WO2021184753A1 - 一种空间框架模型自适应实时混合仿真试验加载方法 - Google Patents

一种空间框架模型自适应实时混合仿真试验加载方法 Download PDF

Info

Publication number
WO2021184753A1
WO2021184753A1 PCT/CN2020/122497 CN2020122497W WO2021184753A1 WO 2021184753 A1 WO2021184753 A1 WO 2021184753A1 CN 2020122497 W CN2020122497 W CN 2020122497W WO 2021184753 A1 WO2021184753 A1 WO 2021184753A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
loading
substructure
time
adaptive
Prior art date
Application number
PCT/CN2020/122497
Other languages
English (en)
French (fr)
Inventor
李腾飞
苏明周
马磊
弓欢学
Original Assignee
西安建筑科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安建筑科技大学 filed Critical 西安建筑科技大学
Priority to US17/337,913 priority Critical patent/US11150159B2/en
Publication of WO2021184753A1 publication Critical patent/WO2021184753A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements

Definitions

  • the invention belongs to the field of civil engineering structure tests, and specifically relates to a space frame model adaptive real-time hybrid simulation test loading method.
  • Real-time hybrid simulation also known as real-time sub-structure test
  • real-time sub-structure test is a new type of structural test method developed on the basis of sub-structure pseudo-dynamic test.
  • the overall structure is divided into two parts: test sub-structure and numerical sub-structure.
  • test sub-structure Real-time loading is carried out in the laboratory, and the numerical substructure is simulated in real-time in the finite element software. Since real-time hybrid simulation can consider the influence of loading rate on the specimen, a more realistic dynamic response of the structure under seismic load can be obtained.
  • the purpose of the present invention is to overcome the above shortcomings and provide a space frame model adaptive real-time hybrid simulation test loading method that can load the space frame model in real time and fully consider the initial time delay estimation and compensation.
  • the present invention includes the following steps:
  • Step 1 Divide the overall space frame model into two parts: experimental substructure and numerical substructure, and select the top-level frame for the experimental substructure;
  • Step 2 Establish a numerical sub-structure model and select seismic waves to define load conditions
  • Step three install the loading device of the space frame test substructure
  • Step four carry out test control settings, test equipment definition, test site definition and test unit establishment;
  • Step 5 Preload the test substructure through the loading device, estimate the initial time lag of the system based on the feedback data, and input this value into the initial time lag module in the target computer to complete the first compensation of the time lag before formal loading ;
  • Step 6 On the basis of the initial time lag compensation in step 5, modify the load conditions defined in step 2, and define a 2-second adaptive loading section record before each selected real seismic wave record .
  • Step 7 Start test loading.
  • the adaptive loading stage use the adaptive feedforward time lag method to further compensate the initial time lag of the loading system;
  • Step 8 In the formal loading phase, calculate the target displacement y(t i + ⁇ ) of the test substructure at t i + ⁇ , and convert y(t i + ⁇ ) into a relative displacement ⁇ y relative to the bottom of the test substructure. (t i + ⁇ ), the target machine ⁇ y (t i + ⁇ ) to predict the time t i and considering the magnitude of the gain command displacement ⁇ u (t i) is sent to the actuator, and that the time advance ⁇ t The system time delay estimates ⁇ are equal;
  • Step 9 the actuator reaches the commanded displacement, and the reaction force of the test substructure is measured by the force sensor as f i , and the reaction force signal is fed back to obtain the restoring force of the test substructure in the overall model at this moment;
  • OpenSEES numerical simulation software is used to establish the numerical sub-structure model.
  • the fourth step is to establish on OpenFresco, a communication platform for sub-structure testing.
  • step 6 the acceleration peak value of the adaptive loading section should be less than 5% of the true seismic record peak value, and the frequency should avoid the main frequency band of the seismic wave.
  • the target computer includes an adaptive feedforward time delay compensator AFC based on displacement prediction, and uses the recursive least squares algorithm to predict the displacement signal to realize the system time delay compensation.
  • AFC adaptive feedforward time delay compensator
  • the transfer function model of the compensation system can be expressed as:
  • D(s) and U(s) are the Laplace transform of the output and input respectively
  • s is the Laplace variable of the transfer function
  • ⁇ 0 and Are the frequency and damping ratio of the actuator system
  • K is the model gain.
  • u ki is the input signal that the control function actually sends to the hydraulic servo system at time t ki, It is the input signal sent to the hydraulic servo system predicted by the state differential equation at time t ki.
  • step 8 and 9 the target displacement of the test substructure at the time t i + ⁇ is calculated using the OpenSEES numerical simulation software, and the reaction force of the test substructure is fed back to the OpenSEES numerical simulation software.
  • the present invention can ensure that the initial time lag of the system is close to 0 before the seismic wave is officially loaded through the dual initial time lag compensation strategy of the initial time lag compensation and the adaptive loading section, which solves the real-time hybrid simulation test.
  • the problem of insufficient initial time lag estimation and compensation in the present invention the space frame test substructure is equivalent to a test unit in the present invention, and the signal conversion module is used to convert the overall displacement response corresponding to the test substructure in the overall model to actual fixation on the basis
  • the relative displacement of the test sub-structure of the test is realized in real-time loading of the large-scale spatial frame model with greater rigidity.
  • Figure 1 is a schematic diagram of the composition of the test system of the present invention.
  • Figure 2 is a schematic diagram of the signal conversion of the real-time hybrid simulation experiment of the space frame model
  • Figure 3 is a schematic diagram of the time lag compensator predicting based on the displacement signal
  • Figure 4 is the signal prediction principle diagram of the time lag compensator
  • Figure 5 is a schematic diagram of real-time hybrid simulation test results without adding an adaptive section
  • Figure 6 is the original seismic wave record after adding a 2-second adaptive loading section
  • Figure 7 shows the real-time hybrid simulation test results after adding the adaptive segment
  • Figure 8 is the loading device of the space frame test substructure
