WO2021184740A1 - 一种测试系统中供电通道的电流校准装置及校正方法 - Google Patents

一种测试系统中供电通道的电流校准装置及校正方法 Download PDF

Info

Publication number
WO2021184740A1
WO2021184740A1 PCT/CN2020/120840 CN2020120840W WO2021184740A1 WO 2021184740 A1 WO2021184740 A1 WO 2021184740A1 CN 2020120840 W CN2020120840 W CN 2020120840W WO 2021184740 A1 WO2021184740 A1 WO 2021184740A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
current
supply channel
output voltage
vbias
Prior art date
Application number
PCT/CN2020/120840
Other languages
English (en)
French (fr)
Inventor
祝庆斌
Original Assignee
上海御渡半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海御渡半导体科技有限公司 filed Critical 上海御渡半导体科技有限公司
Priority to US17/426,161 priority Critical patent/US11971770B2/en
Publication of WO2021184740A1 publication Critical patent/WO2021184740A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2834Automated test systems [ATE]; using microprocessors or computers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3253Power saving in bus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/02Testing or calibrating of apparatus covered by the other groups of this subclass of auxiliary devices, e.g. of instrument transformers according to prescribed transformation ratio, phase angle, or wattage rating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus

Definitions

  • the invention relates to the field of current calibration of a test system, in particular to a current calibration device and a calibration method of a power supply channel in the test system.
  • DPS Device Power Supply
  • ATE Automatic Test Equipment
  • each power supply channel DPS_1 to DPS_n on the power supply channel (DPS) board needs to be calibrated regularly.
  • the traditional calibration topology is shown in Figure 2, including n supply channels DPS_1 to DPS_n on the DPS board, and n switches k1 to kn corresponding to each other, the resistor R1 on the calibration PB, and the connection resistor R1 Ammeter.
  • the traditional calibration method is controlled by the external current-limiting resistor R1, which is a fixed value. Once the current is fixed, the output voltage U1 cannot be flexibly configured. It belongs to the voltage/current single-point calibration method, that is, a current can only be calibrated under a specific voltage.
  • the traditional current calibration scheme has the problem of incomplete coverage of voltage specifications. Practical applications have found that the system leakage current is different under different voltages, and the device offset caused by heating is different. There is a certain inherent deviation in the measurement data after single-point calibration.
  • the purpose of the present invention is to provide a current calibration device and a correction method for a power supply channel in a test system, which implement segmented calibration through a software algorithm and improve the current measurement accuracy of the power supply channel; it solves that the current calibration of the traditional power supply channel can only cover a single point or A few voltage range problems.
  • a current calibration device for power supply channels in a test system including n power supply channels, n connection switches corresponding to the n power supply channels one-to-one, m resistors, and m Each resistor corresponds to m selection switches, VBIAS power supply, SPI bus, host computer and ammeter, where n and m are both integers greater than 0;
  • each power supply channel is connected to the SPI bus, the other end of the power supply channel is connected to the node Q through the corresponding connection switch, the two ends of the selection switch are respectively connected to the node Q and one end of the resistor, and the other end of the resistor is connected to the ammeter
  • the positive terminal of the ammeter, the negative terminal of the ammeter is connected to the VBIAS power supply, and the VBIAS power supply is simultaneously connected to the SPI bus;
  • the host computer controls one of the connection switches and one of the selection switches to close, and the SPI bus controls the output voltage of the power supply channel and the VBIAS power supply.
  • the resistance values of the m resistors are not equal.
  • the m resistors are all high-power low-temperature drift current-limiting resistors.
  • VBIAS power supply is a programmable voltage source, and can support positive and negative dual power rail output.
  • a method for current calibration by a current calibration device of a power supply channel in a test system includes the following steps:
  • S01 The host computer selects one of the connection switches and one of the selection switches is closed;
  • the SPI bus adjusts the output voltage Va of the corresponding power supply channel and the output voltage Vb of the VBIAS power supply, and records the output current Ia of the corresponding power supply channel and the measured current Ib of the ammeter;
  • S04 Divide the curve into p intervals within the output voltage range of the power supply channel, and calculate the absolute error in each interval respectively; p is an integer greater than 0;
