WO2021184381A1 - 测距系统和车辆 - Google Patents

测距系统和车辆 Download PDF

Info

Publication number
WO2021184381A1
WO2021184381A1 PCT/CN2020/080508 CN2020080508W WO2021184381A1 WO 2021184381 A1 WO2021184381 A1 WO 2021184381A1 CN 2020080508 W CN2020080508 W CN 2020080508W WO 2021184381 A1 WO2021184381 A1 WO 2021184381A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
laser
module
distance measuring
distance
Prior art date
Application number
PCT/CN2020/080508
Other languages
English (en)
French (fr)
Inventor
胡驰昊
晏蕾
熊伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/080508 priority Critical patent/WO2021184381A1/zh
Priority to CN202080098397.6A priority patent/CN115244426A/zh
Priority to EP20925030.7A priority patent/EP4113168A4/en
Publication of WO2021184381A1 publication Critical patent/WO2021184381A1/zh
Priority to US17/946,939 priority patent/US20230011771A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position

Definitions

  • the embodiments of the present application relate to the technical field of laser ranging, in particular to a ranging system and a vehicle.
  • a distance measuring system is usually installed on the vehicle to measure the distance between the vehicle and other objects, so as to provide a data reference for realizing the automatic driving of the vehicle.
  • a distance measuring system includes a motor, a rotating table arranged on the motor, and a photoelectric device arranged on the rotating table.
  • the weight and volume of the rotating table equipped with optoelectronic devices are large, the motor power consumption is large, and it cannot rotate quickly, which reduces the scanning frequency of the ranging system and affects the measurement accuracy of the ranging system.
  • the embodiments of the present application provide a ranging system and a vehicle, which solve the problem of low scanning frequency of the ranging system.
  • a distance measuring system including: a scanning module and a distance measuring module, and a transmitting lens and a receiving lens arranged between the scanning module and the distance measuring module;
  • the distance measuring module is used to emit laser light to the scanning module through the transmitting lens, and to receive the reflected light sent by the scanning module through the receiving lens;
  • the scanning module includes: a moving part and a mirror group, the moving part is used to drive the mirror group to scan,
  • the lens group is also used to receive the reflected light of the measured object in the environment of the ranging system, and transmit the reflected light to the ranging module; wherein, the transmitting lens is embedded in the receiving lens, and the The main optical axis of the transmitting lens and the receiving lens are separated.
  • the scanning module and the distance measuring module are separately arranged, and only the mirror group for adjusting the direction of the laser or the reflected light is installed on the moving parts, and the heavy distance measuring module is not installed, which reduces the weight of the scanning module, so the movement
  • the components can realize rapid rotation, which improves the scanning efficiency.
  • the distance measurement system can quickly scan the measured object in the measurement area during distance measurement, which meets the requirements of automatic driving vehicles.
  • the ranging module is separated from the scanning module. Therefore, the ranging module does not rotate with the scanning module during operation, which reduces the electrical connection difficulty of the ranging module.
  • the transmitting lens and the receiving lens adopt off-axis design, so that the focal length of the transmitting lens and the receiving lens, the position of the transmitter and the receiver can be adjusted according to the specific design requirements, the design is more flexible, and the transmitting lens is embedded in the receiving lens.
  • the optical path of the emitted light and the optical path of the reflected light can be shared. This design can reduce the area required by the reflector in the mirror group, further reduce the volume of the ranging system, and facilitate the miniaturization of the ranging system.
  • the main optical axis of the transmitting lens and the receiving lens are parallel.
  • the main optical axis of the transmitting lens and the receiving lens can be prevented from overlapping, and the focal length of the receiving end and the focal length of the transmitting end can be designed separately, which improves the flexibility of the design and improves the measurement accuracy.
  • the transmitting lens and the receiving lens are integrally formed by molding. This makes the connection more stable.
  • an opening is provided on the receiving lens, and the opening of the transmitting lens and the receiving lens are connected by glue. Therefore, the disassembly and assembly of the transmitting lens and the receiving lens are more convenient.
  • the ranging module includes: a laser and a receiver, the laser is used to emit laser light to the scanning module, the receiver is used to receive the reflected light sent by the scanning module, the laser and the receiver are located The same side of the scanning module. Therefore, the laser and the receiver are located on the same side of the scanning module, which can further reduce the volume of the ranging system and save the space occupied by the ranging system.
  • the laser is located at the focal position of the transmitting lens, and the transmitting lens is used to convert the laser light emitted by the laser into parallel light; the receiver is located at the focal position of the receiving lens, and the receiving lens is used for To focus the reflected light emitted by the scanning module. Therefore, the laser is located at the focal position of the transmitting lens, so that the transmitting lens can fully receive the laser light emitted by the laser, and the receiver is located at the focal position of the receiving lens, so that the receiver can fully receive the reflected light collected by the receiving lens.
  • one or more first mirrors are provided between the emitting lens and the laser, and the reflection mirror group is used to fold the optical path between the laser and the emitting lens, and connect the laser The emitted laser light is reflected to the emitting lens. Therefore, by providing the first reflecting mirror between the emitting lens and the laser, the optical path between the emitting lens and the laser can be folded, the volume of the ranging system can be reduced, and the miniaturization of the ranging system is facilitated.
  • a second reflector is provided between the receiving lens and the receiver, and the second reflector is used to fold the optical path between the receiving lens and the receiver and pass through the receiving lens.
  • the reflected light of the lens is reflected to the receiver. Therefore, by arranging the first reflecting mirror between the receiving lens and the receiver, the optical path between the receiving lens and the receiver can be folded, and the volume of the ranging system can be reduced, which is beneficial to the miniaturization of the ranging system.
  • the mirror group includes one or more mirrors. As a result, the scanning efficiency of the scanning module is improved.
  • it further includes a processing module; the processing module is connected to the laser and the receiver; the processing module is used to calculate the ranging module according to the emission time of the laser, the receiving time of the reflected light, and the speed of light The distance to the measured object.
  • the processing module is connected to the laser and the receiver; the processing module is used to calculate the ranging module according to the emission time of the laser, the receiving time of the reflected light, and the speed of light The distance to the measured object.
  • a vehicle including a vehicle body, and the distance measuring system as described above, and the distance measuring system is provided on the vehicle body. Therefore, the scanning module and the ranging module of the ranging system are arranged separately, which reduces the weight of the scanning module. Therefore, the scanning module can realize rapid rotation. Requirements for driving vehicles.
  • the distance measurement system is arranged on the front, rear, side of the vehicle body, or roof of the vehicle body. As a result, the distance measurement system is set in multiple directions of the vehicle, which can detect the obstacles around the vehicle in time and avoid the collision of the vehicle.
  • the vehicle further includes an automatic driving system; the automatic driving system is connected to the distance measuring system, and is used to realize automatic driving according to the distance measured by the distance measuring system.
  • the automatic driving system can avoid obstacles around the vehicle based on the information detected by the distance measurement system, which improves the safety of the automatic driving vehicle.
  • Figure 1a is a front view of a laser ranging system
  • Figure 1b is a left side view of a laser ranging system
  • Figure 1c is a perspective view of a laser ranging system
  • Figure 1d is a schematic diagram of the working state of a laser ranging system
  • Figure 1e is a schematic diagram of a laser ranging system installed on a vehicle
  • FIG. 2 is a schematic structural diagram of a ranging system provided by an embodiment of this application.
  • FIG. 3a is a schematic diagram of an optical path of a ranging system provided by an embodiment of this application.
  • FIG. 3b is a schematic diagram of an optical path of another ranging system provided by an embodiment of this application.
  • FIG. 3c is a schematic diagram of an optical path of another ranging system provided by an embodiment of this application.
  • FIG. 4 is a top view of a distance measurement system provided by an embodiment of the application.
  • FIG. 5 is a perspective view of a distance measuring system provided by an embodiment of this application.
  • FIG. 6 is a perspective view of another ranging system provided by an embodiment of this application.
  • FIG. 7 is a top view of another ranging system provided by an embodiment of this application.
  • FIG. 8 is a front view of a lens provided by an embodiment of the application.
  • Fig. 8a is a front view of another lens provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of another lens provided by an embodiment of the application.
  • Fig. 9a is a schematic structural diagram of another lens provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of an optical path of another ranging system provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of an optical path of another ranging system provided by an embodiment of this application.
  • FIG. 12 is an example diagram of a distance measurement system provided by an embodiment of the application installed on a vehicle
  • FIG. 13 is a schematic structural diagram of a vehicle provided by an embodiment of the application.
  • the embodiments of the present application provide a distance measuring system, which can be used in automated equipment such as autonomous vehicles and robots to detect objects in the surrounding environment, so that objects can be avoided or picked up in time.
  • the distance measuring system can be installed on the head of the robot. When the robot moves, the distance between the robot and the obstacle can be measured by the distance measuring system, so as to walk around the obstacle.
  • the distance measurement system can be installed on the front, rear, top or side of the vehicle. When the vehicle is driving automatically, it can be based on the distance between the vehicle measured by the distance measurement system or the distance between the vehicle and the fence. Distance for autonomous driving. In practical applications, the ranging system can also be installed in other positions of the vehicle, which is not specifically limited in the embodiment of the present application.
  • the autonomous driving vehicle 106 may measure the distance between the autonomous driving vehicle 106 and objects in the surrounding environment through a distance measuring system. Then, the computing system determines whether the distance is less than the safe distance. If it is, it means that the distance between the autonomous vehicle 106 and the objects in the surrounding environment of the preceding vehicle 107 is too close, and a collision is likely to occur. Therefore, the self-driving vehicle 106 can automatically perform an avoidance operation to prevent a collision.
  • a distance measuring system can be set on the body of the autonomous vehicle.
  • the scanning area of the distance measuring system is, for example, a sector shape, and each distance measuring system can perform distance measurement on objects in its respective sector scanning area.
  • Fig. 1a, Fig. 1b, Fig. 1c, and Fig. 1d show a distance measuring system, which continuously measures the distance of the vehicle in the front fan-shaped area through the rotation of the turntable 105.
  • the lens 101, the lens 102, the receiver 103, and the laser 104 in the distance measuring system are all arranged on the turntable 105, and the weight of the turntable 105 is relatively large, so the turntable 105 rotates slowly and cannot achieve rapid rotation.
  • the direction facing the lens 102 at a certain moment is just on the left side of the fan-shaped area, that is, the ranging system is currently performing distance measurement on the vehicle on the left side of the fan-shaped area.
  • the vehicle in front 107 merges into the lane of the autonomous vehicle 106 from the right lane. Since the turntable 105 of the ranging system on the autonomous vehicle 106 cannot quickly rotate, it cannot quickly rotate the direction of the lens 102 to a fan shape in time.
  • the distance measurement system cannot measure the distance to the preceding vehicle 107 in time, and the autonomous vehicle cannot recognize the position of the preceding vehicle 107 in time, and cannot decelerate in time to prevent a rear-end collision.
  • the autonomous vehicle 106 equipped with the ranging system cannot quickly rotate the chassis 105, when there is a vehicle in front of it, the distance between the autonomous vehicle 106 and the preceding vehicle 107 cannot be measured in time, which is likely to cause a rear-end collision.
  • FIG. 2 is a schematic structural diagram of a ranging system provided by an embodiment of the application.
  • the ranging system includes: a scanning module 200 and a ranging module 203. Among them, the scanning module 200 and the ranging module 203 are separately provided.
  • the distance measuring module 203 is used for emitting laser light to the scanning module 200 and receiving the reflected light sent by the scanning module 200.
  • the scanning module 200 includes a moving part 201 and a mirror group 202.
  • the moving part 201 is used to drive the mirror group 202 to scan, so that the mirror group 202 receives the light beam emitted by the distance measuring module and transmits the light beam to the environment of the distance measuring system equipment.