  • the present invention includes the following steps:
  • Step 1 Divide the overall space frame model into two parts: experimental substructure and numerical substructure, and select the top-level frame for the experimental substructure;
  • Step 2 Use OpenSEES numerical simulation software to establish a numerical sub-structure model, and select seismic waves to define load conditions;
  • Step three install the loading device of the space frame test substructure
  • Step 4 Perform test control settings, test equipment definition, test site definition, and test unit establishment on OpenFresco, a sub-structure test communication platform;
  • Step 5 Preload the test substructure through the loading device, estimate the initial time lag of the system based on the feedback data, and input this value into the initial time lag module in the target computer to complete the first compensation of the time lag before formal loading ;
  • Step 6 On the basis of the initial time lag compensation in step 5, correct the load conditions defined in step 2 and define an adaptive loading section record before each selected real seismic wave record;
  • Step 7 Start test loading.
  • the adaptive loading stage use the adaptive feedforward time lag method to further compensate the initial time lag of the loading system;
  • Step 8 In the formal loading stage, use OpenSEES numerical simulation software to calculate the target displacement y(t i + ⁇ ) of the test substructure at t i + ⁇ , and convert y(t i + ⁇ ) relative to the test substructure command relative displacement Ay bottom (t i + ⁇ ), the target machine ⁇ y (t i + ⁇ ) to predict the time t i and the magnitude of the gain will be considered the displacement ⁇ u (t i) is sent to the actuator, so that The advanced time ⁇ t is equal to the estimated system time delay ⁇ ;
  • Step 9 the actuator reaches the commanded displacement, and the reaction force of the test substructure is measured by the force sensor as f i , and this reaction force signal is fed back to the OpenSEES numerical simulation software to obtain the restoring force of the test substructure in the overall model at this moment;
  • the test object is a rigid multi-layer space frame structure, and the top frame of the overall model is selected as the test substructure for real-time loading test.
  • the target computer includes an adaptive feed-forward delay compensator AFC (Adaptive Feed-forward Delay Compensator) based on displacement prediction.
  • AFC Adaptive Feed-forward Delay Compensator
  • the compensator uses the recursive least squares algorithm to predict the displacement signal to realize the system's time delay compensation.
  • time delay is the main factor affecting the accuracy and robustness of the loading system.
  • this test method proposes a dual initial time lag compensation strategy of initial time lag estimation + adaptive loading section.
  • the prototype structure of the present invention is a three-layer eccentric support frame, the top space frame part is taken as the test substructure, and the remaining part is used as the numerical substructure.
  • the test substructure 4 is fixed on the ground beam 5 by anchor bolts 6.
  • the top beam of the test substructure 4 is fixed with a loading distribution beam 3, and the loading distribution beam 3 is connected to a 25t MTS dynamic electro-hydraulic servo actuator 2 , 25t MTS dynamic electro-hydraulic servo actuator 2 is fixed on the concrete reaction wall 1.
  • Step 1 Divide the overall space frame model into two parts: the test substructure and the numerical substructure, and the test substructure selects the top-level frame with greater rigidity instead of the single member in the general test;
  • Step 2 Use OpenSees to establish a numerical sub-structure model of the eccentric support frame, and select the original seismic wave to define the load condition;
  • Step three referring to Figure 2, use the beam-column test unit in OpenFresco to perform equivalent communication of the test substructure.
  • the rigid floor assumption it can be considered that the translational motions of all nodes in the floor plane are consistent, and the horizontal displacement is at this time It is the main degree of freedom, and the test substructure can be regarded as an integral unit.
  • the horizontal displacement of the test unit vertex represents the overall top displacement of the test substructure, and the horizontal stiffness of the test unit reflects the overall horizontal rigidity of the test substructure frame;
  • Step four referring to Figures 3 and 4, use the adaptive feedforward time-delay compensator AFC in the target machine to predict and estimate the displacement signal to realize the time-delay compensation of the system;
  • Step 5 referring to Figure 5, preload the test substructure, estimate the initial time lag of the system based on the feedback data, and input this value into the initial time lag module in the target computer, and perform the time lag on the first step of the test loading compensate. It can be seen from the results of the preload test that the feedback displacement has a good agreement with the target displacement after about 1.5 seconds due to the failure of effective initial time delay compensation;
  • Step 6 refer to Figure 6, in order to avoid the deterioration of the stability of the test system in the formal loading stage due to the initial time delay compensation and insufficient estimation, a 2-second adaptive period is defined before each real seismic wave record in step (2) Load segment records.
  • the acceleration peak value of the adaptive loading section should be less than 5% of the true seismic record peak value, and the frequency should avoid the main frequency band of the seismic wave;
  • Step 7 refer to Figure 2, start the real-time hybrid simulation experiment of the space frame model.
  • OpenSEES calculates that the displacement responses of each layer of the overall model at t i are y 1 , y 2 , and y 3 respectively .
  • the displacement responses of the first and second layers of the numerical substructure are y 1 and y 2
  • the target machine performs amplitude gain on the target displacement ⁇ d i as the command displacement It is sent to the controller in advance, and the actuator receives the command to execute this step of loading and obtains the reaction force as f i , and feeds back the reaction force signal to OpenSEES, and performs the next analysis of the hybrid simulation model until the seismic wave loading is completed.
  • Step 8 Refer to Figure 7 to analyze the results of the real-time hybrid simulation test. It can be seen from the partial enlarged view of the feedback displacement signal and the target displacement signal in the time domain that the initial time lag estimation + the double initial time lag of the adaptive loading section is used.
  • the compensation strategy can ensure that the stability of the system is in the optimal state before the seismic wave is officially loaded.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

