WO2021184706A1 - 在流化床中调节空床气速的方法 - Google Patents

在流化床中调节空床气速的方法 Download PDF

Info

Publication number
WO2021184706A1
WO2021184706A1 PCT/CN2020/115524 CN2020115524W WO2021184706A1 WO 2021184706 A1 WO2021184706 A1 WO 2021184706A1 CN 2020115524 W CN2020115524 W CN 2020115524W WO 2021184706 A1 WO2021184706 A1 WO 2021184706A1
Authority
WO
WIPO (PCT)
Prior art keywords
rib
ribs
bed
reaction zone
fluidized bed
Prior art date
Application number
PCT/CN2020/115524
Other languages
English (en)
French (fr)
Inventor
宗弘元
齐国祯
曹静
李晓红
俞志楠
王莉
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to BR112022018563A priority Critical patent/BR112022018563A2/pt
Priority to AU2020435951A priority patent/AU2020435951A1/en
Priority to US17/912,271 priority patent/US20230139652A1/en
Priority to CN202080098718.2A priority patent/CN115244023A/zh
Publication of WO2021184706A1 publication Critical patent/WO2021184706A1/zh
Priority to ZA2022/11413A priority patent/ZA202211413B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/34Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with stationary packing material in the fluidised bed, e.g. bricks, wire rings, baffles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00663Concentration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/0084Stationary elements inside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00929Provided with baffles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the invention relates to a method for adjusting the gas velocity of an empty bed in a fluidized bed, and a process for preparing low-carbon olefins by using the method.
  • Low-carbon olefins especially ethylene and propylene
  • MTO methanol to olefins
  • document CN101328103A discloses a process for converting methanol or dimethyl ether into low-carbon olefins.
  • the raw material including methanol or dimethyl ether enters the reaction zone of a fluidized bed reactor and contacts with a catalyst including silicoaluminophosphate molecular sieve.
  • the reaction pressure in gauge pressure is 0.05 ⁇ 1MPa
  • the average temperature of the reaction zone is 450 ⁇ 550 °C
  • the average gas velocity of the reaction zone is 0.8 ⁇ 2.0 m / sec
  • the average density of the reaction zone is 20 ⁇ 300 kg/m3
  • the average carbon deposit of the catalyst in the reaction zone is 1.5-4.5% by weight.
  • the carbon-based selectivity of low-carbon olefins is up to 81.51% by weight.
  • the operating pressure and space velocity of the fluidized bed reactor are important parameters.
  • the general MTO process is selected in The reaction is carried out under low pressure (such as less than 0.2MPa).
  • the reaction gas will be Entrained more catalyst is carried out of the reactor system, resulting in an increase in the amount of catalyst runaway. Over time, the catalyst inventory in the reactor continues to decrease and the catalyst load increases, which ultimately affects the yield of methanol to the target product.
  • the inventors of the present invention found that under higher reaction pressure and space velocity conditions, by adjusting the empty bed gas velocity in the reaction zone of a fluidized bed reactor and the average catalyst density ⁇ in the reaction zone (in the context of the present invention, For the sake of convenience, the relationship between "average catalyst density in the reaction zone” and “average catalyst density in the bed” and “bed density” are used interchangeably) to ensure high methanol conversion and high low-carbon olefins Selective.
  • the present invention has been completed based on these findings.
  • the present invention relates to the following aspects:
  • a method for adjusting the empty bed gas velocity in a fluidized bed in which a solid catalyst is used as fluidized particles or a part of fluidized particles, characterized in that the empty bed gas velocity ⁇ in the reaction zone of the fluidized bed is measured, Compare this with the average catalyst density ⁇ of the solid catalyst bed in the fluidized bed reaction zone, and adjust the empty bed gas velocity ⁇ as necessary so that the empty bed gas velocity ⁇ and the bed layer
  • the average catalyst density ⁇ satisfies the following formula (I):
  • M 250-554, preferably 300-550, or 400-500, such as 487.9;
  • the unit of ⁇ is meter/second, and the unit of ⁇ is kilogram/cubic meter.
  • the method according to aspect 1 or any other aspect of the present invention characterized in that the average catalyst density of the bed is 200-500 kg/m3, preferably 250-450 kg/m3, more preferably 300-430 Kg/m3.
  • the baffle member B j (1) includes a plurality of ribs (7), and the arrangement of the ribs (7) is radial (A), spiral (B1-B2), or dendritic (C1 ⁇ C3).
  • the cross-sectional area not occupied by the projection accounts for 70%-95% of the cross-sectional area of the reaction zone of the fluidized bed
  • the distance between the outermost edge of any baffle member B j (1) and the wall surface (2) of the reaction zone cylinder of the fluidized bed is h 1 ; and the h 1 is independently the reaction of the fluidized bed
  • the zone diameter D is 0.005 to 0.05 times.
  • baffle members B j (1) include ribs (7) and positioning ring R i (6); said positioning ring R i (6) concentrically arranged; said rib (7) and the positioning ring R i (6) is connected to and distributed uniformly in the circumferential direction, wherein:
  • ribs (7) are composed of a plurality of main ribs (4) And a plurality of auxiliary ribs (5); the number of the main ribs (4) of each baffle member B j (1) is independently k, and k is 2-8; the main ribs (4) And the auxiliary ribs (5) are arranged vertically and crosswise; the total number of the auxiliary ribs (5) on each baffle member B j (1) is independently q, and q is 10-40.
  • the dendritic baffle member B j (1) has an I-type dendritic arrangement (C1), wherein the plurality of main ribs (4) The two lengths in each are D-2 ⁇ h 1 and are perpendicular to each other, and are respectively called the first main rib and the vertical main rib; the other main ribs (4) in the plurality of main ribs (4) Arranged parallel to the first main ribs with the same spacing h 4 ; the secondary ribs (5) on each main rib (4) are arranged in parallel with the same spacing h 2 ; the first main ribs are closest to The pair of secondary ribs of the vertical main rib are respectively at a distance h 2 from the vertical main rib, and the two main ribs adjacent to the first main rib are respectively closest to the pair of vertical main ribs.
  • C1 I-type dendritic arrangement
  • the secondary ribs are at a distance of 1/2h 2 from the vertical main ribs.
  • the secondary ribs (5) on the spaced main ribs (4) are on a straight line in the length direction; the secondary ribs on the spaced main ribs (4) are in a straight line.
  • the distance h 3 between the ends of the ribs (5) is (0.01-0.2) times (D-2 ⁇ h 1 )/k.
  • the dendritic baffle member B j has a type II dendritic arrangement (C2 ⁇ C3), wherein the main rib of the baffle member (1) (4) Arranged crosswise and evenly arranged in the circumferential direction, with a length of D-2 ⁇ h 1 ; the number of auxiliary ribs (5) on each main rib (4) is the same, and they are arranged parallel to each other with a distance of h 5 is the same; the secondary ribs (5) on each main rib (4) form a fan-shaped area, and the distance h 6 between each fan-shaped area is 0.5 to 3 times of h 1.
  • the ribs (7) are of ⁇ type (D1 ⁇ D4), inverted V type (D5), inclined plate type (D6), circular arc Any one of the type (D7); the rib (7) is provided with a small hole (10); the small hole (10) is any one of a circle, an ellipse, a rectangle, a triangle, a polygon, etc.
  • the ⁇ -type (D1-D4) ribs (6) include rib side wings (9) and rib top (8).
  • the method according to aspect 1 or any other aspect of the present invention characterized in that the value is given in the range of ⁇ 5% of the set value of M, preferably ⁇ 2%, or ⁇ 1%, or ⁇ 0.5%
  • the control value M'of the control interval wherein when there is no control value M'in the control interval of the set value M, which can make the empty bed gas velocity ⁇ and the bed density ⁇ satisfy the formula (I), the set value M, calculate the corresponding calculated value of the empty bed gas velocity ⁇ according to the bed density ⁇ at this time, and adjust the empty bed gas velocity according to the calculated value.
  • a process for preparing low-carbon olefins including the steps of contacting oxygen-containing compound raw materials with molecular sieve catalysts in a fluidized bed reaction zone to generate low-carbon olefin products under effective conditions; characterized in that the fluidized bed reaction zone Inside, the empty bed gas velocity ⁇ and the average catalyst density ⁇ of the bed satisfy the following formula (I):
  • M 250-554, preferably 300-550, or 400-500, such as 487.9;
  • the unit of ⁇ is meter/second, and the unit of ⁇ is kilogram/cubic meter; or
  • the empty bed gas velocity ⁇ and the average catalyst density ⁇ of the bed do not satisfy the formula (I)
  • the empty bed gas velocity is adjusted by the method as described in aspect 1 or any other aspect of the present invention, so that the empty bed gas
  • the velocity ⁇ and the average catalyst density ⁇ of the bed satisfy the formula (I).
  • the process for preparing low-carbon olefins according to aspect 15 or any other aspect of the present invention is characterized in that the effective conditions include: the pressure at the top of the reactor is greater than 0.1 MPa, preferably 0.2 to 1 MPa; the reaction temperature is greater than 400° C., preferably 450 ⁇ 500°C.
  • the oxygen-containing compound raw material includes methanol
  • the molecular sieve is a silico-aluminum-phosphorus molecular sieve, preferably SAPO-18 , SAPO-34, SAPO-5 or a combination thereof.
  • Figure 1 exemplifies a reactor for the production of low-carbon olefins using the method of the present invention.
  • Figure 2 illustrates a radial (A) baffle member that can be used in the method of the present invention.
  • Figures 3A-B illustrate helical (B1-B2) baffle members that can be used in the method of the present invention.
  • FIGS 4A-C illustrate dendritic (C1 to C3) baffle members that can be used in the method of the present invention.
  • Fig. 5 exemplifies the ribs that can be used for the baffle member of the present invention.
  • the processing capacity of the reaction zone is improved.
  • both high raw material conversion rate and high low-carbon olefin selectivity can be ensured, and the average carbon-based yield of low-carbon olefin (ethylene+propylene) can reach more than 83%.
  • a fluidized bed reactor includes a reaction zone, an inlet zone, and a separation zone.
  • the "inlet zone” is the section where raw materials and catalysts are introduced into the reactor.
  • the “reaction zone” is the section in the reactor where the feed and the catalyst are in contact with each other under conditions effective to convert the oxygenated compounds of the feed into light olefin products.
  • the “separation zone” is the section in the reactor where the catalyst and any other solids in the reactor are separated from the product. Typically, the reaction zone is located between the inlet zone and the separation zone.
  • empty bed gas velocity refers to the linear gas velocity calculated on the empty bed. The calculation method is: assuming that the gas-solid flow is a flat plug flow, the gas volume flow per unit time under the real reaction conditions in the reaction zone is divided by the cross-sectional area of the reaction zone.
  • space velocity refers to the mass flow rate of the raw material divided by the total weight of the catalyst in the reaction zone, and the unit is h -1 .
  • bed average catalyst density is used, which is calculated by dividing the total weight of the catalyst in the reaction zone by the volume of the reaction zone.
  • the method for calculating the amount of soot on the catalyst is the mass of soot on the catalyst divided by the mass of the catalyst.
  • the method for measuring the quality of coke deposits on the catalyst is as follows: weigh 0.1 to 1 g of the catalyst with carbon and burn it in a high-temperature carbon analyzer, and measure the mass of carbon dioxide generated by the combustion by infrared to obtain the quality of coke deposits on the catalyst. In order to determine the amount of carbon deposited on the catalyst in the reaction zone, a small amount of catalyst can be drawn out continuously or periodically or directly from various positions in the reaction zone.
  • any two or more embodiments of the present invention can be combined arbitrarily, and the technical solutions formed thereby belong to a part of the original disclosure of this specification and also fall into the protection scope of the present invention.
  • the present invention provides a method for adjusting the gas velocity of an empty bed in a fluidized bed, wherein a solid catalyst is used as the fluidized particles or a part of the fluidized particles, characterized in that the fluidized bed reaction is measured
  • the empty bed gas velocity ⁇ in the fluidized bed reaction zone is compared with the average catalyst density ⁇ of the solid catalyst in the fluidized bed reaction zone, and the empty bed gas velocity ⁇ is adjusted as necessary to make the empty bed
  • the gas velocity ⁇ and the average catalyst density ⁇ of the bed satisfy the following formula (I):
  • M is the set value, which is 250-554, preferably 300-550, or 400-500, or a value between 450-500, such as 480, 481.8, 482.5, 483, 484.4, 485, 486, 487, 487.5 , 487.9, 488, 488.3, 489, or 490; the unit of ⁇ is meter/second, and the unit of ⁇ is kilogram/cubic meter.
  • the bed density ⁇ is determined accordingly, and the required empty bed gas velocity ⁇ is calculated according to formula (I).
  • the obtained ⁇ is the numerical point as the target setting value of the empty bed gas velocity to adjust the actual operation of the empty bed gas velocity.
  • the specific method for adjusting the empty bed gas speed according to the target setting value for example, by adjusting the opening of the valve, adjusting the output of the pump or the compressor, and so on.
