WO2021184869A1 - 一种半开式高温热泵系统及其工作方法 - Google Patents

一种半开式高温热泵系统及其工作方法 Download PDF

Info

Publication number
WO2021184869A1
WO2021184869A1 PCT/CN2020/138772 CN2020138772W WO2021184869A1 WO 2021184869 A1 WO2021184869 A1 WO 2021184869A1 CN 2020138772 W CN2020138772 W CN 2020138772W WO 2021184869 A1 WO2021184869 A1 WO 2021184869A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
evaporator
contact condenser
water pump
outlet
Prior art date
Application number
PCT/CN2020/138772
Other languages
English (en)
French (fr)
Inventor
沈九兵
李志超
陈育平
严思远
许津津
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Priority to US17/427,318 priority Critical patent/US11353242B2/en
Publication of WO2021184869A1 publication Critical patent/WO2021184869A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/185Water-storage heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the invention relates to a semi-open high-temperature heat pump system, which belongs to the technical field of energy utilization and recovery.
  • the heat pump is a high-efficiency energy-saving device that fully recycles low-grade heat energy.
  • the current heat pump systems that mainly use HCFCs as the circulating working fluid have certain problems.
  • there are environmental problems such as ozone layer destruction and greenhouse effect.
  • the critical temperature it is rarely possible to achieve a temperature above 90°C. The heating temperature.
  • water As a natural working fluid, water has the advantages of non-toxic, environmentally friendly and efficient, and its critical temperature is as high as 374.3°C, making it an ideal working fluid for high-temperature heat pumps.
  • water as a circulating working fluid also has problems such as large volume flow and high compressor discharge temperature.
  • neither the evaporator nor the condenser can use contact heat exchangers. This will undoubtedly Increase the heat transfer resistance and reduce the cycle efficiency of the system.
  • the heat pump system using water as the circulating working medium has technical problems such as freezing of the circulating working medium in the non-operating state in winter. Therefore, it is particularly necessary to develop a new type of high-temperature heat pump system using water as the circulating working medium.
  • the purpose of the present invention is to solve the above-mentioned problems and deficiencies in the prior art, and to provide a semi-open high-temperature heat pump system using water as a circulating working medium and a working method thereof.
  • the present invention uses a contact condenser to increase the heat exchange efficiency of the heat exchanger, reduce the heat transfer temperature difference, increase the amount of waste heat recovery, and thus increase the temperature of the final output hot water .
  • a semi-open high temperature heat pump system includes a compressor 1, a contact condenser 2, a heat exchanger 3, an evaporator 4, a water purifier 5, a cold water pump 6 and a hot water pump 7, wherein the contact condenser 2 A filter screen 2a, a spray pipe 2b, a packing 2c, a steam pipe 2d, and an electric heater 2e are arranged in order from top to bottom.
  • the top is connected with a twelfth valve 28 and a vacuum pump 9 through a pipeline; the outlet of the compressor 1 a. Connect the first valve 17 through the pipeline, the inlet b of the steam pipe 2d of the contact condenser 2 and the bottom outlet of the contact condenser 2.
  • the bottom outlet d of the contact condenser 2 is connected to the inlet e of the heat exchanger 3 through the third valve 19 through a pipe, and the outlet f of the heat exchanger 3 is connected to the fourth electric valve 20 through the pipe.
  • the first section The flow valve 10 is connected to the inlet g of the evaporator 4, and the steam outlet i above the evaporator 4 is connected to the sixth valve 22 to the inlet j of the compressor 1 through a pipeline;
  • the outlet of the water purifier 5 is connected to the seventh valve 23, the cold water pump 6, and the second one-way valve 34 through a pipeline, and then divided into three paths, passing through the eighth valve 24, the third one-way valve 35, and the first regulating valve.
  • After 13 is connected to the water spray port k of the compressor 1, the other way is connected to the inlet m of the heat exchanger 3 through the ninth valve 25 and the fourth check valve 36, and the outlet n of the heat exchanger 3 passes through the second regulating valve 14 and the tenth valve.
  • the valve 26 is connected to the inlet o of the spray pipe 2b of the contact condenser 2, and then connected all the way to the inlet p above the evaporator 4 through the eleventh valve 27, the fifth check valve 37, and the second throttle valve 11;
  • the bottom outlet q of the evaporator 4 is connected to the inlet b of the steam pipe 2d of the contact condenser 2 through the thirteenth valve 29, the circulating water pump 8, and the sixth one-way valve 38 in sequence through a pipeline, and the right end is sequentially filtered through the driving heat source pipe
  • the evaporator 32 and the fourteenth valve 30 are connected to the inlet r of the evaporator 4, and the outlet s of the evaporator 4 outputs a driving heat source through the fifteenth valve 31.
  • the top of the contact condenser 2 is provided with a safety valve 15 and a non-condensing gas venting regulating valve 16.
  • a fifth valve 21 and a capillary tube 12 are connected in sequence between the outlet f of the heat exchanger 3 and the inlet h of the evaporator 4 through a pipeline.
  • the evaporator 4 is a shell-and-tube full-liquid evaporator through which the circulating working fluid of the system passes through the shell side;
  • the heat exchanger 3 is a plate heat exchanger or a tube-fin heat exchanger.
  • the first valve 17 to the fifteenth valve 31 are all solenoid valves, plunger stop valves or gate valves.
  • a working method of a semi-open high temperature heat pump system includes four working stages, namely: A, system vacuuming and filling method, B, system startup and normal operation, C, system shutdown, and D, system antifreeze.
  • the fourteenth valve When the vacuuming and filling work of the system is completed, open the fourteenth valve and the fifteenth valve, so that the industrial waste heat drives the heat source pipe along the filter, the fourteenth valve enters the evaporator through the evaporator tube inlet r, and After the heat exchange of the circulating working fluid, it is discharged from the evaporator shell side outlet s through the fifteenth valve, and the compressor is turned on. The water vapor enters the compressor from the compressor suction port j through the sixth valve through the outlet i at the top of the evaporator and is compressed.
  • the system After the water vapor is discharged from the compressor exhaust port a and enters the contact condenser from the inlet b of the steam pipe 2d through the first valve, and sprays the water vapor into the contact condenser through the exhaust ports on both sides of the steam pipe 2d.