一种空间框架模型自适应实时混合仿真试验加载方法,该方法通过初始时滞补偿和自适应加载段的双重初始时滞补偿策略,能够保证在正式加载地震波之前,系统的初始时滞接近于零,解决了实时混合仿真试验中对初始时滞估计和补偿不足的问题;且在试验中,将空间框架试验子结构等效为一个试验单元,利用信号转换模块将整体模型中试验子结构对应的整体位移转换为实际固定在基础上的试验子结构加载相对位移,实现了对刚度较大的大比例尺空间框架模型的实时加载。

Description

一种空间框架模型自适应实时混合仿真试验加载方法 技术领域
本发明属于土木工程结构试验领域,具体涉及一种空间框架模型自适应实时混合仿真试验加载方法。
背景技术
实时混合仿真又称为实时子结构试验,是在子结构拟动力试验的基础上发展起来的一种新型结构试验方法,将整体结构划分为试验子结构和数值子结构两部分,其中试验子结构在实验室进行实时加载,数值子结构在有限元软件中进行实时模拟,由于实时混合仿真可以考虑加载速率对试件的影响,因此可以得到结构在地震荷载作用下更真实的动态响应。
实时混合仿真试验中,系统时滞的估计和补偿一直是研究人员重点考虑的问题,但是目前对于初始时滞的估计和补偿仍然只是采用简单的初始步一次性补偿方法,这往往导致对系统的初始时滞补偿不够充分,使系统在正式加载环节更容易出现失稳的情况。另一方面,目前实时混合仿真的试验对象多为刚度较小的单根构件,而针对刚度较大的大比例尺整体框架模型的实时加载试验仍然较少。
发明内容
本发明的目的在于克服上述不足,提供一种能够对空间框架模型进行实时加载并充分考虑初始时滞估计和补偿的空间框架模型自适应实时混合仿真试验加载方法。
为了达到上述目的,本发明包括以下步骤:
步骤一,将整体空间框架模型划分为试验子结构和数值子结构两部分,且试验子结构选取顶层框架;
步骤二,建立数值子结构模型,选取地震波定义荷载工况;
步骤三,安装空间框架试验子结构的加载装置;
步骤四,进行试验控制设置、试验设备定义、试验站点定义和试验单元建立;
步骤五,通过加载装置对试验子结构进行预加载,根据反馈数据估算系统的初始时滞,并将此值输入到目标计算机中的初始时滞模块,完成正式加载前时滞的第一次补偿;
步骤六,在步骤五中的初始时滞补偿的基础上,对步骤二中所定义的荷载工况进行修正,在选择的每条真实地震波记录之前定义一段持时2秒的自适应加载段记录。
步骤七,开始试验加载,在自适应加载阶段,利用自适应前馈时滞方法进一步补偿加载系统的初始时滞;
步骤八,在正式加载阶段,计算试验子结构部分在t i+τ时刻的目标位移y(t i+τ),将y(t i+τ)转化为相对于试验子结构底部的相对位移Δy(t i+τ),目标机对Δy(t i+τ)进行预测并在t i时刻将考虑幅值增益后的命令位移Δu(t i)发送给作动器,使提前的时间Δt与系统时滞估计值τ相等;
步骤九,作动器达到命令位移通过力传感器测得试验子结构的反力为f i,将此反力信号反馈,得到整体模型中试验子结构在此刻的恢复力;
步骤十,令i=i+1,重复步骤八和步骤九,直至所有地震波加载结束。
步骤二中,建立数值子结构模型采用OpenSEES数值模拟软件。
步骤四是在子结构试验通讯平台OpenFresco上建立。
步骤六中,自适应加载段的加速度峰值要小于真实地震记录峰值的5%,且频率避开地震波的主频段。
步骤七和八中,目标计算机包括基于位移预测的自适应前馈时滞补偿器AFC,并利用递推最小二乘算法对位移信号进行预测实现系统的时滞补偿。补偿系统的传递函数模型可表示为:
Figure PCTCN2020122497-appb-000001
上式的逆为:
Figure PCTCN2020122497-appb-000002
上式中,D(s)和U(s)分别为输出和输入的Laplace变换,s为传递函数的Laplace变量,ω 0