  • both the empty bed gas velocity ⁇ and the average catalyst density ⁇ of the bed may fluctuate with time.
  • the average catalyst density ⁇ of the bed layer involved in the present invention is calculated as the total weight of the catalyst in the reaction zone divided by the volume of the reaction zone. ⁇ decreases.
  • the empty bed gas velocity ⁇ may also change.
  • the control value M'in the control interval of the M set value can be given, which is, for example, ⁇ 5% of the distance M set value, Preferably, it is within a range of ⁇ 2%, or ⁇ 1%, or ⁇ 0.5%, and the control interval does not need to be set symmetrically with respect to the set value.
  • the control interval may be, for example, 480-495, such as 482-490, 485-492, 486-489, and so on.
  • the baffle member (1) provided in the reaction zone of the fluidized bed helps to realize the adjustment so that the gas velocity ⁇ of the empty bed and the bed density ⁇ Meets according to the formula (I).
  • the number of layers of the baffle member (1) is m independently in each case, and m is a value varying between 1-10.
  • the distance between two adjacent baffle members B j and B j-1 is called H j
  • H 1 the distance between the lowest baffle member B 1 (1) and the methanol feed distribution plate
  • H 1 the ratio of H 1 to the height of the reaction zone
  • 0.1-0.4 such as 0.2-0.3, such as 0.25
  • each of the remaining H j is independently 0.2 to 1 times the diameter D of the fluidized bed reaction zone.
  • each H j except for H 1 is the same.
  • the fluidized bed reaction zone preferably has a circular or substantially circular cross-section.
  • two adjacent baffle members B j (1) are arranged in a staggered arrangement or arranged in an upper and lower overlapping arrangement.
  • the baffle member B j (1) includes a plurality of ribs (7), and the arrangement of the ribs (7) is radial (A), spiral (B1-B2), or dendritic (C1 ⁇ C3). kind of.
  • the arrangement of the plurality of ribs (7) of each layer of the baffle member B j (1) is the same or different.
  • the distance between the outermost edge of any baffle member B j (1) and the wall surface (2) of the reaction zone cylinder of the fluidized bed is h 1 ; and in each embodiment, the h 1 is independent
  • the ground is a value between 0.005 and 0.05 times the diameter D of the reaction zone of the fluidized bed. That is to say, all the baffle members B j (1) constituted by the connecting lines of the outermost edge have a hydraulic diameter of (D-2 ⁇ h 1 ); and when the fluidized bed reaction zone preferably has In the case of a circular cross section, the figure formed by the outermost edge formed by all the baffle members B j (1) is a circle with a diameter (D-2 ⁇ h 1 ).
  • the baffle member B j (1) arranged in a radial shape (A) or spiral shape (B1-B2) includes a rib (7) and a positioning ring R i (6).
  • the positioning ring R i (6) concentrically arranged; said rib (7) and the positioning ring R i (6) is connected to and distributed uniformly in the circumferential direction, wherein:
  • the baffle member B j (1) arranged radially (A) or spirally (B1-B2) does not include a positioning ring.
  • the number of ribs (7) is 3-10.
  • baffle members B j (1) are arranged in the same radial shape (A).
  • the angle between the outer arc tangent of the rib (7) of the spirally (B1-B2) arrangement baffle member (1) and the radial direction is ⁇ , and ⁇ is 10 to 80 [deg.];
  • the shutter member B j (1) comprises a locating ring R i (6)
  • the helical (B1-B2) baffle member B j (1) is the g-th rib and the second circle
  • the ribs (7) of g+1 rib ring layers can be arranged in the same direction or in reverse.
  • the direction referred to by the same or reverse arrangement refers to the clockwise (right-handed) spiral direction or counterclockwise (left-handed) spiral direction of the spiral for the top view of the rib (7).
  • all baffle members B j (1) are arranged in the same spiral shape (B1-B2).
  • (1) ribs (7) are composed of a plurality of main ribs (4) and a plurality of auxiliary ribs. (5) Composition.
  • the number of the main ribs (4) is independently k, and k is 2-8.
  • the main ribs (4) and the secondary ribs (5) are arranged vertically and crosswise and are in a tree shape.
  • the total number of the auxiliary ribs (5) on each baffle member B j (1) is independently q, and q is 10-40.
  • the number of main ribs (4) on every two baffle members B j (1) is the same or different. In one embodiment, the number of main ribs (4) on each baffle member B j (1) is the same. The number of secondary ribs (5) on every two of the main ribs (4) is the same or different.
  • the dendritic baffle member B j (1) has an I-type dendritic arrangement (C1), and the I-type dendritic arrangement (C1) refers to the plurality of The two lengths of the main ribs (4) are each (D-2 ⁇ h 1 ) and are perpendicular to each other, and are called the first main ribs and the vertical main ribs respectively; in other words, when the baffle member B j ( When the connecting line of the outermost edge of 1) is circular (or substantially circular), the length of the first main rib and the vertical main rib is equal to the diameter of the circular (or substantially circular) formed by the connecting line .
  • the other main ribs (4) of the plurality of main ribs (4) are arranged parallel to the first main rib, and each is continuous in the length direction thereof, and the distance h 4 is the same. H same as each main rib on a plurality of sub ribs (4) (5) arranged in parallel, the pitch 2, and between each of the ribs from the main to the adjacent two main ribs in the longitudinal direction Extend to the position of the main rib h 0 (h 0 >0, not shown in the figure); or for the main rib on the outer side, the multiple secondary ribs (5) on it are each in the length direction
  • the upper part extends between the pattern formed by the connecting line from the adjacent main rib to the outermost edge of all the baffle members B j (1).
  • a pair of (two) secondary ribs on the first main rib that are closest to the vertical main rib are respectively at a distance h 2 from the vertical main rib, and the two main ribs adjacent to the first main rib A pair of secondary ribs (4 in total) closest to the vertical main ribs are respectively at a distance of 1/2h 2 from the vertical main ribs.
  • the respective secondary ribs (5) on the spaced main ribs (4) are respectively aligned in the length direction (in a straight line).
  • the "spacing" of the ribs means that there is and only one other rib of the same type and the same arrangement between two ribs; for example, see FIG. 4A, three adjacent ribs.
  • the two main ribs separated by the middle main rib are called "interval" main ribs.
  • the distance between every two adjacent secondary ribs (5) on the spaced main rib (4) in the length direction is called the distance between ends h 3 , and each two adjacent secondary ribs (5) have The same end-to-end distance h 3 is independently a value between (D-2 ⁇ h 1 )/k (0.01 to 0.2) times in each case.
  • h 3 2h 0 +I.
  • all baffle members B j (1) adopt the same type I dendritic arrangement (C1).
  • the dendritic baffle member B j has a type II dendritic arrangement (C2 to C3), and the type II dendritic arrangement (C2 to C3) refers to
  • the main ribs (4) of the baffle member (1) are arranged crosswise and evenly arranged in the circumferential direction, and the length of each main rib is D-2 ⁇ h 1 .
  • the number of secondary ribs (5) on all main ribs (4) is the same.
  • the fan-shaped areas formed by the secondary ribs (5) on the main ribs (4) have equal spacing h 6 , which is independently h in each case 1 0.5 to 3 times.
  • all baffle members B j (1) adopt the same type II dendritic arrangement (C2 to C3).
  • the plurality of baffle members B j (1) may adopt a radial shape (A), a spiral shape (B1-B2), or a dendritic shape (C1 ⁇ C3). A combination of multiple.
  • the ribs (7) are of ⁇ type (D1 ⁇ D4), inverted V type (D5), inclined plate type (D6), arc type (D7);
  • the ribs (7) are provided with small holes (10); the small holes (10) are round, elliptical, rectangular, triangular, polygonal, etc.; the ⁇ -type (D1 ⁇ D4)
  • the rib (6) includes rib side wings (9) and rib top (8).
  • the arrangement and opening rate of the small holes are not particularly limited, as long as they meet the various requirements of the ribs (7) and baffle members B j (1) described above and below.
  • the cross-sectional area not occupied by the projection occupies 70%-95% of the cross-sectional area of the reaction zone of the fluidized bed.
  • the ⁇ -shaped rib (7) in the form of D1 is a rib with an upwardly convex arc-shaped top (8) and arc-shaped side wings (9);
  • the ⁇ -shaped rib (7) in the form of D2 has a flat
  • the ⁇ -shaped rib (7) in the form of D3 is a rib with an upwardly convex arc-shaped top (8) and the flat side wings (9); and the D4 form
  • the ⁇ -shaped rib (7) is a rib with a flat top (8) and flat side wings (9).
  • the orthographic projection of the ⁇ -shaped ribs (7) along the length of the ribs is relative to the projection shape and the end of the side wings.
  • its arc-shaped flanks are "concave" relative to the inside of the closed figure.
  • the width l of the rib (7) is (D-2 ⁇ h 1 )/(p or q) (0.2 ⁇ 0.9) times, and the height ⁇ of the rib (7) is the rib (7) (0.1 ⁇ 0.6) times the width l.
  • the width l of the rib (7) refers to the projected width of the rib on the cross section of the reactor when the rib is installed in the reactor;
  • the height ⁇ of the rib (7) refers to the rib installed in the reactor In the middle, the height of its projection on the axis of the reactor.
  • the width l 1 of the rib top (8) of the ⁇ -type (D1-D4) rib (6) is (0.1-0.5) times the width l of the rib (7); the ⁇ -type (D1 and D3)
  • the height ⁇ 1 of the rib top (8) of the rib (6) is (0.05-0.3) times the height ⁇ of the rib (7).
  • the width l 1 of the top of the rib (8) refers to the width of the top of the rib (8) projected on the cross section of the reactor when the rib is installed in the reactor; the height of the top (8) of the rib ⁇ 1 It refers to the height of the projection of the top (8) of the rib on the axial direction of the reactor when the rib is installed in the reactor.
  • the angle between the baffle member (1) and the cross section of the fluidized bed reaction zone is -25-60°, preferably -20-50°, more preferably -15-40°.
  • the present invention also provides a process for preparing low-carbon olefins, which includes the steps of contacting oxygenate raw materials with molecular sieve catalysts in a fluidized bed reaction zone to generate low-carbon olefin products under effective conditions; it is characterized in that the fluidization In the bed reaction zone, the empty bed gas velocity ⁇ and the average catalyst density ⁇ of the bed satisfy the following formula (I):
  • M 250-554, preferably 300-550, or 400-500, such as 487.9; the unit of ⁇ is meter/second, and the unit of ⁇ is kilogram/cubic meter; or
  • the empty bed gas velocity ⁇ and the average catalyst density ⁇ of the bed do not satisfy the formula (I)
  • the empty bed gas velocity is adjusted by the method of adjusting the empty bed gas velocity as described in the present invention (for example, the aforementioned aspect 1) to
  • the empty bed gas velocity ⁇ and the average catalyst density ⁇ of the bed satisfy the formula (I).
  • a fluidized bed reactor which includes a fluidized bed reaction zone, a solid catalyst is used as fluidized particles, and the bottom of the reaction zone is provided with a feed line (11) and a feed distribution plate (12).
  • the ribs (7) are ⁇ -shaped (D1); the ribs (7) are provided with small holes (10); the small holes (10) are circular; the ⁇ -shaped (D1) ribs (6) ) Includes rib side wings (9) and rib top (8).
  • the width l of the rib (7) is 0.5 times (D-2 ⁇ h 1 )/p, and the height ⁇ of the rib (7) is 0.5 times the width l of the rib (7).
  • the width l 1 of the top of the rib (8) of the ⁇ type (D1) rib (6) is 0.35 times the width l of the rib (7); the top of the rib (8) of the ⁇ type (D1) rib (6)
  • the height ⁇ 1 of is 0.15 times of the height ⁇ of the rib (7).
  • the rib flanks (9) of the ⁇ -type (D1) rib (6) are arc-shaped.
  • the baffle member B j (1) When the baffle member B j (1) is projected on the cross-section of the reaction zone of the fluidized bed, the cross-sectional area not occupied by the projection occupies 80% of the cross-sectional area of the reaction zone of the fluidized bed.
  • the ratio of H 1 to the height of the reaction zone is 0.25, and H j is 0.5 times the diameter D of the reaction zone of the fluidized bed; the outermost edge of the baffle member B j (1) and the wall surface of the reaction zone cylinder of the fluidized bed (2)
  • the distance h 1 between (2) is 0.01 times the diameter D of the reaction zone of the fluidized bed.
  • the angle between the baffle member B 1 (1) and the cross section of the fluidized bed reaction zone is 0°.
  • the M setting value is 487.9, and the control interval is 486-489;
  • the unit of ⁇ is meter/second, and the unit of ⁇ is kilogram/cubic meter.
  • the fluidized bed reactor is used in a methanol-to-olefin reaction.
  • the fluidized bed reactor is a fast fluidized type, the methanol feedstock scale is 2.4 million tons/year, the reactor reaction zone diameter is 8 meters, the height is 10 meters, and the operation period is 7 days.
  • the stream including the methanol raw material enters the reaction zone of the reactor through the feed line, contacts with the molecular sieve catalyst, reacts to produce products containing low-carbon olefins, and carries the spent catalyst through gas-solid
  • the rapid separation zone enters the reactor separation zone, where most of the catalyst separated by the gas-solid rapid separation device enters the stripping zone, while the gas-phase products and some catalysts that have not been separated by the gas-solid rapid separation device are separated by the cyclone separator and carried out again.