  • the system After the pressure in the contact condenser reaches the required value, the system will enter the normal operation state, open the cold water pump, hot water pump, the second valve, the seventh valve, the eighth valve, the ninth valve, and the tenth valve, and pass through the water purifier After the treated working fluid water passes through the seventh valve and the cold water pump, part of it is injected into the compressor from the compressor spray hole k through the eighth valve and the first regulating valve to reduce the compressor exhaust superheat and increase the steam output.
  • the other part enters the heat exchanger from the heat exchanger inlet m through the ninth valve, flows out from the heat exchanger outlet n, and passes through the second regulating valve and the tenth valve is sprayed into the contact condenser from the inlet o of the spray pipe ,
  • the high-temperature water vapor discharged from the steam pipe 2d conducts contact heat and mass exchange to form high-temperature water.
  • Part of the high-temperature water in the contact condenser passes through the outlet c below the contact condenser to provide heat to the outside world through the second valve and the hot water pump.
  • a part is discharged from the outlet d below the contact condenser, passes through the third valve, the heat exchanger, the fourth valve, and is throttled and reduced by the first throttle valve, and then enters the evaporator from the inlet g above the evaporator to form a cycle.
  • the capillary throttling and reducing the pressure is enough to enter the evaporator from the inlet h above the evaporator to maintain the internal pressure of the evaporator and form a circulation to circulate the working fluid in the system.
  • the water is in a flowing state to prevent damage to the system due to the freezing of the circulating working fluid;
  • the opening of the first regulating valve before the water injection port k of the compressor is adjusted in proportion to the superheat of the compressor discharge port a to ensure that the compressor discharge superheat is kept at a low level, while increasing the compressor discharge ;
  • the adjustment of the spray water volume is controlled by the second regulating valve, and the opening of the second regulating valve is adjusted in proportion to the temperature of the working fluid at the bottom of the contact condenser to maintain a constant water temperature in the contact condenser, and the non-condensing gas vent regulating valve opens The temperature is directly proportional to the pressure in the contact condenser;
  • the cold water pump and the hot water pump are variable frequency water pumps, and the frequency or flow rate adjustment method of the cold water pump and the hot water pump is linked adjustment, that is, when the frequency or flow rate of the hot water pump increases, the frequency and flow rate of the cold water pump also increase accordingly.
  • the frequency of the hot water pump is adjusted in direct proportion to the demand for hot water supply;
  • the power of the electric heater 2e in the contact condenser is adjusted in proportion to the difference between the set temperature of the hot water in the contact condenser and the actual temperature.
  • the contact condenser The power of the internal electric heater 2e is adjusted inversely according to the water temperature in the contact condenser.
  • the technology of the present invention has the following advantages and beneficial effects:
  • the invention recovers waste water discharged from industrial production as a driving heat source, uses water as a circulating working medium, is energy-saving and environmentally friendly, and conforms to the social pattern of contemporary sustainable development; the system adopts a semi-open heat pump form and uses a contact heat exchanger as the system condensation
  • the heat and mass exchange is carried out in the form of contact heat transfer, which greatly reduces the heat transfer resistance and reduces the heat transfer temperature difference, so as to make full use of the recovered heat and improve the production efficiency; when the waste heat temperature in industrial production is insufficient, the system
  • Auxiliary electric heating can be performed according to the required hot water temperature to ensure that the output hot water temperature of the system is constant; the use of circulating water pumps and electric heaters to solve the problem of freezing of the working medium in the non-operating state of the heat pump system with water as the circulating working medium in winter.
  • the invention has simple structure, convenient operation, improved heat exchange efficiency, reduced heat transfer temperature difference, increased waste heat recovery, and increased the temperature of the final output hot water.
  • Figure 1 is a schematic diagram of the structure of a semi-open high-temperature heat pump system of the present invention
  • Figure 2 is a sectional view of the steam pipe at the bottom of the contact condenser
  • 1 is a compressor
  • 2 is a contact condenser
  • 2a is a filter screen
  • 2b is a spray pipe
  • 2c is a filler
  • 2d is a steam pipe
  • 2e is an electric heater
  • 3 is a heat exchanger
  • 4 is an evaporator
  • 6 is a cold water pump
  • 7 is a hot water pump
  • 8 is a circulating water pump
  • 9 is a vacuum pump
  • 10 is the first throttle valve
  • 11 is a second throttle valve
  • 12 is a capillary tube
  • 13 is a first regulating valve
  • 14 is the second regulating valve
  • 15 is the safety valve
  • 16 is the non-condensable gas vent regulating valve
  • 17 is the first valve
  • 18 is the second valve
  • 19 is the third valve
  • 20 is the fourth valve
  • 21 is the fifth Valve
  • 22 is the sixth valve
  • 23 is the seventh valve
  • 24 is the eighth valve
  • 25 is the
  • a semi-open high temperature heat pump system includes a compressor 1, a contact condenser 2, a heat exchanger 3, an evaporator 4, a water purifier 5, a cold water pump 6 and a hot water pump 7.
  • the contact condenser 2 is provided with a filter screen 2a, a spray pipe 2b, a filler 2c, a steam pipe 2d, and an electric heater 2e from top to bottom, and the top is connected to the twelfth valve 28 and the vacuum pump 9 through a pipeline;
  • the outlet a of the compressor 1 is connected to the first valve 17 through a pipeline, the inlet b of the steam pipe 2d of the contact condenser 2, and the bottom outlet c of the contact condenser 2 is connected to the second valve 18, the hot water pump 7, and the first through a pipeline.
  • the one-way valve 33 outputs to the outside.
  • the bottom outlet d of the contact condenser 2 is connected to the third valve 19 to the inlet e of the heat exchanger 3 through a pipeline, and the outlet f of the heat exchanger 3 is sequentially connected to the fourth electric valve through the pipeline. 20.
  • the first throttle valve 10 to the inlet g of the evaporator 4, and the steam outlet i above the evaporator 4 is connected to the inlet j of the compressor 1 through the sixth valve 22 in turn through a pipeline;
  • the outlet of the water purifier 5 is connected to the seventh valve 23, the cold water pump 6, and the second one-way valve 34 through a pipeline, and then divided into three paths, passing through the eighth valve 24, the third one-way valve 35, and the first regulating valve.