Figure PCTCN2020122497-appb-000003
分别为作动器系统的频率和阻尼比,K为模型增益。
上式在时域内的状态微分方程可表示为:
Figure PCTCN2020122497-appb-000004
上式中,a 0=1/K,
Figure PCTCN2020122497-appb-000005
这些系数均是未知的,并且不是常数,所以它们需要通过一个在线自适应优化过程来确定。
将状态微分方程改写为矩阵形式:
Figure PCTCN2020122497-appb-000006
上式中系数a的代价函数可表示为:
Figure PCTCN2020122497-appb-000007
上式中,u k-i为t k-i时刻控制函数实际发送给液压伺服系统的输入信号,
Figure PCTCN2020122497-appb-000008
为t k-i时刻通过状态微分方程预测的发送给液压伺服系统的输入信号。
上式的最优最小二乘解可表示为:
a=(Y TY) -1Y Tu
然后,将优化后的系数a带入状态微分方程来计算t k-i+1时刻的输入信号
Figure PCTCN2020122497-appb-000009
步骤八和九中,计算得到试验子结构部分在t i+τ时刻的目标位移采用OpenSEES数值模拟软件,将试验子结构的反力反馈至OpenSEES数值模拟软件。
与现有技术相比,本发明通过初始时滞补偿和自适应加载段的双重初始时滞补偿策略,能够保证在正式加载地震波之前,系统的初始时滞接近于0,解决了实时混合仿真试验中对初始时滞估计和补偿不足的问题;本发明将空间框架试验子结构等效为一个试验单元,利用信号转换模块将整体模型中试验子结构对应的整体位移反应转换为实际固定在基础上的试验子结构 加载相对位移,实现了对刚度较大的大比例尺空间框架模型的实时加载。
附图说明
图1为本发明的试验系统组成示意图;
图2为空间框架模型实时混合仿真试验的信号转换原理图;
图3为时滞补偿器基于位移信号进行预测的示意图;
图4为时滞补偿器的信号预测原理图;
图5为未添加自适应段的实时混合仿真试验结果示意图;
图6为添加了2秒自适应加载段后的原始地震波记录图;
图7为添加自适应段后的实时混合仿真试验结果;
图8为空间框架试验子结构加载装置;
图中,1、混凝土反力墙,2、25t MTS动态电液伺服作动器,3、加载分配梁,4、试验子结构,5、地梁,6、地脚螺栓。
具体实施方式
下面结合附图对本发明做进一步说明。
参见图1和图2,本发明包括以下步骤:
步骤一,将整体空间框架模型划分为试验子结构和数值子结构两部分,且试验子结构选取顶层框架;
步骤二,采用OpenSEES数值模拟软件建立数值子结构模型,选取地震波定义荷载工况;
步骤三,安装空间框架试验子结构的加载装置;
步骤四,在子结构试验通讯平台OpenFresco上进行试验控制设置、试验设备定义、试验站点定义和试验单元建立;
步骤五,通过加载装置对试验子结构进行预加载,根据反馈数据估算系统的初始时滞,并 将此值输入到目标计算机中的初始时滞模块,完成正式加载前时滞的第一次补偿;
步骤六,在步骤五中的初始时滞补偿的基础上,对步骤二中所定义的荷载工况进行修正,在选择的每条真实地震波记录之前定义一段自适应加载段记录;
步骤七,开始试验加载,在自适应加载阶段,利用自适应前馈时滞方法进一步补偿加载系统的初始时滞;
步骤八,在正式加载阶段,采用OpenSEES数值模拟软件计算试验子结构部分在t i+τ时刻的目标位移y(t i+τ),将y(t i+τ)转化为相对于试验子结构底部的相对位移Δy(t i+τ),目标机对Δy(t i+τ)进行预测并在t i时刻将考虑幅值增益后的命令位移Δu(t i)发送给作动器,使提前的时间Δt与系统时滞估计值τ相等;