  • the catalyst After separation, the catalyst returns to the stripping zone through the material leg of the cyclone separator, and the gas phase product enters the subsequent separation section through the gas collection chamber and the outlet pipeline.
  • the spent catalyst separated by the gas-solid rapid separation zone and the cyclone separator is divided into two parts after being stripped. One part returns to the bottom of the reaction zone through the catalyst outer circulation inclined tube; the other part enters the regenerator through the standby inclined tube.
  • the dense phase section, coke burning regeneration the flue gas generated by coke combustion passes through the cyclone separator and then enters the subsequent energy recovery system through the flue gas outlet pipeline, and the regenerated catalyst after the regeneration is returned to the reaction zone through the regeneration inclined pipe.
  • the pressure at the top of the reactor was 0.2 MPa, and the reaction temperature was 480°C.
  • the average coke deposit amount of the catalyst is 3.5 wt%, the average density of the bed in the reaction zone is 426 kg/m3, and the gas velocity of the empty bed is 1.5 m/s.
  • the active component of the catalyst is a silicoaluminophosphate molecular sieve, and the silicoaluminophosphate molecular sieve is SAPO-34.
  • the baffle member B j (1) comprises a locating ring R i (6), the helical (B1) the shutter member B j (1) relative to
  • the ribs (7) of the two adjacent rib ring layers are arranged in the same direction.
  • the ribs (7) are ⁇ -shaped (D3), and the ribs (7) are provided with small holes (10); the small holes (10) are oval; the width l of the ribs (7) is (D- 2 ⁇ h 1 )/p is 0.4 times, and the height ⁇ of the rib (7) is 0.4 times the width l of the rib (7).
  • the width l 1 of the top of the rib (8) of the ⁇ type (D3) rib (6) is 0.2 times the width l of the rib (7); the top of the rib (8) of the ⁇ type (D3) rib (6)
  • the height ⁇ 1 of is 0.1 times the height ⁇ of the rib (7).
  • the rib side wing (9) of the ⁇ -type (D3) rib (6) is flat.
  • the average density of the bed in the reaction zone is 485 kg/m3, and the gas velocity of the empty bed is 1.5 m/s.
  • the arrangement of the ribs (7) is spiral (B2), that is, two adjacent ribs of the spiral (B2) baffle member B j (1)
  • the ribs (7) of the plate ring layer (the i-th rib ring layer and the i+1-th rib plate ring layer) are arranged in reverse.
  • the average density of the bed in the reaction zone is 474 kg/m3, and the gas velocity of the empty bed is 1.5 m/s.
  • the ribs (7) are of circular arc type (D7); the ribs (7) are provided with small holes (10); the small holes (10) are circular; the width l of the ribs (7) is (D -2 ⁇ h 1 )/p is 0.6 times, and the height ⁇ of the rib (7) is 0.5 times the width l of the rib (7).
  • the average density of the bed in the reaction zone is 407 kg/m3, and the gas velocity of the empty bed is 1.5 m/s.
  • Example 1 According to the conditions and steps described in Example 1, except that the methanol feed scale is 3 million tons/year, the diameter of the reactor reaction zone is 8 meters, the pressure at the top of the reactor is 0.3 MPa, the reaction temperature is 500 °C, and the average catalyst volume is The carbon content is 4.0% by weight, the average density of the bed in the reaction zone is 454 kg/m3, and the gas velocity of the empty bed is 2.5 m/s.
  • Example 1 According to the conditions and steps described in Example 1, except that the methanol feed scale is 3 million tons/year, the diameter of the reactor reaction zone is 8 meters, the pressure at the top of the reactor is 0.3 MPa, the reaction temperature is 500 °C, and the average catalyst volume is The carbon content is 4.0% by weight, the average density of the bed in the reaction zone is 397 kg/m3, and the gas velocity of the empty bed is 2.5 m/s.
  • the only difference is that the average carbon deposit on the catalyst is 4.0 wt%, the average density of the bed in the reaction zone is 355 kg/m3, and the empty bed gas velocity is 3 m/sec.
  • the only difference is that the average carbon deposit on the catalyst is 4.0 wt%, the average density of the bed in the reaction zone is 505 kg/m3, and the empty bed gas velocity is 1.0 m/sec.
  • Example 1 According to the conditions and steps described in Example 1, the only difference is that the methanol feedstock scale is 1.8 million tons/year, the average coke deposit on the catalyst is 3.0wt%, and the average density of the bed in the reaction zone is 450 kg/m3, empty bed The gas velocity is 1.15 m/s.
  • the only difference is that the number of ribs (7) in each rib ring layer is p, and the number of ribs (7) in the g-th rib ring layer is p g , p g is 8 ⁇ g.
  • the width l of the rib (7) is 0.8 times (D-2 ⁇ h 1 )/p, and the height ⁇ of the rib (7) is 0.2 times the width l of the rib (7).
  • the width l 1 of the top of the rib (8) of the ⁇ type (D1) rib (6) is 0.45 times the width l of the rib (7); the top of the rib (8) of the ⁇ type (D1) rib (6) The height ⁇ 1 of is 0.2 times the height ⁇ of the rib (7).
  • the baffle member B j (1) When the baffle member B j (1) is projected on the cross-section of the reaction zone of the fluidized bed, the cross-sectional area not occupied by the projection occupies 83% of the cross-sectional area of the reaction zone of the fluidized bed.
  • the ratio of H 1 to the height of the reaction zone is 0.25, and H j is 0.4 times the diameter D of the reaction zone of the fluidized bed; the outermost edge of the baffle member B j (1) and the wall surface of the reaction zone cylinder of the fluidized bed (2)
  • the distance h 1 between (2) is 0.02 times the diameter D of the reaction zone of the fluidized bed.
  • the angle between the baffle member B 1 (1) and the cross section of the fluidized bed reaction zone is -10°.
  • the average density of the bed in the reaction zone is 447 kg/m3, and the gas velocity of the empty bed is 1.5 m/s.
  • the baffle member B j (1) when the baffle member B j (1) is projected on the cross section of the reaction zone of the fluidized bed, the cross-sectional area not occupied by the projection occupies the reaction of the fluidized bed 75% of the cross-sectional area of the zone.
  • the ratio of H 1 to the height of the reaction zone is 0.25, and H j is 0.7 times the diameter D of the reaction zone of the fluidized bed; the outermost edge of the baffle member B j (1) and the wall surface of the reaction zone cylinder of the fluidized bed (2)
  • the distance h 1 between (2) is 0.03 times the diameter D of the reaction zone of the fluidized bed.
  • the angle between the baffle member B 1 (1) and the cross section of the fluidized bed reaction zone is 20°.
  • the average density of the bed in the reaction zone is 410 kg/m3, and the gas velocity of the empty bed is 1.5 m/s.
  • the baffle member B j arranged in a branch shape (C1) (1)
  • the rib (7) is composed of a main rib (4) and a secondary rib (5); the number of the main ribs (4) is k, k Is 4; the main ribs (4) and the auxiliary ribs (5) are arranged vertically and crosswise, in a tree shape; the total number of the auxiliary ribs (5) on each baffle member B j (1) is q, q is 30.
  • the main ribs (4) of the baffle member (1) are arranged in parallel, with different lengths and the same spacing; the number of secondary ribs (5) on each main rib (4) is different, and they are arranged in parallel with the same spacing;
  • the secondary ribs (5) on the spaced main ribs (4) are in a straight line; the distance h 3 between the ends of the secondary ribs (5) on the spaced main ribs (4) is (D-2 ⁇ h 1 )/ 0.1 times of k.
  • the baffle member B j (1) When the baffle member B j (1) is projected on the cross-section of the reaction zone of the fluidized bed, the cross-sectional area not occupied by the projection occupies 75% of the cross-sectional area of the reaction zone of the fluidized bed.
  • the ratio of H 1 to the height of the reaction zone is 0.15, and H j is 0.5 times the diameter D of the reaction zone of the fluidized bed; the outermost edge of the baffle member B j (1) and the wall surface of the reaction zone cylinder of the fluidized bed (2)
  • the distance h 1 between (2) is 0.05 times the diameter D of the reaction zone of the fluidized bed.
  • the angle between the baffle member B 1 (1) and the cross section of the fluidized bed reaction zone is 0°.
  • the average density of the bed in the reaction zone is 382 kg/m3, and the air velocity of the empty bed is 1.5 m/s.
  • the baffle member B j arranged in a tree shape (C2) (1)
  • the rib (7) is composed of a main rib (4) and a secondary rib (5); the number of the main ribs (4) is k, k Is 4; the main ribs (4) and the auxiliary ribs (5) are arranged vertically and crosswise, in a tree shape; the total number of the auxiliary ribs (5) on each baffle member B j (1) is q, q is 30.
  • the main ribs (4) of the baffle member (1) are arranged crosswise, with a length of D-2 ⁇ h 1 ; the number of secondary ribs (5) on each main rib (4) is the same; each main rib (4) The upper secondary ribs (5) form fan-shaped areas, and the distance h 6 between the fan-shaped areas is 1 time of h 1. Sub ribs (5) within each sector area arranged in parallel and by the same distance h 5.
  • the baffle member B j (1) When the baffle member B j (1) is projected on the cross-section of the reaction zone of the fluidized bed, the cross-sectional area not occupied by the projection occupies 78% of the cross-sectional area of the reaction zone of the fluidized bed.
  • the ratio of H 1 to the height of the reaction zone is 0.25, and H j is 0.5 times the diameter D of the reaction zone of the fluidized bed; the outermost edge of the baffle member B j (1) and the wall surface of the reaction zone cylinder of the fluidized bed (2)
  • the distance h 1 between (2) is 0.04 times the diameter D of the reaction zone of the fluidized bed.
  • the angle between the baffle member B 1 (1) and the cross section of the fluidized bed reaction zone is 0°.
  • the average density of the bed in the reaction zone is 400 kg/m3, and the gas velocity of the empty bed is 1.5 m/s.
  • the baffle member B j arranged in a tree shape (C3) (1)
  • the rib (7) is composed of a main rib (4) and a secondary rib (5); the number of the main ribs (4) is k, k Is 8; the main ribs (4) and the auxiliary ribs (5) are arranged vertically and crosswise, in a tree shape; the total number of the auxiliary ribs (5) on each baffle member B j (1) is q, q is 36.
  • the main ribs (4) of the baffle member (1) are arranged crosswise, with a length of D-2 ⁇ h 1 ; the number of secondary ribs (5) on each main rib (4) is the same; each main rib (4) The upper secondary ribs (5) form fan-shaped areas, and the distance h 6 between the fan-shaped areas is 1 time of h 1. Sub ribs (5) within each sector area arranged in parallel and by the same distance h 5.
  • the cross-sectional area not occupied by the projection accounts for 82% of the cross-sectional area of the reaction zone of the fluidized bed.
  • the ratio of H 1 to the height of the reaction zone is 0.25, and H j is 0.5 times the diameter D of the reaction zone of the fluidized bed; the outermost edge of the baffle member B j (1) and the wall surface of the reaction zone cylinder of the fluidized bed (2)
  • the distance h 1 between (2) is 0.04 times the diameter D of the reaction zone of the fluidized bed.
  • the angle between the baffle member B 1 (1) and the cross section of the fluidized bed reaction zone is 0°.
  • the average density of the bed in the reaction zone is 417 kg/m3, and the gas velocity of the empty bed is 1.5 m/s.
  • the ribs (7) are ⁇ -shaped (D3), and the ribs (7) are provided with small holes (10); the small holes (10) are oval;
  • the width l of the rib (7) is 0.4 times (D-2 ⁇ h 1 )/p, and the height ⁇ of the rib (7) is 0.4 times the width l of the rib (7).
  • the width l 1 of the top of the rib (8) of the ⁇ type (D3) rib (6) is 0.2 times the width l of the rib (7); the top of the rib (8) of the ⁇ type (D3) rib (6)
  • the height ⁇ 1 of is 0.1 times the height ⁇ of the rib (7).
  • the rib side wing (9) of the ⁇ -type (D3) rib (6) is flat.
  • the average density of the bed in the reaction zone is 390 kg/m3, and the gas velocity of the empty bed is 1.5 m/s.
  • the ribs (7) are of circular arc type (D7); the ribs (7) are provided with small holes (10); the small holes (10) are circular
  • the width l of the rib (7) is 0.6 times (D-2 ⁇ h 1 )/p, and the height ⁇ of the rib (7) is 0.5 times the width l of the rib (7).
  • the average density of the bed in the reaction zone is 375 kg/m3, and the gas velocity of the empty bed is 1.5 m/s.
  • silico-aluminum-phosphorus molecular sieve is SAPO-18.
  • the baffle is not installed in the reaction zone, the average carbon deposit of the catalyst is 4.0 wt%, the average density of the bed in the reaction zone is 120 kg/m3, and the air velocity in the empty bed is 1.5. Meters per second.
  • the size of the reactor remains unchanged, the methanol feed scale is increased to 2.4 million tons per year, the baffle is not installed in the reaction zone, and the average coke deposit on the catalyst is 4.2wt%.
  • the average density of the zone bed is 90 kg/m3, and the air velocity of the empty bed is 2 m/s.
  • the size of the reactor remains unchanged, the methanol feed scale is increased to 3 million tons/year, the baffle is not installed in the reaction zone, and the average coke deposit on the catalyst is 4.5 wt%.
  • the average density of the zone bed is 60 kg/m3, and the air velocity of the empty bed is 2.5 m/s.
  • the baffle is not installed in the reaction zone, the average carbon deposit of the catalyst is 5wt%, the average density of the bed in the reaction zone is 30 kg/m3, and the gas velocity of the empty bed is 2 meters. /Second.
  • the baffle is not installed in the reaction zone, the average carbon deposit of the catalyst is 5wt%, the average density of the bed in the reaction zone is 30 kg/m3, and the air velocity in the empty bed is 2 meters. /Second.
  • the process of the present invention can achieve the purpose of improving the yield of low-carbon olefins, has a greater technical advantage, and can be used in the industrial production of low-carbon olefins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

