WO2021184745A1 - 一种分级热利用的污泥低温带式干化系统 - Google Patents

一种分级热利用的污泥低温带式干化系统 Download PDF

Info

Publication number
WO2021184745A1
WO2021184745A1 PCT/CN2020/121246 CN2020121246W WO2021184745A1 WO 2021184745 A1 WO2021184745 A1 WO 2021184745A1 CN 2020121246 W CN2020121246 W CN 2020121246W WO 2021184745 A1 WO2021184745 A1 WO 2021184745A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
sludge
outlet
conveyor
evaporator
Prior art date
Application number
PCT/CN2020/121246
Other languages
English (en)
French (fr)
Inventor
张庆
刘冠杰
郭涛
吕海生
李强
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2021184745A1 publication Critical patent/WO2021184745A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases

Definitions

  • the invention belongs to the technical field of environmental protection equipment and relates to a sludge low-temperature belt drying system for hierarchical heat utilization.
  • Sludge as an auxiliary product of sewage treatment plants after sewage treatment, has a large environmental pollution and needs to be treated in a harmless manner.
  • incineration of sludge after drying is the "most thorough" sludge treatment method.
  • high-temperature drying processes including fluidized bed type, disc type, two-stage type, thin-layer type, paddle type, etc.
  • low-temperature sludge drying technology produces less odor and dust, and condenses wastewater The water quality is better. Therefore, low-temperature sludge drying technology is widely used in sewage treatment plants.
  • the traditional sludge low-temperature belt drying system has the following problems:
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a sludge low-temperature belt-type drying system using graded heat. Corrosion, and the maintenance cost is low.
  • the sludge low-temperature belt drying system for hierarchical heat utilization of the present invention includes a sludge drying system and a circulating air dehumidification heating system.
  • the sludge drying system includes a cavity, a molding machine, and a cavity.
  • the upper conveyor, lower conveyor and dry sludge conveyor distributed in order from top to bottom in the body. Among them, an upper air chamber is formed between the upper conveyor and the top of the cavity, and an upper air chamber is formed between the upper conveyor and the lower conveyor.
  • the sludge output from the forming machine is dried by the upper conveyor and the lower conveyor in turn, and then falls onto the dry sludge conveyor;
  • the circulating air dehumidification heating system includes a regenerator, an evaporator, and a condenser.
  • the outlet at the bottom of the cavity is divided into Two paths, one of which is connected with the lower air chamber, the other is connected with the inlet at the top of the cavity through the heat absorption side of the condenser, and the condensed waste water outlet of the evaporator is connected with the condensed waste water pipe.
  • the heat absorption side of the condenser is communicated with the inlet at the top of the cavity through a circulating fan.
  • the hot air used to dry the sludge in the cavity flows from top to bottom.
  • the circulating air dehumidification and heating system also includes a compressor and an expansion valve;
  • the heat absorption side outlet of the evaporator is connected with the heat release side inlet of the condenser through the compressor, and the heat release side outlet of the condenser is connected with the heat absorption side inlet of the evaporator through an expansion valve.
  • the circulating air dehumidification heating system also includes a heat exchange system, a cooling water tower and a hot water tank;
  • the outlet of the cooling water tower is connected to the heat absorption side inlet of the evaporator, and the heat absorption side outlet of the evaporator is connected to the cooling water tower inlet;
  • the outlet of the heat exchange system is connected with the inlet of the hot water tank, the outlet of the hot water tank is connected with the inlet of the heat release side of the condenser, and the outlet of the heat release side of the condenser is connected with the inlet of the heat exchange system.
  • the outlet of the cooling water tower is communicated with the heat absorption side inlet of the evaporator through the circulating water pump.
  • the outlet of the hot water tank is communicated with the inlet of the heat release side of the condenser via the hot water pump.