  • the mirror group 202 is also used to receive the light reflected by one or more objects to be measured in the environment of the distance measurement system equipment, and focus the collected reflected light on the distance measurement module 203.
  • the moving part 201 includes a motor and a turntable connected to the motor.
  • the moving component 201 may also be a single motor, which is not limited in the embodiment of the present application.
  • the mirror group 202 can be installed on the turntable or directly on the motor. When the motor works, the motor drives the mirror group 202 to rotate and scan. Compared with the prior art where both the scanning module 200 and the distance measuring module 203 are arranged on the moving part 201, there is no need to supply power to the rotating distance measuring module 203, which reduces the difficulty of electrical connection.
  • the embodiment of the present application exemplarily describes the moving part 201 including a motor and a turntable connected to the motor.
  • Other embodiments of the moving part 201 can be implemented with reference to the embodiments of the present application.
  • a mirror group 202 is installed on the turntable, and the function of the mirror group 202 can be: transmit the laser light (indicated by the black shaded arrow in Figure 2) emitted by the distance measuring module 203 to the measured object, or reflect the measured object The reflected light (indicated by the white shaded arrow in FIG. 2) is forwarded to the ranging module 203.
  • the mirror group 202 may be a plane mirror. As shown in FIG. 3a, the laser light is transmitted to the object to be measured through the plane mirror, and the reflected light is transmitted to the distance measuring module 203 through the plane mirror.
  • the mirror group 202 may be a curved mirror. As shown in FIG. 3b, the laser light is transferred to the object to be measured through the arc mirror, and the reflected light is transferred to the distance measuring module 203 via the arc mirror.
  • the mirror group 202 may be two plane mirrors. As shown in Figure 3c, the laser beam is transferred to the second flat mirror set 202b through the first flat mirror set 202a, and then to the object to be measured. The reflected light is forwarded to the first flat mirror set 202a through the second flat mirror set 202b, and then to the distance measuring module. 203.
  • the mirror group 202 can also implement its functions in other forms, which are not specifically limited in the embodiment of the present application.
  • the turntable is used to drive the mirror group 202 to rotate around the central axis of the mirror group 202.
  • the mirror group 202 is a flat mirror, and the turntable is connected to the flat mirror so that the flat mirror rotates around the central axis.
  • the exit angle of the laser or reflected light passing through the mirror group 202 changes correspondingly. For example, if the mirror group 202 rotates by 1 degree, the emission angle of the laser or reflected light of the mirror group 202 is correspondingly shifted by 2 degrees.
  • the turntable may be connected to a motor, and the rotation of the motor drives the turntable to rotate, so that the turntable can drive the mirror group 202 to rotate.
  • the turntable can also be rotated in other ways, which is not limited in the embodiment of the present application.
  • the turntable 105 needs to drive the lens 101, the lens 102, the receiver 103, the laser 104, etc. to realize the scanning of the ranging system, which bears weight Large, slow rotation.
  • the turntable only needs to drive the mirror group 202 to rotate to change the direction of the laser light and the reflected light, so as to realize the scanning mode of the distance measuring system. Therefore, in the embodiment of the present application, the turntable does not need to drive the distance measuring module 203, and the load on the turntable is lighter, and the rotation speed is relatively fast, so that fast scanning and distance measurement can be realized.
  • both the laser 104 and the receiver 103 rotating on the turntable 105 need power supply to work. Powering objects rotating on the turntable will bring many disadvantages, such as increased circuit cost, increased power consumption, and increased weight.
  • the distance measuring system provided by the embodiment of the present application does not need to supply power to the rotating object on the turntable (the mirror group 202 does not need to supply power), and can avoid the defects of using slip rings or wireless power supply.
  • the ranging module 203 is not installed on the turntable. Therefore, the power supply corresponding to the ranging module 203 can be set in a relatively fixed position.
  • the scanning module 200 is separated from the ranging module 203.
  • the scanning module 200 does not need to carry a large weight, so it rotates faster, improves the scanning speed, and can achieve a very high detection frame. Rate.
  • the load of the moving parts can be reduced, so that the power consumption and cost of the moving parts are reduced, and the reliability and working life of the motor are improved.
  • the distance measuring module is separated from the scanning module. Therefore, the distance measuring module does not rotate with the scanning module during operation, which reduces the electrical connection difficulty of the distance measuring module.
  • the ranging module 203 includes a laser 2031 and a receiver 2032, and the ranging system further includes: a transmitting lens 2033 arranged between the laser 2031 and the scanning module 200, and The receiving lens 2034 between the receiver 2032 and the scanning module 200.
  • the laser 2031 can be used to emit laser light to the mirror group 202, and the laser light is transmitted by the emitting lens 2033 to the object 204 to be measured.
  • the receiver 2032 can be used to receive the reflected light from the object 204 to be measured.
  • the laser light emitted by the laser 2031 is optically shaped by the emitting lens 2033, and then is reflected by the mirror group 202 on the turntable 201 to reach the object 204 to be measured.
  • the reflected light reflected by the measured object 204 reaches the receiving lens 2034 after passing through the mirror group 202, and after optical shaping by the receiving lens 2034, the reflected light reaches the receiver 2032.
  • the mirror group 202 may be a plane mirror.
  • the transmitting lens 2033 is used to optically shape the laser
  • the receiving lens 2034 is used to optically shape the reflected light.
  • the optical path emitted by the laser and the optical path received by the reflected light are not shared. These two light paths occupy more horizontal space.
  • a lens group 202 with a longer horizontal width is required to meet the design requirements.
  • the transmitting light path is not close to the center, the transmitted light will exceed the edge of the mirror group 202 after a certain degree of rotation, resulting in a decrease in the scanning range.
  • the laser light emitted by the laser 2031 is optically shaped by the emission lens 2033, and then is reflected by the mirror group 202 on the turntable 201 to reach the measured object 204 .
  • the reflected light reflected by the measured object 204 reaches the receiving lens 2034 after passing through the mirror group 202, and after optical shaping by the receiving lens 2034, the reflected light reaches the receiver 2032.
  • the mirror group 202 may be a plane mirror.
  • the transmitting lens 2033 is used to optically shape the laser
  • the receiving lens 2034 is used to optically shape the reflected light.
  • the optical path emitted by the laser and the optical path received by the reflected light are not shared. These two light paths occupy more vertical space.
  • a lens group 202 with a higher vertical height is required to meet the design requirements.
  • automatic driving detection needs to detect as large a vertical direction as possible, so the vertical divergence angle of the laser will be relatively large.
  • the height of the rotating mirror occupied by the laser will be close to the receiving height, and the height of the rotating mirror will increase by nearly 2 times.
  • the optical path for emitting laser light and the optical path for receiving reflected light are not shared, which will cause the length of the reflector or mirror group 202 in both the horizontal and vertical directions to be long, making the reflector Or the area of the mirror group 202 needs to be made larger, which ultimately results in a larger volume of the ranging system.
  • this design becomes more obvious when the divergence angle of the laser beam increases. Therefore, this design will cause the entire ranging system to increase in a larger volume in the horizontal or vertical direction.
  • the embodiment of the present application further provides another example of the distance measurement system as shown in FIG. 6 and FIG. Fig. 6 is a front view of another ranging system provided by an embodiment of the application.
  • Fig. 7 is a top view of another ranging system provided by an embodiment of the application.
  • the distance measuring system includes a distance measuring module 203, a lens group 202, and a moving part 201.
  • the ranging module 203 includes a laser 2031 and a receiver 2032.
  • the distance measuring system further includes: a transmitting lens 2033 arranged between the laser 2031 and the scanning module 200, and a receiving lens 2034 arranged between the receiver 2032 and the scanning module 200.
  • the transmitting lens 2033 can shape the laser light emitted by the laser 2031, and the receiving lens 2034 can shape the emitted light reflected by the object under test.
  • the transmitting lens 2033 can shape the laser light emitted by the laser 2031
  • the receiving lens 2034 can shape the emitted light reflected by the object under test.
  • the main optical axes of the transmitting lens 2033 and the receiving lens 2034 are, for example, different axes, and the focal lengths of the transmitting lens 2033 and the receiving lens 2034 may be different.
  • the focal lengths of the transmitting lens 2033 and the receiving lens 2034 can be adjusted according to specific design requirements, and the design is more flexible.
  • the transmitting lens 2033 may be embedded in the receiving lens 2034, so that the optical path of the emitted light and the optical path of the reflected light can be shared.
  • the transmitting lens 2033 may be embedded in the receiving lens 2034, so that the optical path of the emitted light and the optical path of the reflected light can be shared.
  • the transmitting lens 2033 is embedded in the receiving lens 2034. And the center 2033-1 of the transmitting lens 2033 and the center of the center 2034-1 of the receiving lens 2034 do not coincide.
  • the main optical axis of the transmitting lens 2033 passes through the center 2033-1, for example, and the main optical axis of the receiving lens 2034 passes through the center 2034-1 of the receiving lens 2034, for example.
  • the main optical axis of the transmitting lens 2033 and the main optical axis of the receiving lens 2034 are parallel, so that the optical path of the emitted light and the optical path of the reflected light can be shared.
  • the embodiment of the present application does not limit the connection manner of the transmitting lens 2033 and the receiving lens 2034.
  • the transmitting lens 2033 and the receiving lens 2034 are integrally formed by molding.
  • the receiving lens 2034 is provided with an opening, and the openings of the transmitting lens 2033 and the receiving lens 2034 are connected by glue.
  • the transmitting lens 2033 and the receiving lens 2034 can be integrally formed, or they can be connected together by means of glue.
  • the embodiment of the present application does not limit the arrangement of the transmitting lens 2033 and the receiving lens 2034, as long as the center of the transmitting lens 2033 and the center of the receiving lens 2034 are staggered.
  • the laser light emitted by the laser 2031 and the reflected light transmitted by the scanning module 200 can be prevented from interfering with each other, so that the focal lengths of the transmitting lens 2033 and the receiving lens 2034 can be different.
  • the transmitting lens 2033 is embedded on the receiving lens 2034, and the main optical axis of the transmitting lens 2033 and the main optical axis of the receiving lens 2034 are parallel, so that the optical path of the emitted light and the optical path of the reflected light can be shared.
  • This design can reduce the area required by the reflector in the mirror group, further reduce the volume of the ranging system, and facilitate the miniaturization of the ranging system.
  • the embodiment of the present application does not limit the molding method of the transmitting lens 2033 and the receiving lens 2034.
  • the transmitting lens 2033 and the receiving lens 2034 may be molded at one time, or may be formed by bonding a plurality of lens groups 202.
  • the laser 2031 may be mounted on a printed circuit board (PCB).
  • PCB printed circuit board
  • the laser 2031 may use a laser bare die without packaging. As a result, the space occupied by the laser 2031 can be reduced, thereby reducing the size of the ranging system.
  • the unpackaged laser die chip can be mounted on the PCB, and wire bonding is performed through gold wires to connect the laser die chip to the processing module.
  • the processing module can be used to calculate the distance between the distance measuring module 203 and the measured object 204.
  • the ranging module 203 can be more miniaturized.
  • the laser 2031 may be a continuous laser or a pulsed laser, and the type of the laser 2031 is not specifically limited in the embodiment of the present application.
  • the receiver 2032 may be mounted on the PCB.
  • the receiver 2032 may use a receiver die chip without packaging. As a result, the space occupied by the receiver 2032 can be reduced, thereby reducing the size of the ranging system.
  • the unpackaged receiver die chip can be mounted on the PCB, and wire bonding is performed through a gold wire to connect the receiver die chip with the processing module.
  • the ranging module 203 can be more miniaturized.
  • the receiver 2032 may be made of an avalanche photodiode (APD), which has the characteristics of high-speed response, high gain, low junction capacitance, and low noise, and is very suitable for laser ranging.
  • APD avalanche photodiode
  • the laser 2031 and the receiver 2032 are, for example, located on the same side of the scanning module 200, which can reduce the size of the ranging system, thereby reducing the space occupied by the ranging system.
  • the receiver 2032 is located between the laser 2031 and the scanning module 200.
  • a through hole 20321 is provided on the PCB of the receiver, and the laser light emitted by the laser 2031 can pass through the through hole 20321 and converge.