  • After 13 is connected to the water spray port k of the compressor 1, the other way is connected to the inlet m of the heat exchanger 3 through the ninth valve 25 and the fourth check valve 36, and the outlet n of the heat exchanger 3 passes through the second regulating valve 14 and the tenth valve.
  • the valve 26 is connected to the inlet o of the spray pipe 2b of the contact condenser 2, and the third path is connected to the inlet p above the evaporator 4 via the eleventh valve 27, the fifth check valve 37, and the second throttle valve 11;
  • the bottom outlet q of the evaporator 4 is connected to the inlet b of the steam pipe 2d of the contact condenser 2 through the thirteenth valve 29, the circulating water pump 8, and the sixth one-way valve 38 in sequence through a pipeline, and the right end is sequentially filtered through the driving heat source pipe
  • the evaporator 32 and the fourteenth valve 30 are connected to the inlet r of the evaporator 4, and the outlet s of the evaporator 4 outputs a driving heat source through the fifteenth valve 31;
  • the top of the contact condenser 2 is provided with a safety valve 15 and a non-condensable gas venting regulating valve 16;
  • a fifth valve 21 and a capillary tube 12 are sequentially arranged through a pipeline;
  • the circulating working fluid of the semi-open high temperature heat pump system is water, and the water source needs to be processed by a water purifier and then input into the system to prevent impurities in the working fluid water and reduce the corrosion of the working fluid to the system.
  • the contact type condensation The power of the electric heater 2e of the device 2 is adjustable.
  • the end of the steam pipe 2d is connected to the inside of the condenser.
  • the mechanical structure principle is used to improve the strength of the steam pipe 2d to ensure the stable operation of the steam pipe 2d.
  • the steam pipe 2d starts from the outlet to the At the end, small holes are staggered in the horizontal direction (as shown in Figure 2) to ensure stable steam output and uniform heat exchange.
  • the filling 2c in the contact condenser 2 should increase the gas-liquid contact in the contact condenser 2 Time to ensure uniform heat exchange;
  • the evaporator 4 is a shell and tube full-liquid evaporator.
  • the circulating working fluid of the system travels through the shell side, and gravity can be used to separate the working fluid from gas and liquid to ensure that the suction port of the compressor is water vapor and avoid compressor suction.
  • the heat exchanger 3 is a plate heat exchanger or a tube-fin heat exchanger.
  • the first valve 17 to the fifteenth valve 31 are solenoid valves, plunger stop valves or gate valves;
  • the working method of a semi-open high temperature heat pump system is divided into four working stages, namely: A, system vacuuming and filling method, B, system startup and normal operation, C, system shutdown, D, system Antifreeze:
  • Port j enters the compressor 1 for compression, and the compressed water vapor is discharged from the compressor 1 exhaust port a and passes through the first valve 17 from the steam pipe 2d inlet b into the contact condenser 2 and passes through the exhaust on both sides of the steam pipe 2d Inject water vapor into the contact condenser 2. After the pressure in the contact condenser 2 reaches the required value, the system cannot enter the normal operation turntable. Open the cold water pump 6, the hot water pump 7, the second valve 18, and the second valve. Seven valve 23, eighth valve 24, ninth valve 25, and tenth valve 26.
  • the regulating valve 13 is injected into the compressor 1 from the water injection hole k of the compressor 1 to reduce the superheat of the compressor exhaust gas and increase the steam output at the same time.
  • the other part enters the heat exchanger 3 from the inlet m of the heat exchanger 3 through the ninth valve 25 Then it flows out from the outlet n of the heat exchanger 3, and is sprayed into the contact condenser 2 from the inlet o of the spray pipe 2b through the second regulating valve 14, the tenth valve 26, and comes into contact with the high-temperature steam discharged from the steam pipe 2d.
  • the high-temperature water in the contact condenser 2 passes through the outlet c under the contact condenser 2 through the second valve 18 and the hot water pump 7 to provide heat to the user, and the other part is from below the contact condenser 2.
  • the outlet d is discharged, passes through the third valve 19, the heat exchanger 3, the fourth valve 20, and is throttled and reduced by the first throttle valve 10, and then enters the evaporator 4 from the inlet g above the evaporator 4 to form a cycle;
  • the working fluid water in the contact condenser 2 is discharged from the outlet d below the contact condenser 2, after passing through the third valve 19 and the fifth valve 21, it is throttled and depressurized by the capillary tube 12, and then enters the evaporator 4 from the inlet h above the evaporator 4 , In order to maintain the internal pressure of the evaporator to form a circulation, so that the circulating working fluid in the system is in a flowing state, and preventing the system from being damaged due to the freezing of the circulating working fluid;
  • the opening of the first regulating valve in front of the water injection port k of the compressor 1 is adjusted in proportion to the superheat of the discharge port a of the compressor 1 to ensure that the compressor discharge superheat is kept at a low level, while increasing the compressor discharge volume ;
  • the adjustment of the spray water volume is controlled by the second regulating valve 14.
  • the opening of the second regulating valve 14 is adjusted in proportion to the temperature of the working fluid at the bottom of the contact condenser 2, and the non-condensing gas is vented.
  • the opening of the valve 16 is adjusted in direct proportion to the pressure in the contact condenser 2;
  • the cold water pump 6 and the hot water pump 7 are variable frequency water pumps, and the frequency or flow rate of the cold water pump 6 and the hot water pump 7 is adjusted by linkage, that is, when the frequency or flow rate of the hot water pump 7 increases, the frequency and flow rate of the cold water pump 6 also As it increases, the frequency of the hot water pump 6 is adjusted in direct proportion to the demand for hot water supply;
  • the power of the electric heater 2e in the contact condenser 2 is adjusted in proportion to the difference between the set temperature of the hot water in the contact condenser 2 and the actual temperature.
  • the contact condensation is The power of the electric heater 2e in the condenser 2 is adjusted in inverse proportion according to the water temperature in the contact condenser 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本发明提供一种半开式高温热泵系统,系统包括压缩机、接触式冷凝器、换热器、蒸发器、净水器、冷水泵、热水泵、循环水泵和真空泵。压缩机排气口连接接触式冷凝器,接触式冷凝器通过换热器连接蒸发器,蒸发器通过上方排气口连接压缩机吸气口,净水器出口通过冷水泵分别接入压缩机、接触式冷凝器、蒸发器,蒸发器下方出口通过循环水泵连接接触式冷凝器,接触式冷凝器上方连接真空泵,下方连接热水泵。系统采用水为循环工质,采用高传热效率的接触式冷凝器,具有环保高效的特点,且能回收50℃以上的低温余热,提供90℃以上的高温热水。相比现有技术,本发明有效降低传热热阻,提高传热效率,高效回收低温余热,并提高热源品质,实现再次利用。

