WO2021182348A1 - Block copolymer production method and block copolymer - Google Patents

Block copolymer production method and block copolymer Download PDF

Info

Publication number
WO2021182348A1
WO2021182348A1 PCT/JP2021/008797 JP2021008797W WO2021182348A1 WO 2021182348 A1 WO2021182348 A1 WO 2021182348A1 JP 2021008797 W JP2021008797 W JP 2021008797W WO 2021182348 A1 WO2021182348 A1 WO 2021182348A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
block copolymer
aromatic polysulfone
polyoxyalkylene
molecular weight
Prior art date
Application number
PCT/JP2021/008797
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 和幸
友梨香 角
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2021182348A1 publication Critical patent/WO2021182348A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers

Definitions

  • the present invention relates to a method for producing a block copolymer and a block copolymer.
  • the present application claims priority based on Japanese Patent Application No. 2020-040191 filed in Japan on March 9, 2020, the contents of which are incorporated herein by reference.
  • Aromatic polysulfone is used for various purposes as a material for molded products because it has excellent heat resistance and chemical resistance. Hydrophilized aromatic polysulfone may be required depending on the application.
  • Patent Document 1 relates to a method for producing a polyaryl ether sulfone-polyalkylene oxide-block copolymer containing polycondensation of a raw material monomer, and describes a method in which the reaction mixture does not contain a substance that forms an azeotropic mixture with water. ..
  • the present invention has been made to solve the above-mentioned problems, and a block copolymer having a high weight average molecular weight value, which contains an aromatic polysulfone block (A) and a polyoxyalkylene block (B), is used. It is an object of the present invention to provide a method for producing a block copolymer that can be easily produced.
  • ⁇ 2> The method for producing a block copolymer according to ⁇ 1>, wherein the aromatic polysulfone (a) has a weight average molecular weight of 30,000 or more, which is obtained as an absolute molecular weight by gel permeation chromatography.
  • the block copolymer contains an aromatic polysulfone block (A) and a polyoxyalkylene block (B).
  • ⁇ 4> A linear triblock copolymer having the above three blocks and the polyoxy in the order of the polyoxyalkylene block (B), the aromatic polysulfone block (A), and the polyoxyalkylene block (B).
  • a linear diblock copolymer having the above two blocks of an alkylene block (B) and the aromatic polysulfone block (A) The method for producing a block copolymer according to ⁇ 3>, which comprises at least one of the above.
  • ⁇ 5> The method for producing a block copolymer according to ⁇ 3> or ⁇ 4>, wherein the aromatic polysulfone block (A) is composed of a polymer chain having a structural unit represented by the following formula (1).
  • R 1 and R 2 independently represent an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom.
  • n1 and n2 are independently integers of 0 to 4, respectively. When n1 or n2 is 2 or more, plural R 1 and R 2 may be the same or different from each other.
  • ⁇ 6> The above-mentioned ⁇ 3> to ⁇ 5>, wherein the polyoxyalkylene block (B) is composed of a polymer chain having a structural unit represented by the following formula (2-1). Method for manufacturing block copolymers.
  • ⁇ 8> 1 The block copolymer according to ⁇ 7>, wherein the number average molecular weight of the polyoxyalkylene block (B) calculated by 1 H-NMR is 5000 or less.
  • ⁇ 10> The block copolymer according to any one of ⁇ 7> to ⁇ 9>, wherein the aromatic polysulfone block (A) is composed of a polymer chain having a structural unit represented by the following formula (1). .. [In equation (1), R 1 and R 2 independently represent an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom. n1 and n2 are independently integers of 0 to 4, respectively.
  • a method for producing a block copolymer capable of easily producing a block copolymer having a high weight average molecular weight value, which comprises an aromatic polysulfone block (A) and a polyoxyalkylene block (B).
  • the method for producing a block copolymer of the embodiment includes a step of preparing an aromatic polysulfone (a) having at least one Cl atom at the terminal in advance, the aromatic polysulfone (a), and at least one hydroxy group at the end.
  • the ratio of the solvent forming the azeotropic mixture with water to the total amount of the solvent used in the reaction, which comprises the step of reacting the polyoxyalkylene compound (b) with the solvent in the solvent, is 0 to 20% by mass. ..
  • the step of preparing the aromatic polysulfone (a) in advance includes obtaining the aromatic polysulfone (a) and simply preparing a commercially available aromatic polysulfone (a).
  • the method for producing the block copolymer of the embodiment may further include a step of producing the aromatic polysulfone (a) (aromatic polysulfone production step).
  • the method for producing a block copolymer of the embodiment includes a step of obtaining an aromatic polysulfone (a) having at least one Cl atom at the terminal by a polycondensation reaction. It may include a step (block copolymer manufacturing step) of reacting the aromatic polysulfone (a) with a polyoxyalkylene compound (b) having at least one hydroxy group at the terminal.
  • aromatic polysulfone (a) for example, by a polycondensation reaction between a compound represented by the following general formula (a1) and a compound represented by the following general formula (a2), the following general formula (a-1) ) Can be obtained.
  • R 1 and R 2 independently represent an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom.
  • n1 and n2 are independently integers of 0 to 4, respectively. When n1 or n2 is 2 or more, plural R 1 and R 2 may be the same or different from each other.
  • Examples of the alkyl group having 1 to 10 carbon atoms in R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. Examples thereof include a group, an n-hexyl group, a 2-ethylhexyl group, an n-octyl group, an n-decyl group and the like.
  • Examples of the aryl group having 6 to 20 carbon atoms in R 1 and R 2 include a phenyl group, an o-trill group, an m-trill group, a p-trill group, a 1-naphthyl group, a 2-naphthyl group and the like. Be done.
  • Examples of the halogen atom in R 1 and R 2 include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • n1 and n2 are independently integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
  • Examples of the aromatic polysulfone (a) obtained by the above polycondensation reaction include compounds represented by the following general formula (a-1).
  • the compound represented by the following general formula (a-1) is suitable as the aromatic polysulfone (a) used as a raw material in the method for producing a block copolymer of the embodiment.
  • R 1, R 2, n1 and n2 represent the same meaning as in the formula (a1).
  • -X 1 and -X 2 are independently -OH or -Cl, and at least one of -X 1 and -X 2 is -Cl.
  • n is an integer greater than or equal to 0. ]
  • N is the number of repetitions of the structural unit of the aromatic polysulfone (a-1) in the above formula (a-1).
  • aromatic polysulfone (a) In the reaction between the aromatic polysulfone (a) and the polyoxyalkylene compound (b), examples of the aromatic polysulfone (a) include those described above.
  • the value of the weight average molecular weight of the aromatic polysulfone (a) used as a raw material may be appropriately determined according to the weight average molecular weight of the produced block copolymer. From the viewpoint of improving the molecular weight of the produced block copolymer, the weight average molecular weight of the above aromatic polysulfone (a) used as a raw material may be 30,000 or more, 30,000 or more and 70,000 or less. It may be 40,000 or more and 65,000 or less.
  • the weight average molecular weight (Mw) is the weight average absolute molecular weight measured by gel permeation chromatography (GPC).
  • Examples of the polyoxyalkylene compound (b) include compounds represented by the following general formula (b-1).
  • R 3 represents an alkylene group having 2 to 6 carbon atoms.
  • m is an integer of 1 or more, R 3 existing in plural numbers may be the same or different from each other.
  • -Y is an alkyl group having 1 to 3 carbon atoms.
  • alkylene group having 2 to 6 carbon atoms in R 3 examples include an ethylene group, a trimethylene group, -CH (CH 3 ) CH 2- , tetramethylene group, -CH 2 CH 2 CH (CH 3 )-, and hexamethylene.
  • ethylene group a trimethylene group
  • -CH (CH 3 ) CH 2- a trimethylene group
  • tetramethylene group a trimethylene group
  • -CH 2 CH 2 CH (CH 3 )- hexamethylene.
  • the basis etc. can be mentioned.
  • Examples of the alkyl group having 1 to 3 carbon atoms of —Y include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like, and a methyl group is preferable.
  • M is the number of repetitions of the structural unit of the polyoxyalkylene compound (b-1) in the above formula (b-1).
  • a compound represented by the general formula (a-1) and a compound represented by the general formula (b-1) As an example of the reaction between the aromatic polysulfone (a) and the polyoxyalkylene compound (b), a compound represented by the general formula (a-1) and a compound represented by the general formula (b-1)
  • the reaction of can be exemplified.
  • the reaction can be represented by the following reaction formula.
  • a block copolymer represented by the general formula (I-1) is obtained.
  • Aromatic polysulfone (a) may be used alone or in combination of two or more.
  • polyoxyalkylene compound (b) one type may be used alone, or two or more types may be used in combination.
  • the amount of the polyoxyalkylene compound (b) having at least one hydroxy group at the terminal is 0.4 to 2.0 with respect to 1 mol of the aromatic polysulfone (a) having at least one Cl atom at the end. It is preferably mol, more preferably 0.4 to 1.5 mol, even more preferably 0.5 to 1.2 mol, and particularly preferably 0.5 to 0.9 mol. When the amount is within the above range, the Mw measured by GPC of the obtained block copolymer can be further improved, which is preferable.
  • the aromatic polysulfone (a) having at least one Cl atom at the terminal the compound represented by the general formula (a-1) is preferable.
  • the polyoxyalkylene compound (b) having at least one hydroxy group at the terminal the compound represented by the general formula (b-1) is preferable.
  • the reaction between the aromatic polysulfone (a) and the polyoxyalkylene compound (b) is carried out using an alkali metal carbonate and / or an alkali metal bicarbonate as a catalyst base. It is preferable that this is done. Further, in the method for producing a block copolymer of the embodiment, it is more preferable that the reaction is carried out in an organic solvent as a solvent, an alkali metal salt of carbonic acid is used as a base, and the reaction is carried out in an organic solvent.
  • water may be produced as a by-product, and for the purpose of removing this water, a solvent "a solvent that forms an azeotropic mixture with water” is used. May be added.
  • an azeotropic mixture with water is formed with respect to the total amount of the solvent used in the reaction.
  • the proportion of the solvent used is 0 to 20% by mass, more preferably 0 to 10% by mass, further preferably 0 to 3% by mass, and the solvent used for the reaction is azeotropically heated with water. It is particularly preferred that it contains substantially no solvent to form the mixture.
  • the boiling point of the solvent forming the azeotropic mixture with water is preferably 250 ° C. or lower, and may be 230 ° C. or lower, or 210 ° C. or lower.
  • the boiling point of the solvent forming the azeotropic mixture with water may be 40 ° C. or higher, 80 ° C. or higher, or 100 ° C. or higher.
  • the numerical range of the boiling point of the solvent forming the azeotropic mixture with water it may be 40 ° C. or higher and 250 ° C. or lower, 80 ° C. or higher and 230 ° C. or lower, and 100 ° C. or higher and 210 ° C. It may be as follows.
  • Examples of the solvent for forming an azeotropic mixture with water having a boiling point of 250 ° C. or lower include benzene, chlorobenzene, toluene, xylene, ethylbenzene, methyl isobutyl ketone, hexane, cyclohexane and the like.
  • the above-mentioned alkali metal salt of carbonic acid may be an alkali carbonate (alkali metal carbonate) which is a positive salt, or a bicarbonate alkali (hydrogen carbonate alkali, alkali metal hydrogen carbonate) which is an acidic salt. It may be a mixture of these (alkali carbonate and alkali bicarbonate).
  • alkali carbonate include sodium carbonate, potassium carbonate and the like.
  • Examples of preferable alkali bicarbonate include sodium bicarbonate (sodium hydrogen carbonate), potassium bicarbonate (potassium hydrogen carbonate) and the like.
  • the blending ratio of the alkali metal salt of carbonic acid is preferably 0.90 mol or more and 1.30 mol or less as the alkali metal with respect to 1 mol of the polyoxyalkylene compound (b), and 0.95 mol or more and 1 mol. More preferably, it is 20 mol or less.
  • the organic solvent examples include an aprotic polar solvent, and the boiling point of the aprotic polar solvent under 1 atm is preferably 250 ° C. or lower.
  • the reaction can proceed while refluxing the aprotic polar solvent at a relatively low temperature to remove by-products.
  • the boiling point of the aprotic polar solvent is preferably 250 ° C. or lower, and may be 230 ° C. or lower, or 210 ° C. or lower.
  • the boiling point of the aprotic polar solvent may be 120 ° C. or higher, 140 ° C. or higher, or 150 ° C. or higher.
  • the numerical range of the boiling point of the above-mentioned aprotic polar solvent it may be 120 ° C. or higher and 230 ° C. or lower, 140 ° C. or higher and 210 ° C. or lower, or 150 ° C. or higher and 210 ° C. or lower. May be good.