  • the emission lens 2033 On the emission lens 2033.
  • the embodiment of the present application does not limit the specific structures of the transmitting lens 2033 and the receiving lens 2034.
  • the transmitting lens 2033 and the receiving lens 2034 may be convex lenses, concave lenses or other forms of lenses.
  • the emitting lens 2033 is, for example, a convex lens.
  • the emitting lens 2033 is, for example, a cylindrical lens.
  • the emitting lens 2033 is, for example, located between the laser 2031 and the scanning module 200, and is used to convert the laser light emitted by the laser 2031 into parallel rays.
  • the laser 2031 is, for example, set at the focal position of the emitting lens 2033, and the laser light emitted by the laser 2031 is processed by the emitting lens 2033 to be formed into parallel laser light.
  • the reflection from the mirror group 202 reaches the object 204 to be measured.
  • the receiving lens 2034 is, for example, located between the receiver 2032 and the scanning module 200, and is used to focus the reflected light transmitted by the scanning module 200.
  • the reflected light reflected by the object 204 to be measured reaches the receiving lens 2034 after being reflected by the mirror group 202.
  • the receiving lens 2034 may have a function of focusing light.
  • the reflected light can be focused when passing through the receiving lens 2034, and finally converges to the focal position. Therefore, the receiver 2032 can be set at the focal position of the receiving lens 2034 to receive more reflected light and improve the sensitivity of the ranging system.
  • FIG. 9 is a top view of another ranging system provided by an embodiment of the application.
  • a converging lens 2035 is also provided between the laser 2031 and the emitting lens 2033.
  • the condensing lens 2035 can preliminarily shape the laser light emitted by the laser 2031, and converge the laser light emitted by the laser to the center of the emitting lens 2033.
  • the embodiment of the present application does not limit the structure of the convergent lens 2035.
  • the condensing lens 2035 may be a convex lens, a concave lens, or other forms of lens.
  • the emitting lens 2035 is, for example, a cylindrical lens.
  • the laser light emitted by the laser 2031 passes through the condensing lens 2035 and the emission lens 2033, and is reflected by the mirror group 202 to the object 204 to be measured.
  • the reflected light reflected by the measured object 204 is reflected to the receiving lens 2034 through the mirror group 202, and is reflected to the receiver 2032 through the receiving lens 2034.
  • several reflecting mirrors can be arranged between the transmitting lens 2033 and the laser 2031 to form a "Z"-shaped optical path, which can further reduce the volume of the distance measuring module 203.
  • several reflecting mirrors can also be arranged between the receiving lens 2034 and the receiver 2032.
  • a number of reflectors can also be provided between the receiving lens 2034 and the mirror group 202, and between the transmitting lens 2033 and the mirror group 202.
  • the embodiment of the present application is to set up between the various devices in the distance measuring system.
  • the implementation of the mirror adjusting the optical path is not limited.
  • the above embodiment with the reflector can not only change the optical path according to actual needs, and adapt to practical applications, but also, after changing the optical path, can reasonably utilize the space of the ranging system and further reduce the volume of the ranging module 203.
  • a first reflecting mirror is provided between the emitting lens 2033 and the laser 2031, and the first reflecting mirror is used to reflect the laser light emitted by the laser 2031 to the emitting lens 2033.
  • the first reflecting mirror includes two flat reflecting mirrors: a third flat reflecting mirror 205a and a fourth flat reflecting mirror 205b. The laser light is transferred to the fourth flat reflecting mirror 205b through the third flat reflecting mirror 205a, and then to the emitting lens 2033.
  • the optical path between the emitting lens and the laser can be folded, reducing the volume of the ranging system, which is conducive to the miniaturization of the ranging system.
  • a second reflecting mirror is provided between the receiving lens 2034 and the receiver 2032, and the second reflecting mirror is used to reflect the reflected light passing through the receiving lens 2034 to the receiving lens. ⁇ 2032.
  • the second reflecting mirror includes two flat reflecting mirrors: a fifth flat reflecting mirror 206a and a fourth flat reflecting mirror 206b. The reflected light is forwarded to the sixth flat reflecting mirror 206a through the fifth flat reflecting mirror 206b, and then to the receiver 2032.
  • the optical path between the receiving lens and the receiver can be folded, the volume of the ranging system can be reduced, and the size of the ranging system can be reduced. change.
  • the embodiment of the present application does not limit the number and positions of the lasers 2031.
  • the embodiments of the present application do not limit the number and locations of receivers.
  • the number of receivers 2032 may be one or more than one. Exemplarily, the number of receivers 2032 in FIG. 6 is one.
  • the receiver 2032 may correspond to the laser 2031 one-to-one, so that the laser light emitted by each laser 2031 will be received by the corresponding receiver 2032.
  • the position of the receiver 2032 can be determined by testing the laser light emitted by the laser 2031.
  • the commissioning personnel can emit laser light through the laser 2031, and reach the object under test after passing through the emission lens 2033 and mirror group 202, and then the reflected light reflected by the object under test passes through The lens group 202 and the receiving lens 2034 reach the circuit board where the receiver 2032 is located.
  • the debugger can detect the position of the reflected light on the circuit board through the photosensitive detection device.
  • the debugger can change the type of object to be tested, the angle of the mirror group 202 and other conditions and repeat the above process of detecting the position of the reflected light, comprehensively considering the position of the detected reflected light, so as to determine the receiver 2032 according to the position of the detected reflected light. s position.
  • the PCB board on which the laser 2031 is mounted and the PCB board on which the receiver 2032 is mounted may not be the same PCB board, or may be the same PCB board, which is not limited in the embodiment of the present application.
  • Multiple lasers 2031 can be provided on one PCB board, and the number of lasers 2031 is not limited in the embodiment of the present application.
  • Multiple receivers 2032 can be provided on one PCB board, and the embodiment of the present application does not limit the number of receivers 2032.
  • the ranging module 203 may further include a processing module.
  • the processing module is connected to the laser 2031 and the receiver 2032, and is used to calculate the distance between the distance measuring module 203 and the measured object 204 according to the situation of the laser 2031 emitting laser light and the receiver 2032 receiving reflected light.
  • the processing module may be designed to calculate the distance between the distance measuring module 203 and the measured object 204 through a laser distance measuring method.
  • the laser distance measuring method may include a pulse method, a phase method, and the like.
  • the processing module may be specifically designed to calculate the distance between the distance measurement module 203 and the measured object 204 through a calculation method of the pulse method.
  • the calculation formula of the pulse method can be:
  • D is the distance between the ranging module 203 and the measured object 204
  • c is the speed of light
  • t is the time difference between the laser 2031 emitting laser light and the receiver 2032 receiving the corresponding reflected light.
  • the speed of light can be 300,000 km/s or other values, which is not specifically limited in the embodiment of the present application.
  • the laser ranging method executed by the processing module can be fine-tuned according to the actual situation, which is not specifically limited in the embodiment of the present application.
  • the laser ranging method performed by the above processing module is an implementation or an example for the processing module to calculate the distance between the ranging module 203 and the measured object 204.
  • the processing module can also be designed to pass Other calculation methods such as the phase method calculate the distance between the ranging module 203 and the measured object 204, and the embodiment of the present application does not specifically limit the design of the processing module.
  • the above-mentioned processing module may be a microprocessor, a central processing unit, a main processor, a single-chip microcomputer, a controller, or an application specific integrated circuit (ASIC), etc., which are connected by various interfaces and lines.
  • the laser 2031 and the receiver 2032 execute various types of digital storage instructions to calculate the distance between the ranging module 203 and the measured object 204 according to the algorithm.
  • the above-mentioned processing module may be installed on the circuit board where the receiver is located.
  • the processing module can implement the above-mentioned method for calculating the distance in the form of a simple circuit, which is not repeated in this embodiment of the present application.
  • the distance measuring system provided by the embodiments of the present application may further include a housing, which is installed on an autonomous vehicle, and the distance measuring module 203, the mirror group 202, and the turntable 201 are all arranged in the housing.
  • the shell can be provided with notches for laser emission and for reflected light to enter.
  • a groove 1002 may be provided on the autonomous driving vehicle, and a ranging system with a housing may be installed in the groove 1002. It is understandable that a plurality of openings can be provided on the groove 1002, so that various components in the autonomous vehicle can pass through the groove 1002, and connect to the ranging system 1001 through various interfaces or lines.
  • the distance measurement system can also be installed on the autonomous vehicle by setting screw holes on the housing, and the fixing effect of the screws.
  • the various components of the ranging system such as the ranging module 203, the mirror group 202, and the turntable 201, can be installed on an autonomous vehicle in a reasonable manner according to the actual situation.
  • the specific installation method is not limited.
  • At least one distance measurement system in the above-mentioned embodiments may be provided on an autonomous driving vehicle.
  • an embodiment of the present application provides an autonomous driving vehicle, as shown in FIG. 13, including five distance measurement systems and a body body.
  • the five ranging systems are: ranging system 901, ranging system 902, ranging system 903, ranging system 904, and ranging system 905.
  • the structures of the ranging system 901, the ranging system 902, the ranging system 903, the ranging system 904, and the ranging system 905 are similar to the ranging system in the foregoing embodiment.
  • the internal structure of the distance system will not be repeated.
  • the ranging system 901 is installed on the front of the body
  • the ranging system 902 is installed on the rear of the body
  • the ranging system 903 is installed on the left side of the body
  • the ranging system 904 is installed on the body.
  • the ranging system 905 is installed on the roof of the vehicle body. Therefore, the five distance measurement systems installed on the body body can cover the surroundings of the autonomous vehicle, and can detect objects close to the autonomous vehicle in time, such as other vehicles or obstacles.
  • the self-driving vehicle may be an engine-driven vehicle, or a new energy vehicle driven by an electric motor. In practical applications, it may also be a hybrid vehicle driven by an engine and an electric motor. There are no specific restrictions on driving a vehicle.
  • the autonomous driving vehicle is also provided with an automatic driving system
  • the automatic driving system can be connected to the ranging system 901, the ranging system 902, the ranging system 903, the ranging system 904, and the ranging system 905 at the same time.
  • the automatic driving system can receive the distances measured by the five distance measuring systems, and then determine the driving plan of the automatic driving vehicle according to the distance, and then realize automatic driving.
  • the ranging system 901 can measure the distance between the autonomous vehicle and the pedestrian, and transmit the distance to the autonomous driving system.
  • the automatic driving system After the automatic driving system receives the distance, it determines that the driving scheme of the automatic driving vehicle is emergency braking based on the distance, and then through the control of the automatic driving system, the vehicle can brake in time to avoid hitting the pedestrian.
  • the autonomous driving system can specifically connect to the ranging system 901, the ranging system 902, the ranging system 903, the ranging system 904, and the ranging system 905 through wires, signal transmission lines, Bluetooth, wifi, etc.
  • the present application The embodiment does not limit the connection mode of the automatic driving system and the ranging system.
  • the driving assistance system may include, but is not limited to, adaptive cruise control, lane keeping assist system, automatic parking assist system, brake assist system, reverse assist system, and driving assist system.
  • the driving assistance system may be connected to the ranging system, and the embodiment of the present application does not limit the connection mode of the driving assistance system and the ranging system.
  • the driving assistance system can receive the measured distance from the distance measuring system, and then determine an assisted vehicle driving scheme based on the distance, thereby realizing driving assistance. Exemplarily, taking adaptive cruise control as an example, after the ranging system measures the distance of the preceding vehicle, the distance is sent to the driving assistance system. After the driving assistance system receives the distance, it compares it with the distance set by the adaptive cruise control. If the distance is less than the vehicle distance, the driving assistance system controls the braking of the vehicle, and if the distance is greater than the vehicle distance, the driving assistance system controls the acceleration of the vehicle, so that the vehicle can implement adaptive cruise control.