Description

一种半开式高温热泵系统及其工作方法 技术领域
本发明涉及一种半开式高温热泵系统,属于能源利用与回收技术领域。
背景技术
自21世纪起,我国更加重视减少工业生产中环境污染以及能源浪费等现象,相关资料表明,我国工业余热总资源占消耗总量17%~67%,同时现阶段我国余热回收利用率低于30%,明显低于发达国家的余热回收利用率,每年造成极大的能源浪费现象。因此,现阶段我国充分发展余热回收领域,减少能源浪费显得十分必要。
热泵是一种充分回收利用低品位热能的高效节能装置。但目前主要采用以氟氯烃为循环工质的热泵系统存在一定问题,其一方面,存在臭氧层破坏和温室效应等环境问题,另一方面,受临界温度的限制,很少能够实现90℃以上的供热温度。
水作为一种自然工质,具有无毒环保高效的优势,且临界温度高达374.3℃,是一种理想的高温热泵工质。但水作为循环工质也存在体积流量大,压缩机排气温度高等问题,且采用封闭循环时,为了保障循环水的品质,蒸发器和冷凝器都不能采用接触式换热器,这无疑会增加传热热阻,降低系统循行效率,同时以水为循环工质的热泵系统在冬季非运行状态时存在循坏工质的冻结等技术难题。因此,开发一种新型的以水为循环工质的高温热泵系统就显尤为必要。
发明内容
本发明的目的是为了解决上述现有技术存在的问题和不足,提供一种以水为循环工质的半开式高温热泵系统及其工作方法。
本发明在采用水为循环工质、工业余热作为驱动热源的基础上,采用接触式冷凝器增加换热器换热效率,减少传热温差,增加余热回收量,从而提高最终输出热水的温度。
为达到上述目的,本发明为解决上述问题所采用的技术方案如下:
一种半开式高温热泵系统,包括压缩机1、接触式冷凝器2、换热器3、蒸发器4、净水器5、冷水泵6和热水泵7,其中所述接触式冷凝器2内自上而下依次设置有滤网2a、喷淋管2b、填料2c、蒸汽管2d和电加热器2e,顶部通过管道依次连接有第十二阀门28和真空泵9;所述压缩机1出口a通过管道依顺连接第一阀门17,接触式冷凝器2的蒸汽管2d的入口b,接触式冷凝器2底部出口c通过管道依顺连接第二阀门18,热水泵7,第一单向阀33向外界输出,接触式冷凝器2底部出口d通过管道连接第三阀门19至所述换热器3的入口e,换热器3的出口f通过管道依顺连接第四电阀门20,第一节流阀10至所述蒸发器4的入口g,蒸发器4上方的蒸汽出口i通过管道连接第六阀门22至压缩机1的入口j;
所述净水器5出口通过管道依次连接第七阀门23、冷水泵6、第二单向阀34后分为三路,一路经第八阀门24、第三单向阀35、第一调节阀13后连接压缩机1喷水孔口k处,另一路经第九阀门25、第四单向阀36连接换热器3入口m,换热器3出口n经过第二调节阀14、第十阀门26连接至接触式冷凝器2的喷淋管2b的入口o,再一路经第十一阀门27、第五单向阀37、 第二节流阀11连接蒸发器4上方的入口p;
所述蒸发器4底部出口q通过管道依次连接第十三阀门29、循环水泵8、第六单向阀38至接触式冷凝器2的蒸汽管2d的入口b,右端通过驱动热源管依次经过过滤器32、第十四阀门30连接蒸发器4入口r,蒸发器4出口s通过第十五阀门31输出驱动热源。
进一步优选,所述接触式冷凝器2顶部设置有安全阀15和不凝结气放空调节阀16。
进一步优选,所述换热器3出口f与蒸发器4的入口h之间采用管道依次连接有第五阀门21、毛细管12。
进一步优选,所述蒸发器4为系统循环工质水走壳程的壳管满液式蒸发器;所述换热器3为板式换热器或管翅式换热器。
进一步优选,所述第一阀门17至第十五阀门31均为电磁阀、柱塞式截止阀或闸阀。
为达到上述目的,本发明为解决上述问题所采用的另一技术方案如下:
一种半开式高温热泵系统的工作方法,包括四种工作阶段,即:A、系统抽真空与加注方法,B、系统开机及正常运行,C、系统停机,D、系统防冻。
A、系统抽真空与加注方法
同时打开第一阀门、第三阀门、第四阀门、第六阀门、第十二阀门,打开真空泵将系统内压力抽至负压,以降低在系统运行过程中蒸发温度,当接触式冷凝器内压力达到要求后,关闭真空泵、第十二阀门,保持系统内部压力稳定;
打开冷水泵、第七阀门、第十一阀门,使经过净水器处理后的循环工质水经过第七阀门、第十一阀门,再经由第二节流阀节流降压后,通过蒸发器上方入口p充注至蒸发器中,以保证蒸发器内压力不变,待循环工质充足时关闭冷水泵、第七阀门、第十一阀门,系统循环工质加注完成;
B、系统开机及正常运行
当系统抽真空与加注工作完成后,打开第十四阀门、第十五阀门,使工业废热沿驱动热源管,经过过滤器、第十四阀门由蒸发器管程入口r进入蒸发器,与循环工质换热后,由蒸发器壳程出口s经过第十五阀门排出,打开压缩机,水蒸气从蒸发器上方出口i经过第六阀门从压缩机吸气口j进入压缩机压缩,压缩后水蒸气从压缩机排气口a排出并经过第一阀门从蒸汽管2d的入口b进入接触式冷凝器并通过蒸汽管2d两侧的排气口将水蒸气喷入接触式冷凝器中,待接触式冷凝器中压力达到要求值后,系统将进入正常运行状态,打开冷水泵、热水泵、第二阀门、第七阀门、第八阀门、第九阀门、第十阀门,经过净水器处理后的工质水经过第七阀门、冷水泵后,一部分通过第八阀门、第一调节阀从压缩机喷水孔k喷入压缩机,以降低压缩机排气过热度,同时增加蒸汽产量,另一部分通过第九阀门由换热器入口m进入换热器后从换热器出口n流出,并经过第二调节阀、第十阀门由喷淋管的入口o喷入接触式冷凝器中,与蒸汽管2d排出的高温水蒸气进行接触式热质交换形成高温水,接触式冷凝器内的高温水一部分通过接触式冷凝器下方出口c经由第二阀门、热水泵为外界提供热量,另一部分从接触式冷凝器下方出口d排出,经过第三阀门、换热器、第四阀门并由第一节流阀节流降压后由蒸发器上方入口g进入蒸发器中,形成循环。
C、系统停机
关闭压缩机、第一阀门、第三阀门、第四阀门、第六阀门、第八阀门、第十四阀门、第十五阀门,系统内工质不在循环,同时不再提供低温热源,冷水泵、热水泵继续工作,吸收接 触式冷凝器内的余热,待接触式冷凝器内温度降低至一定温度时,关闭冷水泵、热水泵、第二阀门、第七阀门、第九阀门、第十阀门,系统停止运行;
D、系统防冻