  • the current value under the output voltage of the specific power supply channel is equal to the sum of the absolute error corresponding to the measured current value and the interval where the specific voltage is located.
  • step S02 specifically includes:
  • step S022 Repeat step S021 Y times to obtain the output current Ia of the power supply channel corresponding to the Y group and the measured current Ib of the ammeter; Y is an integer greater than 0.
  • step S03 draws a curve of the output voltage Va of the power supply channel and the measurement error A according to the above-mentioned Y group of data.
  • the output voltage Va corresponding to the power supply channel setting of the SPI bus is uniformly increased or decreased uniformly.
  • the step S01 specifically includes: determining the current value Ia to be corrected and the power supply channel to be corrected; the host computer controls the connection switch corresponding to the power supply channel to close; the host computer selects one of them according to the current value Ia to be corrected The selector switch is closed.
  • the present invention has a simple structure, low hardware cost, a VBIAS power supply is added to the calibration loop, and automatic calibration is realized through a high-precision ammeter in cooperation with an upper computer.
  • the calibration error curve of the current under the full-scale voltage output by the power supply channel can be obtained through the VBIAS power supply.
  • the present invention can realize segmented current calibration and improve the accuracy of current measurement.
  • FIG 1 shows the application topology of DSP in the prior art
  • Figure 2 shows the calibration topology of DSP in the prior art
  • Figure 3 is a current calibration error curve in the prior art
  • Fig. 4 is the calibration topology of the DSP in embodiment 1;
  • Fig. 5 is the current calibration error curve in Example 1.
  • the current calibration device of the power supply channel in the test system of the present invention includes n power supply channels DPS_1 to DPS_n on the DPS board, and n connection switches k1 to kn corresponding to the n power supply channels one-to-one, which are located in the calibration PB M resistors, m selector switches corresponding to m resistors, VBIAS power supply and ammeter, SPI bus and upper computer;
  • each power supply channel is connected to the SPI bus, the other end of the power supply channel is connected to the node Q through the corresponding connection switch, the two ends of the selection switch are respectively connected to the node Q and one end of the resistor, and the other end of the resistor is connected to the positive end of the ammeter.
  • the negative terminal of the ammeter is connected to the VBIAS power supply, and the VBIAS power supply is simultaneously connected to the SPI bus; the upper computer controls one of the connection switches and one of the selection switches to close, and the SPI bus controls the power supply channel and the output voltage of the VBIAS power supply.
  • the resistance values of the m resistors are all unequal, and the m resistors are all high-power low-temperature drift current-limiting resistors. Different resistors are used for different current calibration gears, and the resistor with a larger resistance value is used for calibration. Small current range calibration.
  • the VBIAS power supply is a programmable voltage source, which is implemented using integrated amplifiers, integrated chips, or discrete solutions, and supports positive and negative dual power rail output.
  • the voltage amplitude of the output voltage Vb of the VBIAS power supply is adjusted through the SPI bus.
  • the output current of the power supply channel is expressed as Ia, which is the current to be calibrated, obtained through the SPI bus; the measured current of the ammeter is expressed as Ib, which is the reference current, which is automatically obtained through the upper computer.
  • the output voltage of the power supply channel is expressed as Va, and the measuring point is the input end of the resistance.
  • the output voltage and output amplitude of the power supply channel are controlled by the SPI bus; the output voltage of the VBIAS power supply is expressed as Vb, and the output voltage and output amplitude of the VBIAS power supply are through the SPI bus control.
  • the output voltage of the power supply channel can be arbitrarily changed within the full scale, while keeping the current flowing through the resistor relatively constant. Obtain the measurement error of the current under the output voltage of different power supply channels through the software algorithm, and finally obtain accurate calibration data.
  • a method for current calibration by a current calibration device of a power supply channel in a test system includes the following steps:
  • the host computer selects one of the connection switches and one of the selection switches is closed. Specifically, the current value Ia to be corrected and the power supply channel to be corrected are determined; the upper computer controls the connection switch corresponding to the power supply channel to close; the upper computer selects one of the selection switches to close according to the current value Ia to be corrected.