Abstract

一种测距系统(901,902,903,904,905,1001)和车辆(106),测距系统(901,902,903,904,905,1001)包括:扫描模块(200)和测距模块(203);测距模块(203)用于向扫描模块(200)发射激光,并接收扫描模块(200)发送的反射光;扫描模块(200)包括:运动部件(201)和镜组(202),运动部件(201)用于驱动镜组(202)扫描;镜组(202)还用于接收测距系统(901,902,903,904,905,1001)的环境中的被测物体(204)的反射光,并将反射光传输到测距模块(203)上。由此,扫描模块(200)和测距模块(203)分离设置,减小了扫描模块(200)的重量,使得运动部件(201)能够实现快速转动,提高了扫描效率。同时,测距模块(203)工作时不会随扫描模块(200)旋转,降低了测距模块(203)的电连接难度。

Description

测距系统和车辆 技术领域
本申请实施例涉及激光测距技术领域,尤其涉及一种测距系统和车辆。
背景技术
随着现代科技的发展,车辆自动驾驶业务发展迅速。车辆自动驾驶时,需要测量车辆与障碍物、道路护栏、其他车辆之间的距离,以避开障碍物、修正车道偏离以及保持车距。因此,车辆上通常安装有测距系统来测量车辆与其他物体间的距离,从而为实现车辆自动驾驶提供数据参考。
一种测距系统包括:电机,设置在电机上的旋转台,以及设置在旋转台上的光电器件。其中,设有光电器件的旋转台重量和体积较大,电机功耗大,无法快速旋转,降低了测距系统的扫描频率,影响测距系统的测量精度。
发明内容
本申请实施例提供一种测距系统和车辆,解决了测距系统扫描频率低的问题。
为达到上述目的,本申请采用如下技术方案:第一方面,提供一种测距系统,包括:扫描模块和测距模块,以及设置在扫描模块和测距模块之间的发射透镜和接收透镜;该测距模块用于通过发射透镜向扫描模块发射激光,并通过接收透镜接收该扫描模块发送的反射光;该扫描模块包括:运动部件和镜组,该运动部件用于驱动该镜组扫描,该镜组还用于接收该测距系统的环境中的被测物体的反射光,并将该反射光传输到该测距模块上;其中,该发射透镜嵌设在该接收透镜中,且该发射透镜和该接收透镜的主光轴分离。由此,扫描模块和测距模块分离设置,运动部件上仅安装用于调节激光方向或反射光方向的镜组,没有安装重量较大的测距模块,减小了扫描模块的重量,因此运动部件能够实现快速转动,提高了扫描效率,测距系统测距时能够快速扫描测量区域内的被测物体,满足自动驾驶车辆的要求。并且,测距模块和该扫描模块分离,因此,测距模块工作时不会随扫描模块旋转,降低了测距模块的电连接难度。此外,发射透镜和该接收透镜采用离轴设计,使得该发射透镜和该接收透镜的焦距、发射器和接收器的位置可以根据具体设计要求进行调整,设计更加灵活,将发射透镜嵌设在接收透镜中,使得发射光的光路和反射光的光路可以共用。这种设计能够减小镜组中反射镜所需的面积,进一步减小测距系统的体积,有利于测距系统的小型化。
一种可选的实现方式中,该发射透镜和该接收透镜的主光轴平行。由此,可以避免发射透镜和接收透镜的主光轴重合,可以将收端焦距和发端焦距分开设计,提升设计的灵活程度,提高了测量精度。同时,实现了发射透镜和该接收透镜的光路充分共用,可以进一步减小镜组中反射镜所需的面积,进一步减小测距系统的体积,有利于测距系统的小型化。
一种可选的实现方式中,该发射透镜和该接收透镜通过模压的方式一体成型。由此,使得连接更稳定。
一种可选的实现方式中,该接收透镜上设有开口,该发射透镜与该接收透镜的开 口通过胶粘的方式连接。由此,使得发射透镜和接收透镜的拆卸和组装更方便。
一种可选的实现方式中,该测距模块包括:激光器和接收器,该激光器用于向扫描模块发射激光,该接收器用于接收该扫描模块发送的反射光,该激光器和该接收器位于该扫描模块的同一侧。由此,该激光器和该接收器位于扫描模块的同一侧,可以进一步减小测距系统的体积,节省测距系统占用空间。
一种可选的实现方式中,该激光器位于该发射透镜的焦点位置,该发射透镜用于将该激光器发射的激光转化为平行光线;该接收器位于该接收透镜的焦点位置,该接收透镜用于对将该扫描模块发射的反射光聚焦。由此,该激光器位于该发射透镜的焦点位置,使得发射透镜可以充分接收激光器发射的激光,该接收器位于该接收透镜的焦点位置,使得该接收器可以充分接收该接收透镜聚集的反射光。
一种可选的实现方式中,该发射透镜和该激光器之间设有1个或1个以上第一反射镜,该反射镜组用于折叠激光器和发射透镜之间的光路,并将该激光器发射的激光反射至该发射透镜。由此,通过在发射透镜和激光器之间设置第一反射镜,可以折叠发射透镜和激光器之间的光路,可以减小测距系统的体积,有利于测距系统的小型化。
一种可选的实现方式中,该接收透镜和该接收器之间设有第二反射镜,该第二反射镜用于折叠该接收透镜和该接收器之间的光路,将穿过该接收透镜的反射光反射至该接收器。由此,通过在接收透镜和该接收器之间设置第一反射镜,可以折叠接收透镜和该接收器之间的光路,可以减小测距系统的体积,有利于测距系统的小型化。
一种可选的实现方式中,该镜组包括一个或一个以上反射镜。由此,提高扫描模块的扫描效率。
一种可选的实现方式中,该激光器为1个或1个以上,多个激光器贴装在同一电路板上。由此,降低了装配难度,且减小了空间占用。
一种可选的实现方式中,该接收器为1个或1个以上,多个接收器贴装在同一电路板上。由此,降低了装配难度,且减小了空间占用。
一种可选的实现方式中,还包括处理模块;该处理模块连接该激光器以及该接收器;该处理模块用于根据该激光的发射时间、该反射光的接收时间以及光速计算该测距模块与该被测物体之间的距离。由此,可以快速得到测距模块与该被测物体之间的距离,提高工作效率。
第二方面,提供一种车辆,包括车辆本体,以及如上所述的测距系统,该测距系统设置在该车辆本体上。由此,测距系统的扫描模块和测距模块分离设置,减小了扫描模块的重量,因此扫描模块能够实现快速转动,测距系统测距时能够快速扫描测量前方区域的物体距离,满足自动驾驶车辆的要求。
一种可选的实现方式中,该测距系统设置在该车辆本体的车头、车尾、车身侧面或车顶。由此,在车辆的多个方位设置测距系统,可以及时检测到车辆周围的障碍物,避免车辆发生碰撞。
一种可选的实现方式中,该车辆还包括自动驾驶系统;该自动驾驶系统连接该测距系统,用于根据该测距系统测量到的距离实现自动驾驶。由此,自动驾驶系统可以根据测距系统检测到的信息避让车辆周围的障碍物,提高了自动驾驶车辆的安全性。
附图说明
图1a为一种激光测距系统的主视图;
图1b为一种激光测距系统的左视图;
图1c为一种激光测距系统的立体图;
图1d为一种激光测距系统的工作状态示意图;
图1e为一种激光测距系统安装在车辆上的示意图;
图2为本申请实施例提供的一种测距系统的结构示意图;
图3a为本申请实施例提供的一种测距系统的光路示意图;
图3b为本申请实施例提供的另一种测距系统的光路示意图;
图3c为本申请实施例提供的另一种测距系统的光路示意图;
图4为本申请实施例提供的一种测距系统统的俯视图;
图5为本申请实施例提供的一种测距系统的立体图;
图6为本申请实施例提供的另一种测距系统的立体图;
图7为本申请实施例提供的另一种测距系统的俯视图;
图8为本申请实施例提供的一种透镜的主视图;
图8a为本申请实施例提供的另一种透镜的主视图;
图9为本申请实施例提供的另一种透镜的结构示意图;
图9a为本申请实施例提供的另一种透镜的结构示意图;
图10为本申请实施例提供的另一种测距系统的光路示意图;
图11为本申请实施例提供的另一种测距系统的光路示意图;
图12为本申请实施例提供的测距系统安装在车辆上的示例图;
图13为本申请实施例提供的车辆的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请中,“上”、“下”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
本申请实施例提供一种测距系统,例如可以用于自动驾驶车辆、机器人等自动化设备上,以探测周围环境中的物体,从而可以及时避让或取放物体。
在一些实施例中,测距系统可以安装在机器人头部,当机器人移动时,可以通过测距系统测量机器人与障碍物之间的距离,从而绕开障碍物行走。
在另一些实施例中,测距系统可以安装在车辆的车头、车尾、顶部或侧面,当车辆进行自动驾驶时,可以根据测距系统测量到的车辆之间的距离或者车辆与围栏之间的距离进行自动驾驶。在实际应用中,测距系统还可以安装在车辆的其他位置,本申请实施例对此不做具体限定。
示例性的,如图1e所示,自动驾驶车辆106可以通过测距系统测量得到自动驾驶车辆106与周围环境中物体之间的距离。然后通过计算系统判断该距离是否小于安全距离,若是,则说明该自动驾驶车辆106与前车107周围环境中物体之间的距离过近,容易产生碰撞。因此自动驾驶车辆106可以自动进行避让操作,防止碰撞。
其中,可以在自动驾驶车辆的车体上设置测距系统,如图1e所示,测距系统的扫描区域例如为扇形,每个测距系统可以对各自扇形扫描区域内的物体进行测距。
图1a、图1b、图1c和图1d示出了一种测距系统,该测距系统通过转台105的转动,不断对前方扇形区域的车辆进行测距。然而,该测距系统中透镜101、透镜102、接收器103、激光器104均设置在转台105上,转台105所承载的重量较大,因此转台105旋转比较缓慢,无法实现快速转动。