  • aprotonic polar solvent having a boiling point of 250 ° C. or lower examples include sulfonic solvents such as dimethylsulfone and diethylsulfone, N, N-dimethylacetamide, N-methyl-pyrrolidone, N-ethyl-pyrrolidone, N-methylcaprolactam, N, Amide solvents such as N-dimethylformamide, N, N-diethylformamide, N, N-diethylacetamide, N-methylpropionamide, dimethylimidazolidinone, lactone solvents such as ⁇ -butyllactone and ⁇ -butyllactone, Examples thereof include sulfoxide-based solvents such as methyl sulfoxide and methylphenyl sulfoxide, cellosolve-based solvents such as tetramethylphosphoric amide and hexamethylphosphoric amide, and cellosolve-based solvents such as ethyl cellosolve a
  • the reaction between the aromatic polysulfone (a) and the polyoxyalkylene compound (b) is preferably carried out at 250 ° C. or lower.
  • the reaction temperature is preferably 250 ° C. or lower, may be 230 ° C. or lower, or may be 210 ° C. or lower.
  • the lower limit of the reaction temperature is not limited, but may be 100 ° C. or higher, 120 ° C. or higher, or 140 ° C. or higher.
  • the temperature may be 100 ° C. or higher and 250 ° C. or lower, or 120 ° C. or higher and 230 ° C. or lower. It may be 140 ° C. or higher and 210 ° C. or lower.
  • the organic solvent may be removed by distilling off the organic solvent directly from the solution, or the solution may be mixed with a poor solvent of the block copolymer to precipitate the block copolymer, which may be filtered or centrifuged. It may be done by separating. A predetermined amount of the organic solvent may remain.
  • poor solvents for block copolymers include methanol, ethanol, 2-propanol, acetone, hexane, heptane and water, with preference given to water and methanol due to their low cost.
  • one type of poor solvent for the block copolymer may be used alone, or two or more types may be used in combination.
  • the block copolymer obtained by the method for producing a block copolymer of the embodiment may be exemplified as the block copolymer of the embodiment in the following ⁇ block copolymer >>.
  • the block copolymer of the embodiment contains an aromatic polysulfone block (A) and a polyoxyalkylene block (B), and the weight average molecular weight of the block copolymer is 40,500 to 70,000.
  • the aromatic polysulfone block (A) has a structural unit containing at least a structure in which a sulfonyl group (-SO 2- ), an arylene group (-Ar-), and an ether bond (-O-) are bonded in this order. Examples thereof include those composed of polymer chains.
  • the aromatic polysulfone block (A) preferably has a structural unit represented by the following general formula (1) from the viewpoint of heat resistance and chemical resistance.
  • the structural unit represented by the general formula (1) is contained in an amount of 80 mol% or more and 100 mol% or less with respect to a total amount of 100 mol% of all the structural units constituting the aromatic polysulfone block (A). It may be contained in an amount of 90 mol% or more and 100 mol% or less, or may be contained in a content of 98 mol% or more and 100 mol% or less.
  • polyoxyalkylene block (B) examples include those composed of a polymer chain having an oxyalkylene group as a structural unit.
  • the polyoxyalkylene block (B) preferably has a structural unit represented by the following formula (2).
  • R 3 has the same meaning as that in the above formula (b-1). ]
  • the polyoxyalkylene block (B) preferably has a structural unit represented by the following formula (2-1).
  • the structural unit represented by the above general formula (2-1) is 80 mol% or more and 100 mol% or less with respect to the total amount of 100 mol% of all the structural units constituting the polyoxyalkylene block (B). It may be contained, may be contained in 90 mol% or more and 100 mol% or less, and may be contained in 98 mol% or more and 100 mol% or less.
  • the ratio of the aromatic polysulfone block (A) and the polyoxyalkylene block (B) to the whole block copolymer of the embodiment may be 80% by mass or more and 100% by mass or less, and 90% by mass or more and 100% or more. It may be 98% by mass or less, and may be 98% by mass or more and 100% by mass or less.
  • the weight average molecular weight (Mw) of the block copolymers of the embodiments is 40,500 to 70,000, may be 42,000 to 60,000, may be 43,000 to 55,000, and may be 44,000 to 50,000. According to the block copolymer of the embodiment, it is possible to provide a block copolymer containing an aromatic polysulfone block (A) and a polyoxyalkylene block (B), which has a significantly increased molecular weight as compared with the conventional one.
  • the block copolymer of the embodiment contains a polymer that does not contain the aromatic polysulfone block (A) and the polyoxyalkylene block (B) due to unintended decomposition or residual unreacted raw materials. It is also assumed that a very small amount is mixed.
  • the weight average molecular weight (Mw) of the block copolymer may be the weight average molecular weight (Mw) of the resin composition containing the block copolymer of the embodiment.
  • the resin composition contains 95% by mass or more and 100% by mass or less of a block copolymer containing the aromatic polysulfone block (A) and the polyoxyalkylene block (B) with respect to the total mass of the resin composition. It may be contained in an amount of 98% by mass or more and 100% by mass or less.
  • the block copolymers of the embodiment are a linear triblock copolymer having the above three blocks in the order of polyoxyalkylene block (B), aromatic polysulfone block (A), and polyoxyalkylene block (B), and polyoxy. It may contain at least one of a linear diblock copolymer having the above two blocks of an alkylene block (B) and an aromatic polysulfone block (A).
  • the block copolymers of the embodiment are a linear triblock copolymer having the above three blocks in the order of polyoxyalkylene block (B), aromatic polysulfone block (A), and polyoxyalkylene block (B), and polyoxy. It may contain at least one block copolymer selected from the group consisting of a linear diblock copolymer having the above two blocks of an alkylene block (B) and an aromatic polysulfone block (A).
  • the linearity referred to here may mean that the block copolymer does not have a branched structure (branched chain).
  • the linear triblock copolymer for example, the end of the main chain of the polymer chain of the aromatic polysulfone block (A) and the end of the main chain of the polymer chain of the polyoxyalkylene block (B) are directly linked to each other. Examples include combined ones.
  • R 1 , R 2 , R 3 , n1 and n2 have the same meanings as those in the above equations (1) and (2).
  • n is an integer of 0 or more
  • m is an integer of 1 or more
  • R 3 existing in plural numbers may be the same or different from each other, the m there are a plurality, it may be the same or different from each other.
  • n is the number of repetitions of the structural unit of the aromatic polysulfone block (A) in the formula (I).
  • m is the number of repetitions of the structural unit of the polyoxyalkylene block (B) in the formula (I).
  • the ratio represented by the number average molecular weight of the polyoxyalkylene block (B) and the number average molecular weight of the aromatic polysulfone block (A) calculated by 1 H-NMR is 0.005. It may be ⁇ 0.030, 0.010 to 0.025, or 0.015 to 0.020.
  • the hydrophilicity of the block copolymer becomes good, which is preferable. If the hydrophilicity of the block copolymer is good, it also contributes to the improvement of the water permeability of the porous membrane obtained by molding the block copolymer.
  • the value of the above ratio is not more than the above upper limit value, the thermal properties and mechanical properties of the block copolymer are improved, which is preferable.
  • the number average molecular weight of the aromatic polysulfone block (A) may be, for example, 20,000 to 60,000, 25,000 to 50,000, or 27,000 to 40,000. It may be 30,000 to 36,000.
  • the number average molecular weight of the polyoxyalkylene block (B) may be, for example, 5000 or less, 300 to 5000, 300 to 3000, or 300 to 900. It may be 400 to 700, 450 to 600, or 500 to 550.
  • the block copolymers of the embodiments are among those exemplified above.
  • the number average molecular weight of the aromatic polysulfone block (A) may be 20000 to 60,000
  • the number average molecular weight of the polyoxyalkylene block (B) may be 300 to 900
  • 25,000 to 50,000 the number average molecular weight of the polyoxyalkylene block (B) may be 400 to 700
  • the number average molecular weight of the aromatic polysulfone block (A) is 27,000 to 40,000
  • the polyoxyalkylene block is 27,000 to 40,000
  • the number average molecular weight of (B) may be 450 to 600, the number average molecular weight of the aromatic polysulfone block (A) is 30,000 to 36,000, and the number average molecular weight of the polyoxyalkylene block (B) is 500 to 550. May be.
  • the number average molecular weight of the polyoxyalkylene block (B) (Mn of the block) and the number average molecular weight of the aromatic polysulfone block (A) (Mn of the block) can be specified by the NMR method and obtained by 1 H-NMR measurement of solution 1.
  • the NMR-converted number average molecular weight calculated based on the obtained spectrum can be adopted.
  • the Mn of the polyoxyalkylene block (B) corresponds to the peak intensity I PAO-Main corresponding to the main chain of the polyoxyalkylene and the binding site of the polyoxyalkylene bound to the aromatic polysulfone as the NMR-equivalent molecular weight M n PAO.
  • the number of repeating units of polyoxyalkylene calculated from the ratio of peak intensity I PAO-Link (I PAO-Main / I PAO-Link ) n PAO can be calculated from the value obtained by multiplying the molecular weight per repeating unit of polyoxyalkylene. ..
  • the Mn of the aromatic polysulfone block (A) corresponds to the peak intensity I PES-Main corresponding to the main chain of the aromatic polysulfone and the binding site of the aromatic polysulfone bonded to polyoxyalkylene as the NMR-equivalent molecular weight M n PES.
  • the number of repeating units of aromatic polysulfone calculated from the ratio of peak intensity I PES-Link (IPES-Main / I PES-Link ) n PES can be calculated from the value obtained by multiplying the molecular weight per repeating unit of aromatic polysulfone. ..
  • Solution 1 for calculating the NMR-equivalent molecular weight For 1 H-NMR measurement, a sample dissolved in deuterated dimethylsulfoxide so that the concentration of the block copolymer to be measured is 50 mg / ml can be used, and the measurement can be performed under the following conditions.
  • Measuring device PS400WB (manufactured by Varian) Static magnetic field strength: 9.4 Tesla (resonance frequency: 400 MHz ( 1 H)) Spinning: 16Hz Repeat time: 1.5s Number of integrations: 128 times Temperature: 40 ° C Chemical shift reference material: Tetramethylsilane
  • the block copolymer of the embodiment has moderate hydrophilicity and excellent mechanical properties.
  • an index of the hydrophilicity of the block copolymer for example, the value of the water permeability of the porous membrane obtained by molding the block copolymer can be adopted.
  • the following values of tensile strength and tensile elongation of the molded product can be adopted as an index of the mechanical properties of the block copolymer.
  • the molded article of the embodiment contains the block copolymer of the embodiment.
  • the molded product of the embodiment is molded from the block copolymer of the embodiment.
  • the molded product of the embodiment can be made by using the block copolymer of the embodiment as a molding material.
  • the content ratio of the block copolymer of the embodiment with respect to the total mass of the molded product of the embodiment may be, for example, 50 to 100% by mass, 80 to 99.5% by mass, or 90 to 99% by mass. It may be there.
  • Examples of the method for producing a molded product include a method having a step of molding the block copolymer of the embodiment into a desired shape.
  • the molding method a method of molding the material containing the block copolymer of the embodiment by a solution casting method, extrusion molding, T-die molding, blow molding, injection molding or the like can be exemplified.
  • the block copolymer of the embodiment can be molded into various shapes by selecting a molding method according to the desired shape of the molded product and the like.
  • a film containing the block copolymer of the embodiment can be exemplified.
  • the thickness of the film or the porous film of the embodiment is not particularly limited, but may be, for example, 5 to 200 ⁇ m, 7 to 100 ⁇ m, or 10 to 50 ⁇ m. ..
  • the molded product of the embodiment contains the block copolymer of the embodiment, it has appropriate hydrophilicity, and the block copolymer of the embodiment has a large weight average molecular weight (Mw), so that it can be excellent in mechanical properties.
  • the tensile strength of the molded product obtained by molding the block copolymer of the embodiment is preferably 100 MPa or more, more preferably 101 MPa or more, still more preferably 103 MPa or more.
  • the upper limit of the tensile strength is not particularly limited, and for example, it may be 150 MPa or less, 130 MPa or less, or 120 MPa or less.
  • the upper limit value and the lower limit value of the tensile strength can be arbitrarily combined, and the tensile strength of the molded product obtained by molding the block copolymer of the embodiment may be, for example, 100 MPa or more and 150 MPa or less, and 101 MPa. It may be 130 MPa or more, and may be 103 MPa or more and 120 MPa or less.
  • the above tensile strength can be obtained by the method described in Examples.
  • the molded product of the block copolymer of the embodiment in which the tensile strength is equal to or higher than the lower limit value is further excellent in mechanical properties.
  • the tensile elongation of the molded product obtained by molding the block copolymer of the embodiment is preferably 6% or more, more preferably 7% or more, still more preferably 8% or more.