  • the upper computer selects the selector switch according to the following rules: the larger the current value Ia to be corrected, the smaller the resistance value connected to the selector switch closed by the upper computer.
  • the SPI bus adjusts the output voltage Va of the corresponding power supply channel and the output voltage Vb of the VBIAS power supply, and records the output current of the corresponding power supply channel and the measured current of the ammeter. Specifically:
  • step S022 Repeat step S021 Y times to obtain the output current Ia of the power supply channel corresponding to the Y group and the measured current Ib of the ammeter. Wherein, when step S021 is repeated Y times in step S022, the output voltage Va corresponding to the power supply channel set by the SPI bus is uniformly increased or decreased.
  • the current value under the output voltage of the specific power supply channel is equal to the sum of the absolute error corresponding to the measured current value and the interval where the specific voltage is located.
  • the present invention can linearly cover current calibration under all voltage ranges; realize segment calibration through software algorithm; improve the current measurement accuracy of supply channels in the test system; solve the problem that traditional supply channel current calibration can only cover a single point or a few voltage ranges .
  • a current calibration device for a power supply channel in a test system in this embodiment includes n power supply channels DPS_1 to DPS_n on the DPS board, and n connections corresponding to the n power supply channels one-to-one Switches k1 to kn, two resistors R1 and R2 located on the calibration PB, and selection switches SW1 and SW2 connected to the two resistors, VBIAS power supply and high-precision ammeter, SPI bus and upper computer.
  • SPI_CTL in Figure 4 represents the SPI bus.
  • each power supply channel is connected to the SPI bus, the other end of the power supply channel is connected to the node Q through the corresponding connection switch, the two ends of the selection switch are respectively connected to the node Q and one end of the resistor, and the other end of the resistor is connected to the positive end of the ammeter.
  • the negative terminal of the ammeter is connected to the VBIAS power supply, and the VBIAS power supply is simultaneously connected to the SPI bus; the upper computer controls one of the connection switches and one of the selection switches to close, and the SPI bus controls the power supply channel and the output voltage of the VBIAS power supply.
  • the resistance value of resistor R1 is 1 ohm
  • the resistance value of resistor R2 is 10 ohm, both of which are high-power low-temperature drift current-limiting resistors.
  • the two sets of resistance values of R1 and R2 are used for two different current calibration gears, and R1 is used for Large current [500 ⁇ 1200mA] and [-500 ⁇ -1200mA] range calibration, R2 is used for [-500 ⁇ 500mA] range calibration.
  • the output voltage specification of the power supply channel in this embodiment is 0-5V, and the output current and current measurement specifications are 0-+-1.2A.
  • the following takes the calibration of the power supply channel DPS_1 to the +1A current as an example for analysis; it is worth noting that when the other power supply channels in the multi-power supply channel DPS_2-DPS_n are analyzed, only the corresponding connection switch needs to be turned off, and the other methods are the same as The following methods are the same; at the same time, when calibrating the remaining current values, you only need to select the corresponding resistance according to the current value, and the remaining methods are the same as the following methods.
  • S01 Determine the current value to be corrected + 1A and the power supply channel DPS_1 to be corrected; the upper computer controls the connection switch k1 corresponding to the power supply channel DPS_1 to close; the upper computer closes the selection switch SW1 according to the control.
  • the SPI bus adjusts the output voltage Va of the power supply channel DPS_1 and the output voltage Vb of the VBIAS power supply, and records the output current of the corresponding power supply channel and the measured current of the ammeter. Specifically:
  • SPI bus adjusts the output voltage Va1 of the power supply channel DPS_1 to 0V
  • SPI bus adjusts the output voltage Vb1 of the VBIAS power supply to -1V
  • the invention has simple structure, low hardware cost, adds a VBIAS power supply to the calibration loop, and realizes automatic calibration through a high-precision ammeter in cooperation with an upper computer.
  • the calibration error curve of the current under the full-scale voltage output by the power supply channel can be obtained through the VBIAS power supply.
  • the present invention can realize segmented current calibration and improve the accuracy of current measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