示例性的,如图1e所示,某时刻透镜102所对的方向刚好在扇形区域的左侧,即该测距系统当前正在对扇形区域的左侧车辆进行测距。而此时,前车107从右侧车道并入自动驾驶车辆106的车道,由于自动驾驶车辆106上测距系统的转台105无法快速转动,因此无法及时使得透镜102所对的方向快速旋转到扇形区域的右侧,则该测距系统无法及时测量到前车107的距离,自动驾驶车辆无法及时识别前车107的位置,无法及时作出减速动作防止追尾。
综上所述,设置有该测距系统的自动驾驶车辆106因为无法快速转动底盘105,因此当侧前方有车辆时,无法及时测量出自动驾驶车辆106与前车107的距离,容易造成追尾。
为此,本申请实施例提供了一种测距系统。图2为本申请实施例提供的一种测距系统的结构示意图。该测距系统包括:扫描模块200和测距模块203。其中,扫描模块200与测距模块203分离设置。
其中,测距模块203用于向扫描模块200发射激光,并接收扫描模块200发送的反射光。
扫描模块200包括:运动部件201和镜组202,运动部件201用于驱动镜组202扫描,使得镜组202接收测距模块发射的光束,并将光束传输到测距系统设备的环境中。
同时,镜组202还用于接收测距系统设备的环境中的一个或多个被测物体反射的光,并将收集的反射光聚焦到测距模块203上。
本申请实施例对运动部件的具体结构不做限制。示例性的,运动部件201包括电机以及连接电机的转台。在实际应用中,运动部件201也可以是单独一个电机,本申请实施例对此不做限定。镜组202可以安装在转台上或直接安装在电机上。当电机工作时,电机带动镜组202旋转扫描。与现有技术中将扫描模块200与测距模块203均设置在运动部件201上相比,无需对转动的测距模块203进行供电,降低了电连接难度。
本申请实施例以运动部件201包括电机以及连接电机的转台进行示例性的描述,运动部件201的其他实施方案可参照本申请实施例以实施。本实施例中,转台上安装有镜组202,镜组202的功能可以为:将测距模块203发出的激光(图2中黑色阴影箭头表示)转送至被测物体,或者将被测物体反射的反射光(图2中白色阴影箭头表 示)转送至测距模块203。
在一些实施例中,如图2所示,镜组202可以是一个平面反射镜。如图3a所示,激光经过平面反射镜转送至被测物体,反射光经平面反射镜转送至测距模块203。
在另一些实施例中,镜组202可以是一个弧面反射镜。如图3b所示,激光经过弧面反射镜转送至被测物体,反射光经弧面反射镜转送至测距模块203。
在另一些实施例中,镜组202可以是两个平面反射镜。如图3c所示,激光经过第一平面镜组202a转送至第二平面镜组202b,再转送至被测物体,反射光经第二平面镜组202b转送至第一平面镜组202a,再转送至测距模块203。
在实际应用中,镜组202还可以通过其他形式实现其功能,本申请实施例对此不做具体限定。
在本申请实施例中,转台用于驱动镜组202围绕镜组202的中心轴转动。在一些实施例中,如图2所示,镜组202为一个平面反射镜,则转台连接平面反射镜,使得平面反射镜围绕中心轴转动。随着镜组202的转动,经过镜组202的激光或反射光的射出角度产生对应的变化。例如,镜组202转动1度,则镜组202的激光或反射光的射出角度对应地偏移2度。
在本申请实施例中,转台可以连接电机,通过电机的转动带动转台转动,从而使得转台可以驱动镜组202转动。在实际应用中,转台还可以以其他方式实现转动,本申请实施例对此不做限定。
一种激光测距系统(如图1a、图1b、图1c和图1d)中,转台105需要驱动透镜101、透镜102、接收器103、激光器104等才能实现测距系统的扫描,其承载重量大,旋转慢。而在本申请实施例中,转台仅需驱动镜组202转动即可改变激光和反射光的方向,即可实现测距系统的扫描模式。因此,在本申请实施例中,转台不需要驱动测距模块203,转台上承载重量较轻,转动较快,能够实现快速扫描测距。
上述激光测距系统中,转台105上旋转的激光器104和接收器103都需要供电才能工作,对转台上旋转的物体供电会带来诸多的弊端,如增加电路成本,增加功耗,增加重量。相对于该方案,本申请实施例提供的测距系统不需要对于转台上的旋转物体进行供电(镜组202不需要供电),可以避免使用滑环或无线供电的各项缺陷。
并且,在本申请实施例中,测距模块203没有安装在转台上。因此测距模块203对应的电源可以设置在相对固定的位置。
本申请实施例提供的测距系统,将扫描模块200与测距模块203分离设置,扫描模块200不需要承载较大的重量,因此转动较快,提高了扫描速度,可以实现非常高的探测帧率。同时可以降低运动部件的负载,使得运动部件功耗和成本降低,提高了电机的可靠性和工作寿命。
此外,测距模块和该扫描模块分离,因此,测距模块工作时不会随扫描模块旋转,降低了测距模块的电连接难度。
在一些实施例中,如图4所示,其中,测距模块203包括激光器2031和接收器2032,该测距系统还包括:设置在激光器2031和扫描模块200之间的发射透镜2033,以及设置在接收器2032和扫描模块200之间的接收透镜2034。
激光器2031可以用于向镜组202发射激光,激光经过发射透镜2033的转送照射 至被测物体204。接收器2032可以用于接收来自被测物体204的反射光。
在水平方向上,激光器2031射出的激光经发射透镜2033进行光学整形后,经转台201上的镜组202的反射,到达被测物体204。被测物体204反射出的反射光经过镜组202后到达接收透镜2034,经接收透镜2034的光学整形后,反射光到达接收器2032。其中,镜组202可以是平面反射镜。
在该实施例中,在水平方向上,发射透镜2033用于对激光进行光学整形,而接收透镜2034用于对反射光进行光学整形,激光发出的光路与反射光接收的光路没有共用。这两个光路占据了较多的水平空间,此时需要水平宽度较长的镜组202才能满足设计要求。并且由于发送光路不在靠近中心的位置,旋转一定程度后发送光线会超出镜组202的边缘,导致扫描的范围下降。
又例如,在一些实施例中,如图5所示,在垂直方向上,激光器2031射出的激光经发射透镜2033进行光学整形后,经转台201上的镜组202的反射,到达被测物体204。被测物体204反射出的反射光经过镜组202后到达接收透镜2034,经接收透镜2034的光学整形后,反射光到达接收器2032。其中,镜组202可以是平面反射镜。
在该实施例中,在垂直方向上,发射透镜2033用于对激光进行光学整形,而接收透镜2034用于对反射光进行光学整形,激光发出的光路与反射光接收的光路没有共用。这两个光路占据了较多的垂直空间,此时需要垂直高度较高的镜组202才能满足设计要求。特别是自动驾驶的探测需要尽可能探测较大的垂直方向,因此激光器垂直方向发散角也会比较大,此时激光器占据的转镜高度会接近接收的高度,转镜高度增加接近2倍。
综合图4和图5所示的测距系统,发射激光的光路和接收反射光的光路没有共用,会导致反射镜或镜组202在水平方向和垂直方向的长度都要求较长,使得反射镜或镜组202的面积需要做的比较大,最终导致测距系统的体积较大。此外,该设计在激光光束发散角增大时会更加明显。因此该设计会导致整个测距系统在水平方向或者垂直方向增加较大的体积。
为解决如图4或图5所示测距系统体积较大的技术问题,本申请实施例进一步提供另一种测距系统的实施例如图6、图7所示。图6为本申请实施例提供的另一种测距系统的主视图。图7为本申请实施例提供的另一种测距系统的俯视图。该测距系统包括测距模块203、镜组202以及运动部件201。该测距模块203包括激光器2031和接收器2032。该测距系统还包括:设置在激光器2031和扫描模块200之间的发射透镜2033,以及设置在接收器2032和扫描模块200之间的接收透镜2034。
其中,发射透镜2033可以对激光器2031发射的激光进行整形,接收透镜2034可以对被测物体反射的发射光进行整形,具体描述可参考上述实施例,在此不再赘述。
如图7、图8所示,发射透镜2033和接收透镜2034的主光轴例如不同轴,发射透镜2033和接收透镜2034的焦距可以不同。
由此,发射透镜2033和接收透镜2034的焦距可以根据具体设计要求进行调整,设计更加灵活。
在一些实施例中,发射透镜2033可以嵌设在接收透镜2034中,使得发射光的光路和反射光的光路可以共用。为清楚描述本申请方案,以下以图6、图7、图8、图8a 为例进行详细的描述。
如图8所示,发射透镜2033嵌设在接收透镜2034中。且发射透镜2033的中心2033-1和接收透镜2034的中心2034-1的中心不重合。其中,发射透镜2033的主光轴例如穿过中心2033-1,接收透镜2034的主光轴例如穿过接收透镜2034的中心2034-1。在本申请一种实现方式中,发射透镜2033的主光轴和接收透镜2034的主光轴平行,可以实现发射光光路和反射光光路的共用。
本申请实施例对该发射透镜2033和接收透镜2034的连接方式不做限定。在本申请一种实现方式中,发射透镜2033和接收透镜2034通过模压的方式一体成型。
在本申请一种实现方式中,所述接收透镜2034上设有开口,发射透镜2033和接收透镜2034的开口通过胶粘的方式连接。