一种在流化床中调节空床气速的方法,使用固体催化剂作为流化颗粒或流化颗粒的一部分,其特征在于,测量该流化床反应区的空床气速μ,将其与该流化床反应区中的所述固体催化剂的床层平均催化剂密度ρ进行比较,视需要调节所述空床气速μ,以使得所述空床气速μ和所述床层平均催化剂密度ρ满足下式(I):ρ=0.356μ 3-4.319μ 2-35.57μ+M;其中M=250-554,优选300-550,或400-500,例如487.9;其中μ单位为米/秒,ρ单位为千克/立方米。所述方法可用于低碳烯烃的工业生产中。

Description

在流化床中调节空床气速的方法 技术领域
本发明涉及一种在流化床中调节空床气速的方法,以及利用该方法的制备低碳烯烃的工艺。
背景技术
低碳烯烃,特别是乙烯和丙烯,是重要的基础化工原料,其需求量在不断增加。目前,由含氧化合物通过流化床反应器转化制烯烃的工艺,特别是由甲醇通过流化床反应器转化制烯烃(MTO)的工艺受到越来越多的重视。
MTO工艺中,流化床反应器的操作条件,包括温度、压力、重量空速、积碳量、以及反应区内平均催化剂密度等等如何匹配以达到最理想的双烯收率,是人们一直关注的问题。例如,文献CN101328103A公开了一种甲醇或二甲醚转化为低碳烯烃的工艺,包括甲醇或二甲醚的原料进入流化床反应器的反应区中,与包括硅铝磷酸盐分子筛的催化剂接触;其中,反应压力以表压计为0.05~1MPa、反应区平均温度为450~550℃、反应区平均空塔气速为0.8~2.0米/秒的条件下,反应区的平均密度为20~300千克/立方米,所述反应区内的催化剂平均积炭量为1.5~4.5%重量。低碳烯烃碳基选择性最高达到81.51%重量。
然而,随着市场上对乙烯、丙烯需求量的不断增加,对低碳烯烃生产技术提出了更高的要求。
利用流化床反应器进行生产(例如低碳烯烃的生产)时,流化床反应器的操作压力、空速是重要的参数。例如在甲醇生产低碳烯烃的工艺中,由于甲醇转化为低碳烯烃的反应为增分子反应,提高反应压力一般都会导致甲醇转化率和低碳烯烃选择性的降低,因此一般MTO工艺都选择在低压(如小于0.2MPa)下进行反应。随着市场对低碳烯烃的需求增加,MTO工艺大型化、规模化是必然趋势。通过按一定比例增加原料的投入,同时提高流化床反应器的压力和空速,技术人员是很容易达到增加低碳烯烃产能的目的。但是,根据现有技术,对于生产厂商而言,压力和空速提高后,虽然低碳烯烃的产能增加了,但由甲醇转化为目标产物的效率相应会降低,造成甲醇物耗增加,从经 济的角度来看,未必是划算的;另一方面,压力和空速提高后,有更多的催化剂颗粒悬浮于反应器的稀相段,在旋风分离器处理能力有限的情况下,反应气体将会夹带更多的催化剂带出反应器系统,造成催化剂跑损量的增加,久而久之,反应器内催化剂藏量不断减小,催化剂负荷增加,最终影响到甲醇转化到目标产物的收率。
发明内容
本发明的发明人发现,在较高的反应压力和空速条件下,通过调整流化床反应器反应区内空床气速μ与反应区内平均催化剂密度ρ(在本发明的上下文中,为方便起见,“反应区内平均催化剂密度”与“床层平均催化剂密度”和“床层密度”互换使用)的关系,既能保证高的甲醇转化率,又能保证高的低碳烯烃选择性。本发明基于这些发现而完成。
具体而言,本发明涉及以下方面的内容:
1、一种在流化床中调节空床气速的方法,其中使用固体催化剂作为流化颗粒或流化颗粒的一部分,其特征在于,测量该流化床反应区的空床气速μ,将其与该流化床反应区中的所述固体催化剂的床层平均催化剂密度ρ进行比较,视需要调节所述空床气速μ,以使得所述空床气速μ和所述床层平均催化剂密度ρ满足下式(I):
ρ=0.356μ 3-4.319μ 2-35.57μ+M   (I)
其中M=250-554,优选300-550,或400-500,例如487.9;
μ单位为米/秒,ρ单位为千克/立方米。
2、根据方面1或本发明任何其它方面所述的方法,其特征在于,所述床层平均催化剂密度为200~500千克/立方米,优选250~450千克/立方米,更优选300~430千克/立方米。
3、根据方面1或本发明任何其它方面所述的方法,其中所述流化床的反应区内设有挡板构件B j(1),该挡板构件(1)层数在每种情况下独立地为m,m为在1~10之间变化的值;相邻两个所述挡板构件B j(1)之间的距离为H j,各个H j独立地为流化床反应区直径D的0.2~1倍,其中j=1~m;
所述挡板构件B j(1)包含多个肋板(7),肋板(7)的排布为辐射状(A)、螺旋状(B1-B2)、树枝状(C1~C3)中的一种;
所述挡板构件B j(1)投影于流化床的反应区横截面时,未被该投 影占据的横截面积占流化床的反应区横截面面积的70%~95%;
任一所述挡板构件B j(1)的最外侧边缘与流化床的反应区筒体壁面(2)间的距离均为h 1;且所述h 1独立地为流化床的反应区直径D的0.005~0.05倍。
4、根据方面3或本发明任何其它方面所述的方法,其中的辐射状(A)或螺旋状(B1-B2)排布的挡板构件B j(1)包括肋板(7)和定位圈R i(6);所述定位圈R i(6)同心布置;所述肋板(7)与定位圈R i(6)相连,且沿周向均匀分布,其中:
(a)所述定位圈R i(6)数量独立地为n,n为在1~10之间变化的值,i=1~n;所述n个定位圈R i将所述流化床的反应区在径向分为同轴的n+1个肋板圈层,每个肋板圈层用L g表示,g=1~(n+1);和
(b)所述每个肋板圈层的肋板(7)数量为p,第g个肋板圈层L g中的肋板(7)数量为p g,p g的范围为(3~10)×g。
5、根据方面3或4或本发明任何其它方面所述的方法,其中的螺旋状(B1-B2)排布挡板构件(1)的肋板(7)外弧度切线与半径方向的夹角为α,α为10~80°。
6、根据方面3或本发明任何其它方面所述的方法,其中的树枝状(C1~C3)排布的挡板构件B j(1)肋板(7)由多个主肋板(4)和多个副肋板(5)组成;每个所述挡板构件B j(1)上主肋板(4)数量独立地为k,k为2~8;所述主肋板(4)和副肋板(5)垂直交叉排列;所述每个挡板构件B j(1)上的副肋板(5)总数独立地为q,q为10~40。
7、根据方面6或本发明任何其它方面所述的方法,其中的树枝状挡板构件B j(1)具有I型树枝状排布(C1),其中所述多个主肋板(4)中的两个长度各自为D-2×h 1且彼此垂直,分别称为第一主肋板和垂直主肋板;所述多个主肋板(4)中的其它主肋板(4)平行于所述第一主肋板排布,间距h 4相同;每个主肋板(4)上的副肋板(5)平行排布,间距h 2相同;第一主肋板上最靠近所述垂直主肋板的一对副肋板分别与该垂直主肋板距离h 2,与第一主肋板相邻的两个主肋板上分别最靠近所述垂直主肋板的一对副肋板分别与该垂直主肋板距离1/2h 2,间隔主肋板(4)上的副肋板(5)在长度方向上处于一条直线上;间隔主肋板(4)上的副肋板(5)端间距离h 3为(D-2×h 1)/k的(0.01~0.2)倍。
8、根据方面6或本发明任何其它方面所述的方法,其中的树枝状挡板构件B j具有II型树枝状排布(C2~C3),其中的挡板构件(1)的主肋板(4)交叉排布,且在圆周方向上均匀排布,长度为D-2×h 1;每个主肋板(4)上的副肋板(5)数量相同,彼此平行布置且间距h 5相同;每个主肋板(4)上的副肋板(5)形成扇形区域,各扇形区域间的距离h 6为h 1的0.5~3倍。
9、根据方面3或4或本发明任何其它方面所述的方法,其中的肋板(7)为π型(D1~D4)、倒V型(D5)、斜板型(D6)、圆弧型(D7)中的任意一种;所述肋板(7)开有小孔(10);所述的小孔(10)为圆形、椭圆形、矩形、三角形、多边形等的任一种;所述π型(D1~D4)肋板(6)包括肋板侧翼(9)和肋板顶部(8)。
10、根据方面9或本发明任何其它方面所述的方法,其中的肋板(7)宽度l为(D-2×h 1)/(p或q)的(0.2~0.9)倍,肋板(7)高度δ为肋板(7)宽度l的(0.1~0.6)倍。
11、根据方面9或本发明任何其它方面所述的方法,其中的π型(D1~D4)肋板(6)的肋板顶部(8)的宽度l 1为肋板(7)宽度l的(0.1~0.5)倍;π型(D1和D3)肋板(6)的肋板顶部(8)的高度δ 1为肋板(7)高度δ的(0.05~0.3)倍。
13、根据方面3或4或本发明任何其它方面所述的方法,其特征在于,所述挡板构件(1)与所述流化床反应区横截面的角度为-25~60°,优选为-20~50°,更优选为-15~40°。
14、根据方面1或本发明任何其它方面所述的方法,其特征在于,给出处于M设定值的±5%,优选±2%、或±1%、或±0.5%的范围内的控制区间的控制值M’,其中当该设定值M的控制区间内没有控制值M’能够使得空床气速μ和床层密度ρ满足所述式(I)时,带入设定值M,根据此时的床层密度ρ计算出相应的空床气速μ的计算值,并依据该计算值调节空床气速。
15、一种制备低碳烯烃的工艺,包括含氧化合物原料在流化床反应区与分子筛催化剂接触,在有效条件下生成低碳烯烃产品的步骤;其特征在于,所述流化床反应区内,使得空床气速μ与床层平均催化剂密度ρ满足下式(I):
ρ=0.356μ 3-4.319μ 2-35.57μ+M   (I);
其中,M=250-554,优选300-550,或400-500,例如487.9;
μ单位为米/秒,ρ单位为千克/立方米;或者
在所述空床气速μ与床层平均催化剂密度ρ不满足式(I)时,通过如方面1或本发明任何其它方面所述的方法调节空床气速,以使所述空床气速μ与床层平均催化剂密度ρ满足所述式(I)。
16、根据方面15或本发明任何其它方面所述制备低碳烯烃的工艺,其特征在于,所述有效条件包括:反应器顶部压力大于0.1MPa,优选0.2~1MPa;反应温度大于400℃,优选450~500℃。
17、根据方面15-16任一或本发明任何其它方面所述制备低碳烯烃的工艺,其特征在于,所述含氧化合物原料包括甲醇;所述分子筛为硅铝磷分子筛,优选SAPO-18、SAPO-34、SAPO-5或其组合。
附图说明
图1例示显示了使用本发明方法进行低碳烯烃制备的反应器。
图2例示显示了可用于本发明方法的辐射状(A)挡板构件。
图3A-B例示显示了可用于本发明方法的螺旋状(B1-B2)挡板构件。
图4A-C例示显示了可用于本发明方法的树枝状(C1~C3)挡板构件。
图5例示显示了可用于本发明挡板构件的肋板。
技术效果
根据本发明工艺,反应区处理能力提高。
根据本发明工艺,既能保证高的原料转化率,又能保证高的低碳烯烃选择性,低碳烯烃(乙烯+丙烯)平均碳基收率可达到83%以上。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术 语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、工艺、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