一种测试系统中供电通道的电流校准装置,包括n个供电通道(DPS_1~DPS_n)、与n个供电通道(DPS_1~DPS_n)一一对应的n个连接开关(k1~kn)、m个电阻、与m个电阻一一对应的m个选择开关、VBIAS电源、SPI总线、上位机和电流表,其中,n和m均为大于0的整数;每个供电通道(DPS_1~DPS_n)的一端连接SPI总线,供电通道(DPS_1~DPS_n)的另一端通过对应的连接开关(k1~kn)连接至节点Q,选择开关的两端分别连接节点Q和电阻的一端,电阻的另一端连接至所述电流表的正端,电流表的负端连接至VBIAS电源,VBIAS电源同时连接SPI总线。该电流校准装置及校正方法,通过软件算法实现分段校准,提升供电通道的测流精度;解决了传统供电通道电流校准只能覆盖单点或者少数电压量程的问题。

Description

一种测试系统中供电通道的电流校准装置及校正方法
交叉引用
本申请要求2020年3月19日提交的申请号为CN202010196868.9的中国专利申请的优先权。上述申请的内容以引用方式被包含于此。
技术领域
本发明涉及测试系统电流校正领域,具体涉及一种测试系统中供电通道的电流校准装置及校正方法。
技术背景
自动化测试设备(Automatic Test Equipment,ATE)中会用到大量的供电通道(Device Power Supply,DPS),用于被测芯片(DUT)的供电和电流的精确测量,应用拓扑如附图1所示。DUT的种类不同,所需的电压和电流组合也不同。芯片出厂前制造商通常需要准确测量DUT不同模式下的静态电流,动态电流,漏电流等参数,用于判断芯片是否符合设计要求。
为了保证测流的精确度,供电通道(DPS)板卡上各个供电通道DPS_1至DPS_n需要定期校准。传统的校准拓扑如附图2所示,包括位于DPS板卡上的n个供应通道DPS_1至DPS_n,以及一一对应的n个开关k1至kn,位于校准PB上的电阻R1,以及连接电阻R1的电流表。传统校准方式受控于外部限流电阻R1,R1为固定值,电流一旦固定,输出电压U1无法灵活配置。属于电压/电流单点校准法,即一种电流只能在特定电压下进行校准。例如被校准供电通道的输出电流I1,此时U1=I1*R1为固定值,无法校准在其他规格电压Un情况下电流I1的测量精确度。传统电流校准方案存在电压规格覆盖不全的问题。实际应用发现,不同电压下系统漏电流不同,发热导 致的器件失调不同,用单点校准之后的测量数据存在一定的固有偏差。
结合附图2和附图3对现有技术中校准方法举例如下:对照附图2传统校准方案,I1=1A左右对应测流校准在U1=2.5V左右下执行,其他电压量程则共用该校准数据,从附图3可看出以2.5V作为误差校准点的测流相对误差为+0.0109A,软件默认0~5V其他电压下1A的测流误差也为0.0109A,实际测量发现并非如此。传统校准方案由于校准方案引入的最大绝对误差ΔIC=0.0039A(输出0V/1A时的绝对误差=0.0109A-0.007A)。因此,现有技术中ATE中供电通道的电流校准装置并不能准确对供电通道的电流进行校准。
发明概要
本发明的目的是提供一种测试系统中供电通道的电流校准装置及校正方法,通过软件算法实现分段校准,提升供电通道的测流精度;解决了传统供电通道电流校准只能覆盖单点或者少数电压量程的问题。
为了实现上述目的,本发明采用如下技术方案:一种测试系统中供电通道的电流校准装置,包括n个供电通道、与n个供电通道一一对应的n个连接开关、m个电阻、与m个电阻一一对应的m个选择开关、VBIAS电源、SPI总线、上位机和电流表,其中,n和m均为大于0的整数;
每个供电通道的一端连接SPI总线,所述供电通道的另一端通过对应的连接开关连接至节点Q,选择开关的两端分别连接节点Q和电阻的一端,电阻的另一端连接至所述电流表的正端,电流表的负端连接至VBIAS电源,所述VBIAS电源同时连接SPI总线;
所述上位机控制其中一个连接开关和其中一个选择开关闭合,所述SPI总线控制供电通道和VBIAS电源的输出电压。
进一步地,所述m个电阻的电阻值均不相等。
进一步地,所述m个电阻均为大功率低温漂限流电阻。
进一步地,所述VBIAS电源为可编程电压源,且能够支持正负双电源轨输出。
一种测试系统中供电通道的电流校准装置进行电流校正的方法,包括如下步骤:
S01:上位机选择其中一个连接开关和其中一个选择开关闭合;
S02:SPI总线调整对应供电通道的输出电压Va和VBIAS电源的输出电压Vb,并记录对应供电通道的输出电流Ia和电流表的测量电流Ib;
S03:根据上述测量数据绘制供电通道输出电压Va和测量误差A的曲线;所述测量误差A为供电通道的输出电流Ia与电流表的测量电流Ib之间的绝对差值;