步骤九,作动器达到命令位移通过力传感器测得试验子结构的反力为f i,将此反力信号反馈至OpenSEES数值模拟软件,得到整体模型中试验子结构在此刻的恢复力;
步骤十,令i=i+1,重复步骤八和步骤九,直至所有地震波加载结束。
试验对象为刚度较大的多层空间框架结构,且选取整体模型的顶层框架作为试验子结构进行实时加载试验。
目标计算机包含了一个基于位移预测的自适应前馈时滞补偿器AFC(Adaptive Feed-forward Delay Compensator),该补偿器利用递推最小二乘算法对位移信号进行预测实现系统的时滞补偿。在实时混合仿真试验中,时滞是影响加载系统精度和鲁棒性的主要因素。为了避免在正式加载阶段由于初始时滞过大而导致仿真结果失真,本试验方法提出了初始时滞估计+自适应加载段的双重初始时滞补偿策略。
实施例:
本发明原型结构为一个三层偏心支撑框架,取顶层空间框架部分作为试验子结构,剩余部分作为数值子结构。参见图8,试验子结构4通过地脚螺栓6固定在地梁5上,试验子结构4 的顶部横梁上固定有加载分配梁3,加载分配梁3连接25t MTS动态电液伺服作动器2,25t MTS动态电液伺服作动器2固定在混凝土反力墙1上。
本发明的具体流程如下:
步骤一,将整体空间框架模型划分为试验子结构和数值子结构两部分,且试验子结构选取刚度较大的顶层框架而非一般试验中的单根构件;
步骤二,利用OpenSees建立偏心支撑框架数值子结构模型,选取原始地震波定义荷载工况;
步骤三,参考图2,采用OpenFresco中的梁柱试验单元来进行试验子结构的等效通讯,依据刚性楼板假定,可认为在楼盖平面内的所有节点的平动保持一致,此时水平位移是主自由度,可将试验子结构看成是一个整体单元。利用多点约束命令:Multi-point Constraints保证数值子结构顶部与试验单元底部位移响应一致。试验单元顶点的水平位移代表了试验子结构整体的顶部位移,试验单元的水平刚度反映了试验子结构框架整体的水平刚度;
步骤四,参考图3和图4,利用目标机中的自适应前馈时滞补偿器AFC对位移信号进行预测和估计来实现系统的时滞补偿;
步骤五,参考图5,对试验子结构进行预加载,根据反馈数据估算系统的初始时滞,并将此值输入到目标计算机中的初始时滞模块,对试验加载的第一步进行时滞补偿。由预加载试验结果可以看出,由于未进行有效的初始时滞补偿,在经过约1.5秒后反馈位移才和目标位移具有了较好的吻合度;
步骤六,参考图6,为了避免由于初始时滞补偿和估计不足导致正式加载阶段试验系统的稳定性变差,在步骤(2)中每条真实地震波记录之前定义一段持时2秒的自适应加载段记录。自适应加载段的加速度峰值要小于真是地震记录峰值的5%,且频率避开地震波的主频段;
步骤七,参考图2,开始空间框架模型的实时混合仿真试验。假设OpenSEES计算得到整 体模型在t i时刻各层的位移响应分别为y 1,y 2,和y 3,对应的混合仿真模型中,数值子结构第一、二层的位移响应为y 1和y 2,试验单元底部的位移响应为y 2,试验单元顶部的位移响应为y 3,OpenFresco将试验子结构部分的计算位移d i=y 3转换为作动器加载的相对目标位移Δd i=y 3-y 2。然后目标机对目标位移Δd i进行幅值增益为命令位移
Figure PCTCN2020122497-appb-000010
并提前发送给控制器,作动器接收到命令执行该步加载得到反力为f i,将此反力信号反馈回OpenSEES,进行混合仿真模型的下一步分析直至地震波加载结束。
步骤八,参考图7,对实时混合仿真试验结果进行分析,由反馈位移信号与目标位移信号在时域内的局部放大图可以看出,利用初始时滞估计+自适应加载段的双重初始时滞补偿策略可以保证在地震波正式加载前系统的稳定性处于最优状态。