如图8a所示,也可以去掉接收透镜2034的半边,将发射透镜2033固定在接收透镜2034的缺口位置。其中,发射透镜2033和接收透镜2034可以一体成型,也可以通过胶粘的方式连接在一起。
本申请实施例对发射透镜2033和接收透镜2034的排布方式不做限制,只需使得发射透镜2033的中心与接收透镜2034的中心错开即可。可以避免激光器2031发射的激光和扫描模块200传输的反射光相互干涉,使得发射透镜2033和接收透镜2034的焦距可以不同。同时,将发射透镜2033嵌设在接收透镜2034上,并使得发射透镜2033的主光轴和接收透镜2034的主光轴平行,使得发射光的光路和反射光的光路可以共用。这种设计能够减小镜组中反射镜所需的面积,进一步减小测距系统的体积,有利于测距系统的小型化。
本申请实施例对发射透镜2033和接收透镜2034的成型方式不做限定,发射透镜2033和接收透镜2034可以一次成型,也可以由多个透镜组202件粘接而成。
本申请对激光器2031的设置方式不做限制。在一些实施例中,激光器2031可以安装在印刷电路板(printed circuit board,PCB)上。其中,激光器2031可以采用没有封装的激光器裸片芯片(bare die)。由此,可以减小激光器2031占用的空间,进而可以减小测距系统的尺寸。
具体地,没有封装的激光器裸片芯片可以安装在PCB上,通过金线进行引线键合(wire bonding),将激光器裸片芯片与处理模块连接。该处理模块可以用于计算测距模块203与被测物体204之间的距离。激光器2031采用没有封装的激光器裸片芯片时,测距模块203能够更加小型化。在实际应用中,激光器2031可以为连续激光器或脉冲激光器,本申请实施例对激光器2031的类型不做具体限定。
本申请对接收器2032的设置方式不做限制。在一些实施例中,接收器2032可以安装在PCB上。其中,接收器2032可以采用没有封装的接收器裸片芯片。由此,可以减小接收2032占用的空间,进而可以减小测距系统的尺寸。
具体地,没有封装的接收器裸片芯片可以安装在PCB上,通过金线进行引线键合,将接收器裸片芯片与处理模块连接。接收器2032采用没有封装的接收器裸片芯片时,使得测距模块203能够更加小型化。在一些实施例中,接收器2032可以采用雪崩光电二极管(avalanche photon diode,APD)做成,具有高速响应、高增益、低结电容、低噪声的特点,非常适合于激光测距。
本实施例中,激光器2031和接收器2032例如位于扫描模块200的同一侧,可以减小测距系统的尺寸,进而减小测距系统占用的空间。
在一些实施例中,如图7所示,接收器2032位于激光器2031和扫描模块200之间,接收器的PCB上例如设有通孔20321,激光器2031发射的激光可以穿过通孔20321并汇聚在发射透镜2033上。
本申请实施例对发射透镜2033和接收透镜2034的具体结构不做限制。其中,发射透镜2033和接收透镜2034可以是凸透镜、凹透镜或者其他形式的透镜。在本申请一种实现方式中,发射透镜2033例如为凸透镜。在本申请另一种实现方式中,如图9a所示,发射透镜2033例如为柱状透镜。
发射透镜2033例如位于激光器2031和扫描模块200之间,用于将激光器2031发射的激光转化为平行光线。其中,激光器2031例如设置在发射透镜2033的焦点位置,激光器2031发射的激光经过发射透镜2033的处理,可以被整形成平行的激光。最后经镜组202的反射到达被测物体204。
接收透镜2034例如位于接收器2032和扫描模块200之间,用于将扫描模块200传输的反射光聚焦。其中,被测物体204反射出的反射光经过镜组202的反射后到达接收透镜2034。接收透镜2034可以具有聚焦光线的功能。反射光经过接收透镜2034时可以聚焦,最终汇聚到焦点位置。因此,接收器2032可以设置在该接收透镜2034的焦点位置,以接收到更多的反射光,提高测距系统的灵敏度。
图9为本申请实施例提供的另一种测距系统的俯视图。如图9所示,激光器2031和发射透镜2033之间还设有汇聚透镜2035。汇聚透镜2035可以对激光器2031发出的激光初步整形,并于将激光器发射的激光汇聚至发射透镜2033的中心位置。
本申请实施例对汇聚透镜2035的结构不做限制。汇聚透镜2035可以是凸透镜、凹透镜或者其他形式的透镜。在本申请一种实现方式中,如图9a所示,发射透镜2035例如为柱状透镜。
激光器2031射出的激光穿过汇聚透镜2035、发射透镜2033,并经镜组202反射至被测物体204。被测物体204反射出来的反射光经镜组202反射至接收透镜2034,并通过接收透镜2034反射至接收器2032。
在一些实施例中,发射透镜2033与激光器2031之间可以设置若干个反射镜,形成“Z”形光路,可以进一步减小测距模块203的体积。同理,接收透镜2034与接收器2032之间也可以设置若干个反射镜。在另一些实施例中,接收透镜2034与镜组202之间,以及发射透镜2033与镜组202之间也可以设置若干个反射镜,本申请实施例对在测距系统内部各个器件之间设置反射镜调整光路的实施方式不做限定。上述设置反射镜的实施例不仅可以根据实际需要改变光路,适应实际应用,并且,在改变光路后,能够合理利用测距系统的空间,进一步减小测距模块203的体积。
示例性的,如图10所示,发射透镜2033和所述激光器2031之间设有第一反射镜,第一反射镜用于将激光器2031发射的激光反射至所述发射透镜2033。第一反射镜包括两个平面反射镜:第三平面反射镜205a和第四平面反射镜205b,激光经过第三平面反射镜205a转送至第四平面反射镜205b,再转送至发射透镜2033。
由此,通过在发射透镜和激光器之间设置第一反射镜,可以折叠发射透镜和激光 器之间的光路,减小测距系统的体积,有利于测距系统的小型化。
如图11所示,所述接收透镜2034和所述接收器2032之间设有第二反射镜,所述第二反射镜用于将穿过所述接收透镜2034的反射光反射至所述接收器2032。第二反射镜包括两个平面反射镜:第五平面反射镜206a和第四平面反射镜206b,反射光经第五平面反射镜206b转送至第六平面反射镜206a,再转送至接收器2032。
由此,通过在接收透镜和所述接收器之间设置第一反射镜,可以折叠接收透镜和所述接收器之间的光路,可以减小测距系统的体积,有利于测距系统的小型化。
本申请实施例对激光器2031的数量和位置不做限制。示例性的,图6中激光器2031共有3个。这些激光器2031在设置时可以朝向发射透镜2033的中心。因此,激光器2031的朝向可能会存在一定的角度差异,激光器2031射出的激光可能不会平行,而是向发射透镜2033的中心靠拢。
本申请实施例对接收器的数量和位置不做限制。接收器2032的数量可以为1个或1个以上个。示例性的,图6中接收器2032的数量为1个。
在一些实施例中,接收器2032可以与激光器2031一一对应,使得每个激光器2031发射的激光都会有对应的接收器2032接收。该接收器2032的位置可以通过激光器2031发射激光的测试确定。
示例性的,在测距系统的安装调试或出厂调试过程中,调试人员可以通过激光器2031发射激光,经发射透镜2033、镜组202后到达被测物体,然后被测物体反射出的反射光经镜组202和接收透镜2034后到达接收器2032所在的电路板。调试人员可以通过光敏检测设备检测反射光在该电路板上的位置。最后,调试人员可以改变被测物体的种类、镜组202的角度等条件并重复上述检测反射光位置的过程,综合考虑检测到的反射光位置,从而根据检测到的反射光位置确定接收器2032的位置。
可以理解的是,安装激光器2031的PCB板和安装接收器2032的PCB板可以不是同一块PCB板,也可以是同一块PCB板,本申请实施例对此不做限定。一个PCB板上可以设置多个激光器2031,本申请实施例对激光器2031的数量不做限定。一个PCB板上可以设置多个接收器2032,本申请实施例对接收器2032的数量不做限定。
在一些实施例中,测距模块203还可以包括处理模块。处理模块连接激光器2031和接收器2032,用于根据激光器2031发射激光和接收器2032接收反射光的情况,计算得到测距模块203与被测物体204之间的距离。处理模块可以被设计为通过激光测距(laser distance measuring)的方法计算测距模块203与被测物体204之间的距离,激光测距的方法可以包括脉冲法和相位法等。在一些实施例中,处理模块具体可以被设计为通过脉冲法的计算方法计算测距模块203与被测物体204之间的距离。脉冲法的计算公式可以为:
Figure PCTCN2020080508-appb-000001
其中,D为测距模块203与被测物体204之间的距离,c为光速,t为激光器2031发出激光与接收器2032接收到对应反射光的时间差。在实际应用中,光速可以取300000km/s或者其他数值,本申请实施例对此不做具体限定。
在实际应用中,处理模块执行的激光测距的方法可以根据实际情况进行微调,本 申请实施例对此不做具体限定。上述处理模块执行的激光测距的方法为处理模块计算测距模块203与被测物体204之间的距离的一种实现方式或一种示例,在实际应用中,处理模块还可以被设计为通过相位法等其他计算方法计算测距模块203与被测物体204之间的距离,本申请实施例对处理模块的设计不做具体限定。