S04:在供电通道输出电压范围内将曲线分为p个区间,并分别计算每个区间中的绝对误差;p为大于0的整数;
S05:特定供电通道输出电压下的电流值等于测量电流值与所述特定电压所在区间对应的绝对误差之和。
进一步地,所述步骤S02具体包括:
S021:SPI总线调整对应供电通道的输出电压Va和VBIAS电源的输出电压Vb,使得Va-Vb=x;并记录此时对应供电通道的输出电流Ia和电流表的测量电流Ib;其中,x大于0,Ia为待校正电流值;
S022:重复步骤S021Y次,获得Y组对应供电通道的输出电流Ia和电流表的测量电流Ib;Y为大于0的整数。
进一步地,所述步骤S03根据上述Y组数据绘制供电通道输出电压Va和测量误差A的曲线。
进一步地,所述步骤S022中重复步骤S021Y次时,所述SPI总线设置对应供电通道的输出电压Va均匀递增或者均匀递减。
进一步地,所述步骤S01具体包括:确定待校正电流值Ia和待校正的供电通道;所述上位机控制该供电通道对应的连接开关闭合;所述上位机根据待校正电流值Ia选择其中一个选择开关闭合。
进一步地,所述步骤S01中待校正电流值Ia越大,上位机闭合的选择开关所连接的电阻值越小。
本发明的有益效果为:本发明结构简单,硬件成本低,在校准回路中增加了VBIAS电源,通过高精度电流表配合上位机实现自动化校准。本发明通过VBIAS电源可以获取到供电通道输出满量程电压下电流的校准误差曲线。本发明能够实现电流分段校准,提升电流测量的精度。
附图说明
附图1为现有技术中DSP的应用拓扑;
附图2为现有技术中DSP的校准拓扑;
附图3为现有技术中电流校准误差曲线;
附图4为实施例1中DSP的校准拓扑;
附图5为实施例1中电流校准误差曲线。
发明内容
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式做进一步的详细说明。
本发明中一种测试系统中供电通道的电流校准装置,包括位于DPS板卡上的n个供电通道DPS_1至DPS_n、与n个供电通道一一对应的n个连接开关k1至kn,位于校准PB上的m个电阻、与m个电阻一一对应的m个选择开关、VBIAS电源和电流表,SPI总线以及上位机;
每个供电通道的一端连接SPI总线,供电通道的另一端通过对应的连接开关连接至节点Q,选择开关的两端分别连接节点Q和电阻的一端,电阻的另一端连接至电流表的正端,电流表的负端连接至VBIAS电源,VBIAS电源同时连接SPI总线;上位机控制其中一个连接开关和其中一个选择开关闭合,SPI总线控制供电通道和VBIAS电源的输出电压。
具体的,本发明中m个电阻的电阻值均不相等,且m个电阻均为大功率低温漂限流电阻,不同电阻用于不同的电流校准档位,电阻值较大的电阻用于校准小电流的量程校准。
具体的,VBIAS电源为可编程电压源,使用集成功放,集成芯片,或者分立方案实现,支持正负双电源轨输出,VBIAS电源的输出电压Vb的电压幅度通过SPI总线调节。
本发明中供电通道的输出电流表述为Ia,为待校准的电流,通过SPI总线获得;电流表的测量电流表述为Ib,为参考电流,通过上位机自动获得。供电通道的输出电压表述为Va,测量点为电阻的输入端,供电通道的输出电压以及输出幅度通过SPI总线控制;VBIAS电源的输出电压表述为Vb,VBIAS电源的输出电压以及输出幅度通过SPI总线控制。
通过在校准PB上串入VBIAS电源,供电通道的输出电压可以在满量程内任意改变,同时保持流经电阻的电流保持相对不变。通过软件算法获取该 电流在不同供电通道的输出电压情况下的测量误差,最终获得精准的校准数据。
一种测试系统中供电通道的电流校准装置进行电流校正的方法,包括如下步骤:
S01:上位机选择其中一个连接开关和其中一个选择开关闭合。具体的,确定待校正电流值Ia和待校正的供电通道;上位机控制该供电通道对应的连接开关闭合;上位机根据待校正电流值Ia选择其中一个选择开关闭合。上位机对选择开关的选择按照以下规则进行选择:待校正电流值Ia越大,上位机闭合的选择开关所连接的电阻值越小。
S02:SPI总线调整对应供电通道的输出电压Va和VBIAS电源的输出电压Vb,并记录对应供电通道的输出电流和电流表的测量电流。具体包括:
S021:SPI总线调整对应供电通道的输出电压Va和VBIAS电源的输出电压Vb,使得Va-Vb=x;并记录此时对应供电通道的输出电流Ia和电流表的测量电流Ib;其中,x大于0,Ia为待校正电流值,且x=Ia×R,R为闭合的选择开关所串联电阻的电阻值;
S022:重复步骤S021Y次,获得Y组对应供电通道的输出电流Ia和电流表的测量电流Ib。其中,步骤S022中重复步骤S021Y次时,SPI总线设置对应供电通道的输出电压Va均匀递增或者递减。