  • the upper limit of the tensile elongation is not particularly limited, and for example, it may be 30% or less, 20% or less, or 15% or less.
  • the upper limit value and the lower limit value of the tensile elongation can be arbitrarily combined, and the tensile elongation of the molded product obtained by molding the block copolymer of the embodiment may be, for example, 6% or more and 30% or less. It may be% or more and 20% or less, and may be 8% or more and 15% or less.
  • the tensile elongation can be obtained by the method described in Examples. (Measurement of tensile properties of film) Tensile strength and tensile elongation at break are measured according to JIS K7127. Using a JIS K6251 dumbbell-shaped No. 3 test piece obtained by punching a film with a thickness of 30 ⁇ m, the test piece was pulled by an autograph at a grip interval of 50 mm and a tensile speed of 5 mm / min, at 23 ° C. and a relative humidity of 50%.
  • the tensile strength (the value obtained by dividing the tensile load value by the cross-sectional area of the test piece) and the tensile elongation (%) are measured.
  • the tensile elongation was calculated by the following formula. The larger the tensile elongation, the larger the film elongation.
  • Tensile elongation (%) (L-Lo) / Lo ⁇ 100 Lo: Gripping interval before test (50 mm), L: Gripping interval at break (mm)
  • the molded product of the block copolymer of the embodiment in which the tensile elongation is equal to or higher than the above lower limit value is further excellent in mechanical properties.
  • the water permeability of the porous membrane of the molded product obtained by molding the block copolymer of the embodiment may be 1500 to 4500 L / m 2 / h / 100 kPa, and 2000 to 30000 L / m 2 / h / 100 kPa. It may be 2200 to 3500 L / m 2 / h / 100 kPa.
  • the water permeability can be obtained by the method described in Examples. (Measurement of water permeability of porous membrane) A mixed solution of 18 parts by mass of aromatic polysulfone block copolymer and 82 parts by mass of NMP is applied to one surface of a glass plate having a thickness of 3 mm using a film applicator, and then dried at 60 ° C. using a high-temperature hot air dryer. Form a coating film. This coating film is heat-treated at 250 ° C. while flowing nitrogen to form a porous film having a thickness of 30 ⁇ m on a glass plate. Pure water is filtered through the obtained porous membrane at a pressure of 0.2 bar (20 kPa) at 23 ° C. using a pressure cell having a diameter of 47 mm, and from 7 minutes after the start of filtration to 7 minutes and 30 seconds. The amount of pure water that has permeated the porous membrane in (30 seconds) is measured to determine the water permeation rate.
  • the porous membrane having a water permeability of not less than the lower limit is more excellent in water permeability.
  • the block copolymer of the embodiment can be obtained by the method for producing the block copolymer of the above embodiment. According to the method for producing a block copolymer of the embodiment, the molecular weight of the produced block copolymer can be easily improved.
  • Tensile strength and tensile elongation at break were measured according to JIS K7127. Using a JIS K6251 dumbbell-shaped No. 3 test piece obtained by punching a film with a thickness of 30 ⁇ m, the test piece was pulled by an autograph at a grip interval of 50 mm and a tensile speed of 5 mm / min, at 23 ° C. and a relative humidity of 50%. The tensile strength (the value obtained by dividing the tensile load value by the cross-sectional area of the test piece) and the tensile elongation (%) when the test piece was cut (broken) in an atmosphere were measured.
  • the tensile elongation was calculated by the following formula. The larger the tensile elongation, the larger the film elongation.
  • Tensile elongation (%) (L-Lo) / Lo ⁇ 100 Lo: Gripping interval before test (50 mm), L: Gripping interval at break (mm)
  • the resulting reaction mixture was then diluted with NMP and cooled to room temperature to precipitate unreacted potassium carbonate and by-product potassium chloride.
  • the above solution was added dropwise to water to precipitate aromatic polysulfone, and unnecessary NMP was removed by filtration to obtain a precipitate.
  • the obtained precipitate was carefully washed repeatedly with methanol and water, and dried by heating at 150 ° C.
  • Example 6 In Experimental Example 1, polyethylene glycol monomethyl ether, potassium carbonate and N-methyl-2-pyrrolidone were added to a polymerization tank equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip. The same operation as in Experimental Example 1 was carried out except that 50 mL of toluene was added.
  • Example 7 Polyethylene glycol monomethyl ether, potassium carbonate and N-methyl-2-pyrrolidone were added to a polymerization tank equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip. The same operation as in Experimental Example 2 was carried out except that 50 mL of toluene was added.
  • ⁇ Making cast film> In a heating vessel, 18 parts by mass of the aromatic polysulfone block copolymer of Experimental Example 1 and 82 parts by mass of NMP were mixed and stirred at 80 ° C. for 2 hours to obtain a pale yellow solution. This was applied to one surface of a glass plate having a thickness of 3 mm using a film applicator, and then dried at 60 ° C. using a high-temperature hot air dryer to form a coating film. This coating film was heat-treated at 250 ° C. while flowing nitrogen to form a film having a thickness of 30 ⁇ m on a glass plate. A film was obtained by peeling this film from a glass plate. The values of tensile strength and tensile elongation were measured for the obtained Experimental Example 1 film.
  • the tensile strength of the film of Experimental Example 1 was 100 MPa, and the tensile elongation was 10%.
  • the film of Experimental Example 1 had good tensile strength and tensile elongation values, and was shown to be excellent in mechanical properties.

Abstract

The present invention relates to a block copolymer production method comprising a step in which an aromatic polysulfone (a) having at least one Cl atom at a terminal is prepared in advance, and a step in which the aromatic polysulfone (a) and a polyoxyalkylene compound (b) having at least one hydroxy group at a terminal are reacted in a solvent, wherein the proportion of the solvent that forms an azeotropic mixture with water relative to the total amount of the solvent used in the reaction is 0-20 mass%.

Description

ブロックコポリマーの製造方法及びブロックコポリマーManufacturing method of block copolymer and block copolymer
 本発明は、ブロックコポリマーの製造方法及びブロックコポリマーに関する。
 本願は、2020年3月9日に、日本に出願された特願2020-040191号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a block copolymer and a block copolymer.
The present application claims priority based on Japanese Patent Application No. 2020-040191 filed in Japan on March 9, 2020, the contents of which are incorporated herein by reference.
 芳香族ポリスルホンは、耐熱性や耐薬品性に優れることから、成形体用の材料として各種用途に用いられている。用途によっては、親水化された芳香族ポリスルホンが求められる場合がある。 Aromatic polysulfone is used for various purposes as a material for molded products because it has excellent heat resistance and chemical resistance. Hydrophilized aromatic polysulfone may be required depending on the application.
 従来、芳香族ポリスルホンを高分子鎖として有する、ブロック共重合体が製造されている。芳香族ポリスルホンブロック(A)及びポリオキシアルキレンブロック(B)を含むブロックコポリマーは、親水性に優れる傾向にある。
 特許文献1には、原料モノマーの重縮合を含むポリアリールエーテルスルホン-ポリアルキレンオキシド-ブロックコポリマーの製造方法に関し、反応混合物が水と共沸混合物を形成する物質を含有しない方法について示されている。
Conventionally, block copolymers having aromatic polysulfone as a polymer chain have been produced. Block copolymers containing the aromatic polysulfone block (A) and the polyoxyalkylene block (B) tend to have excellent hydrophilicity.
Patent Document 1 relates to a method for producing a polyaryl ether sulfone-polyalkylene oxide-block copolymer containing polycondensation of a raw material monomer, and describes a method in which the reaction mixture does not contain a substance that forms an azeotropic mixture with water. ..
特表2016-516875号公報Special Table 2016-516875A
 しかし、上記のブロックコポリマーの製造方法では、得られるブロックコポリマーの分子量を増大させることが、難しいという問題がある。 However, the above method for producing block copolymers has a problem that it is difficult to increase the molecular weight of the obtained block copolymers.
 本発明は、上記のような問題点を解消するためになされたものであり、芳香族ポリスルホンブロック(A)及びポリオキシアルキレンブロック(B)を含む、重量平均分子量の値の高いブロックコポリマーを、容易に製造可能な、ブロックコポリマーの製造方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and a block copolymer having a high weight average molecular weight value, which contains an aromatic polysulfone block (A) and a polyoxyalkylene block (B), is used. It is an object of the present invention to provide a method for producing a block copolymer that can be easily produced.
 本発明者らの検討の結果、従来、芳香族ポリスルホンの製造における重縮合反応では、反応を阻害し得る水を除去する目的で、水と共沸混合物を形成する溶媒が添加されるところ、前記芳香族ポリスルホン(a)と、末端に少なくとも1つのヒドロキシ基を有するポリオキシアルキレン化合物(b)と、を溶媒中で反応させる工程においては、むしろ、水と共沸混合物を形成する溶媒の使用量の低減により、得られるブロックコポリマーの分子量が増大すること見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を有する。
As a result of the studies by the present inventors, conventionally, in the polycondensation reaction in the production of aromatic polysulfone, a solvent for forming a co-boiling mixture with water is added for the purpose of removing water that can inhibit the reaction. In the step of reacting the aromatic polysulfone (a) with the polyoxyalkylene compound (b) having at least one hydroxy group at the terminal in a solvent, rather, the amount of the solvent used to form a co-boiling mixture with water is used. We have found that the molecular weight of the obtained block copolymer increases due to the reduction of the above, and have completed the present invention.
That is, the present invention has the following aspects.
<1>末端に少なくとも1つのCl原子を有する芳香族ポリスルホン(a)を予め準備する工程と、
 前記芳香族ポリスルホン(a)と、末端に少なくとも1つのヒドロキシ基を有するポリオキシアルキレン化合物(b)と、を溶媒中で反応させる工程を含み、
 前記反応に使用される前記溶媒の総量に対する、水と共沸混合物を形成する溶媒の割合が0~20質量%である、ブロックコポリマーの製造方法。
<2>ゲル浸透クロマトグラフィーにより絶対分子量として取得された、前記芳香族ポリスルホン(a)の重量平均分子量が、30000以上である、前記<1>に記載のブロックコポリマーの製造方法。
<3>前記ブロックコポリマーが、芳香族ポリスルホンブロック(A)及びポリオキシアルキレンブロック(B)を含み、
 ゲル浸透クロマトグラフィーにより絶対分子量として取得された、前記ブロックコポリマーの重量平均分子量が、40500~70000である、前記<1>又は<2>に記載のブロックコポリマーの製造方法。
<4>前記ポリオキシアルキレンブロック(B)、前記芳香族ポリスルホンブロック(A)、及び前記ポリオキシアルキレンブロック(B)の順に、上記3つのブロックを有する直鎖状トリブロックコポリマー、並びに
 前記ポリオキシアルキレンブロック(B)及び前記芳香族ポリスルホンブロック(A)の上記2つのブロックを有する直鎖状ジブロックコポリマー、
 の少なくとも一方を含む、前記<3>に記載のブロックコポリマーの製造方法。
<5>前記芳香族ポリスルホンブロック(A)が、下記式(1)で表される構造単位を有する高分子鎖からなる、前記<3>又は<4>に記載のブロックコポリマーの製造方法。
Figure JPOXMLDOC01-appb-C000005
[式(1)中、
 R及びRは、それぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基又はハロゲン原子を表し、
 n1及びn2は、それぞれ独立に、0~4の整数であり、
 n1又はn2が2以上である場合、複数個のR及びRは互いに同一でも異なっていてもよい。]
<6>前記ポリオキシアルキレンブロック(B)が、下記式(2-1)で表される構造単位を有する高分子鎖からなる、前記<3>~<5>のいずれか一つに記載のブロックコポリマーの製造方法。
Figure JPOXMLDOC01-appb-C000006
<7>芳香族ポリスルホンブロック(A)及びポリオキシアルキレンブロック(B)を含むブロックコポリマーであって、
 ゲル浸透クロマトグラフィーにより絶対分子量として取得された、前記ブロックコポリマーの重量平均分子量が、40500~70000である、ブロックコポリマー。
<8>H-NMRにより算出された、前記ポリオキシアルキレンブロック(B)の数平均分子量が、5000以下である、前記<7>に記載のブロックコポリマー。
<9>前記ポリオキシアルキレンブロック(B)、前記芳香族ポリスルホンブロック(A)、及び前記ポリオキシアルキレンブロック(B)の順に、上記3つのブロックを有する直鎖状トリブロックコポリマー、及び
 前記ポリオキシアルキレンブロック(B)及び前記芳香族ポリスルホンブロック(A)の上記2つのブロックを有する直鎖状ジブロックコポリマー、
 の少なくとも一方を含む、前記<7>又は<8>に記載のブロックコポリマー。
<10>前記芳香族ポリスルホンブロック(A)が、下記式(1)で表される構造単位を有する高分子鎖からなる、前記<7>~<9>のいずれか一つに記載のブロックコポリマー。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、
 R及びRは、それぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基又はハロゲン原子を表し、
 n1及びn2は、それぞれ独立に、0~4の整数であり、
 n1又はn2が2以上である場合、複数個のR及びRは互いに同一でも異なっていてもよい。]
<11>前記ポリオキシアルキレンブロック(B)が、下記式(2-1)で表される構造単位を有する高分子鎖からなる、前記<7>~<10>のいずれか一つに記載のブロックコポリマー。
Figure JPOXMLDOC01-appb-C000008
<1> A step of preparing in advance an aromatic polysulfone (a) having at least one Cl atom at the terminal, and
It comprises a step of reacting the aromatic polysulfone (a) with a polyoxyalkylene compound (b) having at least one hydroxy group at the terminal in a solvent.