在一些实施例中,上述的处理模块可以为微处理器、中央处理器、主处理器、单片机、控制器或者专用集成电路(application specific integrated circuit,ASIC)等等元件,利用各接口和线路连接激光器2031以及接收器2032,执行各种类型的数字存储指令,从而根据算法计算得到测距模块203与被测物体204之间的距离。
在一些实施例中,上述的处理模块可以安装在接收器所在电路板上。处理模块可以以简单电路的形式实现上述计算距离的方法,本申请实施例对此不再赘述。
在一些实施例中,本申请实施例提供的测距系统还可以包括外壳,该外壳安装在自动驾驶车辆上,测距模块203、镜组202以及转台201均设置在外壳内。并且,外壳上可以开设有供激光射出以及供反射光进入的缺口。
在一些实施例中,如图12所示,自动驾驶车辆上可以设置有凹槽1002,具有外壳的测距系统可以安装在该凹槽1002中。可以理解的是,凹槽1002上可以设置多个开孔,使得自动驾驶车辆中的各个部件可以穿过凹槽1002,利用各种接口或线路与测距系统1001连接。
在另一些实施例中,测距系统也可以通过在外壳上设置螺丝孔,通过螺丝的固定作用将测距系统安装在自动驾驶车辆上。在实际应用中,测距系统中的各个部件,例如测距模块203、镜组202以及转台201等,可以根据实际情况通过合理方式安装在自动驾驶车辆上,本申请实施例对测距系统的具体安装方法不做限定。
自动驾驶车辆上可以设置至少一个上述实施例中的测距系统,示例性的,本申请实施例提供了一种自动驾驶车辆,如图13所示,包括5个测距系统和车身本体。其中5个测距系统分别是:测距系统901、测距系统902、测距系统903、测距系统904以及测距系统905。在一些实施例中,测距系统901、测距系统902、测距系统903、测距系统904以及测距系统905的结构均与上述实施例中的测距系统类似,本申请实施例对测距系统的内部结构不再赘述。
如图13所示,测距系统901安装在车身本体的车头,测距系统902安装在车身本体的车尾,测距系统903安装在车身本体的车身左侧,测距系统904安装在车身本体的车身右侧,测距系统905安装在车身本体的车顶。因此,车身本体上安装的这五个测距系统能够覆盖自动驾驶车辆的周围,能够及时发现靠近自动驾驶车辆的物体,例如其他车辆或障碍物。
在一些实施例中,自动驾驶车辆可以是发动机驱动的汽车,也可以是电动机驱动的新能源车,在实际应用中,还可以是发动机和电动机混合驱动的混合动力汽车,本申请实施例对自动驾驶车辆不做具体限定。
在一些实施例中,自动驾驶车辆上还设置有自动驾驶系统,该自动驾驶系统可以同时连接测距系统901、测距系统902、测距系统903、测距系统904以及测距系统905。该自动驾驶系统可以接收来自这五个测距系统测量到的距离,然后根据该距离确定自动驾驶的车辆行驶方案,进而实现自动驾驶。示例性的,自动驾驶车辆前方有一个行 人,则在自动驾驶车辆未撞上该行人时,测距系统901能够测量到自动驾驶车辆与该行人之间的距离,并将该距离传输至自动驾驶系统。自动驾驶系统接收到该距离后,根据该距离确定自动驾驶的车辆行驶方案为紧急刹车,进而通过该自动驾驶系统的控制,车辆能够及时刹车,避免撞上该行人。
在一些实施例中,自动驾驶系统具体可以通过导线、信号传输线、蓝牙、wifi等方式连接测距系统901、测距系统902、测距系统903、测距系统904以及测距系统905,本申请实施例对自动驾驶系统与测距系统的连接方式不做限定。
在本申请实施例中,驾驶辅助系统可以包括但不限于自适应巡航控制、车道保持辅助系统、自动泊车辅助系统、刹车辅助系统、倒车辅助系统和行车辅助系统。驾驶辅助系统可以与测距系统连接,本申请实施例对驾驶辅助系统与测距系统的连接方式不做限定。驾驶辅助系统可以根据接收来自该测距系统测量到的距离,然后根据该距离确定辅助的车辆行驶方案,进而实现驾驶辅助。示例性的,以自适应巡航控制为例,测距系统测量到前方车辆的距离后,将该距离发送至驾驶辅助系统。驾驶辅助系统接收到该距离后,与自适应巡航控制设定的车距比较。如果该距离小于车距,则驾驶辅助系统控制车辆刹车,如果该距离大于车距,则驾驶辅助系统控制车辆加速,从而该车辆能够实现自适应巡航控制。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种测距系统,其特征在于,包括:扫描模块和测距模块,以及设置在所述扫描模块和所述测距模块之间的发射透镜和接收透镜;
    所述测距模块用于通过所述发射透镜向扫描模块发射激光,并通过所述接收透镜接收所述扫描模块发送的反射光;
    所述扫描模块包括:运动部件和镜组,所述运动部件用于驱动所述镜组扫描,所述镜组还用于接收所述测距系统的环境中的被测物体的反射光,并将所述反射光传输到所述测距模块上;
    其中,所述发射透镜嵌设在所述接收透镜中,且所述发射透镜和所述接收透镜的主光轴分离。
  2. 根据权利要求1所述的测距系统,其特征在于,所述发射透镜和所述接收透镜的主光轴平行。
  3. 根据权利要求1或2所述的测距系统,其特征在于,所述发射透镜和所述接收透镜通过模压的方式一体成型。
  4. 根据权利要求1或2所述的测距系统,其特征在于,所述接收透镜上设有开口,所述发射透镜与所述接收透镜的开口通过胶粘的方式连接。
  5. 根据权利要求1-4任一项所述的测距系统,其特征在于,所述测距模块包括:激光器和接收器,所述激光器用于向发射透镜发射激光,所述接收器用于接收所述接收透镜发送的反射光,其中,所述激光器和所述接收器位于所述镜组的同一侧。
  6. 根据权利要求5所述的测距系统,其特征在于,所述激光器位于所述发射透镜的焦点位置,所述发射透镜用于将所述激光器发射的激光转化为平行光线;
    所述接收器位于所述接收透镜的焦点位置,所述接收透镜用于将所述扫描模块发射的反射光聚焦。
  7. 根据权利要求5或6所述的测距系统,其特征在于,所述发射透镜和所述激光器之间设有1个或1个以上第一反射镜,所述第一反射镜用于折叠所述激光器和所述发射透镜之间的光路,并将所述激光器发射的激光反射至所述发射透镜。
  8. 根据权利要求5-7任一项所述的测距系统,其特征在于,所述接收透镜和所述测距模块之间设有1个或1个以上第二反射镜,所述第二反射镜用于折叠所述接收透镜和所述接收器之间的光路,并将穿过所述接收透镜的反射光反射至所述接收器。
  9. 根据权利要求6-8任一项所述的测距系统,其特征在于,所述激光器为1个或1个以上,所述激光器贴装在同一电路板上。
  10. 根据权利要求6-9任一项所述的测距系统,其特征在于,所述接收器为1个或1个以上,所述接收器贴装在同一电路板上。
  11. 根据权利要求6-10任一项所述的测距系统,其特征在于,还包括处理模块;所述处理模块和所述激光器以及所述接收器信号连接;所述处理模块用于根据所述激光器发射的激光和所述接收器接收的反射光计算所述测距模块与所述被测物体之间的距离。
  12. 根据权利要求1-11任一项所述的测距系统,其特征在于,所述镜组包括一个或一个以上反射镜。
  13. 一种车辆,其特征在于,包括车辆本体,以及如权利要求1-12任一项所述的测距 系统,所述测距系统设置在所述车辆本体上。
  14. 根据权利要求13所述的车辆,其特征在于,所述测距系统设置在所述车辆本体的车头、车尾、车身侧面或车顶。
  15. 根据权利要求13或14所述的车辆,其特征在于,所述车辆还包括自动驾驶系统;所述自动驾驶系统和所述测距系统信号连接,所述自动驾驶系统用于根据所述测距系统测量到的距离进行自动驾驶。
PCT/CN2020/080508 2020-03-20 2020-03-20 测距系统和车辆 WO2021184381A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/080508 WO2021184381A1 (zh) 2020-03-20 2020-03-20 测距系统和车辆
CN202080098397.6A CN115244426A (zh) 2020-03-20 2020-03-20 测距系统和车辆
EP20925030.7A EP4113168A4 (en) 2020-03-20 2020-03-20 DISTANCE MEASUREMENT SYSTEM AND VEHICLE
US17/946,939 US20230011771A1 (en) 2020-03-20 2022-09-16 Distance measurement system and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080508 WO2021184381A1 (zh) 2020-03-20 2020-03-20 测距系统和车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/946,939 Continuation US20230011771A1 (en) 2020-03-20 2022-09-16 Distance measurement system and vehicle