Claims (6)

  1. 一种空间框架模型自适应实时混合仿真试验加载方法,其特征在于,包括以下步骤:
    步骤一,将整体空间框架模型划分为试验子结构和数值子结构两部分,且试验子结构选取顶层框架;
    步骤二,建立数值子结构模型,选取地震波定义荷载工况;
    步骤三,安装空间框架试验子结构的加载装置;
    步骤四,进行试验控制设置、试验设备定义、试验站点定义和试验单元建立;
    步骤五,通过加载装置对试验子结构进行预加载,根据反馈数据估算系统的初始时滞,并将此值输入到目标计算机中的初始时滞模块,完成正式加载前时滞的第一次补偿;
    步骤六,在步骤五中的初始时滞补偿的基础上,对步骤二中所定义的荷载工况进行修正,在选择的每条真实地震波记录之前定义一段持时2秒的自适应加载段记录;
    步骤七,开始试验加载,在自适应加载阶段,利用自适应前馈时滞方法进一步补偿加载系统的初始时滞;
    步骤八,在正式加载阶段,计算试验子结构部分在t i+τ时刻的目标位移y(t i+τ),将y(t i+τ)转化为相对于试验子结构底部的相对位移Δy(t i+τ),目标机对Δy(t i+τ)进行预测并在t i时刻将考虑幅值增益后的命令位移Δu(t i)发送给作动器,使提前的时间Δt与系统时滞估计值τ相等;
    步骤九,作动器达到命令位移通过力传感器测得试验子结构的反力为f i,将此反力信号反馈,得到整体模型中试验子结构在此刻的恢复力;
    步骤十,令i=i+1,重复步骤八和步骤九,直至所有地震波加载结束。
  2. 根据权利要求1所述的一种空间框架模型自适应实时混合仿真试验加载方法,其特征在于,步骤二中,建立数值子结构模型采用OpenSEES数值模拟软件。
  3. 根据权利要求1所述的一种空间框架模型自适应实时混合仿真试验加载方法,其特征在于,步骤四是在子结构试验通讯平台OpenFresco上建立。
  4. 根据权利要求1所述的一种空间框架模型自适应实时混合仿真试验加载方法,其特征在于,步骤六中,自适应加载段的加速度峰值要小于真实地震记录峰值的5%,且频率避开地震波的主频段。
  5. 根据权利要求1所述的一种空间框架模型自适应实时混合仿真试验加载方法,其特征在于,步骤七和八中,目标计算机包括基于位移预测的自适应前馈时滞补偿器AFC,并利用递推最小二乘算法对位移信号进行预测实现系统的时滞补偿,补偿系统的传递函数模型表示为:
    Figure PCTCN2020122497-appb-100001
    公式(1)的逆为:
    Figure PCTCN2020122497-appb-100002
    公式(2)中,D(s)和U(s)分别为输出和输入的Laplace变换,s为传递函数的Laplace变量,ω 0
    Figure PCTCN2020122497-appb-100003
    分别为作动器系统的频率和阻尼比,K为模型增益。
    公式(2)在时域内的状态微分方程表示为:
    Figure PCTCN2020122497-appb-100004
    公式(3)中,a 0=1/K,
    Figure PCTCN2020122497-appb-100005
    Figure PCTCN2020122497-appb-100006
    这些系数均是未知的,并且不是常数,所以它们需要通过一个在线自适应优化过程来确定;
    将状态微分方程改写为矩阵形式:
    Figure PCTCN2020122497-appb-100007
    公式(4)中系数a的代价函数表示为:
    Figure PCTCN2020122497-appb-100008
    公式(5)中,u k-i为t k-i时刻控制函数实际发送给液压伺服系统的输入信号,
    Figure PCTCN2020122497-appb-100009
    为t k-i时刻通过状态微分方程预测的发送给液压伺服系统的输入信号;
    公式(5)的最优最小二乘解表示为:
    a=(Y TY) -1Y Tu   公式(6)
    然后,将优化后的系数a带入状态微分方程来计算t k-i+1时刻的输入信号
    Figure PCTCN2020122497-appb-100010
  6. 根据权利要求1所述的一种空间框架模型自适应实时混合仿真试验加载方法,其特征在于,步骤八和九中,计算得到试验子结构部分在t i+τ时刻的目标位移采用OpenSEES数值模拟软件,将试验子结构的反力反馈至OpenSEES数值模拟软件。
PCT/CN2020/122497 2020-03-16 2020-10-21 一种空间框架模型自适应实时混合仿真试验加载方法 WO2021184753A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/337,913 US11150159B2 (en) 2020-03-16 2021-06-03 Adaptive loading method for real-time hybrid simulation testing of space frame model