  • the upper air chamber and the lower air chamber in the cavity are composed of multiple small air chambers, and the air volume of each small air chamber is adjustable along the width and length of the upper conveyor and the lower conveyor.
  • hot air flows from top to bottom in the cavity, and the high-temperature hot air affects the sludge with higher moisture content on the upper conveyor mesh belt. Dry, and then dry the sludge with lower moisture content on the lower conveyor belt together with part of the hot air that is not heated by the condenser, so as to realize the grading and optimized utilization of hot air energy, thereby effectively reducing the low-temperature belt drying of the sludge The operating energy consumption of the system.
  • the hot air to dry the sludge flows from top to bottom.
  • Figure 1 is a schematic diagram of the structure of the first embodiment
  • Fig. 2 is a schematic diagram of the structure of the second embodiment.
  • 1 is the forming machine
  • 2 is the upper air chamber
  • 3 is the upper conveyor
  • 4 is the lower air chamber
  • 5 is the lower conveyor
  • 6 is the dry sludge conveyor
  • 7 is the regenerator
  • 8 is the evaporator
  • 9 is a condenser
  • 10 is a circulating fan
  • 11 is a condensed waste water pipe
  • 12 is a compressor
  • 13 is an expansion valve
  • 14 is a circulating water pump
  • 15 is a cooling tower
  • 16 is a hot water pump
  • 17 is a hot water tank
  • 18 is a heat pump Exchange system.
  • the sludge low-temperature belt drying system for hierarchical heat utilization of the present invention includes a sludge drying system and a circulating air dehumidification heating system.
  • the sludge drying system includes a cavity, a molding machine 1, and a cavity.
  • the upper conveyor 3, the lower conveyor 5, and the dry sludge conveyor 6 are distributed from top to bottom in the body.
  • the upper air chamber 2 is formed between the upper conveyor 3 and the top of the cavity
  • the upper conveyor 3 and A lower air chamber 4 is formed between the lower conveyors 5.
  • the sludge output from the forming machine 1 is dried by the upper conveyor 3 and the lower conveyor 5 and then falls onto the dry sludge conveyor 6;
  • the circulating air dehumidification heating system includes The regenerator 7, the evaporator 8, and the condenser 9, wherein the outlet at the bottom of the cavity is divided into the heat release side of the regenerator 7, the heat release side of the evaporator 8, and the heat absorption side of the regenerator 7 in turn.
  • Regenerator 7, evaporator 8, and condenser 9 can be fin heat exchangers, plate heat exchangers, shell-and-tube heat exchangers or other types of high-efficiency heat exchangers; upper air chamber 2 and lower air chamber 4 All are composed of multiple small air chambers, and the air volume of each small air chamber is adjustable along the width and length of the upper conveyor 3 and the lower conveyor 5.
  • the wet sludge with a moisture content of 70%-85% enters the forming machine 1 to form long strips or granular sludge and then falls on the mesh belt of the upper conveyor 3 and spreads evenly.
  • the sludge moves along with the upper conveyor 3 as it moves forward. Absorb the heat of the dry hot air flowing from top to bottom to gradually dry, and then enter the head of the lower conveyor 5 from the tail of the upper conveyor 3, continue to absorb the heat of the hot air flowing from top to bottom, and finally dry to the design After a certain moisture content is required, it will fall on the dry sludge conveyor 6 and be transported out for use.
  • the humid hot air carrying the sludge moisture output from the outlet at the bottom of the cavity enters the heat release side of the regenerator 7 to release heat and cools, and then enters the heat release side of the evaporator 8 to continue cooling, so that the condensable gas in the humid hot air is caused by
  • the temperature is lower than the dew point temperature of the dust-laden airflow to condense.
  • the condensed waste water is discharged through the condensed waste water pipe 11.
  • Get a certain rise the hot air output from the heat absorption side of the regenerator 7 is divided into two paths, one of which enters the lower air chamber 4, and merges with the hot air after the sludge on the mesh belt of the upper conveyor 3 is fully heat exchanged.