Publications (1)

Publication Number Publication Date
WO2021184381A1 true WO2021184381A1 (zh) 2021-09-23

Family

ID=77767998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080508 WO2021184381A1 (zh) 2020-03-20 2020-03-20 测距系统和车辆

Country Status (4)

Country Link
US (1) US20230011771A1 (zh)
EP (1) EP4113168A4 (zh)
CN (1) CN115244426A (zh)
WO (1) WO2021184381A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204789995U (zh) * 2015-07-29 2015-11-18 上海诺司纬光电仪器有限公司 一种测距系统
CN106501810A (zh) * 2015-09-08 2017-03-15 上海诺司纬光电仪器有限公司 一种测距系统及校准测距系统光路的方法
CN108445467A (zh) * 2018-03-26 2018-08-24 宁波傲视智绘光电科技有限公司 一种扫描激光雷达系统
CN108646232A (zh) * 2018-05-15 2018-10-12 宁波傲视智绘光电科技有限公司 一种激光雷达的校正系统和激光雷达测距装置
CN108710134A (zh) * 2018-07-17 2018-10-26 苏州元联传感技术有限公司 基于收发组合镜头的二维扫描激光测距雷达
CN108710118A (zh) * 2018-08-08 2018-10-26 北京大汉正源科技有限公司 一种激光雷达
US20180372847A1 (en) * 2017-06-21 2018-12-27 Apple Inc. Focal region optical elements for high-performance optical scanners

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1779486A (zh) * 2004-11-19 2006-05-31 南京德朔实业有限公司 激光测距装置
KR101026030B1 (ko) * 2008-10-21 2011-03-30 삼성전기주식회사 거리 측정 장치
KR101208215B1 (ko) * 2011-01-14 2012-12-04 삼성전기주식회사 카메라 모듈 및 이의 제조방법
JP5985661B2 (ja) * 2012-02-15 2016-09-06 アップル インコーポレイテッド 走査深度エンジン
US8836922B1 (en) * 2013-08-20 2014-09-16 Google Inc. Devices and methods for a rotating LIDAR platform with a shared transmit/receive path
CN206019600U (zh) * 2016-08-09 2017-03-15 广西师范大学 一种检测非球面透镜透射波面的系统
US10955530B2 (en) * 2016-12-23 2021-03-23 Cepton Technologies, Inc. Systems for vibration cancellation in a lidar system
DE102017124535A1 (de) * 2017-10-20 2019-04-25 Sick Ag Sende-Empfangsmodul für einen optoelektronischen Sensor und Verfahren zur Erfassung von Objekten

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204789995U (zh) * 2015-07-29 2015-11-18 上海诺司纬光电仪器有限公司 一种测距系统
CN106501810A (zh) * 2015-09-08 2017-03-15 上海诺司纬光电仪器有限公司 一种测距系统及校准测距系统光路的方法
US20180372847A1 (en) * 2017-06-21 2018-12-27 Apple Inc. Focal region optical elements for high-performance optical scanners
CN108445467A (zh) * 2018-03-26 2018-08-24 宁波傲视智绘光电科技有限公司 一种扫描激光雷达系统
CN108646232A (zh) * 2018-05-15 2018-10-12 宁波傲视智绘光电科技有限公司 一种激光雷达的校正系统和激光雷达测距装置
CN108710134A (zh) * 2018-07-17 2018-10-26 苏州元联传感技术有限公司 基于收发组合镜头的二维扫描激光测距雷达
CN108710118A (zh) * 2018-08-08 2018-10-26 北京大汉正源科技有限公司 一种激光雷达

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4113168A4 *

Also Published As

Publication number Publication date
EP4113168A1 (en) 2023-01-04
US20230011771A1 (en) 2023-01-12
CN115244426A (zh) 2022-10-25
EP4113168A4 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
EP2940489B1 (en) Object detection device and sensing apparatus
WO2018133089A1 (zh) Tof测距系统及可移动平台
JPH09113262A (ja) 走査距離計及び距離計を使用する走査方法
KR20170135415A (ko) 송수광 단일렌즈 광학계 구조를 가지는 스캐닝 라이다
JP7317149B2 (ja) 耐オクルージョン性のためのビーム均質化
KR101885954B1 (ko) 오목 반사 미러를 가지는 스캐닝 라이다
CN211718520U (zh) 一种多线激光雷达
CN110658527A (zh) 激光雷达、自主移动机器人及智能车辆
US11609311B2 (en) Pulsed light irradiation/detection device, and optical radar device
WO2022110210A1 (zh) 一种激光雷达及移动平台
WO2020142941A1 (zh) 一种光发射方法、装置及扫描系统
WO2021184381A1 (zh) 测距系统和车辆
WO2022042078A1 (zh) 激光光源、光发射单元和激光雷达
CN211402711U (zh) 一种激光雷达
EP4198572A1 (en) Lidar apparatus, lidar device and vehicle
EP4220229A1 (en) Laser radar
US20210341588A1 (en) Ranging device and mobile platform
WO2022126429A1 (zh) 测距装置、测距方法和可移动平台
WO2021128239A1 (zh) 一种测距系统以及移动平台
CN112034487A (zh) 一种激光雷达
CN115825916B (zh) 一种光学接收装置及光学传感装置
WO2023040788A1 (zh) 激光雷达、探测设备和车辆
CN219201926U (zh) 激光测量系统及机械旋转式激光雷达
KR20180089352A (ko) 오목 반사 미러를 가지는 스캐닝 라이다
CN115825917B (zh) 一种光学接收装置及光学传感装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020925030

Country of ref document: EP

Effective date: 20220929

NENP Non-entry into the national phase

Ref country code: DE