A method for producing a block copolymer in which the ratio of the solvent forming an azeotropic mixture with water to the total amount of the solvent used in the reaction is 0 to 20% by mass.
<2> The method for producing a block copolymer according to <1>, wherein the aromatic polysulfone (a) has a weight average molecular weight of 30,000 or more, which is obtained as an absolute molecular weight by gel permeation chromatography.
<3> The block copolymer contains an aromatic polysulfone block (A) and a polyoxyalkylene block (B).
The method for producing a block copolymer according to <1> or <2>, wherein the block copolymer has a weight average molecular weight of 40,500 to 70,000, which is obtained as an absolute molecular weight by gel permeation chromatography.
<4> A linear triblock copolymer having the above three blocks and the polyoxy in the order of the polyoxyalkylene block (B), the aromatic polysulfone block (A), and the polyoxyalkylene block (B). A linear diblock copolymer having the above two blocks of an alkylene block (B) and the aromatic polysulfone block (A),
The method for producing a block copolymer according to <3>, which comprises at least one of the above.
<5> The method for producing a block copolymer according to <3> or <4>, wherein the aromatic polysulfone block (A) is composed of a polymer chain having a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
[In equation (1),
R 1 and R 2 independently represent an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom.
n1 and n2 are independently integers of 0 to 4, respectively.
When n1 or n2 is 2 or more, plural R 1 and R 2 may be the same or different from each other. ]
<6> The above-mentioned <3> to <5>, wherein the polyoxyalkylene block (B) is composed of a polymer chain having a structural unit represented by the following formula (2-1). Method for manufacturing block copolymers.
Figure JPOXMLDOC01-appb-C000006
<7> A block copolymer containing an aromatic polysulfone block (A) and a polyoxyalkylene block (B).
A block copolymer having a weight average molecular weight of 40,500 to 70,000, which is obtained as an absolute molecular weight by gel permeation chromatography.
<8> 1 The block copolymer according to <7>, wherein the number average molecular weight of the polyoxyalkylene block (B) calculated by 1 H-NMR is 5000 or less.
<9> A linear triblock copolymer having the above three blocks and the polyoxy in the order of the polyoxyalkylene block (B), the aromatic polysulfone block (A), and the polyoxyalkylene block (B). A linear diblock copolymer having the above two blocks of an alkylene block (B) and the aromatic polysulfone block (A),
The block copolymer according to <7> or <8>, which comprises at least one of the above.
<10> The block copolymer according to any one of <7> to <9>, wherein the aromatic polysulfone block (A) is composed of a polymer chain having a structural unit represented by the following formula (1). ..
Figure JPOXMLDOC01-appb-C000007
[In equation (1),
R 1 and R 2 independently represent an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom.
n1 and n2 are independently integers of 0 to 4, respectively.
When n1 or n2 is 2 or more, plural R 1 and R 2 may be the same or different from each other. ]
<11> The above-mentioned <7> to <10>, wherein the polyoxyalkylene block (B) is composed of a polymer chain having a structural unit represented by the following formula (2-1). Block copolymer.
Figure JPOXMLDOC01-appb-C000008
 本発明によれば、芳香族ポリスルホンブロック(A)及びポリオキシアルキレンブロック(B)を含む、重量平均分子量の値の高いブロックコポリマーを、容易に製造可能な、ブロックコポリマーの製造方法を提供できる。 According to the present invention, it is possible to provide a method for producing a block copolymer capable of easily producing a block copolymer having a high weight average molecular weight value, which comprises an aromatic polysulfone block (A) and a polyoxyalkylene block (B).
 以下、本発明のブロックコポリマーの製造方法及びブロックコポリマーの実施形態を説明する。 Hereinafter, the method for producing the block copolymer of the present invention and the embodiment of the block copolymer will be described.
≪ブロックコポリマーの製造方法≫
 実施形態のブロックコポリマーの製造方法は、末端に少なくとも1つのCl原子を有する芳香族ポリスルホン(a)を予め準備する工程と、前記芳香族ポリスルホン(a)と、末端に少なくとも1つのヒドロキシ基を有するポリオキシアルキレン化合物(b)と、を溶媒中で反応させる工程を含み、前記反応に使用される前記溶媒の総量に対する、水と共沸混合物を形成する溶媒の割合が0~20質量%である。
≪Manufacturing method of block copolymer≫
The method for producing a block copolymer of the embodiment includes a step of preparing an aromatic polysulfone (a) having at least one Cl atom at the terminal in advance, the aromatic polysulfone (a), and at least one hydroxy group at the end. The ratio of the solvent forming the azeotropic mixture with water to the total amount of the solvent used in the reaction, which comprises the step of reacting the polyoxyalkylene compound (b) with the solvent in the solvent, is 0 to 20% by mass. ..
 前記芳香族ポリスルホン(a)を予め準備する工程とは、芳香族ポリスルホン(a)を入手していればよく、単に、市販の芳香族ポリスルホン(a)を用意することも含まれる。
 又は、実施形態のブロックコポリマーの製造方法は、芳香族ポリスルホン(a)を製造する工程(芳香族ポリスルホン製造工程)を、さらに含んでいてもよい。
The step of preparing the aromatic polysulfone (a) in advance includes obtaining the aromatic polysulfone (a) and simply preparing a commercially available aromatic polysulfone (a).
Alternatively, the method for producing the block copolymer of the embodiment may further include a step of producing the aromatic polysulfone (a) (aromatic polysulfone production step).
 実施形態のブロックコポリマーの製造方法は、末端に少なくとも1つのCl原子を有する芳香族ポリスルホン(a)を、重縮合反応により得る工程と、
 前記芳香族ポリスルホン(a)と、末端に少なくとも1つのヒドロキシ基を有するポリオキシアルキレン化合物(b)と、を反応させる工程(ブロックコポリマー製造工程)を含むものであってよい。
The method for producing a block copolymer of the embodiment includes a step of obtaining an aromatic polysulfone (a) having at least one Cl atom at the terminal by a polycondensation reaction.
It may include a step (block copolymer manufacturing step) of reacting the aromatic polysulfone (a) with a polyoxyalkylene compound (b) having at least one hydroxy group at the terminal.
 芳香族ポリスルホン(a)の一例として、例えば、下記一般式(a1)で表される化合物と、下記一般式(a2)で表される化合物との重縮合反応により、下記一般式(a-1)で表される化合物を得ることができる。 As an example of the aromatic polysulfone (a), for example, by a polycondensation reaction between a compound represented by the following general formula (a1) and a compound represented by the following general formula (a2), the following general formula (a-1) ) Can be obtained.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式(a1)中
 R及びRは、それぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基又はハロゲン原子を表し、
 n1及びn2は、それぞれ独立に、0~4の整数であり、
 n1又はn2が2以上である場合、複数個のR及びRは互いに同一でも異なっていてもよい。]
[In the formula (a1), R 1 and R 2 independently represent an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom.
n1 and n2 are independently integers of 0 to 4, respectively.
When n1 or n2 is 2 or more, plural R 1 and R 2 may be the same or different from each other. ]
 R及びRにおける、前記炭素数1~10のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基、n-デシル基等が挙げられる。
 R及びRにおける、前記炭素数6~20のアリール基としては、例えばフェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基、2-ナフチル基等が挙げられる。
 R及びRにおける、前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 n1及びn2は、それぞれ独立に、0~4の整数であり、0~2が好ましく、0~1がより好ましい。
Examples of the alkyl group having 1 to 10 carbon atoms in R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. Examples thereof include a group, an n-hexyl group, a 2-ethylhexyl group, an n-octyl group, an n-decyl group and the like.
Examples of the aryl group having 6 to 20 carbon atoms in R 1 and R 2 include a phenyl group, an o-trill group, an m-trill group, a p-trill group, a 1-naphthyl group, a 2-naphthyl group and the like. Be done.
Examples of the halogen atom in R 1 and R 2 include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
n1 and n2 are independently integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式(a2)中、R、R、n1及びn2は、上記式(a1)におけるものと同一の意味を表す。] Wherein (a2), R 1, R 2, n1 and n2 represent the same meaning as in the formula (a1). ]
 上記の重縮合反応で得られる芳香族ポリスルホン(a)として、下記一般式(a-1)で表される化合物が挙げられる。この下記一般式(a-1)で表される化合物は、実施形態のブロックコポリマーの製造方法において、原料として使用される上記芳香族ポリスルホン(a)として好適である。 Examples of the aromatic polysulfone (a) obtained by the above polycondensation reaction include compounds represented by the following general formula (a-1). The compound represented by the following general formula (a-1) is suitable as the aromatic polysulfone (a) used as a raw material in the method for producing a block copolymer of the embodiment.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式(a-1)中、R、R、n1及びn2は、上記式(a1)におけるものと同一の意味を表す。
 -X及び-Xは、それぞれ独立に、-OH又は-Clであり、-X及び-Xの少なくとも一方は、-Clである。
 nは0以上の整数である。]
Wherein (a1), R 1, R 2, n1 and n2 represent the same meaning as in the formula (a1).
-X 1 and -X 2 are independently -OH or -Cl, and at least one of -X 1 and -X 2 is -Cl.
n is an integer greater than or equal to 0. ]
 nは、上記式(a-1)における、芳香族ポリスルホン(a-1)の有する上記構造単位の繰り返し数である。 N is the number of repetitions of the structural unit of the aromatic polysulfone (a-1) in the above formula (a-1).
 芳香族ポリスルホン(a)と、ポリオキシアルキレン化合物(b)との反応において、芳香族ポリスルホン(a)としては、上記で説明したものが挙げられる。 In the reaction between the aromatic polysulfone (a) and the polyoxyalkylene compound (b), examples of the aromatic polysulfone (a) include those described above.
 原料として使用される上記芳香族ポリスルホン(a)の重量平均分子量の値は、製造されるブロックコポリマーの重量平均分子量に応じて適宜定めればよい。
 製造されるブロックコポリマーの分子量を向上させる観点から、原料として使用される上記の芳香族ポリスルホン(a)の重量平均分子量は、30000以上であってもよく、30000以上70000以下であってもよく、40000以上65000以下であってもよい。
The value of the weight average molecular weight of the aromatic polysulfone (a) used as a raw material may be appropriately determined according to the weight average molecular weight of the produced block copolymer.
From the viewpoint of improving the molecular weight of the produced block copolymer, the weight average molecular weight of the above aromatic polysulfone (a) used as a raw material may be 30,000 or more, 30,000 or more and 70,000 or less. It may be 40,000 or more and 65,000 or less.
 本明細書において、重量平均分子量(Mw)とは、ゲル浸透クロマトグラフィー(GPC)にて測定された重量平均絶対分子量である。 In the present specification, the weight average molecular weight (Mw) is the weight average absolute molecular weight measured by gel permeation chromatography (GPC).
 ポリオキシアルキレン化合物(b)としては、例えば、下記一般式(b-1)で表される化合物が挙げられる。 Examples of the polyoxyalkylene compound (b) include compounds represented by the following general formula (b-1).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式(b-1)中、
 Rは、炭素数2~6のアルキレン基を表す。
 mは1以上の整数であり、複数存在するRは、互いに同一でも異なっていてもよい。 -Yは、炭素数1~3のアルキル基である。]
[In equation (b-1),
R 3 represents an alkylene group having 2 to 6 carbon atoms.
m is an integer of 1 or more, R 3 existing in plural numbers may be the same or different from each other. -Y is an alkyl group having 1 to 3 carbon atoms. ]
 Rにおける、前記炭素数2~6のアルキレン基としては、エチレン基、トリメチレン基、-CH(CH)CH-、テトラメチレン基、-CHCHCH(CH)-、ヘキサメチレン基等が挙げられる。 Examples of the alkylene group having 2 to 6 carbon atoms in R 3 include an ethylene group, a trimethylene group, -CH (CH 3 ) CH 2- , tetramethylene group, -CH 2 CH 2 CH (CH 3 )-, and hexamethylene. The basis etc. can be mentioned.