  • the sludge on the mesh belt of the lower conveyor 5 is dried; the other way enters the heat absorption side of the condenser 9 to absorb heat, and then enters the cavity through the circulating fan 10.
  • the circulating air dehumidification heating system also includes a compressor 12 and an expansion valve 13; The outlet is communicated with the heat absorption side inlet of the evaporator 8 through the expansion valve 13.
  • the refrigerant in the circulating air dehumidification heating system can use inorganic compounds, pure fluoride working fluids, hydrocarbons or mixed refrigerants, such as R142b, R134a, R22, and the like.
  • the refrigerant process of this embodiment is: the refrigerant is compressed into a high temperature and high pressure refrigerant gas by the compressor 12, then enters the condenser 9 to release heat and becomes a high-pressure saturated or supercooled liquid, and then passes through the expansion valve 13 to become a low-pressure and low-temperature refrigerant gas.
  • the refrigerant liquid then enters the heat-absorbing side of the evaporator 8 to absorb heat and becomes a low-pressure and high-temperature refrigerant gas, and finally enters the compressor 12.
  • the circulating air dehumidification heating system also includes a heat exchange system 18, a cooling water tower 15 and a hot water tank 17; the outlet of the cooling water tower 15 is connected to the heat absorption side inlet of the evaporator 8, and the heat absorption side outlet of the evaporator 8 Connected with the inlet of the cooling water tower 15; the outlet of the heat exchange system 18 is connected with the inlet of the hot water tank 17, the outlet of the hot water tank 17 is connected with the inlet of the heat release side of the condenser 9, and the heat release side of the condenser 9 The outlet is connected to the inlet of the heat exchange system 18, the outlet of the cooling water tower 15 is connected to the heat absorption side inlet of the evaporator 8 via the circulating water pump 14; the outlet of the hot water tank 17 is connected to the heat release side of the condenser 9 via the hot water pump 16 The entrance is connected.
  • the cold source working medium of the evaporator 8 is circulating water, and the circulating water is sent to the evaporator 8 by the circulating water pump 14 to absorb heat and then returned to the cooling water tower 15 for cooling and recycling.
  • the heat source working medium of the condenser 9 is hot water.
  • the hot water is drawn from the hot water tank 17 by the hot water pump 16, enters the condenser 9 to release heat, and then returns to the cold source end inlet of the heat exchange system 18.
  • the heat absorbed in the exchange system 18 is heated and returned to the hot water tank 17 for recycling.
  • the heat source of the heat exchange system 18 may be hot flue gas, steam, hot water or heat transfer oil.
  • the working principle of the present invention is: the hot air for drying the sludge flows from top to bottom.
  • the high temperature hot air will dry the sludge with a higher moisture content (above about 50%) on the upper conveyor 3 mesh belt.
  • the hot air cooled by heat exchange with the upper sludge and another part of the hot air not heated by the condenser 9 will dry the sludge with a lower moisture content (below about 50%) on the mesh belt of the lower conveyor 5 to achieve the hot air energy.
  • Hierarchical and optimized utilization thereby reducing the operating energy consumption of the sludge low-temperature belt drying system; on the other hand, under the multiple blocking action of hot air, sludge and mesh belt, the dust in the sludge drying process is not easy to escape, and in actual During operation, the corresponding parameters can be designed according to actual needs, and the structure of each heat exchanger and the flow rate and temperature of each flowing medium in the system can be changed, thereby affecting the performance parameters such as the efficiency of sludge drying of the overall system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Drying Of Solid Materials (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种分级热利用的污泥低温带式干化系统,上层输送机(3)与腔体的顶部之间形成上层风室(2),上层输送机(3)与下层输送机(5)之间形成下层风室(4),成型机输出的污泥依次经上层输送机(3)、下层输送机(5)干化后掉落到干污泥输送机上;循环风除湿加热系统包括回热器(7)、蒸发器(8)及冷凝器(9),其中,腔体底部的出口依次经回热器(7)的放热侧、蒸发器(8)的放热侧及回热器(7)的吸热侧后分为两路,其中一路与下层风室(4)相连通,另一路经冷凝器(9)的吸热侧与腔体顶部的入口相连通,蒸发器(8)的冷凝废水出口与冷凝废水管道(11)相连通,该系统的能耗较低,同时能够减轻含尘空气对循环风除湿加热系统的腐蚀,且维护成本较低。