在本说明书的上下文中,所使用的术语“流化床反应区”,是针对流化床反应器而言的。理想地,流化床反应器包括反应区、进口区和分离区。“进口区”是在反应器中引入原料和催化剂的区段。“反应区”是在反应器中进料与催化剂在有效将进料的含氧化合物转化为轻烯烃产物的条件下接触的区段。“分离区”是在反应器中催化剂和反应器内的任何其它固体与产物分离的区段。典型地,反应区位于进口区和分离区之间。
在本说明书的上下文中,所使用的术语“空床气速”,是指按空床计算得到的气体线速度。其计算方法为:假设气固流动属于平推流,反应区内真实反应条件下单位时间的气体体积流量除以反应区横截面积。
在本说明书的上下文中,所使用的术语“空速”,是指原料进料质量流量除以反应区内催化剂总重量,单位为h -1
在本说明书的上下文中,所使用的术语“床层平均催化剂密度”,其计算方法为反应区内催化剂的总重量除以反应区体积。
在本说明书的上下文中,催化剂积炭量(或者平均积碳量)的计算方法为催化剂上的积炭质量除以所述催化剂的质量。催化剂上的积炭质量测定方法如下:称量0.1~1克的带碳催化剂置于高温碳分析仪中燃烧,通过红外测定燃烧生成的二氧化碳质量,从而得到催化剂上的积炭质量。为了测定反应区内的催化剂积碳量,可以从反应区的各个位置,连续或周期性引出或者直接取出等量的小份催化剂。
在本说明书的上下文中,当本发明用于甲醇制烯烃反应时,所使用的术语“碳基收率”,计算方法为单位时间内获得的产品质量除以甲醇分子中的CH 2进料质量。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,而且压力是表压。
在本说明书的上下文中,在反应器尺寸不变地情况下,当原料处 理规模无法实现所需的空床气速时,通过补加惰性介质(如水蒸气等)实现。
在本说明书的上下文中,本发明的任何两个或多个实施方式都可以任意组合,由此而形成的技术方案属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围。
在一个实施方式中,本发明提供了一种在流化床中调节空床气速的方法,其中使用固体催化剂作为流化颗粒或流化颗粒的一部分,其特征在于,测量该流化床反应区的空床气速μ,将其与该流化床反应区中的所述固体催化剂的床层平均催化剂密度ρ进行比较,视需要调节所述空床气速μ,以使得所述空床气速μ和所述床层平均催化剂密度ρ满足下式(I):
ρ=0.356μ 3-4.319μ 2-35.57μ+M   (I)
其中M为设定值,为250-554,优选300-550,或400-500,或450-500之间的一个数值,例如480、481.8、482.5、483、484.4、485、486、487、487.5、487.9、488、488.3、489、或490;μ单位为米/秒,ρ单位为千克/立方米。
在一个实施方式中,对于实际的流化床操作,例如对于给定的催化剂和反应器,床层密度ρ相应确定,由此依据式(I)计算得到所需的空床气速μ。将由此得到的μ为数值点作为对空床气速的目标设定值,来对实际操作的空床气速进行调节。在此,对空床气速依据所述目标设定值进行调节的具体方法没有特定限制,例如通过调节阀门的开度、调节泵或压缩机的输出等。
在流化床的操作中,所述空床气速μ和所述床层平均催化剂密度ρ都可能随时间波动。例如,本发明涉及的床层平均催化剂密度ρ计算为反应区内催化剂的总重量除以反应区体积,而公知地,随流化床的操作,反应区内的催化剂总量可能降低,从而造成ρ降低。再如,由于进料的不稳定等原因,空床气速μ也可能发生变化。
相应地,对于给定的M设定值,为满足式(I),ρ和/或μ的变化可能引起对流化床的频繁调节。不受限于任何已知理论,据信在流化床的实际操作中,可以给出处于M设定值的控制区间的控制值M’,其例如为距离M设定值的±5%,优选±2%、或±1%、或±0.5%的范围内,该控制区间不必相对于设定值对称设置。例如,对于487的M设定值, 其控制区间可为例如480-495,例如482-490、485-492、486-489等。由此,对于给定的M设定值,只要存在处于该设定值M的控制区间内的控制值M’使得空床气速μ和床层密度ρ满足所述式(I),则不必立即调节空床气速μ。当该设定值M的控制区间内没有控制值M’能够使得空床气速μ和床层密度ρ满足所述式(I)时,则带入设定值M,根据此时的床层密度ρ计算出相应的空床气速μ的计算值,并依据该计算值调节空床气速。
不受限于任何已知理论,据信在所述流化床的反应区内设置挡板构件(1)有助于实现调节,以使所述空床气速μ和所述床层密度ρ满足根据所述式(I)。在各个实施方式中,该挡板构件(1)层数在每种情况下独立地为m,m为在1~10之间变化的值。
对于具有m层挡板构件(1)的反应器,每层挡板构件(1)用B j表示,j=1~m。相邻两个所述挡板构件B j和B j-1之间的距离称为H j,其中最下层挡板构件B 1(1)与甲醇进料分布板之间的距离规定为H 1,则H 1与反应区高度之比为0.1-0.4,例如0.2-0.3,例如0.25,其余各个H j独立地为流化床反应区直径D的0.2~1倍。在一个实施方式中,除H 1之外的其余各个H j相同。在一个实施方式中,所述流化床反应区优选具有圆形或基本圆形的横截面。在一个实施方式中,相邻两个所述挡板构件B j(1)交错排列或上、下重叠排列。所述挡板构件B j(1)包含多个肋板(7),肋板(7)的排布为辐射状(A)、螺旋状(B1-B2)、树枝状(C1~C3)中的一种。每层所述挡板构件B j(1)的多个肋板(7)的排布相同或不同。所述挡板构件B j(1)投影于流化床的反应区横截面时,未被该投影占据的横截面积占流化床的反应区横截面面积的70%~95%。任一所述挡板构件B j(1)组成的最外侧边缘与流化床的反应区筒体壁面(2)间的距离均为h 1;且在各实施方式中,所述h 1独立地为一个在流化床的反应区直径D的0.005~0.05倍之间的数值。也就是说,全部所述挡板构件B j(1)组成的最外侧边缘的连接线构成的图形具有(D-2×h 1)的水力直径;并且当所述流化床反应区优选具有圆形的横截面时,全部所述挡板构件B j(1)组成的最外侧边缘构成的图形为直径(D-2×h 1)的圆形。
在一个实施方式中,参见图2以及图3A和3B,辐射状(A)或螺旋状(B1-B2)排布的挡板构件B j(1)包括肋板(7)和定位圈R i(6)。 在一个实施方式中,所述定位圈R i(6)同心布置;所述肋板(7)与定位圈R i(6)相连,且沿周向均匀分布,其中:
(a)在各个实施方式中,所述定位圈R i(6)数量独立地为n,n为在1~10之间变化的值,每层定位圈(6)用R i表示,i=1~n,其中R 1表示径向最内侧的定位圈,而R n为径向最外侧的定位圈;所述n个定位圈R i将所述流化床的反应区在径向分为同轴的n+1个肋板圈层,每个肋板圈层用L g表示,g=1~(n+1),其中L 1为径向最内侧的肋板圈层,而L n+1为径向最外侧的肋板圈层;和
(b)所述每个肋板圈层的肋板(7)数量为p,第g个肋板圈层L g中的肋板(7)数量为p g,p g的范围为(3~10)×g。
在一个实施方式中,辐射状(A)或螺旋状(B1-B2)排布的挡板构件B j(1)中不包含定位圈。在该实施方式中,肋板(7)数量为3~10。
在一个实施方式中,参见图2,对于一个给定反应器,全部挡板构件B j(1)均采用相同的辐射状(A)排布。
在一个实施方式中,参见图3A和3B,螺旋状(B1-B2)排布挡板构件(1)的肋板(7)外弧度切线与半径方向的夹角为α,α为10~80°;当所述挡板构件B j(1)包括定位圈R i(6)时,所述螺旋状(B1-B2)挡板构件B j(1)的第g个肋板圈层与第g+1个肋板圈层的肋板(7)可同向或反向布置。其中,所述同向或反向布置所指的方向是对于肋板(7)的俯视图而言,螺旋的顺时针(右手)螺旋或逆时针(左手)螺旋方向。优选地,在一个实施方式中,参见图3A和3B,对于一个给定反应器,全部挡板构件B j(1)均采用相同的螺旋状(B1-B2)排布。
在一个实施方式中,参见图4A-4C,树枝状(C1~C3)排布的挡板构件B j(1)肋板(7)由多个主肋板(4)和多个副肋板(5)组成。在各个实施方式中,所述主肋板(4)数量独立地为k,k为2~8。所述主肋板(4)和副肋板(5)垂直交叉排列,呈树枝状。在各个实施方式中,所述每个挡板构件B j(1)上的副肋板(5)总数独立地为q,q为10~40。每两个所述挡板构件B j(1)上主肋板(4)数量相同或不同。在一个实施方式中,每个所述挡板构件B j(1)上主肋板(4)数量相同。每两个所述主肋板(4)上的副肋板(5)数量相同或不同。
在一个实施方式中,参见图4A,树枝状挡板构件B j(1)具有I 型树枝状排布(C1),所述的I型树枝状排布(C1)是指其中所述多个主肋板(4)中的两个长度各自为(D-2×h 1)且彼此垂直,分别称为第一主肋板和垂直主肋板;换言之,当所述挡板构件B j(1)的最外侧边缘的连接线构成圆形(或基本圆形)时,所述第一主肋板和垂直主肋板的长度等于该连接线构成的圆形(或基本圆形)的直径。所述多个主肋板(4)中的其它主肋板(4)平行于所述第一主肋板排布,各自在其长度方向上连续,间距h 4相同。每个主肋板(4)上的多个副肋板(5)平行排布,间距h 2相同,且各自在长度方向上从该主肋板到与其相邻的两个主肋板之间延伸至距离该主肋板h 0(h 0>0,图中未示出)的位置;或对于在外侧的主肋板来说,其上的多个副肋板(5)各自在长度方向上从与其相邻的一个主肋板到全部所述挡板构件B j(1)组成的最外侧边缘的连接线构成的图形之间延伸。第一主肋板上最靠近所述垂直主肋板的一对(两个)副肋板分别与该垂直主肋板距离h 2,与第一主肋板相邻的两个主肋板上分别最靠近所述垂直主肋板的一对副肋板(总计4个)分别与该垂直主肋板距离1/2h 2。在一个实施方式中,间隔主肋板(4)上的各个副肋板(5)在长度方向上分别对齐(处于一条直线上)。在本发明上下文中,肋板的所述“间隔”是指两个肋板之间有且只有一个同类型的、同等排布方式的其它肋板;例如,参见图4A,3个相邻的平行主肋板中,被中间主肋板隔开的两个主肋板称为“间隔”主肋板。间隔主肋板(4)上的每两个相邻副肋板(5)在长度方向上隔开的间距称为端间距离h 3,所述每两个相邻副肋板(5)具有相同的端间距离h 3,在每种情况下独立为(D-2×h 1)/k的(0.01~0.2)倍之间的值。相应地,当使用宽度l的主肋板(4)时,h 3=2h 0+I。优选地,在一个实施方式中,参见图4A,对于一个给定反应器,全部挡板构件B j(1)均采用相同的I型树枝状排布(C1)。