 上記-Yの炭素数1~3のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられ、メチル基が好ましい。 Examples of the alkyl group having 1 to 3 carbon atoms of —Y include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like, and a methyl group is preferable.
 mは、上記式(b-1)における、ポリオキシアルキレン化合物(b-1)の有する上記構造単位の繰り返し数である。 M is the number of repetitions of the structural unit of the polyoxyalkylene compound (b-1) in the above formula (b-1).
 芳香族ポリスルホン(a)と、ポリオキシアルキレン化合物(b)と、の反応の一例として、一般式(a-1)で表される化合物と、一般式(b-1)で表される化合物と、の反応を例示できる。当該反応は、下記反応式で表すことができる。当該反応により、一例として一般式(I-1)で表されるブロックコポリマーが得られる。 As an example of the reaction between the aromatic polysulfone (a) and the polyoxyalkylene compound (b), a compound represented by the general formula (a-1) and a compound represented by the general formula (b-1) The reaction of, can be exemplified. The reaction can be represented by the following reaction formula. By this reaction, as an example, a block copolymer represented by the general formula (I-1) is obtained.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式中、R、R、R、n1、n2、n、m、X、X及びYは、上記式(a-1)及び式(b-1)におけるものと同一の意味を表す。] [In the formula, R 1 , R 2 , R 3 , n1, n2, n, m, X 1 , X 2 and Y have the same meanings as those in the above formulas (a-1) and (b-1). Represents. ]
 芳香族ポリスルホン(a)は、1種を単独で用いてもよく、2種以上を併用してもよい。 Aromatic polysulfone (a) may be used alone or in combination of two or more.
 ポリオキシアルキレン化合物(b)は、1種を単独で用いてもよく、2種以上を併用してもよい。 As the polyoxyalkylene compound (b), one type may be used alone, or two or more types may be used in combination.
 末端に少なくとも1つのヒドロキシ基を有するポリオキシアルキレン化合物(b)の使用量としては、末端に少なくとも1つのCl原子を有する芳香族ポリスルホン(a)1モルに対して、0.4~2.0モルが好ましく、0.4~1.5モルがより好ましく、0.5~1.2モルがさらに好ましく、0.5~0.9モルが特に好ましい。上記使用量の範囲内であると、得られるブロックコポリマーのGPCで測定したMwを、より一層向上可能であることから好ましい。
 ここで、末端に少なくとも1つのCl原子を有する芳香族ポリスルホン(a)としては、前記一般式(a-1)で表される化合物が好ましい。末端に少なくとも1つのヒドロキシ基を有するポリオキシアルキレン化合物(b)としては、前記一般式(b-1)で表される化合物が好ましい。
The amount of the polyoxyalkylene compound (b) having at least one hydroxy group at the terminal is 0.4 to 2.0 with respect to 1 mol of the aromatic polysulfone (a) having at least one Cl atom at the end. It is preferably mol, more preferably 0.4 to 1.5 mol, even more preferably 0.5 to 1.2 mol, and particularly preferably 0.5 to 0.9 mol. When the amount is within the above range, the Mw measured by GPC of the obtained block copolymer can be further improved, which is preferable.
Here, as the aromatic polysulfone (a) having at least one Cl atom at the terminal, the compound represented by the general formula (a-1) is preferable. As the polyoxyalkylene compound (b) having at least one hydroxy group at the terminal, the compound represented by the general formula (b-1) is preferable.
 実施形態のブロックコポリマーの製造方法は、芳香族ポリスルホン(a)と、ポリオキシアルキレン化合物(b)と、の反応を、触媒の塩基として炭酸のアルカリ金属塩及び/又はアルカリ金属重炭酸塩を用いて行われることが好ましい。また、実施形態のブロックコポリマーの製造方法における、当該反応は溶媒として有機溶媒中で行われることとし、塩基として炭酸のアルカリ金属塩を用い、且つ有機溶媒中で行われることがより好ましい。 In the method for producing the block copolymer of the embodiment, the reaction between the aromatic polysulfone (a) and the polyoxyalkylene compound (b) is carried out using an alkali metal carbonate and / or an alkali metal bicarbonate as a catalyst base. It is preferable that this is done. Further, in the method for producing a block copolymer of the embodiment, it is more preferable that the reaction is carried out in an organic solvent as a solvent, an alkali metal salt of carbonic acid is used as a base, and the reaction is carried out in an organic solvent.
 芳香族ポリスルホン(a)と、ポリオキシアルキレン化合物(b)と、の反応において、水が副生する場合があり、この水の除去を目的として、溶媒に“水と共沸混合物を形成する溶媒”が添加される場合がある。 In the reaction of the aromatic polysulfone (a) and the polyoxyalkylene compound (b), water may be produced as a by-product, and for the purpose of removing this water, a solvent "a solvent that forms an azeotropic mixture with water" is used. May be added.
 しかし、本実施形態の製造方法においては、芳香族ポリスルホン(a)と、ポリオキシアルキレン化合物(b)と、の反応において、該反応に使用される溶媒の総量に対する、水と共沸混合物を形成する溶媒の割合は、0~20質量%であり、0~10質量%であることがより好ましく、0~3質量%であることがさらに好ましく、該反応に使用される溶媒が水と共沸混合物を形成する溶媒を実質的に含有しないことが特に好ましい。
 芳香族ポリスルホン(a)と、ポリオキシアルキレン化合物(b)と、の反応において、水と共沸混合物を形成する溶媒の使用量を低減することにより、製造されるブロックコポリマーの分子量を向上可能である。
However, in the production method of the present embodiment, in the reaction of the aromatic polysulfone (a) and the polyoxyalkylene compound (b), an azeotropic mixture with water is formed with respect to the total amount of the solvent used in the reaction. The proportion of the solvent used is 0 to 20% by mass, more preferably 0 to 10% by mass, further preferably 0 to 3% by mass, and the solvent used for the reaction is azeotropically heated with water. It is particularly preferred that it contains substantially no solvent to form the mixture.
By reducing the amount of solvent used to form an azeotropic mixture with water in the reaction of aromatic polysulfone (a) and polyoxyalkylene compound (b), the molecular weight of the block copolymer produced can be increased. be.
 水と共沸混合物を形成する溶媒の沸点は、250℃以下であることが好ましく、230℃以下であってもよく、210℃以下であってもよい。水と共沸混合物を形成する溶媒の沸点は40℃以上であってもよく、80℃以上であってもよく、100℃以上であってもよい。
 上記の水と共沸混合物を形成する溶媒の沸点の数値範囲の一例としては、40℃以上250℃以下であってもよく、80℃以上230℃以下であってもよく、100℃以上210℃以下であってもよい。
The boiling point of the solvent forming the azeotropic mixture with water is preferably 250 ° C. or lower, and may be 230 ° C. or lower, or 210 ° C. or lower. The boiling point of the solvent forming the azeotropic mixture with water may be 40 ° C. or higher, 80 ° C. or higher, or 100 ° C. or higher.
As an example of the numerical range of the boiling point of the solvent forming the azeotropic mixture with water, it may be 40 ° C. or higher and 250 ° C. or lower, 80 ° C. or higher and 230 ° C. or lower, and 100 ° C. or higher and 210 ° C. It may be as follows.
 沸点が250℃以下の、水と共沸混合物を形成する溶媒としては、ベンゼン、クロロベンゼン、トルエン、キシレン、エチルベンゼン、メチルイソブチルケトン、ヘキサン、シクロヘキサン等が挙げられる。 Examples of the solvent for forming an azeotropic mixture with water having a boiling point of 250 ° C. or lower include benzene, chlorobenzene, toluene, xylene, ethylbenzene, methyl isobutyl ketone, hexane, cyclohexane and the like.
 上記の炭酸のアルカリ金属塩は、正塩である炭酸アルカリ(アルカリ金属の炭酸塩)であってもよいし、酸性塩である重炭酸アルカリ(炭酸水素アルカリ、アルカリ金属の炭酸水素塩)であってもよいし、これら(炭酸アルカリ及び重炭酸アルカリ)の混合物であってもよい。好ましい炭酸アルカリの例としては、炭酸ナトリウム、炭酸カリウム等が挙げられる。好ましい重炭酸アルカリの例としては、重炭酸ナトリウム(炭酸水素ナトリウム)、重炭酸カリウム(炭酸水素カリウム)等が挙げられる。 The above-mentioned alkali metal salt of carbonic acid may be an alkali carbonate (alkali metal carbonate) which is a positive salt, or a bicarbonate alkali (hydrogen carbonate alkali, alkali metal hydrogen carbonate) which is an acidic salt. It may be a mixture of these (alkali carbonate and alkali bicarbonate). Examples of preferable alkali carbonate include sodium carbonate, potassium carbonate and the like. Examples of preferable alkali bicarbonate include sodium bicarbonate (sodium hydrogen carbonate), potassium bicarbonate (potassium hydrogen carbonate) and the like.
 炭酸のアルカリ金属塩の配合比率としては、ポリオキシアルキレン化合物(b)1モルに対して、アルカリ金属として、0.90モル以上1.30モル以下であることが好ましく、0.95モル以上1.20モル以下であることがより好ましい。 The blending ratio of the alkali metal salt of carbonic acid is preferably 0.90 mol or more and 1.30 mol or less as the alkali metal with respect to 1 mol of the polyoxyalkylene compound (b), and 0.95 mol or more and 1 mol. More preferably, it is 20 mol or less.
 有機溶媒としては、非プロトン性極性溶媒が挙げられ、前記非プロトン性極性溶媒の1気圧下での沸点が250℃以下であることが好ましい。沸点が250℃以下である非プロトン性極性溶媒を用いることで、比較的低い温度で非プロトン性極性溶媒を還流させ副生成物を除去しながら反応を進行させることができる。 Examples of the organic solvent include an aprotic polar solvent, and the boiling point of the aprotic polar solvent under 1 atm is preferably 250 ° C. or lower. By using an aprotic polar solvent having a boiling point of 250 ° C. or lower, the reaction can proceed while refluxing the aprotic polar solvent at a relatively low temperature to remove by-products.
 前記非プロトン性極性溶媒の沸点は250℃以下であることが好ましく、230℃以下であってもよく、210℃以下であってもよい。前記非プロトン性極性溶媒の沸点は、120℃以上であってもよく、140℃以上であってもよく、150℃以上であってもよい。
 上記の非プロトン性極性溶媒の沸点の数値範囲の一例としては、120℃以上230℃以下であってもよく、140℃以上210℃以下であってもよく、150℃以上210℃以下であってもよい。
The boiling point of the aprotic polar solvent is preferably 250 ° C. or lower, and may be 230 ° C. or lower, or 210 ° C. or lower. The boiling point of the aprotic polar solvent may be 120 ° C. or higher, 140 ° C. or higher, or 150 ° C. or higher.
As an example of the numerical range of the boiling point of the above-mentioned aprotic polar solvent, it may be 120 ° C. or higher and 230 ° C. or lower, 140 ° C. or higher and 210 ° C. or lower, or 150 ° C. or higher and 210 ° C. or lower. May be good.
 沸点が250℃以下の非プロトン性極性溶媒としてはジメチルスルホン、ジエチルスルホン等のスルホン系溶媒、N、N-ジメチルアセトアミド、N-メチル-ピロリドン、N-エチル-ピロリドン、N-メチルカプロラクタム、N、N-ジメチルホルムアミド、N、N-ジエチルホルムアミド、N、N-ジエチルアセトアミド、N-メチルプロピオンアミド、ジメチルイミダゾリジノン等のアミド系溶媒、γ-ブチルラクトン、β-ブチルラクトン等のラクトン系溶媒、メチルスルホキシド、メチルフェニルスルホキシド等のスルホキシド系溶媒、テトラメチルホスホリックアミド、ヘキサメチルホスホリックアミド等のセロソルブ系溶媒、エチルセロソルブアセテート、メチルセロソルブアセテート等のセロソルブ系溶媒等が挙げられる。 Examples of the aprotonic polar solvent having a boiling point of 250 ° C. or lower include sulfonic solvents such as dimethylsulfone and diethylsulfone, N, N-dimethylacetamide, N-methyl-pyrrolidone, N-ethyl-pyrrolidone, N-methylcaprolactam, N, Amide solvents such as N-dimethylformamide, N, N-diethylformamide, N, N-diethylacetamide, N-methylpropionamide, dimethylimidazolidinone, lactone solvents such as γ-butyllactone and β-butyllactone, Examples thereof include sulfoxide-based solvents such as methyl sulfoxide and methylphenyl sulfoxide, cellosolve-based solvents such as tetramethylphosphoric amide and hexamethylphosphoric amide, and cellosolve-based solvents such as ethyl cellosolve acetate and methyl cellosolve acetate.