当系统停机且环境温度过低时,打开接触式冷凝器内的电加热器2e、循环水泵、第三阀门、第五阀门、第十三阀门,使蒸发器内工质水从蒸发器下方出口q排出,经过第十三阀门、循环水泵从蒸汽管2d的入口b进入接触式冷凝器并通过蒸汽管2d两侧的排气口将工质水排出,接触式冷凝器内工质水从接触式冷凝器下方出口d排出,经过第三阀门、第五阀门后由毛细管节流降压够从蒸发器上方入口h进入蒸发器,以维持蒸发器内部压力,形成循环,使系统内循环工质水处于流动状态,防止因循环工质冻结而破坏系统;
进一步,所述压缩机喷水孔口k前第一调节阀开度与压缩机排气口a过热度成正比例调节,确保压缩机排气过热度保持较低水准,同时增加压缩机排气量;
进一步,喷淋水量调节由第二调节阀控制,第二调节阀开度由接触式冷凝器底部工质水温度进行正比例调节,以维持接触式冷凝器内水温恒定,不凝结气放空调节阀开度与接触式冷凝器内的压力成正比例调节;
进一步,所述冷水泵与热水泵为变频水泵,冷水泵与热水泵频率或流量调节方法为联动调节,即当热水泵频率或流量增大时,冷水泵的频率与流量也要随之增大,热水泵的频率依据供给热水需求量进行正比例调节;
进一步,在系统正常运行时,接触式冷凝器内电加热器2e的功率根据接触式冷凝器内热水设定温度与实际温度的差值进行正比例调节,在系统防冻运行时,接触式冷凝器内电加热器2e的功率根据接触式冷凝器内的水温进行反比例调节。
与现有技术相比,本发明的技术具有以下优点和有益效果:
本发明回收工业生产中排出的余热水作为驱动热源,以水为循环工质,节能环保,符合当代持续发展的社会格局;系统采用半开式热泵形式,利用接触式换热器作为系统冷凝器,以接触式传热的形式进行热质交换,极大的减小传热热阻,降低传热温差,从而充分利用回收热量,提高制备效率;当工业生产中的余热温度不足时,系统可依据需求热水温度进行辅助电加热,保证系统输出热水温度恒定;利用循环水泵和电加热器配合,解决水为循环工质的热泵系统在冬季非运行状态时存在的工质冻结问题。
本发明构造简单,操作方便,提高了换热效率,减少了传热温差,增加了余热回收量,从而提高最终输出热水的温度。
附图说明
图1为本发明一种半开式高温热泵系统构造示意图;
图2为接触式冷凝器底部蒸汽管剖面图;
1为压缩机、2为接触式冷凝器、2a为滤网、2b为喷淋管、2c为填料、2d为蒸汽管、2e为电加热器、3为换热器、4为蒸发器、5为净水器、6为冷水泵、7为热水泵、8为循环水泵、9为真空泵、10为第一节流阀、11为第二节流阀、12为毛细管、13为第一调节阀、14为第二调节阀、15为安全阀、16为不凝结气放空调节阀、17为第一阀门、18为第二阀门、19为第三阀门、20为第四阀门、21为第五阀门、22为第六阀门、23为第七阀门、24为第八阀门、25为第九阀门、26为第十阀门、27为第十一阀门、28为第十二阀门、29为第十三阀门、30为第十四阀门、 31为第十五阀门、32为过滤器、33为第一单向阀、34为第二单向阀、35为第三单向阀、36为第四单向阀、37为第五单向阀、38为第六单向阀。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面将结合附图及具体实施例对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
如图1所示,一种半开式高温热泵系统,包括压缩机1、接触式冷凝器2、换热器3、蒸发器4、净水器5、冷水泵6和热水泵7,所述接触式冷凝器2内自上而下依次设置有滤网2a、喷淋管2b、填料2c、蒸汽管2d和电加热器2e,顶部通过管道依次连接第十二阀门28和真空泵9;所述压缩机1出口a通过管道依顺连接第一阀门17,接触式冷凝器2的蒸汽管2d的入口b,接触式冷凝器2底部出口c通过管道依顺连接第二阀门18,热水泵7,第一单向阀33向外界输出,接触式冷凝器2底部出口d通过管道依顺连接第三阀门19至所述换热器3的入口e,换热器3的出口f通过管道依次连接第四电阀门20,第一节流阀10至所述蒸发器4的入口g,蒸发器4上方的蒸汽出口i通过管道依次连接第六阀门22接至压缩机1的入口j;
所述净水器5出口通过管道依次连接第七阀门23、冷水泵6、第二单向阀34后分为三路,一路经第八阀门24、第三单向阀35、第一调节阀13后连接压缩机1喷水孔口k处,另一路经第九阀门25、第四单向阀36连接换热器3入口m,换热器3出口n经过第二调节阀14、第十阀门26连接至接触式冷凝器2的喷淋管2b的入口o,第三路经第十一阀门27、第五单向阀37、第二节流阀11连接蒸发器4上方的入口p;
所述蒸发器4底部出口q通过管道依次连接第十三阀门29、循环水泵8、第六单向阀38至接触式冷凝器2的蒸汽管2d的入口b,右端通过驱动热源管依次经过过滤器32、第十四阀门30连接蒸发器4入口r,蒸发器4出口s通过第十五阀门31输出驱动热源;
所述接触式冷凝器2顶部设置安全阀15、不凝结气放空调节阀16;
所述换热器3出口f与蒸发器4的入口h之间通过管道依次设有第五阀门21、毛细管12;
所述一种半开式高温热泵系统循环工质为水,水源需要经过净水器的处理后输入系统,以防止工质水存在杂质并减少工质水对系统的腐蚀,所述接触式冷凝器2电加热器2e为功率可调的,蒸汽管2d末端与冷凝器内部连接固定,运用机械结构原理提高蒸汽管2d的强度,保证蒸汽管2d的工作稳定,同时蒸汽管2d从出口开始至末端,沿程水平方向交错开设小孔(如图2所示),以保证蒸汽输出稳定,换热均匀充分,所述接触式冷凝器2内填料2c应增加触式冷凝器2内气液接触时间,保证换热均匀;
所述蒸发器4为壳管满液式蒸发器,系统循环工质水走壳程,可利用重力作用进行工质气液分离,保证压缩机吸气口均为水蒸气,避免压缩机吸气带液现象,所述换热器3为板式换热器或管翅式换热器,通过回收接触式冷凝器2流出工质水的热量,提高接触式冷凝器2的喷水温度,实现能量回收的二次利用,同时增加进入蒸发器4工质的过冷度,有利于蒸发器内工质蒸发、系统循环;
所述第一阀门17至第十五阀门31均为电磁阀、柱塞式截止阀或闸阀;
所述一种半开式高温热泵系统的工作方法,系统分为四种工作阶段,即:A、系统抽 真空与加注方法,B、系统开机及正常运行,C、系统停机,D、系统防冻:
A、系统抽真空与加注方法
同时打开第一阀门17、第三阀门19、第四阀门20、第六阀门22、第十二阀门28,打开真空泵9将系统内压力抽至负压,当接触式冷凝器2内压力达到要求后,关闭真空泵9、第十二阀门28,保持系统内部压力稳定;