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010182656.5A CN111323185B (zh) 2020-03-16 2020-03-16 一种空间框架模型自适应实时混合仿真试验加载方法
CN202010182656.5 2020-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/337,913 Continuation US11150159B2 (en) 2020-03-16 2021-06-03 Adaptive loading method for real-time hybrid simulation testing of space frame model

Publications (1)

Publication Number Publication Date
WO2021184753A1 true WO2021184753A1 (zh) 2021-09-23

Family

ID=71171585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122497 WO2021184753A1 (zh) 2020-03-16 2020-10-21 一种空间框架模型自适应实时混合仿真试验加载方法

Country Status (2)

Country Link
CN (1) CN111323185B (zh)
WO (1) WO2021184753A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114047523A (zh) * 2021-10-19 2022-02-15 中国人民解放军国防科技大学 一种基于噪声干扰的迷惑和扰乱电磁波对真正目标检测和跟踪的方法
CN114372436A (zh) * 2022-01-07 2022-04-19 西安海云物联科技有限公司 一种基于WiFi6 PA动态EVM的仿真设计测试方法
CN114707390A (zh) * 2022-05-05 2022-07-05 哈尔滨工业大学 基于分层壳材料本构参数更新混合试验方法及分析方法
CN115408888A (zh) * 2022-11-01 2022-11-29 北京城建集团有限责任公司 一种钢结构模块化施工中嵌补区域杆件安装模拟方法
CN115796038A (zh) * 2022-12-02 2023-03-14 哈尔滨工业大学 基于循环神经网络的实时混合试验方法
CN117131741A (zh) * 2023-09-04 2023-11-28 东北电力大学 一种输电塔子结构抗风实时混合实验方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11150159B2 (en) 2020-03-16 2021-10-19 Xi'an University Of Architecture And Technology Adaptive loading method for real-time hybrid simulation testing of space frame model
CN111323185B (zh) * 2020-03-16 2021-11-12 西安建筑科技大学 一种空间框架模型自适应实时混合仿真试验加载方法
CN112362276B (zh) * 2020-10-27 2022-04-15 南京林业大学 一种子结构混合试验方法
CN114778168B (zh) * 2022-06-17 2022-09-02 中国飞机强度研究所 空天飞机舱段地面强度试验破坏载荷加载级数确定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076194A (zh) * 2012-12-31 2013-05-01 东南大学 实时混合模拟试验效果的频域评价方法
CN107356523A (zh) * 2017-06-20 2017-11-17 东南大学 基于离散切线刚度估计的实时混合模拟试验反馈力修正方法
US20180026776A1 (en) * 2016-07-22 2018-01-25 Electronics And Telecommunications Research Institute Self-interference signal cancellation apparatus and transceiver including the same
CN109359427A (zh) * 2018-11-26 2019-02-19 东南大学 一种用于空间结构的多作动器实时混合模拟试验方法
CN109742773A (zh) * 2019-01-29 2019-05-10 华中科技大学 一种自适应广域阻尼控制器
CN110376894A (zh) * 2019-07-26 2019-10-25 哈尔滨工业大学 一种适用于实时混合试验的两级时滞补偿方法
CN111323185A (zh) * 2020-03-16 2020-06-23 西安建筑科技大学 一种空间框架模型自适应实时混合仿真试验加载方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160283621A1 (en) * 2010-01-06 2016-09-29 Sas Institute Inc. Hybrid Simulation Methodologies
CN105335610B (zh) * 2015-10-22 2017-12-19 东南大学 一种计算实时混合模拟试验瞬时时滞和幅值误差的方法
CN108956074B (zh) * 2018-07-24 2019-09-03 东南大学 实时混合动力试验方法
CN109668704B (zh) * 2018-12-27 2024-01-26 南京林业大学 一种分离式混合试验系统及试验方法
CN110132515B (zh) * 2019-05-10 2021-07-16 哈尔滨工业大学 一种基于模型更新的时程级迭代实时混合试验方法
CN110795884B (zh) * 2019-11-20 2022-10-28 黑龙江科技大学 一种基于多尺度模型更新的新型混合试验方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076194A (zh) * 2012-12-31 2013-05-01 东南大学 实时混合模拟试验效果的频域评价方法
US20180026776A1 (en) * 2016-07-22 2018-01-25 Electronics And Telecommunications Research Institute Self-interference signal cancellation apparatus and transceiver including the same
CN107356523A (zh) * 2017-06-20 2017-11-17 东南大学 基于离散切线刚度估计的实时混合模拟试验反馈力修正方法
CN109359427A (zh) * 2018-11-26 2019-02-19 东南大学 一种用于空间结构的多作动器实时混合模拟试验方法
CN109742773A (zh) * 2019-01-29 2019-05-10 华中科技大学 一种自适应广域阻尼控制器
CN110376894A (zh) * 2019-07-26 2019-10-25 哈尔滨工业大学 一种适用于实时混合试验的两级时滞补偿方法
CN111323185A (zh) * 2020-03-16 2020-06-23 西安建筑科技大学 一种空间框架模型自适应实时混合仿真试验加载方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG ZHEN, LI QIANG, WU BIN: "ADAPTIVE DELAY COMPENSATION METHOD FOR REAL-TIME HYBRID TESTING", GONGCHENG LIXUE = ENGINEERING MECHANICS / ZHONGGUO LIXUE XUEHUI, CN, vol. 35, no. 9, 30 September 2018 (2018-09-30), CN, pages 37 - 43, XP055851652, ISSN: 1000-4750, DOI: 10.6052/j.issn.1000-4750.2017.05.0384 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114047523A (zh) * 2021-10-19 2022-02-15 中国人民解放军国防科技大学 一种基于噪声干扰的迷惑和扰乱电磁波对真正目标检测和跟踪的方法
CN114372436A (zh) * 2022-01-07 2022-04-19 西安海云物联科技有限公司 一种基于WiFi6 PA动态EVM的仿真设计测试方法
CN114372436B (zh) * 2022-01-07 2024-04-05 西安海云物联科技有限公司 一种基于WiFi6 PA动态EVM的仿真设计测试方法
CN114707390A (zh) * 2022-05-05 2022-07-05 哈尔滨工业大学 基于分层壳材料本构参数更新混合试验方法及分析方法
CN115408888A (zh) * 2022-11-01 2022-11-29 北京城建集团有限责任公司 一种钢结构模块化施工中嵌补区域杆件安装模拟方法
CN115796038A (zh) * 2022-12-02 2023-03-14 哈尔滨工业大学 基于循环神经网络的实时混合试验方法
CN117131741A (zh) * 2023-09-04 2023-11-28 东北电力大学 一种输电塔子结构抗风实时混合实验方法及系统
CN117131741B (zh) * 2023-09-04 2024-05-07 东北电力大学 一种输电塔子结构抗风实时混合实验方法及系统