 芳香族ポリスルホン(a)と、ポリオキシアルキレン化合物(b)との反応は、250℃以下で行うことが好ましい。250℃以下の比較的低い温度で反応を行うことで、エネルギー負荷を低く抑えることができる。反応の温度は、250℃以下が好ましく、230℃以下であってもよく、210℃以下であってもよい。反応の温度の下限は、限定されないが、100℃以上であってもよく、120℃以上であってもよく、140℃以上であってもよい。
 上記の芳香族ポリスルホン(a)と、ポリオキシアルキレン化合物(b)との反応温度の数値範囲の一例としては、100℃以上250℃以下であってもよく、120℃以上230℃以下であってもよく、140℃以上210℃以下であってもよい。
The reaction between the aromatic polysulfone (a) and the polyoxyalkylene compound (b) is preferably carried out at 250 ° C. or lower. By carrying out the reaction at a relatively low temperature of 250 ° C. or lower, the energy load can be kept low. The reaction temperature is preferably 250 ° C. or lower, may be 230 ° C. or lower, or may be 210 ° C. or lower. The lower limit of the reaction temperature is not limited, but may be 100 ° C. or higher, 120 ° C. or higher, or 140 ° C. or higher.
As an example of the numerical range of the reaction temperature between the aromatic polysulfone (a) and the polyoxyalkylene compound (b), the temperature may be 100 ° C. or higher and 250 ° C. or lower, or 120 ° C. or higher and 230 ° C. or lower. It may be 140 ° C. or higher and 210 ° C. or lower.
 次いで、芳香族ポリスルホン(a)と、ポリオキシアルキレン化合物(b)との反応で得られた反応混合物から、未反応の塩基、副生成物(塩基としてアルカリ金属塩を用いた場合には、ハロゲン化アルカリ)、及び有機溶媒を、濾過、抽出、遠心分離等で除去して、ブロックコポリマーを反応混合物から分離することができる。 Next, from the reaction mixture obtained by the reaction of the aromatic polysulfone (a) and the polyoxyalkylene compound (b), unreacted bases and by-products (halogen when an alkali metal salt is used as the base). Alkali chemicals) and organic solvents can be removed by filtration, extraction, centrifugation, etc. to separate the block copolymer from the reaction mixture.
 有機溶媒の除去は、前記溶液から直接、有機溶媒を留去することにより行ってもよいし、前記溶液をブロックコポリマーの貧溶媒と混合して、ブロックコポリマーを析出させ、濾過や遠心分離等で分離することにより行ってもよい。有機溶媒を所定量残存させてもよい。 The organic solvent may be removed by distilling off the organic solvent directly from the solution, or the solution may be mixed with a poor solvent of the block copolymer to precipitate the block copolymer, which may be filtered or centrifuged. It may be done by separating. A predetermined amount of the organic solvent may remain.
 ブロックコポリマーの貧溶媒の例としては、メタノール、エタノール、2-プロパノール、アセトン、ヘキサン、ヘプタン及び水が挙げられ、安価であることから好ましくは水及びメタノールが挙げられる。
 本実施形態において、ブロックコポリマーの貧溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
Examples of poor solvents for block copolymers include methanol, ethanol, 2-propanol, acetone, hexane, heptane and water, with preference given to water and methanol due to their low cost.
In the present embodiment, one type of poor solvent for the block copolymer may be used alone, or two or more types may be used in combination.
 実施形態のブロックコポリマーの製造方法で得られるブロックコポリマーは、下記の≪ブロックコポリマー≫において、実施形態のブロックコポリマーとして例示するものであってよい。 The block copolymer obtained by the method for producing a block copolymer of the embodiment may be exemplified as the block copolymer of the embodiment in the following << block copolymer >>.
≪ブロックコポリマー≫
 実施形態のブロックコポリマーは、芳香族ポリスルホンブロック(A)及びポリオキシアルキレンブロック(B)を含み、前記ブロックコポリマーの重量平均分子量が、40500~70000である。
≪Block Copolymer≫
The block copolymer of the embodiment contains an aromatic polysulfone block (A) and a polyoxyalkylene block (B), and the weight average molecular weight of the block copolymer is 40,500 to 70,000.
 芳香族ポリスルホンブロック(A)としては、スルホニル基(-SO-)とアリーレン基(-Ar-)とエーテル結合(-O-)とがこの順で結合した構造を少なくとも含む構造単位、を有する高分子鎖からなるものが挙げられる。 The aromatic polysulfone block (A) has a structural unit containing at least a structure in which a sulfonyl group (-SO 2- ), an arylene group (-Ar-), and an ether bond (-O-) are bonded in this order. Examples thereof include those composed of polymer chains.
 芳香族ポリスルホンブロック(A)は、耐熱性や耐薬品性の点から、下記一般式(1)で表される構造単位を有することが好ましい。 The aromatic polysulfone block (A) preferably has a structural unit represented by the following general formula (1) from the viewpoint of heat resistance and chemical resistance.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式(1)中、R、R、n1及びn2は、上記式(a1)におけるものと同一の意味を表す。] [In the formula (1), R 1 , R 2 , n1 and n2 have the same meanings as those in the above formula (a1). ]
 例えば、芳香族ポリスルホンブロック(A)を構成する全構造単位の合計量100モル%に対して、上記一般式(1)で表される構造単位が、80モル%以上100モル%以下で含まれていてもよく、90モル%以上100モル%以下で含まれていてもよく、98モル%以上100モル%以下で含まれていてもよい。 For example, the structural unit represented by the general formula (1) is contained in an amount of 80 mol% or more and 100 mol% or less with respect to a total amount of 100 mol% of all the structural units constituting the aromatic polysulfone block (A). It may be contained in an amount of 90 mol% or more and 100 mol% or less, or may be contained in a content of 98 mol% or more and 100 mol% or less.
 ポリオキシアルキレンブロック(B)としては、オキシアルキレン基を構造単位として有する高分子鎖からなるものが挙げられる。ポリオキシアルキレンブロック(B)は、下記式(2)で表される構造単位を有することが好ましい。 Examples of the polyoxyalkylene block (B) include those composed of a polymer chain having an oxyalkylene group as a structural unit. The polyoxyalkylene block (B) preferably has a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式(2)中、Rは、上記式(b-1)におけるものと同一の意味を表す。] [In the formula (2), R 3 has the same meaning as that in the above formula (b-1). ]
 上記で例示したうち、ポリオキシアルキレンブロック(B)としては、下記式(2-1)で表される構造単位を有することが好ましい。 Of the above examples, the polyoxyalkylene block (B) preferably has a structural unit represented by the following formula (2-1).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 例えば、ポリオキシアルキレンブロック(B)を構成する全構造単位の合計量100モル%に対して、上記一般式(2-1)で表される構造単位が、80モル%以上100モル%以下で含まれていてもよく、90モル%以上100モル%以下で含まれていてもよく、98モル%以上100モル%以下で含まれていてもよい。 For example, the structural unit represented by the above general formula (2-1) is 80 mol% or more and 100 mol% or less with respect to the total amount of 100 mol% of all the structural units constituting the polyoxyalkylene block (B). It may be contained, may be contained in 90 mol% or more and 100 mol% or less, and may be contained in 98 mol% or more and 100 mol% or less.
 実施形態のブロックコポリマーの全体に占める、前記芳香族ポリスルホンブロック(A)及び前記ポリオキシアルキレンブロック(B)の割合は、80質量%以上100質量%以下であってもよく、90質量%以上100質量%以下であってもよく、98質量%以上100質量%以下であってもよい。 The ratio of the aromatic polysulfone block (A) and the polyoxyalkylene block (B) to the whole block copolymer of the embodiment may be 80% by mass or more and 100% by mass or less, and 90% by mass or more and 100% or more. It may be 98% by mass or less, and may be 98% by mass or more and 100% by mass or less.
 実施形態のブロックコポリマーの重量平均分子量(Mw)は、40500~70000であり、42000~60000であってよく、43000~55000であってよく、44000~50000であってよい。
 実施形態のブロックコポリマーによれば、芳香族ポリスルホンブロック(A)及びポリオキシアルキレンブロック(B)を含むブロックコポリマーであって、従来よりも顕著に分子量が増大されたブロックコポリマーを提供できる。
The weight average molecular weight (Mw) of the block copolymers of the embodiments is 40,500 to 70,000, may be 42,000 to 60,000, may be 43,000 to 55,000, and may be 44,000 to 50,000.
According to the block copolymer of the embodiment, it is possible to provide a block copolymer containing an aromatic polysulfone block (A) and a polyoxyalkylene block (B), which has a significantly increased molecular weight as compared with the conventional one.
 なお、実施形態のブロックコポリマーは、意図しない分解が進んだり、未反応の原料が残留していたりなどして、芳香族ポリスルホンブロック(A)及びポリオキシアルキレンブロック(B)を含まないポリマーが、ごく微量混入している場合も想定される。そのような場合には、ブロックコポリマーの重量平均分子量(Mw)とは、実施形態のブロックコポリマーを含む樹脂組成物を対象に前記重量平均分子量(Mw)を求めてもよい。当該樹脂組成物には、芳香族ポリスルホンブロック(A)及びポリオキシアルキレンブロック(B)を含むブロックコポリマーが、樹脂組成物の総質量に対して、95質量%以上100質量%以下含まれていてよく、98質量%以上100質量%以下含まれていてよい。 The block copolymer of the embodiment contains a polymer that does not contain the aromatic polysulfone block (A) and the polyoxyalkylene block (B) due to unintended decomposition or residual unreacted raw materials. It is also assumed that a very small amount is mixed. In such a case, the weight average molecular weight (Mw) of the block copolymer may be the weight average molecular weight (Mw) of the resin composition containing the block copolymer of the embodiment. The resin composition contains 95% by mass or more and 100% by mass or less of a block copolymer containing the aromatic polysulfone block (A) and the polyoxyalkylene block (B) with respect to the total mass of the resin composition. It may be contained in an amount of 98% by mass or more and 100% by mass or less.
 実施形態のブロックコポリマーは、ポリオキシアルキレンブロック(B)、芳香族ポリスルホンブロック(A)、及びポリオキシアルキレンブロック(B)の順に、上記3つのブロックを有する直鎖状トリブロックコポリマー、並びに
 ポリオキシアルキレンブロック(B)及び芳香族ポリスルホンブロック(A)の上記2つのブロックを有する直鎖状ジブロックコポリマー、の少なくとも一方を含むものであってよい。
The block copolymers of the embodiment are a linear triblock copolymer having the above three blocks in the order of polyoxyalkylene block (B), aromatic polysulfone block (A), and polyoxyalkylene block (B), and polyoxy. It may contain at least one of a linear diblock copolymer having the above two blocks of an alkylene block (B) and an aromatic polysulfone block (A).
 実施形態のブロックコポリマーは、ポリオキシアルキレンブロック(B)、芳香族ポリスルホンブロック(A)、及びポリオキシアルキレンブロック(B)の順に、上記3つのブロックを有する直鎖状トリブロックコポリマー、並びに
 ポリオキシアルキレンブロック(B)及び芳香族ポリスルホンブロック(A)の上記2つのブロックを有する直鎖状ジブロックコポリマー、からなる群から選ばれる少なくとも一種のブロックコポリマーを含むものであってよい。
The block copolymers of the embodiment are a linear triblock copolymer having the above three blocks in the order of polyoxyalkylene block (B), aromatic polysulfone block (A), and polyoxyalkylene block (B), and polyoxy. It may contain at least one block copolymer selected from the group consisting of a linear diblock copolymer having the above two blocks of an alkylene block (B) and an aromatic polysulfone block (A).
 ここでいう直鎖状とは、ブロックコポリマーが、枝分かれの構造(分岐鎖)を有していないものであってよい。直鎖状トリブロックコポリマーとしては、例えば、芳香族ポリスルホンブロック(A)の高分子鎖の主鎖の末端と、ポリオキシアルキレンブロック(B)の高分子鎖の主鎖の末端とが、直接に結合したものが挙げられる。 The linearity referred to here may mean that the block copolymer does not have a branched structure (branched chain). As the linear triblock copolymer, for example, the end of the main chain of the polymer chain of the aromatic polysulfone block (A) and the end of the main chain of the polymer chain of the polyoxyalkylene block (B) are directly linked to each other. Examples include combined ones.