打开冷水泵6、第七阀门23、第十一阀门27,使经过净水器5处理后的循环工质水经过第七阀门23、第十一阀门27,再经由第二节流阀11节流降压后通过蒸发器4上方入口p充注至蒸发器4中,待循环工质充足时关闭冷水泵6、第七阀门23、第十一阀门27,系统循环工质加注完成;
B、系统开机及正常运行
当系统抽真空与加注工作完成后,打开第十四阀门30、第十五阀门31,使工业废热沿驱动热源管4a经过过滤器32、第十四阀门30由蒸发器4入口r进入蒸发器4,与循环工质换热后,由蒸发器4出口s经过第十五阀门31排出,打开压缩机1,水蒸气从蒸发器4上方出口i经过第六阀门22从压缩机1吸气口j进入压缩机1压缩,压缩后水蒸气从压缩机1排气口a排出并经过第一阀门17从蒸汽管2d的入口b进入接触式冷凝器2并通过蒸汽管2d两侧的排气口将水蒸气喷入接触式冷凝器2中,待接触式冷凝器2中压力达到要求值后,系统不能够将进入正常运行转台,打开冷水泵6、热水泵7、第二阀门18、第七阀门23、第八阀门24、第九阀门25、第十阀门26,经过净水器5处理后的工质水经过第七阀门23、冷水泵6后,一部分通过第八阀门24、第一调节阀13从压缩机1喷水孔k喷入压缩机1,以降低压缩机排气过热度,同时增加蒸汽产量,另一部分通过第九阀门25由换热器3入口m进入换热器3后从换热器3出口n流出,并经过第二调节阀14、第十阀门26由喷淋管2b的入口o喷入接触式冷凝器2中,与蒸汽管2d排出的高温水蒸气进行接触式热质交换形成高温水,接触式冷凝器2内的高温水一部分通过接触式冷凝器2下方出口c经由第二阀门18、热水泵7为用户提供热量,另一部分从接触式冷凝器2下方出口d排出,经过第三阀门19、换热器3、第四阀门20并由第一节流阀10节流降压后由蒸发器4上方入口g进入蒸发器4中,形成循环;
C、系统停机
关闭压缩机1、第一阀门17、第三阀门19、第四阀门20、第六阀门22、第八阀门24、第十四阀门30、第十五阀门31,系统内工质不循环,同时不再提供低温热源,冷水泵6、热水泵7继续工作,吸收接触式冷凝器2内的余热,待接触式冷凝器2内温度降低至要求温度时,关闭冷水泵6、热水泵7、第二阀门18、第七阀门23、第九阀门25、第十阀门26,系统停止运行;
D、系统防冻
当系统停机且环境温度过低时,打开接触式冷凝器2内的电加热器2e、循环水泵8、第三阀门19、第五阀门21、第十三阀门29,使蒸发器4内工质水从蒸发器4下方出口q排出,经过第十三阀门29、循环水泵8从蒸汽管2d的入口b进入接触式冷凝器2并通过蒸汽管2d两侧的排气口将工质水排出,接触式冷凝器2内工质水从接触式冷凝器2下方出口d排出,经过第三阀门19、第五阀门21后由毛细管12节流降压后从蒸发器4上方入口h进入蒸发器4,以维持蒸发器内部压力,形成循环,使系统内循环工质水处于流动状态,防止因循环工质冻结而破坏系统;
所述压缩机1喷水孔口k前第一调节阀开度与压缩机1排气口a过热度成正比例调 节,确保压缩机排气过热度保持较低水准,同时增加压缩机排气量;
所述一种半开式高温热泵系统,喷淋水量调节由第二调节阀14控制,第二调节阀14开度根据接触式冷凝器2底部工质水温度进行正比例调节,不凝结气放空调节阀16开度根据接触式冷凝器2内的压力成正比例调节;
所述冷水泵6和热水泵7为变频水泵,冷水泵6与热水泵7频率或流量调节方法为联动调节,即当热水泵7频率或流量增大时,冷水泵6的频率与流量也要随之增大,热水泵6的频率依据供给热水需求量进行正比例调节;
所述系统正常运行时,接触式冷凝器2内电加热器2e的功率根据接触式冷凝器2内热水设定温度与实际温度的差值进行正比例调节,在系统防冻运行时,接触式冷凝器2内电加热器2e的功率根据接触式冷凝器2内的水温进行反比例调节。
以上所述,仅为本发明的具体实施方式。当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,任何熟悉本技术领域的技术人员,当可根据本发明作出各种相应的等效改变和变形,都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种半开式高温热泵系统,包括:压缩机(1)、接触式冷凝器(2)、换热器(3)、蒸发器(4)、净水器(5)、冷水泵(6)和热水泵(7),其特征在于:所述接触式冷凝器(2)内自上而下依次设置有滤网(2a)、喷淋管(2b)、填料(2c)、蒸汽管(2d)和电加热器(2e),顶部通过管道依次连接有第十二阀门(28)和真空泵(9);所述压缩机(1)出口a通过管道依顺连接第一阀门(17),接触式冷凝器(2)的蒸汽管(2d)的入口b,接触式冷凝器(2)底部出口c通过管道依顺连接第二阀门(18),热水泵(7),第一单向阀(33)向外界输出,接触式冷凝器(2)底部出口d通过管道连接第三阀门(19)至所述换热器(3)的入口e,换热器(3)的出口f通过管道依顺连接第四电阀门(20),第一节流阀(10)至所述蒸发器(4)的入口g,蒸发器(4)上方的蒸汽出口i通过管道连接第六阀门(22)至压缩机(1)的入口j;
    所述净水器(5)出口通过管道依次连接第七阀门(23)、冷水泵(6)、第二单向阀(34)后分为三路,一路经第八阀门(24)、第三单向阀(35)、第一调节阀(13)后连接压缩机(1)喷水孔口k处,另一路经第九阀门(25)、第四单向阀(36)连接换热器(3)入口m,换热器(3)出口n经过第二调节阀(14)、第十阀门(26)连接至接触式冷凝器(2)的喷淋管(2b)的入口o,再一路经第十一阀门(27)、第五单向阀(37)、第二节流阀(11)连接蒸发器(4)上方的入口p;
    所述蒸发器(4)底部出口q通过管道依次连接第十三阀门(29)、循环水泵(8)、第六单向阀(38)至接触式冷凝器(2)的蒸汽管(2d)的入口b,右端通过驱动热源管依次经过过滤器(32)、第十四阀门(30)连接蒸发器(4)入口r,蒸发器(4)出口s通过第十五阀门(31)输出驱动热源。
  2. 根据权利要求1所述一种半开式高温热泵系统,其特征在于:所述接触式冷凝器(2)顶部还设置有安全阀(15)和不凝结气放空调节阀(16)。