Also Published As

Publication number Publication date
CN111323185A (zh) 2020-06-23
CN111323185B (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2021184753A1 (zh) 一种空间框架模型自适应实时混合仿真试验加载方法
US11150159B2 (en) Adaptive loading method for real-time hybrid simulation testing of space frame model
Chen et al. Large‐scale real‐time hybrid simulation involving multiple experimental substructures and adaptive actuator delay compensation
McCrum et al. An overview of seismic hybrid testing of engineering structures
Ahmadizadeh et al. Compensation of actuator delay and dynamics for real‐time hybrid structural simulation
Li et al. Hybrid feedback PID-FxLMS algorithm for active vibration control of cantilever beam with piezoelectric stack actuator
Phillips et al. Model-based feedforward-feedback actuator control for real-time hybrid simulation
Chabaud et al. Real-time hybrid testing for marine structures: challenges and strategies
CN111366322A (zh) 一种基于液压作动器的混合试验控制系统及试验方法
CN115630558B (zh) 一种复合材料构件装配变形预测方法
CN111207900A (zh) 一种空间框架子结构混合仿真试验方法及试验系统
Shao et al. Adaptive compound control for the real‐time hybrid simulation of high‐speed railway train–bridge coupling vibration
CN113324718B (zh) 一种大型可视化实时混合试验系统及其试验方法
Sepulveda et al. Hybrid simulation framework with mixed displacement and force control for fully compatible displacements
Gawthrop et al. Robust real‐time substructuring techniques for under‐damped systems
Park et al. Model‐based adaptive kinematic transformation method for accurate control of multi‐DOF boundary conditions in conventional tests and hybrid simulations
Sadraddin et al. Testing platform and delay compensation methods for distributed real-time hybrid simulation
Kang et al. Decentralized control strategies of adjacent building structures vibration under earthquake excitation
Williams Real-time hybrid testing in structural dynamics
Zhao et al. Comparison of tests of a nonlinear structure using a shake table and the EFT method
CN111238755A (zh) 一种多层框架子结构远程协同试验方法及系统
Chen et al. Real-time hybrid simulation for seismic control performance evaluation of an active inerter damper system
Li et al. Soft real-time hybrid simulation based on a space steel frame
Yao et al. Shake table real-time hybrid testing for shear buildings based on sliding mode acceleration control method
Tian et al. Shaking‐table substructure test using a MDOF boundary‐coordinating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925694

Country of ref document: EP

Kind code of ref document: A1