在一个实施方式中,参见图4B和4C,树枝状挡板构件B j具有II型树枝状排布(C2~C3),所述的II型树枝状排布(C2~C3)是指其中的挡板构件(1)的主肋板(4)交叉排布,且在圆周方向上均匀排布,每一主肋板长度均为D-2×h 1。所有主肋板(4)上的副肋板(5)数量相同。每一主肋板(4)上的副肋板(5)彼此平行布置且间距h 5相同。每个主肋板(4)上的副肋板(5)最外侧边缘与该主肋板最外侧一起构成的连接线形成扇形区域。对于同一挡板构件B j(1),其上各主肋 板(4)上的副肋板(5)形成的扇形区域间具有相等的间距h 6,其在各种情况下独立地为h 1的0.5~3倍。优选地,在一个实施方式中,参见图4B和4C,对于一个给定反应器,全部挡板构件B j(1)均采用相同的II型树枝状排布(C2~C3)。
不受限于任何已知理论,在一个实施方式中,据信多个挡板构件B j(1)可采用辐射状(A)、螺旋状(B1-B2)、树枝状(C1~C3)中的多种的组合。
在一个实施方式中,参见图5,肋板(7)为π型(D1~D4)、倒V型(D5)、斜板型(D6)、圆弧型(D7)中的任意一种;所述肋板(7)开有小孔(10);所述的小孔(10)为圆形、椭圆形、矩形、三角形、多边形等的任一种;所述π型(D1~D4)肋板(6)包括肋板侧翼(9)和肋板顶部(8)。在一个实施方式中,所述小孔的排布和开孔率等没有特别限制,只要其满足前述和后述关于肋板(7)和挡板构件B j(1)的各种要求即可,特别是例如满足挡板构件B j(1)投影于流化床的反应区横截面时,未被该投影占据的横截面积占流化床的反应区横截面面积的70%~95%。
参见图5,D1形式的π型肋板(7)为具有向上凸起的弧形顶部(8)和弧形侧翼(9)的肋板;D2形式的π型肋板(7)为具有平坦顶部(8)和弧形侧翼(9)的肋板;D3形式的π型肋板(7)为具有向上凸起的弧形顶部(8)和平面侧翼(9)的肋板;以及D4形式的π型肋板(7)为具有平坦顶部(8)和平面侧翼(9)的肋板。其中,参见图5,对D1形式和D2形式的π型肋板(7),对于该π型肋板(7)沿肋板长度方向的正投影而言,相对于由该投影形状以及侧翼末端的端点连接线形成的封闭图形来说,其弧形侧翼相对于该封闭图形内部是“凹”的。
在一个实施方式中,参见图5,肋板(7)宽度l为(D-2×h 1)/(p或q)的(0.2~0.9)倍,肋板(7)高度δ为肋板(7)宽度l的(0.1~0.6)倍。其中,肋板(7)的宽度l是指该肋板安装于反应器中时,其在反应器横截面上投影的宽度;肋板(7)的高度δ是指该肋板安装于反应器中时,其在反应器轴向上投影的高度。
在一个实施方式中,π型(D1~D4)肋板(6)的肋板顶部(8)的宽度l 1为肋板(7)宽度l的(0.1~0.5)倍;π型(D1和D3)肋板(6)的肋板顶部(8)的高度δ 1为肋板(7)高度δ的(0.05~0.3)倍。 其中,肋板顶部(8)的宽度l 1是指该肋板安装于反应器中时,肋板顶部(8)在反应器横截面上投影的宽度;肋板顶部(8)的高度δ 1是指该肋板安装于反应器中时,肋板顶部(8)在反应器轴向上投影的高度。
在一个实施方式中,所述挡板构件(1)与所述流化床反应区横截面的角度为-25~60°,优选为-20~50°,更优选为-15~40°。
本发明还提供了一种制备低碳烯烃的工艺,包括含氧化合物原料在流化床反应区与分子筛催化剂接触,在有效条件下生成低碳烯烃产品的步骤;其特征在于,所述流化床反应区内,使得空床气速μ与床层平均催化剂密度ρ满足下式(I):
ρ=0.356μ 3-4.319μ 2-35.57μ+M   (I);
其中,M=250-554,优选300-550,或400-500,例如487.9;μ单位为米/秒,ρ单位为千克/立方米;或者
在所述空床气速μ与床层平均催化剂密度ρ不满足式(I)时,通过如本发明(例如前述方面1)所述调节空床气速的方法来调节空床气速,以使所述空床气速μ与床层平均催化剂密度ρ满足所述式(I)。
实施例
【实施例1】
使用流化床反应器,其包括流化床反应区,使用固体催化剂作为流化颗粒,反应区底部设有进料管线(11)和进料分布板(12),所述流化床的反应区内设有多个挡板构件B j(1),其中j=5;挡板构件(1)通过支架(3)固定在反应区内;所述挡板构件B j(1)相邻的两层交错排列;所述挡板构件(1)层与层之间的距离为H j,最下层挡板构件B 1(1)设置于距离甲醇进料分布板H 1的位置。所述挡板构件B j(1)包含多个肋板(7),肋板(7)的排布为辐射状(A);所述每层挡板构件B j(1)的多个肋板(7)的排布相同;辐射状(A)排布的挡板构件B j(1)包括肋板(7)和定位圈R i(6);所述定位圈R i(6)同心布置;所述肋板(7)与定位圈R i(6)相连,且沿周向均匀分布,所述定位圈R i(6)数量为n,n为3,每层定位圈(6)用i表示,i=1~n,其中R 1表示径向最内侧的定位圈,而R n为径向最外侧的定位圈;所述n个定位圈R i将所述流化床的反应区在径向分为同轴的n+1个肋板圈层L g,其中g=1~(n+1),其中第1个肋板圈层为径向最内 侧的肋板圈层;所述每个肋板圈层的肋板(7)数量为p,第g个肋板圈层L g中的肋板(7)数量为p g,p g为5×g。
肋板(7)为π型(D1);所述肋板(7)开有小孔(10);所述的小孔(10)为圆形;所述π型(D1)肋板(6)包括肋板侧翼(9)和肋板顶部(8)。肋板(7)宽度l为(D-2×h 1)/p的0.5倍,肋板(7)高度δ为肋板(7)宽度l的0.5倍。π型(D1)肋板(6)的肋板顶部(8)的宽度l 1为肋板(7)宽度l的0.35倍;π型(D1)肋板(6)的肋板顶部(8)的高度δ 1为肋板(7)高度δ的0.15倍。π型(D1)肋板(6)的肋板侧翼(9)为圆弧形。
所述挡板构件B j(1)投影于流化床的反应区横截面时,未被该投影占据的横截面积占流化床的反应区横截面面积的80%。H 1与反应区高度之比为0.25,H j为流化床的反应区直径D的0.5倍;所述挡板构件B j(1)的最外侧边缘与流化床的反应区筒体壁面(2)间的距离h 1为流化床的反应区直径D的0.01倍。挡板构件B 1(1)与所述流化床反应区横截面的角度为0°。
测量该流化床反应区的空床气速μ,将其与该流化床反应区中的所述固体催化剂的床层平均催化剂密度ρ进行比较,视需要调节所述空床气速μ,以使得所述空床气速μ和所述床层平均催化剂密度ρ满足下式(I):
ρ=0.356μ 3-4.319μ 2-35.57μ+M   (I)
其中M设定值487.9,控制区间486-489;
μ单位为米/秒,ρ单位为千克/立方米。
将所述流化床反应器用于甲醇制烯烃反应。流化床反应器为快速流态化型式,甲醇原料进料规模为240万吨/年,反应器反应区直径为8米,高度为10米,运行周期以7天计。
包括甲醇原料(甲醇纯度为95wt%,其它主要为水)的物流经进料管线进入反应器的反应区中,与分子筛催化剂接触,反应生成含有低碳烯烃的产品,携带待生催化剂经过气固快速分离区进入反应器分离区,其中,气固快速分离设备分离出来的大部分催化剂进入汽提区,而气相产品以及部分未被气固快速分离设备分离的催化剂经入旋风分离器分离进行再次分离,催化剂经过旋风分离器的料腿返回到汽提区,气相产品经集气室、出口管线进入后续的分离工段。被气固快速分离 区和旋风分离器分离出的待生催化剂经过汽提后分为两部分,一部分通过催化剂外循环斜管返回到反应区的底部;另外一部分经过待生斜管进入再生器的密相段中烧炭再生,焦炭燃烧生成的烟气经过旋风分离器后通过烟气出口管线进入后续的能量回收系统,再生完成的再生催化剂通过再生斜管返回反应区。
反应器顶部压力为0.2MPa,反应温度为480℃。催化剂平均积炭量为3.5wt%,反应区床层平均密度为426千克/立方米、空床气速为1.5米/秒。催化剂活性组分为硅铝磷分子筛,所述硅铝磷分子筛为SAPO-34。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为82.71%。
【实施例2】
按照实施例1所述的条件和步骤,只是:肋板(7)的排布为螺旋状(B1),螺旋状(B1)排布挡板构件(1)的肋板(7)外弧度切线与半径方向的夹角为α,α为30°;所述挡板构件B j(1)包括定位圈R i(6),所述螺旋状(B1)挡板构件B j(1)的相邻两个肋板圈层(第i个肋板圈层与第i+1个肋板圈层)的肋板(7)为同向布置。
肋板(7)为π型(D3),所述肋板(7)开有小孔(10);所述的小孔(10)为椭圆形;肋板(7)宽度l为(D-2×h 1)/p的0.4倍,肋板(7)高度δ为肋板(7)宽度l的0.4倍。π型(D3)肋板(6)的肋板顶部(8)的宽度l 1为肋板(7)宽度l的0.2倍;π型(D3)肋板(6)的肋板顶部(8)的高度δ 1为肋板(7)高度δ的0.1倍。π型(D3)肋板(6)的肋板侧翼(9)为平面。
反应区床层平均密度为485千克/立方米、空床气速为1.5米/秒。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为83.02%。
【实施例3】
按照实施例2所述的条件和步骤,只是:肋板(7)的排布为螺旋状(B2),即所述螺旋状(B2)挡板构件B j(1)的相邻两个肋板圈层(第i个肋板圈层与第i+1个肋板圈层)的肋板(7)为反向布置。
反应区床层平均密度为474千克/立方米、空床气速为1.5米/秒。
其他未专门指出的条件和步骤均与实施例2相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为82.94%。
【实施例4】
按照实施例2所述的条件和步骤,只是:螺旋状(B1)排布挡板构件(1)的肋板(7)外弧度切线与半径方向的夹角为α,α为60°。
肋板(7)为圆弧型(D7);所述肋板(7)开有小孔(10);所述的小孔(10)为圆形;肋板(7)宽度l为(D-2×h 1)/p的0.6倍,肋板(7)高度δ为肋板(7)宽度l的0.5倍。
反应区床层平均密度为407千克/立方米、空床气速为1.5米/秒。
其他未专门指出的条件和步骤均与实施例2相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为82.01%。
【实施例5】
按照实施例1所述的条件和步骤,只是:甲醇进料规模为300万吨/年,反应器反应区直径为8米,反应器顶部压力为0.3MPa,反应温度为500℃,催化剂平均积炭量为4.0wt%,反应区床层平均密度为454千克/立方米、空床气速为2.5米/秒。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为81.87%。
【实施例6】
按照实施例1所述的条件和步骤,只是:甲醇进料规模为300万吨/年,反应器反应区直径为8米,反应器顶部压力为0.3MPa,反应温度为500℃,催化剂平均积炭量为4.0wt%,反应区床层平均密度为397千克/立方米、空床气速为2.5米/秒。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为81.45%。