Description

一种分级热利用的污泥低温带式干化系统 技术领域
本发明属于环保设备技术领域,涉及一种分级热利用的污泥低温带式干化系统。
背景技术
污泥作为污水处理厂处理污水后的附属产品,对环境污染较大,需经无害化处理。目前,污泥干化后焚烧是“最彻底”的污泥处理方式。与高温干化工艺(包括流化床式、圆盘式、两段式、薄层式、桨叶式,等)相比,污泥低温干化技术产生的臭气、粉尘较少,冷凝废水的水质较好。因此,污泥低温干化技术在污水处理厂得到广泛应用。
传统的污泥低温带式干化系统存在以下几个问题:
1)低温带式干化系统运行能耗仍有下降空间;
2)长期运行,含尘空气对循环风除湿加热系统造成腐蚀,进而影响低温带式干化系统出力;
3)系统需配置多级粉尘过滤器,且过滤器滤布需定期更换,日常维护费用有下降空间。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种分级热利用的污泥低温带式干化系统,该系统的能耗较低,同时能够减轻含尘空气对循环风除湿加热系统的腐蚀,且维护成本较低。
为达到上述目的,本发明所述的分级热利用的污泥低温带式干化系 统包括污泥干燥系统及循环风除湿加热系统,其中,污泥干燥系统包括腔体、成型机以及设置于腔体内且自上到下依次分布的上层输送机、下层输送机及干污泥输送机,其中,上层输送机与腔体的顶部之间形成上层风室,上层输送机与下层输送机之间形成下层风室,成型机输出的污泥依次经上层输送机、下层输送机干化后掉落到干污泥输送机上;
循环风除湿加热系统包括回热器、蒸发器及冷凝器,其中,腔体底部的出口依次经回热器的放热侧、蒸发器的放热侧及回热器的吸热侧后分为两路,其中一路与下层风室相连通,另一路经冷凝器的吸热侧与腔体顶部的入口相连通,蒸发器的冷凝废水出口与冷凝废水管道相连通。
冷凝器的吸热侧经循环风机与腔体顶部的入口相连通。
腔体内用于干化污泥的热风自上而下流动。
循环风除湿加热系统还包括压缩机及膨胀阀;
蒸发器的吸热侧出口经压缩机与冷凝器的放热侧入口相连通,冷凝器的放热侧出口经膨胀阀与蒸发器的吸热侧入口相连通。
循环风除湿加热系统还包括热交换系统、冷却水塔及热水箱;
冷却水塔的出口与蒸发器的吸热侧入口相连通,蒸发器的吸热侧出口与冷却水塔的入口相连通;
热交换系统的出口与热水箱的入口相连通,热水箱的出口与冷凝器的放热侧入口相连通,冷凝器的放热侧出口与热交换系统的入口相连通。
冷却水塔的出口经循环水泵与蒸发器的吸热侧入口相连通。
热水箱的出口经热水泵与冷凝器的放热侧入口相连通。
腔体内上层风室及下层风室均由多个小风室组成,各小风室沿上层 输送机及下层输送机的宽度和长度方向风量均可调。
本发明具有以下有益效果:
本发明所述的分级热利用的污泥低温带式干化系统在具体操作时,热风在腔体中自上而下流动,高温热风对上层输送机网带上的含水率较高的污泥干化,再与部分未经冷凝器加热的热风一起干化下层输送机网带上的含水率较低的污泥,以实现热风能量的分级优化利用,从而有效降低污泥低温带式干化系统的运行能耗。另外,干化污泥的热风自上而下流动,在热风、污泥与网带的多重阻滞作用下,污泥干化过程中的粉尘不易逸出,避免高粉尘浓度导致的爆炸风险,同时无需配置多级粉尘过滤器,日常维护费用降低,并且有效的减轻了循环风除湿加热系统的腐蚀程度,延长系统的使用寿命,减轻由于设备腐蚀造成对系统整体出力的影响。
附图说明
图1为实施例一的结构示意图;
图2为实施例二的结构示意图。
其中,1为成型机、2为上层风室、3为上层输送机、4为下层风室、5为下层输送机、6为干污泥输送机、7为回热器、8为蒸发器、9为冷凝器、10为循环风机、11为冷凝废水管道、12为压缩机、13为膨胀阀、14为循环水泵、15为冷却水塔、16为热水泵、17为热水箱、18为热交换系统。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1,本发明所述的分级热利用的污泥低温带式干化系统包括污泥干燥系统及循环风除湿加热系统,其中,污泥干燥系统包括腔体、成型机1以及设置于腔体内且自上到下依次分布的上层输送机3、下层输送机5及干污泥输送机6,其中,上层输送机3与腔体的顶部之间形成上层风室2,上层输送机3与下层输送机5之间形成下层风室4,成型机1输出的污泥依次经上层输送机3、下层输送机5干化后掉落到干污泥输送机6上;循环风除湿加热系统包括回热器7、蒸发器8及冷凝器9,其中,腔体底部的出口依次经回热器7的放热侧、蒸发器8的放热侧及回热器7的吸热侧后分为两路,其中一路与下层风室4相连通,另一路经冷凝器9的吸热侧与腔体顶部的入口相连通,蒸发器8的冷凝废水出口与冷凝废水管道11相连通;冷凝器9的吸热侧经循环风机10与腔体顶部的入口相连通。