  3. 根据权利要求1所述一种半开式高温热泵系统,其特征在于:所述换热器(3)出口f与蒸发器(4)的入口h之间采用管道依次连接有第五阀门(21)、毛细管(12)。
  4. 根据权利要求1所述一种半开式高温热泵系统,其特征在于:所述蒸发器(4)为系统循环工质水走壳程的壳管满液式蒸发器;所述换热器(3)为板式换热器或管翅式换热器。
  5. 根据权利要求1所述一种半开式高温热泵系统,其特征在于:所述第一阀门(17)至第十五阀门(31)均为电磁阀、柱塞式截止阀或闸阀。
  6. 一种半开式高温热泵系统的工作方法,其特征在于:包括:
    1)系统抽真空与加注方法
    同时打开第一阀门(17)、第三阀门(19)、第四阀门(20)、第六阀门(22)、十二阀门(28),打开真空泵(9)将系统内压力抽至负压,当接触式冷凝器(2)内压力达到要求后,关闭真空泵(9)、第十二阀门(28),保持系统内部压力稳定;
    打开冷水泵(6)、第七阀门(23)、第十一阀门(27),使经过净水器(5)处理后的循环工质水经过第七阀门(23)、第十一阀门(27),再经由第二节流阀(11)节流降压后通过蒸发器(4)上方入口p充注至蒸发器(4)中,待循环工质充足时关闭冷水泵(6)、第七阀门(23)、第十一阀门(27),系统循环工质加注完成;
    2)系统开机及正常运行
    当系统抽真空与加注工作完成后,打开第十四阀门(30)、第十五阀门(31),使工业废热经过过滤器(32)、第十四阀门(30)由蒸发器(4)入口r进入蒸发器(4),与循环工质换热后,由蒸发器(4)出口s经过第十五阀门(31)排出,打开压缩机(1),水蒸气从蒸发器(4)上方出 口i经过第六阀门(22)从压缩机(1)吸气口j进入压缩机(1)压缩,压缩后水蒸气从压缩机(1)排气口a排出并经过第一阀门(17)从蒸汽管(2d)的入口b进入接触式冷凝器(2)并通过蒸汽管2d两侧的排气口将水蒸气喷入接触式冷凝器(2)中,待接触式冷凝器(2)中压力达到要求值后,打开冷水泵(6)、热水泵(7)、第二阀门(18)、第七阀门(23)、第八阀门(24)、第九阀门(25)、第十阀门(26),经过净水器(5)处理后的工质水经过第七阀门(23)、冷水泵(6)后,一部分通过第八阀门(24)、第一调节阀(13)从压缩机(1)喷水孔口k喷入压缩机(1),另一部分通过第九阀门(25)由换热器(3)入口m进入换热器(3)后从换热器(3)出口n流出,并经过第二调节阀(14)、第十阀门(26)由喷淋管(2b)的入口o喷入接触式冷凝器(2)中,与蒸汽管2d排出的高温水蒸气进行接触式热质交换形成高温水,接触式冷凝器(2)内的高温水一部分通过接触式冷凝器(2)下方出口c经由第二阀门(18)、热水泵(7)为用户提供热量,另一部分从接触式冷凝器(2)下方出口d排出,经过第三阀门(19)、换热器(3)、第四阀门(20)并由第一节流阀(10)节流降压后由蒸发器(4)上方入口g进入蒸发器(4)中,形成循环;
    3)系统停机
    关闭压缩机(1)、第一阀门(17)、第三阀门(19)、第四阀门(20)、第六阀门(22)、第八阀门(24)、第十四阀门(30)、第十五阀门(31),系统内工质不循环,同时不再提供低温热源,冷水泵(6)、热水泵(7)继续工作,吸收接触式冷凝器(2)内的余热,待接触式冷凝器(2)内温度降低至要求温度时,关闭冷水泵(6)、热水泵(7)、第二阀门(18)、第七阀门(23)、第九阀门(25)、第十阀门(26),系统停止运行;
    4)系统防冻
    当系统停机且环境温度过低时,打开接触式冷凝器(2)内的电加热器(2e)、循环水泵(8)、第三阀门(19)、第五阀门(21)、第十三阀门(29),使蒸发器(4)内工质水从蒸发器(4)下方出口q排出,经过第十三阀门(29)、循环水泵(8)从蒸汽管2d的入口b进入接触式冷凝器(2)并通过蒸汽管2d两侧的排气口将工质水排出,接触式冷凝器(2)内工质水从接触式冷凝器(2)下方出口d排出,经过第三阀门(19)、第五阀门(21)后由毛细管(12)节流降压后从蒸发器(4)上方入口h进入蒸发器(4),形成循环,使系统内循环工质水处于流动状态,防止因循环工质冻结而破坏系统。
  7. 根据权利要求6所述一种半开式高温热泵系统的工作方法,其特征在于:所述压缩机(1)喷水孔口k前第一调节阀(13)开度与压缩机(1)排气口a过热度成正比例调节。
  8. 根据权利要求6所述一种半开式高温热泵系统的工作方法,其特征在于:所述第二调节阀(14)开度根据接触式冷凝器(2)底部工质水温度进行正比例调节;所述不凝结气放空调节阀(16)开度根据接触式冷凝器(2)内的压力成正比例调节。
  9. 根据权利要求6所述一种半开式高温热泵系统的工作方法,其特征在于:所述冷水泵(6)与热水泵(7)均为变频水泵,所述冷水泵(6)与热水泵(7)频率的调节方法为联动调节,即当热水泵(7)频率增大时,冷水泵(6)的频率也要随之增大,热水泵(7)的频率依据供给热水需求量进行正比例调节。
  10. 根据权利要求6所述一种半开式高温热泵系统的工作方法,其特征在于:在系统正常运行时,所述接触式冷凝器(2)内电加热器(2e)的功率根据接触式冷凝器(2)内热水设定温度与实际温度的差值进行正比例调节;在系统防冻运行时,所述接触式冷凝器(2)内电加热器(2e)的功率根据接触式冷凝器(2)内的水温进行反比例调节。
PCT/CN2020/138772 2020-03-17 2020-12-24 一种半开式高温热泵系统及其工作方法 WO2021184869A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/427,318 US11353242B2 (en) 2020-03-17 2020-12-24 Semi-open high-temperature heat pump system and working method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010185600.5A CN111306787B (zh) 2020-03-17 2020-03-17 一种半开式高温热泵系统及其工作方法
CN202010185600.5 2020-03-17