S03:根据上述测量数据绘制供电通道输出电压Va和测量误差A的曲线;测量误差A为供电通道的输出电流Ia与电流表的测量电流Ib之间的绝对差值。
S04:在供电通道输出电压范围内将曲线分为p个区间,并分别计算每 个区间中的绝对误差;
S05:特定供电通道输出电压下的电流值等于测量电流值与特定电压所在区间对应的绝对误差之和。
本发明可以线性覆盖所有电压量程下的电流校准;通过软件算法实现分段校准;提升测试系统中供应通道的测流精度;解决了传统供应通道电流校准只能覆盖单点或者少数电压量程的问题。
以下通过具体实施例1对本发明进行进一步解释说明:
实施例1
如附图4所示,本实施例中一种测试系统中供电通道的电流校准装置,包括位于DPS板卡上的n个供电通道DPS_1至DPS_n、与n个供电通道一一对应的n个连接开关k1至kn,位于校准PB上的2个电阻R1和R2,以及分别于两个电阻连接的选择开关SW1和SW2,VBIAS电源和高精度电流表,SPI总线以及上位机。附图4中SPI_CTL表示SPI总线。
每个供电通道的一端连接SPI总线,供电通道的另一端通过对应的连接开关连接至节点Q,选择开关的两端分别连接节点Q和电阻的一端,电阻的另一端连接至电流表的正端,电流表的负端连接至VBIAS电源,VBIAS电源同时连接SPI总线;上位机控制其中一个连接开关和其中一个选择开关闭合,SPI总线控制供电通道和VBIAS电源的输出电压。
具体的,电阻R1的电阻值为1ohm,电阻R2的电阻值为10ohm,均为大功率低温漂限流电阻,R1和R2两组阻值用于两个不同的电流校准档位,R1用于大电流[500~1200mA]和[-500~-1200mA]的量程校准,R2用于[-500~500mA]的量程校准。
本实施例中由于选择开关SW1~SW2,连接开关k1~kn同一时刻分别只有一路闭合,串联电路中Ia=I1=Ib或者Ia=I2=Ib。大电流[500~1200mA]和[-500~-1200mA]的量程校准闭合选择开关SW1,[-500~500mA]的量程校准闭合选择开关SW2。
假设本实施例中供电通道的输出电压规格为0~5V,输出电流和测流规格为0~+-1.2A。以下以供电通道DPS_1对+1A电流的校准为例进行分析;值得说明的是,当多供电通道DPS_2-DPS_n中的其他供电通道进行分析时,只需要关闭对应的连接开关即可,其余方法与下述方法相同;同时,当对其余的电流值进行校准时,只需要根据该电流值选择选择对应的电阻即可,其余方法与下述方法相同。
本实施例提供的一种测试系统中供电通道的电流校准装置进行电流校正的方法,包括如下步骤:
S01:确定待校正电流值+1A和待校正的供电通道DPS_1;上位机控制供电通道DPS_1对应的连接开关k1闭合;上位机根据控制选择开关SW1闭合。
S02:SPI总线调整供电通道DPS_1的输出电压Va和VBIAS电源的输出电压Vb,并记录对应供电通道的输出电流和电流表的测量电流。具体包括:
S021:SPI总线调整供电通道DPS_1的输出电压Va1为0V,SPI总线调整VBIAS电源的输出电压Vb1为-1V,通过SPI总线记录供电通道DPS_1的输出电流Ia1,通过上位机记录高精度电流表XMM1的测量电流Ib1记录;
S022:SPI总线调整供电通道DPS_1的输出电压Va的输出幅度按照一 定的步进,例如20mV,进行递增或者递减,同时SPI总线调整确保VBIAS电源的输出电压Vb,确保Va-Vb=1V;每一个电压等级重复步骤S021,总共获得251组测试数据。
S03:根据上述测量数据绘制供电通道输出电压Va和测量误差A的曲线;测量误差A为供电通道的输出电流Ia与电流表的测量电流Ib之间的绝对差值。
S04:在供电通道输出电压范围0~5V内将曲线分为3个区间,分别为A(0~1.7V),B(1.7~2.7V),C(2.7~5.0V)三段,三段中由校准引入的绝对误差为分别为ΔIA=0.0017A,ΔIB=0.0008A,ΔIC=0.0011A。与传统校准方式引入的绝对误差ΔIC=0.0039A相比,测试1A量程下的测流精度提升0.22%,校准方案达到提升测量精度的设计预期。
S05:供电通道输出电压Va为5V时,供电通道DPS_1的输出电流Ia=1A,经过校准后的电流为Ia’=Ia+ΔIC=1.0011A。
本发明结构简单,硬件成本低,在校准回路中增加了VBIAS电源,通过高精度电流表配合上位机实现自动化校准。本发明通过VBIAS电源可以获取到供电通道输出满量程电压下电流的校准误差曲线。本发明能够实现电流分段校准,提升电流测量的精度。
以上所述仅为本发明的优选实施例,所述实施例并非用于限制本发明的专利保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明所附权利要求的保护范围内。