回热器7、蒸发器8及冷凝器9均可为翅片换热器、板式换热器、管壳式换热器或其它型式的高效换热器;上层风室2及下层风室4均由多个小风室组成,各小风室沿上层输送机3及下层输送机5的宽度和长度方向风量均可调。
含水率70%~85%的湿污泥进入成型机1中生成为长条状或颗粒状污泥后落到上层输送机3的网带上平摊,污泥随上层输送机3前进过程中吸收自上而下流动的干燥热风的热量逐渐干化,再由上层输送机3的尾部落入下层输送机5的头部,继续吸收自上而下流动的热风的热量,最终干化到设定含水率要求后落入干污泥输送机6上后运出备用。
腔体底部出口输出的携带污泥水分的潮湿热风进入回热器7的放热 侧中放热冷却,然后进入到蒸发器8的放热侧中继续冷却,使得潮湿热风中的可凝气体因温度低于含尘气流的露点温度而凝结,其中,冷凝废水经冷凝废水管道11排出,不凝热风经蒸发器8冷却后温度降低,然后进入回热器7的吸热侧中吸收热量,温度得到一定上升,回热器7吸热侧输出的热风分为两路,其中一路进入到下层风室4中,与经过上层输送机3网带上的污泥充分热交换后的热风汇合后一起干化下层输送机5网带上的污泥;另一路进入冷凝器9的吸热侧中吸收热量,然后经循环风机10进入到腔体中。
实施例一
参考图1,循环风除湿加热系统还包括压缩机12及膨胀阀13;蒸发器8的吸热侧出口经压缩机12与冷凝器9的放热侧入口相连通,冷凝器9的放热侧出口经膨胀阀13与蒸发器8的吸热侧入口相连通。
所述循环风除湿加热系统中的制冷剂可以采用无机化合物、氟化物纯工质、碳氢化合物或混合制冷剂,如R142b、R134a、R22等。
本实施例的制冷剂流程为:制冷剂经过压缩机12压缩为高温高压制冷剂气体,然后进入冷凝器9中放热后成为高压的饱和或过冷液体,再经膨胀阀13成为低压低温的制冷剂液,然后进入到蒸发器8的吸热侧中吸收热量后成为低压高温制冷剂气体,最后再进入到压缩机12中。
实施例二
参考图2,循环风除湿加热系统还包括热交换系统18、冷却水塔15及热水箱17;冷却水塔15的出口与蒸发器8的吸热侧入口相连通,蒸发器8的吸热侧出口与冷却水塔15的入口相连通;热交换系统18的出 口与热水箱17的入口相连通,热水箱17的出口与冷凝器9的放热侧入口相连通,冷凝器9的放热侧出口与热交换系统18的入口相连通,冷却水塔15的出口经循环水泵14与蒸发器8的吸热侧入口相连通;热水箱17的出口经热水泵16与冷凝器9的放热侧入口相连通。
本实施例中蒸发器8的冷源工质为循环水,循环水由循环水泵14送至蒸发器8中吸收热量后回至冷却水塔15中冷却后循环利用。
所述冷凝器9的热源工质为热水,热水由热水泵16从热水箱17中抽出,进入冷凝器9中放热后回至热交换系统18的冷源端入口中,在热交换系统18中吸收热量升温后回至热水箱17中循环利用。
所述热交换系统18的热源可以为热烟气、蒸汽、热水或导热油。
本发明的工作原理为:干化污泥的热风自上而下流动,一方面,高温热风对上层输送机3网带上的含水率较高(约50%以上)的污泥干化,经与上层污泥热交换降温后的热风与另一部分未经冷凝器9加热的热风一起干化下层输送机5网带上的含水率较低(约50%以下)的污泥,实现热风能量的分级优化利用,从而降低污泥低温带式干化系统的运行能耗;另一方面,在热风、污泥与网带的多重阻滞作用下,污泥干化过程粉尘不易逸出,在实际操作时,可以根据实际需要设计相应参数,改变各换热器结构型式以及系统内各流动介质的流量、温度等,进而影响整体系统对污泥的干化效率等性能参数。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。本发明的范围由所附权利要求及 其等同限定。