 ポリオキシアルキレンブロック(B)、芳香族ポリスルホンブロック(A)、及びポリオキシアルキレンブロック(B)の順に、上記3つのブロックを有する直鎖状トリブロックコポリマーの一例として、下記一般式(I)で表されるものが例示できる。 As an example of a linear triblock copolymer having the above three blocks in the order of polyoxyalkylene block (B), aromatic polysulfone block (A), and polyoxyalkylene block (B), the following general formula (I) is used. What is represented can be exemplified.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[式(I)中、
 R、R、R、n1及びn2は、上記式(1)及び式(2)におけるものと同一の意味を表す。
 nは0以上の整数であり、mは1以上の整数であり、複数存在するRは、互いに同一でも異なっていてもよく、複数存在するmは、互いに同一でも異なっていてもよい。]
[In formula (I),
R 1 , R 2 , R 3 , n1 and n2 have the same meanings as those in the above equations (1) and (2).
n is an integer of 0 or more, m is an integer of 1 or more, R 3 existing in plural numbers may be the same or different from each other, the m there are a plurality, it may be the same or different from each other. ]
 nは、上記式(I)における、芳香族ポリスルホンブロック(A)の有する上記構造単位の繰り返し数である。
 mは、上記式(I)における、ポリオキシアルキレンブロック(B)の有する上記構造単位の繰り返し数である。
n is the number of repetitions of the structural unit of the aromatic polysulfone block (A) in the formula (I).
m is the number of repetitions of the structural unit of the polyoxyalkylene block (B) in the formula (I).
 実施形態のブロックコポリマーは、H-NMRにより算出された、ポリオキシアルキレンブロック(B)の数平均分子量/前記芳香族ポリスルホンブロック(A)の数平均分子量で表される比が、0.005~0.030であってもよく、0.010~0.025であってもよく、0.015~0.020であってもよい。
 上記の比の値が上記下限値以上であると、ブロックコポリマーの親水性が良好となることから好ましい。ブロックコポリマーの親水性が良好であると、ブロックコポリマーを成形して得られる多孔質膜の、透水速度の向上にも寄与する。上記の比の値が上記上限値以下であると、ブロックコポリマーの熱的特性及び機械的特性が向上することから好ましい。
In the block copolymer of the embodiment, the ratio represented by the number average molecular weight of the polyoxyalkylene block (B) and the number average molecular weight of the aromatic polysulfone block (A) calculated by 1 H-NMR is 0.005. It may be ~ 0.030, 0.010 to 0.025, or 0.015 to 0.020.
When the value of the above ratio is not more than the above lower limit value, the hydrophilicity of the block copolymer becomes good, which is preferable. If the hydrophilicity of the block copolymer is good, it also contributes to the improvement of the water permeability of the porous membrane obtained by molding the block copolymer. When the value of the above ratio is not more than the above upper limit value, the thermal properties and mechanical properties of the block copolymer are improved, which is preferable.
 芳香族ポリスルホンブロック(A)の数平均分子量(ブロック(A)のMn)は、例えば、20000~60000であってもよく、25000~50000であってもよく、27000~40000であってもよく、30000~36000であってもよい。 The number average molecular weight of the aromatic polysulfone block (A) (Mn of the block (A)) may be, for example, 20,000 to 60,000, 25,000 to 50,000, or 27,000 to 40,000. It may be 30,000 to 36,000.
 ポリオキシアルキレンブロック(B)の数平均分子量(ブロック(B)のMn)は、例えば、5000以下であってよく、300~5000であってよく、300~3000であってよく、300~900であってよく、400~700であってよく、450~600であってよく、500~550であってよい。 The number average molecular weight of the polyoxyalkylene block (B) (Mn of the block (B)) may be, for example, 5000 or less, 300 to 5000, 300 to 3000, or 300 to 900. It may be 400 to 700, 450 to 600, or 500 to 550.
 実施形態のブロックコポリマーは、上記に例示したもののなかでも、
 芳香族ポリスルホンブロック(A)の数平均分子量が20000~60000であり、ポリオキシアルキレンブロック(B)の数平均分子量が300~900であってもよく、 芳香族ポリスルホンブロック(A)の数平均分子量が25000~50000であり、ポリオキシアルキレンブロック(B)の数平均分子量が400~700であってもよく、 芳香族ポリスルホンブロック(A)の数平均分子量が27000~40000であり、ポリオキシアルキレンブロック(B)の数平均分子量が450~600であってもよく、 芳香族ポリスルホンブロック(A)の数平均分子量が30000~36000であり、ポリオキシアルキレンブロック(B)の数平均分子量が500~550であってもよい。 芳香族ポリスルホンブロック(A)及びポリオキシアルキレンブロック(B)の数平均分子量が上記の数値範囲内とすることで、親水性と、熱的特性及び機械的特性とのバランスに優れる、実施形態のブロックコポリマーが容易に得られる。
The block copolymers of the embodiments are among those exemplified above.
The number average molecular weight of the aromatic polysulfone block (A) may be 20000 to 60,000, the number average molecular weight of the polyoxyalkylene block (B) may be 300 to 900, and the number average molecular weight of the aromatic polysulfone block (A). 25,000 to 50,000, the number average molecular weight of the polyoxyalkylene block (B) may be 400 to 700, the number average molecular weight of the aromatic polysulfone block (A) is 27,000 to 40,000, and the polyoxyalkylene block. The number average molecular weight of (B) may be 450 to 600, the number average molecular weight of the aromatic polysulfone block (A) is 30,000 to 36,000, and the number average molecular weight of the polyoxyalkylene block (B) is 500 to 550. May be. By setting the number average molecular weights of the aromatic polysulfone block (A) and the polyoxyalkylene block (B) within the above numerical range, the balance between hydrophilicity, thermal properties and mechanical properties is excellent. Block copolymers are easily obtained.
 ポリオキシアルキレンブロック(B)の数平均分子量(ブロックのMn)および前記芳香族ポリスルホンブロック(A)の数平均分子量(ブロックのMn)は、NMR法により特定でき、溶液H-NMR測定により取得されたスペクトルに基づき算出したNMR換算数平均分子量を採用できる。 The number average molecular weight of the polyoxyalkylene block (B) (Mn of the block) and the number average molecular weight of the aromatic polysulfone block (A) (Mn of the block) can be specified by the NMR method and obtained by 1 H-NMR measurement of solution 1. The NMR-converted number average molecular weight calculated based on the obtained spectrum can be adopted.
 ポリオキシアルキレンブロック(B)のMnは、NMR換算分子量M PAOとして、ポリオキシアルキレンの主鎖に対応するピーク強度IPAO-Mainと、芳香族ポリスルホンに結合したポリオキシアルキレンの結合部位に対応するピーク強度IPAO-Linkの比率(IPAO-Main/IPAO-Link)から算出したポリオキシアルキレンの繰り返し単位数nPAOに、ポリオキシアルキレンの繰り返し単位あたりの分子量を乗じた値から算出できる。 The Mn of the polyoxyalkylene block (B) corresponds to the peak intensity I PAO-Main corresponding to the main chain of the polyoxyalkylene and the binding site of the polyoxyalkylene bound to the aromatic polysulfone as the NMR-equivalent molecular weight M n PAO. The number of repeating units of polyoxyalkylene calculated from the ratio of peak intensity I PAO-Link (I PAO-Main / I PAO-Link ) n PAO can be calculated from the value obtained by multiplying the molecular weight per repeating unit of polyoxyalkylene. ..
 芳香族ポリスルホンブロック(A)のMnは、NMR換算分子量M PESとして、芳香族ポリスルホンの主鎖に対応するピーク強度IPES-Mainと、ポリオキシアルキレンに結合した芳香族ポリスルホンの結合部位に対応するピーク強度IPES-Linkの比率(IPES-Main/IPES-Link)から算出する芳香族ポリスルホンの繰り返し単位数nPESに、芳香族ポリスルホンの繰り返し単位あたりの分子量を乗じた値から算出できる。 The Mn of the aromatic polysulfone block (A) corresponds to the peak intensity I PES-Main corresponding to the main chain of the aromatic polysulfone and the binding site of the aromatic polysulfone bonded to polyoxyalkylene as the NMR-equivalent molecular weight M n PES. The number of repeating units of aromatic polysulfone calculated from the ratio of peak intensity I PES-Link (IPES-Main / I PES-Link ) n PES can be calculated from the value obtained by multiplying the molecular weight per repeating unit of aromatic polysulfone. ..
 NMR換算分子量を算出するための溶液H-NMR測定には、測定対象のブロックコポリマーの濃度が50mg/mlとなるよう重ジメチルスルホキシドに溶解させた試料を用い、以下の条件により測定できる。 Solution 1 for calculating the NMR-equivalent molecular weight For 1 H-NMR measurement, a sample dissolved in deuterated dimethylsulfoxide so that the concentration of the block copolymer to be measured is 50 mg / ml can be used, and the measurement can be performed under the following conditions.
 測定装置:PS400WB(バリアン製)
 静磁場強度:9.4テスラ(共鳴周波数:400MHz(H))
 スピニング:16Hz
 繰り返し時間:1.5s
 積算回数:128回
 温度:40℃
 化学シフト標準物質:テトラメチルシラン
Measuring device: PS400WB (manufactured by Varian)
Static magnetic field strength: 9.4 Tesla (resonance frequency: 400 MHz ( 1 H))
Spinning: 16Hz
Repeat time: 1.5s
Number of integrations: 128 times Temperature: 40 ° C
Chemical shift reference material: Tetramethylsilane
 実施形態のブロックコポリマーは、適度な親水性を有し、機械的特性に優れる。
 ブロックコポリマーの有する親水性の指標として、例えば、ブロックコポリマーを成形して得られる多孔質膜の、透水速度の値を採用できる。
The block copolymer of the embodiment has moderate hydrophilicity and excellent mechanical properties.
As an index of the hydrophilicity of the block copolymer, for example, the value of the water permeability of the porous membrane obtained by molding the block copolymer can be adopted.
 ブロックコポリマーの機械的特性の指標として、下記の成形体の引張強さ及び引張伸びの値を採用できる。 The following values of tensile strength and tensile elongation of the molded product can be adopted as an index of the mechanical properties of the block copolymer.
(成形体)
 実施形態の成形体は、実施形態のブロックコポリマーを含むものである。実施形態の成形体は、実施形態のブロックコポリマーより成形されたものである。
 実施形態の成形体は、実施形態のブロックコポリマーを成形材料として作製することができる。
(Molded body)
The molded article of the embodiment contains the block copolymer of the embodiment. The molded product of the embodiment is molded from the block copolymer of the embodiment.
The molded product of the embodiment can be made by using the block copolymer of the embodiment as a molding material.
 実施形態の成形体の総質量に対する、実施形態のブロックコポリマーの含有割合は、例えば、50~100質量%であってよく、80~99.5質量%であってよく、90~99質量%であってよい。 The content ratio of the block copolymer of the embodiment with respect to the total mass of the molded product of the embodiment may be, for example, 50 to 100% by mass, 80 to 99.5% by mass, or 90 to 99% by mass. It may be there.
 成形体の製造方法として、実施形態のブロックコポリマーを所望の形状に成形する工程を有する方法が挙げられる。 Examples of the method for producing a molded product include a method having a step of molding the block copolymer of the embodiment into a desired shape.
 当該成形方法としては、実施形態のブロックコポリマーを含む材料を、溶液キャスト法、押し出し成形、T-ダイ成形、ブロー成形、射出成形等により成形する方法を例示できる。所望の成形体の形状等に応じた成形方法を選択して、実施形態のブロックコポリマーを種々の形状に成形することができる。 As the molding method, a method of molding the material containing the block copolymer of the embodiment by a solution casting method, extrusion molding, T-die molding, blow molding, injection molding or the like can be exemplified. The block copolymer of the embodiment can be molded into various shapes by selecting a molding method according to the desired shape of the molded product and the like.
 実施形態の成形体の一例として、実施形態のブロックコポリマーを含むフィルムを例示できる。
 実施形態のフィルム又は多孔質膜の厚さは、特に限定されるものではないが、例えば、5~200μmであってもよく、7~100μmであってもよく、10~50μmであってもよい。
As an example of the molded product of the embodiment, a film containing the block copolymer of the embodiment can be exemplified.
The thickness of the film or the porous film of the embodiment is not particularly limited, but may be, for example, 5 to 200 μm, 7 to 100 μm, or 10 to 50 μm. ..
 実施形態の成形体は、実施形態のブロックコポリマーを含むものであるので、適度な親水性を有し、実施形態のブロックコポリマーの重量平均分子量(Mw)が大きいことで機械的特性に優れるものとできる。 Since the molded product of the embodiment contains the block copolymer of the embodiment, it has appropriate hydrophilicity, and the block copolymer of the embodiment has a large weight average molecular weight (Mw), so that it can be excellent in mechanical properties.
 実施形態のブロックコポリマーを成形して得られる成形体の引張強さは、100MPa以上が好ましく、101MPa以上がより好ましく、103MPa以上がさらに好ましい。
 上記引張強さの上限値は特に限定されず、一例を挙げると、150MPa以下であってよく、130MPa以下であってよく、120MPa以下であってよい。
 上記引張強さの上限値及び下限値は任意に組み合わせることができ、実施形態のブロックコポリマーを成形して得られる成形体の引張強さは、一例として、100MPa以上150MPa以下であってよく、101MPa以上130MPa以下であってよく、103MPa以上120MPa以下であってよい。
The tensile strength of the molded product obtained by molding the block copolymer of the embodiment is preferably 100 MPa or more, more preferably 101 MPa or more, still more preferably 103 MPa or more.