Claims (10)

  1. 一种测试系统中供电通道的电流校准装置,其特征在于,包括n个供电通道、与n个供电通道一一对应的n个连接开关、m个电阻、与m个电阻一一对应的m个选择开关、VBIAS电源、SPI总线、上位机和电流表,其中,n和m均为大于0的整数;
    每个供电通道的一端连接SPI总线,所述供电通道的另一端通过对应的连接开关连接至节点Q,选择开关的两端分别连接节点Q和电阻的一端,电阻的另一端连接至所述电流表的正端,电流表的负端连接至VBIAS电源,所述VBIAS电源同时连接SPI总线;
    所述上位机控制其中一个连接开关和其中一个选择开关闭合,所述SPI总线控制供电通道和VBIAS电源的输出电压。
  2. 根据权利要求1所述的一种测试系统中供电通道的电流校准装置,其特征在于,所述m个电阻的电阻值均不相等。
  3. 根据权利要求2所述的一种测试系统中供电通道的电流校准装置,其特征在于,所述m个电阻均为大功率低温漂限流电阻。
  4. 根据权利要求1所述的一种测试系统中供电通道的电流校准装置,其特征在于,所述VBIAS电源为可编程电压源,且能够支持正负双电源轨输出。
  5. 一种测试系统中供电通道的电流校准装置进行电流校正的方法,其特征在于,包括如下步骤:
    S01:上位机选择其中一个连接开关和其中一个选择开关闭合;
    S02:SPI总线调整对应供电通道的输出电压Va和VBIAS电源的输出 电压Vb,并记录对应供电通道的输出电流Ia和电流表的测量电流Ib;
    S03:根据上述测量数据绘制供电通道输出电压Va和测量误差A的曲线;所述测量误差A为供电通道的输出电流Ia与电流表的测量电流Ib之间的绝对差值;
    S04:在供电通道输出电压范围内将曲线分为p个区间,并分别计算每个区间中的绝对误差;p为大于0的整数;
    S05:特定供电通道输出电压下的电流值等于测量电流值与所述特定电压所在区间对应的绝对误差之和。
  6. 根据权利要求5所述的进行电流校正的方法,其特征在于,所述步骤S02具体包括:
    S021:SPI总线调整对应供电通道的输出电压Va和VBIAS电源的输出电压Vb,使得Va-Vb=x;并记录此时对应供电通道的输出电流Ia和电流表的测量电流Ib;其中,x大于0,且Ia为待校正电流值;
    S022:重复步骤S021Y次,获得Y组对应供电通道的输出电流Ia和电流表的测量电流Ib;Y为大于0的整数。
  7. 根据权利要求6所述的进行电流校正的方法,其特征在于,所述步骤S03根据上述Y组数据绘制供电通道输出电压Va和测量误差A的曲线。
  8. 根据权利要求6所述的进行电流校正的方法,其特征在于,所述步骤S022中重复步骤S021Y次时,所述SPI总线设置对应供电通道的输出电压Va均匀递增或者均匀递减。
  9. 根据权利要求5所述的进行电流校正的方法,其特征在于,所述步骤S01具体包括:确定待校正电流值Ia和待校正的供电通道;所述上位机控制 该供电通道对应的连接开关闭合;所述上位机根据待校正电流值Ia选择其中一个选择开关闭合。
  10. 根据权利要求9所述的进行电流校正的方法,其特征在于,所述步骤S01中待校正电流值Ia越大,上位机闭合的选择开关所连接的电阻值越小。
PCT/CN2020/120840 2020-03-19 2020-10-14 一种测试系统中供电通道的电流校准装置及校正方法 WO2021184740A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/426,161 US11971770B2 (en) 2020-03-19 2020-10-14 Current calibration device and cureent calibration method for power supply channel in test system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010196868.9A CN111352022A (zh) 2020-03-19 2020-03-19 一种测试系统中供电通道的电流校准装置及校正方法
CN202010196868.9 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021184740A1 true WO2021184740A1 (zh) 2021-09-23

Family

ID=71192948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120840 WO2021184740A1 (zh) 2020-03-19 2020-10-14 一种测试系统中供电通道的电流校准装置及校正方法

Country Status (3)