Claims (8)

  1. 一种分级热利用的污泥低温带式干化系统,其特征在于,包括污泥干燥系统及循环风除湿加热系统,其中,污泥干燥系统包括腔体、成型机(1)以及设置于腔体内且自上到下依次分布的上层输送机(3)、下层输送机(5)及干污泥输送机(6),其中,上层输送机(3)与腔体的顶部之间形成上层风室(2),上层输送机(3)与下层输送机(5)之间形成下层风室(4),成型机(1)输出的污泥依次经上层输送机(3)、下层输送机(5)干化后掉落到干污泥输送机(6)上;
    循环风除湿加热系统包括回热器(7)、蒸发器(8)及冷凝器(9),其中,腔体底部的出口依次经回热器(7)的放热侧、蒸发器(8)的放热侧及回热器(7)的吸热侧后分为两路,其中一路与下层风室(4)相连通,另一路经冷凝器(9)的吸热侧与腔体顶部的入口相连通,蒸发器(8)的冷凝废水出口与冷凝废水管道(11)相连通。
  2. 根据权利要求1所述的分级热利用的污泥低温带式干化系统,其特征在于,冷凝器(9)的吸热侧经循环风机(10)与腔体顶部的入口相连通。
  3. 根据权利要求1所述的分级热利用的污泥低温带式干化系统,其特征在于,腔体内用于干化污泥的热风自上而下流动。
  4. 根据权利要求1所述的分级热利用的污泥低温带式干化系统,其特征在于,循环风除湿加热系统还包括压缩机(12)及膨胀阀(13);
    蒸发器(8)的吸热侧出口经压缩机(12)与冷凝器(9)的放热侧入口相连通,冷凝器(9)的放热侧出口经膨胀阀(13)与蒸发器(8)的吸热侧入口相连通。
  5. 根据权利要求1所述的分级热利用的污泥低温带式干化系统,其 特征在于,循环风除湿加热系统还包括热交换系统(18)、冷却水塔(15)及热水箱(17);
    冷却水塔(15)的出口与蒸发器(8)的吸热侧入口相连通,蒸发器(8)的吸热侧出口与冷却水塔(15)的入口相连通;
    热交换系统(18)的出口与热水箱(17)的入口相连通,热水箱(17)的出口与冷凝器(9)的放热侧入口相连通,冷凝器(9)的放热侧出口与热交换系统(18)的入口相连通。
  6. 根据权利要求5所述的分级热利用的污泥低温带式干化系统,其特征在于,冷却水塔(15)的出口经循环水泵(14)与蒸发器(8)的吸热侧入口相连通。
  7. 根据权利要求5所述的分级热利用的污泥低温带式干化系统,其特征在于,热水箱(17)的出口经热水泵(16)与冷凝器(9)的放热侧入口相连通。
  8. 根据权利要求1所述的分级热利用的污泥低温带式干化系统,其特征在于,腔体内上层风室(2)及下层风室(4)均由多个小风室组成,各小风室沿上层输送机(3)及下层输送机(5)的宽度和长度方向风量均可调。
PCT/CN2020/121246 2020-03-19 2020-10-15 一种分级热利用的污泥低温带式干化系统 WO2021184745A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010197223.7A CN111253042A (zh) 2020-03-19 2020-03-19 一种分级热利用的污泥低温带式干化系统
CN202010197223.7 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021184745A1 true WO2021184745A1 (zh) 2021-09-23