【实施例7】
按照实施例1所述的条件和步骤,只是:催化剂平均积炭量为4.0wt%,反应区床层平均密度为355千克/立方米、空床气速为3米/秒。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为81.36%。
【实施例8】
按照实施例1所述的条件和步骤,只是:催化剂平均积炭量为4.0wt%,反应区床层平均密度为505千克/立方米、空床气速为1.0米/秒。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为83.05%。
【实施例9】
按照实施例1所述的条件和步骤,只是:甲醇原料进料规模为180万吨/年,催化剂平均积炭量为3.0wt%,反应区床层平均密度为450千克/立方米、空床气速为1.15米/秒。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为83.14%。
【实施例10】
按照实施例1所述的条件和步骤,只是:所述每个肋板圈层的肋板(7)数量为p,第g个肋板圈层中的肋板(7)数量为p g,p g为8×g。肋板(7)宽度l为(D-2×h 1)/p的0.8倍,肋板(7)高度δ为肋板(7)宽度l的0.2倍。π型(D1)肋板(6)的肋板顶部(8)的宽度l 1为肋板(7)宽度l的0.45倍;π型(D1)肋板(6)的肋板顶部(8)的高度δ 1为肋板(7)高度δ的0.2倍。
所述挡板构件B j(1)投影于流化床的反应区横截面时,未被该投影占据的横截面积占流化床的反应区横截面面积的83%。H 1与反应区高度之比为0.25,H j为流化床的反应区直径D的0.4倍;所述挡板构件B j(1)的最外侧边缘与流化床的反应区筒体壁面(2)间的距离h 1为流化床的反应区直径D的0.02倍。挡板构件B 1(1)与所述流化床反应区横截面的角度为-10°。
反应区床层平均密度为447千克/立方米、空床气速为1.5米/秒。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为82.82%。
【实施例11】
按照实施例1所述的条件和步骤,只是:所述挡板构件B j(1)投影于流化床的反应区横截面时,未被该投影占据的横截面积占流化床的反应区横截面面积的75%。H 1与反应区高度之比为0.25,H j为流化床的反应区直径D的0.7倍;所述挡板构件B j(1)的最外侧边缘与流化床的反应区筒体壁面(2)间的距离h 1为流化床的反应区直径D的0.03倍。挡板构件B 1(1)与所述流化床反应区横截面的角度为20°。
反应区床层平均密度为410千克/立方米、空床气速为1.5米/秒。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为82.33%。
【实施例12】
按照实施例1所述的条件和步骤,所述流化床的反应区内设有多个挡板构件B j(1),其中j=3;肋板(7)的排布为树枝状(C1)。
树枝状(C1)排布的挡板构件B j(1)肋板(7)由主肋板(4)和副肋板(5)组成;所述主肋板(4)数量为k,k为4;所述主肋板(4)和副肋板(5)垂直交叉排列,呈树枝状;所述每个挡板构件B j(1)上的副肋板(5)总数为q,q为30。挡板构件(1)的主肋板(4)平行排布,长度不等,间距相同;每个主肋板(4)上的副肋板(5)数量不同,平行排布,间距相同;间隔主肋板(4)上的副肋板(5)在一条直线上;间隔主肋板(4)上的副肋板(5)端间距离h 3为(D-2×h 1)/k的0.1倍。
所述挡板构件B j(1)投影于流化床的反应区横截面时,未被该投影占据的横截面积占流化床的反应区横截面面积的75%。H 1与反应区高度之比为0.15,H j为流化床的反应区直径D的0.5倍;所述挡板构件B j(1)的最外侧边缘与流化床的反应区筒体壁面(2)间的距离h 1为流化床的反应区直径D的0.05倍。挡板构件B 1(1)与所述流化床反应区横截面的角度为0°。
反应区床层平均密度为382千克/立方米、空床气速为1.5米/秒。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为81.03%。
【实施例13】
按照实施例1所述的条件和步骤,所述流化床的反应区内设有多个挡板构件B j(1),其中j=3;肋板(7)的排布为树枝状(C2)。
树枝状(C2)排布的挡板构件B j(1)肋板(7)由主肋板(4)和副肋板(5)组成;所述主肋板(4)数量为k,k为4;所述主肋板(4)和副肋板(5)垂直交叉排列,呈树枝状;所述每个挡板构件B j(1)上的副肋板(5)总数为q,q为30。挡板构件(1)的主肋板(4)交叉排布,长度为D-2×h 1;每个主肋板(4)上的副肋板(5)数量相同;每个主肋板(4)上的副肋板(5)形成扇形区域,各扇形区域间的距离h 6为h 1的1倍。每个扇形区域内的副肋板(5)平行布置且间距h 5相同。
所述挡板构件B j(1)投影于流化床的反应区横截面时,未被该投影占据的横截面积占流化床的反应区横截面面积的78%。H 1与反应区高度之比为0.25,H j为流化床的反应区直径D的0.5倍;所述挡板构件B j(1)的最外侧边缘与流化床的反应区筒体壁面(2)间的距离h 1为流化床的反应区直径D的0.04倍。挡板构件B 1(1)与所述流化床反应区横截面的角度为0°。
反应区床层平均密度为400千克/立方米、空床气速为1.5米/秒。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为81.25%。
【实施例14】
按照实施例1所述的条件和步骤,所述流化床的反应区内设有多个挡板构件B j(1),其中j=3;肋板(7)的排布为树枝状(C3)。
树枝状(C3)排布的挡板构件B j(1)肋板(7)由主肋板(4)和副肋板(5)组成;所述主肋板(4)数量为k,k为8;所述主肋板(4)和副肋板(5)垂直交叉排列,呈树枝状;所述每个挡板构件B j(1)上的副肋板(5)总数为q,q为36。挡板构件(1)的主肋板(4)交叉排布,长度为D-2×h 1;每个主肋板(4)上的副肋板(5)数量相同;每个主肋板(4)上的副肋板(5)形成扇形区域,各扇形区域间的距 离h 6为h 1的1倍。每个扇形区域内的副肋板(5)平行布置且间距h 5相同。
所述挡板构件B j(1)投影于流化床的反应区横截面时,未被该投影占据的横截面积占流化床的反应区横截面面积的82%。H 1与反应区高度之比为0.25,H j为流化床的反应区直径D的0.5倍;所述挡板构件B j(1)的最外侧边缘与流化床的反应区筒体壁面(2)间的距离h 1为流化床的反应区直径D的0.04倍。挡板构件B 1(1)与所述流化床反应区横截面的角度为0°。
反应区床层平均密度为417千克/立方米、空床气速为1.5米/秒。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为81.67%。
【实施例15】
按照实施例14所述的条件和步骤,肋板(7)为π型(D3),所述肋板(7)开有小孔(10);所述的小孔(10)为椭圆形;肋板(7)宽度l为(D-2×h 1)/p的0.4倍,肋板(7)高度δ为肋板(7)宽度l的0.4倍。π型(D3)肋板(6)的肋板顶部(8)的宽度l 1为肋板(7)宽度l的0.2倍;π型(D3)肋板(6)的肋板顶部(8)的高度δ 1为肋板(7)高度δ的0.1倍。π型(D3)肋板(6)的肋板侧翼(9)为平面。
反应区床层平均密度为390千克/立方米、空床气速为1.5米/秒。
其他未专门指出的条件和步骤均与实施例14相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为81.22%。
【实施例16】
按照实施例14所述的条件和步骤,肋板(7)为圆弧型(D7);所述肋板(7)开有小孔(10);所述的小孔(10)为圆形;肋板(7)宽度l为(D-2×h 1)/p的0.6倍,肋板(7)高度δ为肋板(7)宽度l的0.5倍。
反应区床层平均密度为375千克/立方米、空床气速为1.5米/秒。
其他未专门指出的条件和步骤均与实施例14相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均 碳基收率为81.03%。
【实施例17】
按照实施例1所述的条件和步骤,只是所述硅铝磷分子筛为SAPO-18。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为81.54%。
【比较例1】
按照实施例1所述的条件和步骤,反应区内不设置所述挡板,催化剂平均积炭量为4.0wt%,反应区床层平均密度为120千克/立方米、空床气速为1.5米/秒。
其他未专门指出的条件和步骤均与实施例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为80.07%。
【比较例2】
按照比较例1所述的条件和步骤,反应器尺寸不变,甲醇进料规模提高至240万吨/年,反应区内不设置所述挡板,催化剂平均积炭量为4.2wt%,反应区床层平均密度为90千克/立方米、空床气速为2米/秒。
其他未专门指出的条件和步骤均与比较例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为79.57%。
【比较例3】
按照比较例1所述的条件和步骤,反应器尺寸不变,甲醇进料规模提高至300万吨/年,反应区内不设置所述挡板,催化剂平均积炭量为4.5wt%,反应区床层平均密度为60千克/立方米、空床气速为2.5米/秒。
其他未专门指出的条件和步骤均与比较例1相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为75.34%。
【比较例4】
按照实施例5所述的条件和步骤,反应区内不设置所述挡板,催 化剂平均积炭量为5wt%,反应区床层平均密度为30千克/立方米、空床气速为2米/秒。
其他未专门指出的条件和步骤均与实施例5相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为72.09%。
【比较例5】
按照实施例5所述的条件和步骤,反应区内不设置所述挡板,催化剂平均积炭量为5wt%,反应区床层平均密度为30千克/立方米、空床气速为2米/秒。
其他未专门指出的条件和步骤均与实施例5相同。
取样分析结果表明,一个运行周期内,反应器出口乙烯+丙烯平均碳基收率为72.09%。
显然,采用本发明的工艺,可以达到提高低碳烯烃收率的目的,具有较大的技术优势,可用于低碳烯烃的工业生产中。