Country Link
US (1) US11971770B2 (zh)
CN (1) CN111352022A (zh)
WO (1) WO2021184740A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460875A (zh) * 2021-12-30 2022-05-10 深圳市辰卓科技有限公司 一种电源电路及摄像头测试装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111352022A (zh) * 2020-03-19 2020-06-30 上海御渡半导体科技有限公司 一种测试系统中供电通道的电流校准装置及校正方法
CN111736104A (zh) * 2020-08-03 2020-10-02 苏州华兴源创科技股份有限公司 一种电流检测校准方法及装置、显示装置
CN114264996B (zh) * 2021-11-30 2024-05-03 上海御渡半导体科技有限公司 一种ate设备dc校准有效性的检测方法
CN114152906A (zh) * 2021-12-01 2022-03-08 上海御渡半导体科技有限公司 一种基于单板规格验证ate设备dc芯片精度的测量方法
CN118566814A (zh) * 2024-08-02 2024-08-30 杭州飞仕得科技股份有限公司 一种自动测试设备及电流源校准方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205813A (ja) * 2006-01-31 2007-08-16 Toshiba Corp 半導体試験装置用デバイス電源システムおよび電圧補正データ生成方法
CN105659884B (zh) * 2007-11-15 2012-03-07 北京航天测控技术有限公司 一种用于自动测试的智能自校准适配器
CN103748963A (zh) * 2011-08-25 2014-04-23 奥斯兰姆施尔凡尼亚公司 多通道电源
CN107543958A (zh) * 2016-06-28 2018-01-05 硅实验室公司 用于电流测量或校准的装置和相关方法
CN207459108U (zh) * 2017-11-03 2018-06-05 湖南晟芯源微电子科技有限公司 电流校准装置
CN110687373A (zh) * 2019-09-30 2020-01-14 上海御渡半导体科技有限公司 一种ate系统的检测结构及方法
CN111352022A (zh) * 2020-03-19 2020-06-30 上海御渡半导体科技有限公司 一种测试系统中供电通道的电流校准装置及校正方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900733A (zh) * 2005-07-22 2007-01-24 鸿富锦精密工业(深圳)有限公司 电流表校准系统
CN103513206B (zh) * 2012-06-29 2016-08-24 中国船舶重工集团公司第七0九研究所 一种用于集成电路测试系统中微安级直流电流的校准装置及其方法
CN103792506A (zh) * 2012-10-30 2014-05-14 苏州工业园区新宏博通讯科技有限公司 交流多路电能表的校验方法
CN103995226B (zh) * 2013-12-27 2017-01-04 杭州长川科技股份有限公司 用于提高模拟集成电路测试系统精度的方法
US9656570B2 (en) * 2014-12-15 2017-05-23 Ford Global Technologies, Llc Current sensor for a vehicle
WO2018196986A1 (en) * 2017-04-27 2018-11-01 Advantest Corporation Calibration arrangement and method for deriving a resistance of a resistor
CN107728094B (zh) * 2017-10-23 2020-09-29 宁德时代新能源科技股份有限公司 电流校准系数测量装置和方法、电流检测装置和方法
CN109004904B (zh) * 2018-06-27 2020-05-19 汉能移动能源控股集团有限公司 一种校准参数的设定方法、装置、系统、设备及介质
CN109085510B (zh) * 2018-09-12 2024-06-25 江苏金帆电源科技有限公司 一种多充放电通道的电流在线检测与自动校准电路和方法
CN110413940A (zh) * 2019-07-25 2019-11-05 西安班特利奥能源科技有限公司 一种多区间电源输出精度校准方法及其装置和存储介质
US11333701B2 (en) * 2020-01-27 2022-05-17 Keysight Technologies, Inc. Current supply device and test system including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205813A (ja) * 2006-01-31 2007-08-16 Toshiba Corp 半導体試験装置用デバイス電源システムおよび電圧補正データ生成方法
CN105659884B (zh) * 2007-11-15 2012-03-07 北京航天测控技术有限公司 一种用于自动测试的智能自校准适配器
CN103748963A (zh) * 2011-08-25 2014-04-23 奥斯兰姆施尔凡尼亚公司 多通道电源
CN107543958A (zh) * 2016-06-28 2018-01-05 硅实验室公司 用于电流测量或校准的装置和相关方法
CN207459108U (zh) * 2017-11-03 2018-06-05 湖南晟芯源微电子科技有限公司 电流校准装置
CN110687373A (zh) * 2019-09-30 2020-01-14 上海御渡半导体科技有限公司 一种ate系统的检测结构及方法
CN111352022A (zh) * 2020-03-19 2020-06-30 上海御渡半导体科技有限公司 一种测试系统中供电通道的电流校准装置及校正方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460875A (zh) * 2021-12-30 2022-05-10 深圳市辰卓科技有限公司 一种电源电路及摄像头测试装置
CN114460875B (zh) * 2021-12-30 2024-04-16 深圳市辰卓科技有限公司 一种电源电路及摄像头测试装置

Also Published As

Publication number Publication date
US20220413588A1 (en) 2022-12-29
US11971770B2 (en) 2024-04-30
CN111352022A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2021184740A1 (zh) 一种测试系统中供电通道的电流校准装置及校正方法
CN105259528B (zh) 一种微波功率探头的内部校准电路及校准方法
WO2020253552A1 (zh) 一种微差法与比例法结合的电阻高精度测量系统与方法
EP0378670A1 (en) Adjustment circuit and method for solid-state electricity meter
US20060195749A1 (en) Calibration control for pin electronics
US8169249B2 (en) Calibrating a system by setting difference between signals
CN104535954B (zh) 有源泄漏电流测试仪的校准装置及校准方法
US5424677A (en) Common mode error correction for differential amplifiers
CN112671405B (zh) 一种电离室电荷信号读出装置
CN220650862U (zh) 针对检流放大器的电流校准电路
CN107861091B (zh) 一种基于动态电能校准器的动态性能溯源方法
CN112327057A (zh) 用于线材测试仪的导通电阻测试方法
CN112152621A (zh) 一种多通道高精度ad采集修正电路及其快速修正方法
CN109375127B (zh) 基于模数转换器的集成电路测试系统自动校准装置及方法
CN111220901A (zh) 运放测试系统和方法
CN108572273B (zh) 低电流测量电路及其测量方法
CN113126014B (zh) 一种实现数字示波器阵列并行的校准系统
CN214585670U (zh) 一种高阻抗指针式直流电压表
CN114614820A (zh) 一种adc误差修调方法、系统及误差修调装置
RU2278393C1 (ru) Устройство для калибровки высоковольтных делителей постоянного напряжения
CN217954718U (zh) 多通道比例功率源及检测装置
CN117572321B (zh) 电压比率超量程自校准方法、计算机设备和存储介质
KR100666314B1 (ko) 삼각비교방법에 의한 저항브릿지 비율오차 교정방법 및 이를 이용한 저항측정기
CN219738060U (zh) 一种uA级别高精度恒流源系统
CN221528740U (zh) 一种消除温漂的电流测量模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925359

Country of ref document: EP

Kind code of ref document: A1