Family

ID=70943304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121246 WO2021184745A1 (zh) 2020-03-19 2020-10-15 一种分级热利用的污泥低温带式干化系统

Country Status (2)

Country Link
CN (1) CN111253042A (zh)
WO (1) WO2021184745A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113955915A (zh) * 2021-09-26 2022-01-21 江苏久发环境科技有限公司 污泥低温干化系统和干化方法
CN114011162A (zh) * 2021-09-28 2022-02-08 河北邯峰发电有限责任公司 一种生物质耦合发电系统和装置
CN114409219A (zh) * 2022-02-17 2022-04-29 南京塔川化工设备有限公司 一种引射旋转气流干化体系结构及其运行工艺
CN115231799A (zh) * 2022-07-20 2022-10-25 嘉戎技术(北京)有限公司 污泥干化装置
CN115367987A (zh) * 2022-08-24 2022-11-22 江苏致远高科能源科技有限公司 一种热泵型污泥除湿干燥机
CN115959810A (zh) * 2022-12-05 2023-04-14 华北电力大学(保定) 一种间接空冷自然通风逆流冷却塔干燥城市污泥装置
CN116081744A (zh) * 2023-02-21 2023-05-09 新疆大学 一种用于处理油气田油水混合废液的净水系统
CN116750942A (zh) * 2023-08-07 2023-09-15 河北工程大学 低温污泥(煤泥)干化工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111253042A (zh) * 2020-03-19 2020-06-09 中国华能集团清洁能源技术研究院有限公司 一种分级热利用的污泥低温带式干化系统
CN115611414A (zh) * 2022-10-14 2023-01-17 台州临港热电有限公司 热电厂水循环利用系统
CN115925219B (zh) * 2022-11-30 2024-07-05 南京理工大学 一种全热回收温度分布式污泥干化装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230809A (en) * 1992-03-11 1993-07-27 Donald Roslonski Method and apparatus for dewatering sludge materials
CN206607143U (zh) * 2017-03-20 2017-11-03 光大水务(深圳)有限公司 污泥热干化装置
CN108585411A (zh) * 2018-04-18 2018-09-28 广东芬尼克兹环保科技有限公司 一种基于热泵技术的污泥烘干系统
CN109186235A (zh) * 2018-09-29 2019-01-11 山东福航新能源环保股份有限公司 一种粘滞性物体烘干装置
CN209042989U (zh) * 2018-09-29 2019-06-28 山东福航新能源环保股份有限公司 一种粘滞性物体烘干装置
CN110127984A (zh) * 2019-05-06 2019-08-16 四川天润德环境工程有限公司 一种污泥低温热泵干化设备
CN210113265U (zh) * 2019-05-21 2020-02-25 浙江威治环保科技有限公司 一种污泥干化装置
CN111253042A (zh) * 2020-03-19 2020-06-09 中国华能集团清洁能源技术研究院有限公司 一种分级热利用的污泥低温带式干化系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230809A (en) * 1992-03-11 1993-07-27 Donald Roslonski Method and apparatus for dewatering sludge materials
CN206607143U (zh) * 2017-03-20 2017-11-03 光大水务(深圳)有限公司 污泥热干化装置
CN108585411A (zh) * 2018-04-18 2018-09-28 广东芬尼克兹环保科技有限公司 一种基于热泵技术的污泥烘干系统
CN109186235A (zh) * 2018-09-29 2019-01-11 山东福航新能源环保股份有限公司 一种粘滞性物体烘干装置
CN209042989U (zh) * 2018-09-29 2019-06-28 山东福航新能源环保股份有限公司 一种粘滞性物体烘干装置
CN110127984A (zh) * 2019-05-06 2019-08-16 四川天润德环境工程有限公司 一种污泥低温热泵干化设备
CN210113265U (zh) * 2019-05-21 2020-02-25 浙江威治环保科技有限公司 一种污泥干化装置
CN111253042A (zh) * 2020-03-19 2020-06-09 中国华能集团清洁能源技术研究院有限公司 一种分级热利用的污泥低温带式干化系统

