017526994A (ja) * 2015-04-21 2017-09-14 サイプレス セミコンダクター コーポレーション 車載電子装置
JP2018032389A (ja) * 2016-07-25 2018-03-01 フィッシャー−ローズマウント システムズ,インコーポレイテッド バスでフィールドデバイスに給電してフィールドデバイスと通信する携帯型フィールド保守ツール
JP6373529B1 (ja) * 2017-09-07 2018-08-15 三菱電機株式会社 不正接続検知装置、不正接続検知方法および情報処理プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018146747A1 (ja) 2017-02-08 2019-02-14 三菱電機株式会社 情報処理装置、情報処理方法及び情報処理プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779239A (ja) * 1993-09-08 1995-03-20 Fujitsu Ten Ltd フェイルセーフ機能付通信バス
JPH07273728A (ja) * 1994-03-22 1995-10-20 Chrysler Corp トランシーバ
JP2017526994A (ja) * 2015-04-21 2017-09-14 サイプレス セミコンダクター コーポレーション 車載電子装置
JP2018032389A (ja) * 2016-07-25 2018-03-01 フィッシャー−ローズマウント システムズ,インコーポレイテッド バスでフィールドデバイスに給電してフィールドデバイスと通信する携帯型フィールド保守ツール
JP6373529B1 (ja) * 2017-09-07 2018-08-15 三菱電機株式会社 不正接続検知装置、不正接続検知方法および情報処理プログラム

Also Published As

Publication number Publication date
CN115280289A (zh) 2022-11-01
JP7038934B2 (ja) 2022-03-18
JPWO2021186590A1 (ja) 2021-09-23
US20220365858A1 (en) 2022-11-17
DE112020006506T5 (de) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2018146747A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
JP2008250594A (ja) 装置診断方法および装置診断用モジュールならびに装置診断用モジュールを実装した装置
WO2021186590A1 (ja) ネットワーク検査システムおよびネットワーク検査方法
KR100665879B1 (ko) 전력기기의 부분 방전 검출 및 처리 장치
US9574925B2 (en) Fluid measurement device having a circuit for precise flow measurement
US11502725B2 (en) Network inspection system and computer readable medium
CN109257023B (zh) 一种功放保护电路和方法
JP5175641B2 (ja) 通信システムの断線検出装置及び通信システム
JP5433492B2 (ja) 車載制御装置、車載制御装置の検査方法
US20210349159A1 (en) Differential current monitoring of multiple circuits
JP6641502B2 (ja) 検査装置、制御システム、および、検査方法
JP4120232B2 (ja) Ecu検査装置
US7759820B2 (en) Connection error avoidance for apparatus connected to a power supply
JP3893500B2 (ja) 伝導イミュニティ試験装置
JPWO2019229883A1 (ja) 検査装置、検査方法及び検査プログラム
JP5526678B2 (ja) アナログ出力装置
US20240012107A1 (en) Time-continuous power monitoring for radar applications
CN108490308B (zh) 用于输出信息的方法、装置和系统
US20220350352A1 (en) Power source with error detection
JP2010204058A (ja) 回路部品の試験装置および方法
KR20070094163A (ko) 아날로그 입력 모듈의 단선 검출 장치 및 그 방법
JP5354446B2 (ja) 波形測定装置
KR20230129668A (ko) 절연 감시 장치와 전력 계통 사이의 시스템 연결을 확인하는 방법 및 이를 수행하는 장치
TW202107280A (zh) 硬碟運作狀態判定方法
JP2007336332A (ja) 伝送器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573180

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20925347

Country of ref document: EP

Kind code of ref document: A1