Publications (1)

Publication Number Publication Date
WO2021184869A1 true WO2021184869A1 (zh) 2021-09-23

Family

ID=71145784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138772 WO2021184869A1 (zh) 2020-03-17 2020-12-24 一种半开式高温热泵系统及其工作方法

Country Status (3)

Country Link
US (1) US11353242B2 (zh)
CN (1) CN111306787B (zh)
WO (1) WO2021184869A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111306787B (zh) 2020-03-17 2021-04-06 江苏科技大学 一种半开式高温热泵系统及其工作方法
CN112325486A (zh) * 2020-11-25 2021-02-05 珠海格力电器股份有限公司 热水器及其防冻加热件的确定方法、防冻控制方法
CN113483385B (zh) * 2021-07-02 2022-10-04 青岛海信日立空调系统有限公司 一种空气源热泵机组
CN114046449B (zh) * 2021-07-16 2022-12-16 浙江大学 一种带入口蒸汽参数控制的蒸汽压缩系统
CN113932474B (zh) * 2021-11-15 2023-06-06 江苏科技大学 一种热泵多效蒸发耦合式水处理系统及其工作方法
CN114813186B (zh) * 2022-04-25 2023-01-06 浙江大学 一种热泵-热机双向循环试验平台及其运行方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202382475U (zh) * 2011-11-29 2012-08-15 林绍风 制冷系统为开式的制冷、制热装置
CN103884097A (zh) * 2014-03-21 2014-06-25 同济大学 一种半开式回热型空气压缩循环的热泵热水器
CN103954068A (zh) * 2014-04-17 2014-07-30 广东工业大学 带有一体化太阳能热泵系统的吸收式制冷机
CN107192171A (zh) * 2017-06-14 2017-09-22 江苏科技大学 一种工业废水余热的梯级回收系统及回收方法
CN109612159A (zh) * 2018-11-26 2019-04-12 江苏科技大学 第二类溴化锂吸收压缩复合式高温热泵系统及工作方法
JP2019206932A (ja) * 2018-05-29 2019-12-05 株式会社神戸製鋼所 熱エネルギー回収装置
CN111306787A (zh) * 2020-03-17 2020-06-19 江苏科技大学 一种半开式高温热泵系统及其工作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1882132A2 (en) * 2005-05-18 2008-01-30 E.I. du Pont de Nemours & Company Hybrid vapor compression-absorption cycle
CN101482339B (zh) * 2008-01-08 2011-01-26 苏庆泉 低温余热提升能量品位的吸收式热泵系统及方法
WO2016016669A2 (en) * 2014-07-30 2016-02-04 Styliaras Vasilelos Multi stage vapor compression for high efficiency power production and heat pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202382475U (zh) * 2011-11-29 2012-08-15 林绍风 制冷系统为开式的制冷、制热装置
CN103884097A (zh) * 2014-03-21 2014-06-25 同济大学 一种半开式回热型空气压缩循环的热泵热水器
CN103954068A (zh) * 2014-04-17 2014-07-30 广东工业大学 带有一体化太阳能热泵系统的吸收式制冷机
CN107192171A (zh) * 2017-06-14 2017-09-22 江苏科技大学 一种工业废水余热的梯级回收系统及回收方法
JP2019206932A (ja) * 2018-05-29 2019-12-05 株式会社神戸製鋼所 熱エネルギー回収装置
CN109612159A (zh) * 2018-11-26 2019-04-12 江苏科技大学 第二类溴化锂吸收压缩复合式高温热泵系统及工作方法
CN111306787A (zh) * 2020-03-17 2020-06-19 江苏科技大学 一种半开式高温热泵系统及其工作方法

Also Published As

Publication number Publication date
US11353242B2 (en) 2022-06-07
US20220042717A1 (en) 2022-02-10
CN111306787A (zh) 2020-06-19
CN111306787B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2021184869A1 (zh) 一种半开式高温热泵系统及其工作方法
CN106839494A (zh) 热泵双热质耦合加湿脱湿蒸发系统及方法
CN109855151B (zh) 一种利用吸收式热泵结合真空闪蒸的地热供暖系统
CN102564157A (zh) 直接空冷系统节能冷却装置
CN204693371U (zh) 一种直接回收汽轮机排汽余热并加热凝结水系统
CN201615649U (zh) 一种蒸气喷射制冷油气回收装置
CN104390300B (zh) 实现夏季供冷与冬季溶液再生的热源塔热泵溶液再生装置
CN104296554A (zh) 凝汽式电站凝汽器汽室抽真空系统
CN208751079U (zh) 一种带有桥式冷媒流向设计的空气源两联供冷热水热泵
CN204691833U (zh) 一种循环水余热利用装置
CN102563947A (zh) 一种热管热泵组合型制冷装置
CN205783963U (zh) 一种带有喷射调压装置的吸收式制冷系统
CN204574584U (zh) 一种带压力维持装置的新型节能型风冷冷水机组
CN101619907B (zh) 一种高效率蒸汽双效溴化锂吸收式制冷机组
CN207335234U (zh) 一种造纸机废热回收利用装置
CN201757537U (zh) 一种蒸发式冷凝液泵供液循环冷热水机组
CN104154771A (zh) 一种夏季降低背压冬季回收乏汽余热的装置
CN108397931B (zh) 一种环保高效节能直燃型溴化锂吸收式冷、热水机组
CN210718209U (zh) 具有除霜功能的热泵系统
CN108397930B (zh) 消白烟高效直燃型溴化锂吸收式冷、热水机组
CN108362034B (zh) 一种环保高效烟气型溴化锂吸收式冷、热水机组
CN109548378B (zh) 一种数据中心冷却系统与热源塔热泵耦合系统
CN108518891B (zh) 消白烟带卫生热水直燃型溴化锂吸收式冷、热水机组
CN105091403B (zh) 发电机组综合节水节能系统
CN109970125A (zh) 一种高盐废水处理用热泵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925659

Country of ref document: EP

Kind code of ref document: A1