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113955915A (zh) * 2021-09-26 2022-01-21 江苏久发环境科技有限公司 污泥低温干化系统和干化方法
CN113955915B (zh) * 2021-09-26 2023-09-26 江苏久发环境科技有限公司 污泥低温干化系统和干化方法
CN114011162A (zh) * 2021-09-28 2022-02-08 河北邯峰发电有限责任公司 一种生物质耦合发电系统和装置
CN114011162B (zh) * 2021-09-28 2023-03-17 河北邯峰发电有限责任公司 一种生物质耦合发电系统和装置
CN114409219B (zh) * 2022-02-17 2023-09-12 南京塔川化工设备有限公司 一种引射旋转气流干化体系结构及其运行工艺
CN114409219A (zh) * 2022-02-17 2022-04-29 南京塔川化工设备有限公司 一种引射旋转气流干化体系结构及其运行工艺
CN115231799A (zh) * 2022-07-20 2022-10-25 嘉戎技术(北京)有限公司 污泥干化装置
CN115231799B (zh) * 2022-07-20 2023-06-30 嘉戎技术(北京)有限公司 污泥干化装置
CN115367987A (zh) * 2022-08-24 2022-11-22 江苏致远高科能源科技有限公司 一种热泵型污泥除湿干燥机
CN115959810A (zh) * 2022-12-05 2023-04-14 华北电力大学(保定) 一种间接空冷自然通风逆流冷却塔干燥城市污泥装置
CN115959810B (zh) * 2022-12-05 2024-03-01 华北电力大学(保定) 一种间接空冷自然通风逆流冷却塔干燥城市污泥装置
CN116081744A (zh) * 2023-02-21 2023-05-09 新疆大学 一种用于处理油气田油水混合废液的净水系统
CN116750942A (zh) * 2023-08-07 2023-09-15 河北工程大学 低温污泥(煤泥)干化工艺
CN116750942B (zh) * 2023-08-07 2024-03-08 河北工程大学 低温污泥(煤泥)干化工艺

Also Published As

Publication number Publication date
CN111253042A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2021184745A1 (zh) 一种分级热利用的污泥低温带式干化系统
WO2021227697A1 (zh) 一种出料冷却热回收污泥低温干化装置及其控制方法
RU2666839C1 (ru) Способ и устройство для использования избыточного тепла от топочного газа электростанции для высушивания топлива из биомассы
CN102506564B (zh) 冷凝水余热一效闪蒸自然空气除湿预热干燥烘箱系统
CN101363682A (zh) 一种节能干燥系统
CN102445066B (zh) 冷凝水余热二效闪蒸自然空气除湿预热干燥烘箱系统
CN212954818U (zh) 一种基于热泵除湿技术的低温带式干化设备
CN206204129U (zh) 转轮除湿热泵旋风污泥干燥系统
CN108050731A (zh) 一种烟气驱动余热回收型吸收式热泵
CN108426426A (zh) 一种污泥除湿型多级热回收干化系统
CN108917376B (zh) 高尘环境下除湿型热回收封闭循环热泵烘干系统
CN110255855A (zh) 一种带余热回收的双冷热源热泵污泥低温干化系统及其使用方法
CN201297829Y (zh) 一种节能干燥系统
CN112390500A (zh) 一种开式吸收式热泵污泥干化系统及使用方法
CN202452808U (zh) 冷凝水余热二效闪蒸自然空气除湿预热干燥烘箱装置
CN106345237A (zh) 一种冷气循环式压缩空气冷冻干燥器
CN206476773U (zh) 一种火电厂高盐含量废水零排放净化处理设备
CN111207570B (zh) 一种节能型热泵干燥系统及其控制方法
CN202485343U (zh) 冷凝水余热一效闪蒸自然空气除湿预热干燥烘箱装置
CN211847686U (zh) 一种分级热利用的污泥低温带式干化系统
CN113758226B (zh) 一种烘干机尾气余热回收装置及烘干机和余热回收方法
CN212930889U (zh) 空气源热泵驱动间壁式粮食烘干系统
CN212339898U (zh) 基于跨临界二氧化碳热泵的物料干燥装置
CN208139511U (zh) 一种整体式空气源换热节能的防腐化学过滤机组
CN208998207U (zh) 一种节能型全新风除湿机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925769

Country of ref document: EP

Kind code of ref document: A1