Claims (16)

  1. 一种在流化床中调节空床气速的方法,其中使用固体催化剂作为流化颗粒或流化颗粒的一部分,其特征在于,测量该流化床反应区的空床气速μ,将其与该流化床反应区中的所述固体催化剂的床层平均催化剂密度ρ进行比较,视需要调节所述空床气速μ,以使得所述空床气速μ和所述床层平均催化剂密度ρ满足下式(I):
    ρ=0.356μ 3-4.319μ 2-35.57μ+M    (I)
    其中M=250-554,优选300-550,或400-500,例如487.9;
    μ单位为米/秒,ρ单位为千克/立方米。
  2. 根据权利要求1所述的方法,其特征在于,所述床层平均催化剂密度为200~500千克/立方米,优选250~450千克/立方米,更优选300~430千克/立方米。
  3. 根据权利要求1所述的方法,其中所述流化床的反应区内设有挡板构件B j(1),该挡板构件(1)层数在各流化床中独立地为m,m为在2~50,优选2~30,更优选2~20,还优选1~10之间变化的值;除H 1之外,相邻两个所述挡板构件B j(1)之间的距离为H j,且除H 1之外的其余各个H j独立地为流化床反应区直径D的0.2~1倍,其中j=1~m;
    所述挡板构件B j(1)包含多个肋板(7),肋板(7)的排布为辐射状(A)、螺旋状(B1-B2)、树枝状(C1~C3)中的一种;
    所述挡板构件B j(1)投影于流化床的反应区横截面时,未被该投影占据的横截面积占流化床的反应区横截面面积的70%~95%;
    任一所述挡板构件B j(1)的最外侧边缘与流化床的反应区筒体内壁面(2)间的距离均为h 1;且所述h 1独立地为流化床的反应区直径D的0.005~0.05倍。
  4. 根据权利要求3所述的方法,其中的辐射状(A)或螺旋状(B1-B2)排布的挡板构件B j(1)包括肋板(7)和定位圈R i(6);所述定位圈R i(6)同心布置;所述肋板(7)与定位圈R i(6)相连,且沿周向均匀分布,其中:
    (a)所述定位圈R i(6)数量独立地为n,n为在1~10之间变化的值,i=1~n;所述n个定位圈R i将所述流化床的反应区在径向分为同轴的n+1个肋板圈层,每个肋板圈层用L g表示,g=1~(n+1);和
    (b)所述每个肋板圈层的肋板(7)数量为p,第g个肋板圈层L g中的肋板(7)数量为p g,p g的范围为(3~10)×g。
  5. 根据权利要求3或4所述的方法,其中的螺旋状(B1-B2)排布挡板构件(1)的肋板(7)外弧度切线与半径方向的夹角为α,α为10~80°。
  6. 根据权利要求3所述的方法,其中的树枝状(C1~C3)排布的挡板构件B j(1)肋板(7)由多个主肋板(4)和多个副肋板(5)组成;每个所述挡板构件B j(1)上主肋板(4)数量独立地为k,k为2~8;所述主肋板(4)和副肋板(5)垂直交叉排列;所述每个挡板构件B j(1)上的副肋板(5)总数独立地为q,q为10~40。
  7. 根据权利要求6所述的方法,其中的树枝状挡板构件B j(1)具有I型树枝状排布(C1),其中所述多个主肋板(4)中的两个长度各自为D-2×h 1且彼此垂直,分别称为第一主肋板和垂直主肋板;所述多个主肋板(4)中的其它主肋板(4)平行于所述第一主肋板排布,间距h 4相同;每个主肋板(4)上的副肋板(5)平行排布,间距h 2相同;第一主肋板上最靠近所述垂直主肋板的一对副肋板分别与该垂直主肋板距离h 2,与第一主肋板相邻的两个主肋板上分别最靠近所述垂直主肋板的一对副肋板分别与该垂直主肋板距离1/2h 2,间隔主肋板(4)上的副肋板(5)在长度方向上处于一条直线上;间隔主肋板(4)上的副肋板(5)端间距离h 3为(D-2×h 1)/k的(0.01~0.2)倍。
  8. 根据权利要求6所述的方法,其中的树枝状挡板构件B j具有II型树枝状排布(C2~C3),其中的挡板构件(1)的主肋板(4)交叉排布,且在圆周方向上均匀排布,长度为D-2×h 1;每个主肋板(4)上的副肋板(5)数量相同,彼此平行布置且间距h 5相同;每个主肋板(4)上的副肋板(5)形成扇形区域,各扇形区域间的距离h 6为h 1的0.5~3倍。
  9. 根据权利要求3或4所述的方法,其中的肋板(7)为π型(D1~D4)、倒V型(D5)、斜板型(D6)、圆弧型(D7)中的任意一种;所述肋板(7)开有小孔(10);所述的小孔(10)为圆形、椭圆形、矩形、三角形、多边形等的任一种;所述π型(D1~D4)肋板(6)包括肋板侧翼(9)和肋板顶部(8)。
  10. 根据权利要求9所述的方法,其中的肋板(7)宽度l为(D-2×h 1) /(p或q)的(0.2~0.9)倍,肋板(7)高度δ为肋板(7)宽度l的(0.1~0.6)倍。
  11. 根据权利要求9所述的方法,其中的π型(D1~D4)肋板(6)的肋板顶部(8)的宽度l 1为肋板(7)宽度l的(0.1~0.5)倍;π型(D1和D3)肋板(6)的肋板顶部(8)的高度δ 1为肋板(7)高度δ的(0.05~0.3)倍。
  12. 根据权利要求3或4所述的方法,其特征在于,所述挡板构件(1)与所述流化床反应区横截面的角度为-25~60°,优选为-20~50°,更优选为-15~40°。
  13. 根据权利要求1所述的方法,其特征在于,给出处于M设定值的±5%,优选±2%、或±1%、或±0.5%的范围内的控制区间的控制值M’,其中当该设定值M的控制区间内没有控制值M’能够使得空床气速μ和床层密度ρ满足所述式(I)时,带入设定值M,根据此时的床层密度ρ计算出相应的空床气速μ的计算值,并依据该计算值调节空床气速。
  14. 一种制备低碳烯烃的工艺,包括含氧化合物原料在流化床反应区与分子筛催化剂接触,在有效条件下生成低碳烯烃产品的步骤;其特征在于,所述流化床反应区内,使得空床气速μ与床层平均催化剂密度ρ满足下式(I):
    ρ=0.356μ 3-4.319μ 2-35.57μ+M    (I);
    其中,M=250-554,优选300-550,或400-500,例如487.9;
    μ单位为米/秒,ρ单位为千克/立方米;或者
    在所述空床气速μ与床层平均催化剂密度ρ不满足式(I)时,通过如权利要求1所述的方法调节空床气速,以使所述空床气速μ与床层平均催化剂密度ρ满足所述式(I)。
  15. 根据权利要求14所述制备低碳烯烃的工艺,其特征在于,所述有效条件包括:反应器顶部压力大于0.1MPa,优选0.2~1MPa;反应温度大于400℃,优选450~500℃。
  16. 根据权利要求14-15任一所述制备低碳烯烃的工艺,其特征在于,所述含氧化合物原料包括甲醇;所述分子筛为硅铝磷分子筛,优选SAPO-18、SAPO-34、SAPO-5或其组合。
PCT/CN2020/115524 2020-03-19 2020-09-16 在流化床中调节空床气速的方法 WO2021184706A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112022018563A BR112022018563A2 (pt) 2020-03-19 2020-09-16 Método para regular a velocidade do gás do leito vazio em um leito fluidizado
AU2020435951A AU2020435951A1 (en) 2020-03-19 2020-09-16 Method for adjusting empty bed air velocity in fluidized bed
US17/912,271 US20230139652A1 (en) 2020-03-19 2020-09-16 Method for regulating the gas velocity of the empty bed in a fluidized bed
CN202080098718.2A CN115244023A (zh) 2020-03-19 2020-09-16 在流化床中调节空床气速的方法
ZA2022/11413A ZA202211413B (en) 2020-03-19 2022-10-18 Method for adjusting empty bed air velocity in fluidized bed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010193664 2020-03-19
CN202010193664.X 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021184706A1 true WO2021184706A1 (zh) 2021-09-23

Family

ID=77770504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115524 WO2021184706A1 (zh) 2020-03-19 2020-09-16 在流化床中调节空床气速的方法

Country Status (6)

Country Link
US (1) US20230139652A1 (zh)
CN (2) CN115244023A (zh)
AU (1) AU2020435951A1 (zh)
BR (1) BR112022018563A2 (zh)
WO (1) WO2021184706A1 (zh)
ZA (1) ZA202211413B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0099690A2 (en) * 1982-07-20 1984-02-01 Mobil Oil Corporation Process for the conversion of alcohols and oxygenates into hydrocarbons
CN101094905A (zh) * 2004-12-30 2007-12-26 埃克森美孚化学专利公司 使催化剂细粉末含量低的全体催化剂颗粒流态化
CN101184709A (zh) * 2005-05-27 2008-05-21 埃克森美孚化学专利公司 带挡板的反应器中的含氧化合物至烯烃转化
CN102295508A (zh) * 2010-06-24 2011-12-28 中国石油化工股份有限公司 甲醇或二甲醚生产低碳烯烃的方法
CN102295505A (zh) * 2010-06-24 2011-12-28 中国石油化工股份有限公司 甲醇制备低碳烯烃的反应装置
CN102814151A (zh) * 2011-06-08 2012-12-12 富德(北京)能源化工有限公司 由含氧化合物制烯烃的流化床反应器和方法
CN105214572A (zh) * 2014-07-03 2016-01-06 中国石油化工股份有限公司 甲醇制烯烃的反应-再生装置及其反应方法
CN105498647A (zh) * 2014-10-14 2016-04-20 中国石油化工股份有限公司 流化床反应器、反应设备和烯烃制备方法和芳烃制备方法
CN106795439A (zh) * 2014-10-10 2017-05-31 埃克森美孚研究工程公司 从含氧化合物生产汽油、烯烃和芳族化合物的装置和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314551B2 (en) * 2004-11-19 2008-01-01 Uop Llc Flow distribution apparatus
US8435452B2 (en) * 2010-02-23 2013-05-07 Exxonmobil Research And Engineering Company Circulating fluid bed reactor with improved circulation
CN102294205B (zh) * 2010-06-24 2013-06-19 中国石油化工股份有限公司 甲醇或二甲醚生产低碳烯烃的反应器
CN104672045B (zh) * 2013-12-03 2016-06-08 中国科学院大连化学物理研究所 一种用于甲醇和/或二甲醚制低碳烯烃的反应装置
CN107281981B (zh) * 2017-06-26 2021-06-29 清华大学 一种内构件、流化床反应器及应用方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0099690A2 (en) * 1982-07-20 1984-02-01 Mobil Oil Corporation Process for the conversion of alcohols and oxygenates into hydrocarbons
CN101094905A (zh) * 2004-12-30 2007-12-26 埃克森美孚化学专利公司 使催化剂细粉末含量低的全体催化剂颗粒流态化
CN101184709A (zh) * 2005-05-27 2008-05-21 埃克森美孚化学专利公司 带挡板的反应器中的含氧化合物至烯烃转化
CN102295508A (zh) * 2010-06-24 2011-12-28 中国石油化工股份有限公司 甲醇或二甲醚生产低碳烯烃的方法
CN102295505A (zh) * 2010-06-24 2011-12-28 中国石油化工股份有限公司 甲醇制备低碳烯烃的反应装置
CN102814151A (zh) * 2011-06-08 2012-12-12 富德(北京)能源化工有限公司 由含氧化合物制烯烃的流化床反应器和方法
CN105214572A (zh) * 2014-07-03 2016-01-06 中国石油化工股份有限公司 甲醇制烯烃的反应-再生装置及其反应方法
CN106795439A (zh) * 2014-10-10 2017-05-31 埃克森美孚研究工程公司 从含氧化合物生产汽油、烯烃和芳族化合物的装置和方法
CN105498647A (zh) * 2014-10-14 2016-04-20 中国石油化工股份有限公司 流化床反应器、反应设备和烯烃制备方法和芳烃制备方法

Also Published As

Publication number Publication date
BR112022018563A2 (pt) 2022-10-25
CN115244023A (zh) 2022-10-25
ZA202211413B (en) 2023-05-31
CN113493369A (zh) 2021-10-12
US20230139652A1 (en) 2023-05-04
AU2020435951A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
CN101239868B (zh) 提高乙烯、丙烯收率的方法
RU2649385C1 (ru) Реактор с псевдоожиженным слоем, установка и способ получения легких олефинов
WO2021184706A1 (zh) 在流化床中调节空床气速的方法
CN102464524B (zh) 甲醇生产低碳烯烃的方法
CN102295507B (zh) 甲醇或二甲醚转化为低碳烯烃的方法
US9085501B2 (en) Processes for increasing the yield of ethylene and propylene
US20090163756A1 (en) Reactor cooler
WO2021180150A1 (zh) 含氧化合物生产低碳烯烃的方法
CN109422617B (zh) 反应-再生装置及其用途
EP4082654A1 (en) Fluidized bed reactor, apparatus, and method for preparing low-carbon olefin from oxygen-containing compound
CN103739428B (zh) 以甲醇为原料生产低碳烯烃的装置
CN102371137A (zh) 甲醇或二甲醚转化为低碳烯烃的反应装置
WO2021185168A1 (zh) 甲醇至烯烃的转化方法
CN103772091B (zh) 由甲醇生产低碳烯烃的方法
WO2022268151A1 (zh) 流化床反应器和制备低碳烯烃的装置以及制备低碳烯烃的方法
CN102875291B (zh) 由甲醇生产低碳烯烃的方法
CN101048355A (zh) 烯烃生成工艺中的外第二级旋风分离系统
CN102875281B (zh) 甲醇催化转化为低碳烯烃的方法
WO2021180195A1 (zh) 在流化床反应器内转化甲醇的方法
US11872549B2 (en) Fluidized bed reactor, device, and use thereof
CN113493367B (zh) 制备乙烯、丙烯的方法和流化床反应-再生装置
CN103664449A (zh) 含氧化合物制低碳烯烃的方法
US11833502B2 (en) Coke control reactor, and device and method for preparing low-carbon olefins from oxygen-containing compound
CN103739427B (zh) 以甲醇为原料制备低碳烯烃的反应装置
WO2023051566A1 (zh) 短接触反应器和将其用于甲醇制乙烯丙烯的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925599

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022018563

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020435951

Country of ref document: AU

Date of ref document: 20200916

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022018563

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220916

122 Ep: pct application non-entry in european phase

Ref document number: 20925599

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 522440571

Country of ref document: SA