The upper limit of the tensile strength is not particularly limited, and for example, it may be 150 MPa or less, 130 MPa or less, or 120 MPa or less.
The upper limit value and the lower limit value of the tensile strength can be arbitrarily combined, and the tensile strength of the molded product obtained by molding the block copolymer of the embodiment may be, for example, 100 MPa or more and 150 MPa or less, and 101 MPa. It may be 130 MPa or more, and may be 103 MPa or more and 120 MPa or less.
 上記引張強さは、実施例に記載の方法により取得できる。 The above tensile strength can be obtained by the method described in Examples.
 上記引張強さが上記下限値以上である実施形態のブロックコポリマーの成形体は、機械的特性により一層優れる。 The molded product of the block copolymer of the embodiment in which the tensile strength is equal to or higher than the lower limit value is further excellent in mechanical properties.
 実施形態のブロックコポリマーを成形して得られる成形体の引張伸びは、6%以上が好ましく、7%以上がより好ましく、8%以上がさらに好ましい。
 上記引張伸びの上限値は特に限定されず、一例を挙げると、30%以下であってよく、20%以下であってよく、15%以下であってよい。
 上記引張伸びの上限値及び下限値は任意に組み合わせることができ、実施形態のブロックコポリマーを成形して得られる成形体の引張伸びは、一例として、6%以上30%以下であってよく、7%以上20%以下であってよく、8%以上15%以下であってよい。
The tensile elongation of the molded product obtained by molding the block copolymer of the embodiment is preferably 6% or more, more preferably 7% or more, still more preferably 8% or more.
The upper limit of the tensile elongation is not particularly limited, and for example, it may be 30% or less, 20% or less, or 15% or less.
The upper limit value and the lower limit value of the tensile elongation can be arbitrarily combined, and the tensile elongation of the molded product obtained by molding the block copolymer of the embodiment may be, for example, 6% or more and 30% or less. It may be% or more and 20% or less, and may be 8% or more and 15% or less.
 上記引張伸びは、実施例に記載の方法により取得できる。
(フィルムの引張特性の測定)
 JIS K7127に準拠して、引張強さと引張破断伸びを測定する。厚さ30μmのフィルムを打抜きして得たJIS K6251 ダンベル状3号形の試験片を用いて、オートグラフにて、つかみ間隔50mm、引張速度5mm/分で引張り、23℃、相対湿度50%の雰囲気下における、試験片が切断(破断)したときの、引張強さ(引張り荷重値を試験片の断面積で除した値)及び引張伸び(%)を測定する。
 引張伸びは次の式によって算出した。引張伸びが大きいほど、フィルム伸度が大きいことを意味する。
 引張伸び(%)=(L-Lo)/Lo×100
Lo:試験前のつかみ間隔(50mm)、L:破断時のつかみ間隔(mm)
The tensile elongation can be obtained by the method described in Examples.
(Measurement of tensile properties of film)
Tensile strength and tensile elongation at break are measured according to JIS K7127. Using a JIS K6251 dumbbell-shaped No. 3 test piece obtained by punching a film with a thickness of 30 μm, the test piece was pulled by an autograph at a grip interval of 50 mm and a tensile speed of 5 mm / min, at 23 ° C. and a relative humidity of 50%. When the test piece is cut (broken) in an atmosphere, the tensile strength (the value obtained by dividing the tensile load value by the cross-sectional area of the test piece) and the tensile elongation (%) are measured.
The tensile elongation was calculated by the following formula. The larger the tensile elongation, the larger the film elongation.
Tensile elongation (%) = (L-Lo) / Lo × 100
Lo: Gripping interval before test (50 mm), L: Gripping interval at break (mm)
 上記引張伸びが上記下限値以上である実施形態のブロックコポリマーの成形体は、機械的特性により一層優れる。 The molded product of the block copolymer of the embodiment in which the tensile elongation is equal to or higher than the above lower limit value is further excellent in mechanical properties.
 実施形態のブロックコポリマーを成形して得られる成形体の多孔質膜の透水速度は、一例として、1500~4500L/m/h/100kPaであってよく、2000~30000L/m/h/100kPaであってよく、2200~3500L/m/h/100kPaであってよい。 As an example, the water permeability of the porous membrane of the molded product obtained by molding the block copolymer of the embodiment may be 1500 to 4500 L / m 2 / h / 100 kPa, and 2000 to 30000 L / m 2 / h / 100 kPa. It may be 2200 to 3500 L / m 2 / h / 100 kPa.
 上記透水速度は、実施例に記載の方法により取得できる。
(多孔質膜の透水速度の測定)
 芳香族ポリスルホンブロックコポリマー18質量部およびNMP82質量部の混合溶液を、厚さ3mmのガラス板の一面にフィルムアプリケーターを用いて塗布した後、高温熱風乾燥器を用いて60℃で乾燥することで、塗膜を形成する。この塗膜を、窒素を流しながら、250℃で熱処理することで、ガラス板上に厚さ30μmの多孔質膜を形成する。得られた多孔質膜に対し、直径47mmの圧力セルを用いて、23℃、0.2バール(20kPa)の圧力で、純水をろ過し、ろ過開始7分後から7分30秒の間(30秒間)に多孔質膜を透過した純水の量を測定して透水速度を求める。
The water permeability can be obtained by the method described in Examples.
(Measurement of water permeability of porous membrane)
A mixed solution of 18 parts by mass of aromatic polysulfone block copolymer and 82 parts by mass of NMP is applied to one surface of a glass plate having a thickness of 3 mm using a film applicator, and then dried at 60 ° C. using a high-temperature hot air dryer. Form a coating film. This coating film is heat-treated at 250 ° C. while flowing nitrogen to form a porous film having a thickness of 30 μm on a glass plate. Pure water is filtered through the obtained porous membrane at a pressure of 0.2 bar (20 kPa) at 23 ° C. using a pressure cell having a diameter of 47 mm, and from 7 minutes after the start of filtration to 7 minutes and 30 seconds. The amount of pure water that has permeated the porous membrane in (30 seconds) is measured to determine the water permeation rate.
 上記透水速度が上記下限値以上である上記多孔質膜は、透水性により一層優れる。 The porous membrane having a water permeability of not less than the lower limit is more excellent in water permeability.
 実施形態のブロックコポリマーは、上記の実施形態のブロックコポリマーの製造方法により得ることができる。実施形態のブロックコポリマーの製造方法によれば、製造されるブロックコポリマーの分子量を容易に向上可能である。 The block copolymer of the embodiment can be obtained by the method for producing the block copolymer of the above embodiment. According to the method for producing a block copolymer of the embodiment, the molecular weight of the produced block copolymer can be easily improved.
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
<ブロックコポリマー等における、MnおよびMwの測定、Mw/Mnの算出>
 各ポリマー(各ブロックコポリマー及び原料ポリエチレングリコールモノメチルエーテル)における、重量平均分子量(Mw)、数平均分子量(Mn)および多分散度(Mw/Mn)は、GPC測定により求めた。なお、MnおよびMwはいずれも2回測定し、その平均値を求めて、それぞれMnおよびMwとし、Mw/Mnの平均値を求めた。
[測定条件]
 試料:10mM臭化リチウム含有N,N-ジメチルホルムアミド溶液1mLに対し、芳香族ポリスルホン0.002gを配合
 試料注入量:100μL
 カラム(固定相):東ソー株式会社製「TSKgel GMHHR-H」(7.8mmφ×300mm)を2本直列に連結
 カラム温度:40℃
 溶離液(移動相):10mM臭化リチウム含有N,N-ジメチルホルムアミド
 溶離液流量:0.8mL/分
 検出器:示差屈折率計(RI)+光散乱光度計(LS)
 標準試薬:ポリスチレン
 分子量算出法:光散乱光度計(LS)の測定結果から絶対分子量を算出
<Measurement of Mn and Mw and calculation of Mw / Mn in block copolymers, etc.>
The weight average molecular weight (Mw), number average molecular weight (Mn), and polydispersity (Mw / Mn) of each polymer (each block copolymer and raw material polyethylene glycol monomethyl ether) were determined by GPC measurement. Both Mn and Mw were measured twice, and the average value thereof was calculated as Mn and Mw, respectively, and the average value of Mw / Mn was obtained.
[Measurement condition]
Sample: 0.002 g of aromatic polysulfone is mixed with 1 mL of N, N-dimethylformamide solution containing 10 mM lithium bromide Sample injection amount: 100 μL
Column (stationary phase): Two "TSKgel GMHHR-H" (7.8 mmφ x 300 mm) manufactured by Tosoh Corporation are connected in series. Column temperature: 40 ° C.
Eluent (mobile phase): N, N-dimethylformamide containing 10 mM lithium bromide Eluent flow rate: 0.8 mL / min Detector: Differential refractive index meter (RI) + light scattering photometric meter (LS)
Standard reagent: Polystyrene Molecular weight calculation method: Absolute molecular weight is calculated from the measurement results of a light scattering photometer (LS).
<フィルムの引張特性の測定>
 JIS K7127に準拠して、引張強さと引張破断伸びを測定した。厚さ30μmのフィルムを打抜きして得たJIS K6251 ダンベル状3号形の試験片を用いて、オートグラフにて、つかみ間隔50mm、引張速度5mm/分で引張り、23℃、相対湿度50%の雰囲気下における、試験片が切断(破断)したときの、引張強さ(引張り荷重値を試験片の断面積で除した値)及び引張伸び(%)を測定した。
 引張伸びは次の式によって算出した。引張伸びが大きいほど、フィルム伸度が大きいことを意味する。
 引張伸び(%)=(L-Lo)/Lo×100
Lo:試験前のつかみ間隔(50mm)、L:破断時のつかみ間隔(mm)
<Measurement of film tensile properties>
Tensile strength and tensile elongation at break were measured according to JIS K7127. Using a JIS K6251 dumbbell-shaped No. 3 test piece obtained by punching a film with a thickness of 30 μm, the test piece was pulled by an autograph at a grip interval of 50 mm and a tensile speed of 5 mm / min, at 23 ° C. and a relative humidity of 50%. The tensile strength (the value obtained by dividing the tensile load value by the cross-sectional area of the test piece) and the tensile elongation (%) when the test piece was cut (broken) in an atmosphere were measured.
The tensile elongation was calculated by the following formula. The larger the tensile elongation, the larger the film elongation.
Tensile elongation (%) = (L-Lo) / Lo × 100
Lo: Gripping interval before test (50 mm), L: Gripping interval at break (mm)
<多孔質膜の透水速度の測定>
 直径47mmの圧力セルを用いて、多孔質膜に対し、23℃、0.2バール(20kPa)の圧力で、純水をろ過し、ろ過開始7分後から7分30秒の間(30秒間)に多孔質膜を透過した純水の量を測定して透水速度を求めた。
<Measurement of water permeability of porous membrane>
Using a pressure cell with a diameter of 47 mm, pure water is filtered through the porous membrane at a pressure of 0.2 bar (20 kPa) at 23 ° C., and the pure water is filtered from 7 minutes after the start of filtration to 7 minutes and 30 seconds (30 seconds). ), The amount of pure water that permeated the porous membrane was measured to determine the water permeation rate.
<ブロックコポリマーの製造>
[実験例1]
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽に、ポリエチレングリコールモノメチルエーテル(東京化成製、重量平均分子量570)3.0g、炭酸カリウム0.46g及びN-メチル-2-ピロリドン(NMP)150gを混合し、100℃に昇温後、ポリエーテルスルホン(住友化学株式会社製、スミカエクセルPES 5900P,ゲル浸透クロマトグラフィーによりDMF溶媒で測定された絶対重量平均分子量30000以上)100gを加えた。ポリエーテルスルホンが溶解した後、200℃で加熱し4時間反応させた。次いで、得られた反応混合溶液を、NMPで希釈し、室温まで冷却して、未反応の炭酸カリウム及び副生した塩化カリウムを析出させた。上述の溶液を水中に滴下し、芳香族ポリスルホンを析出させ、ろ過で不要なNMPを除去することにより、析出物を得た。
 得られた析出物を、入念にメタノールおよび水で繰返し洗浄し、150℃で加熱乾燥させることにより、ポリエチレングリコールを末端に有する芳香族ポリスルホンブロックコポリマーを得た。
<Manufacturing of block copolymers>
[Experimental Example 1]
In a polymerization tank equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip, 3.0 g of polyethylene glycol monomethyl ether (manufactured by Tokyo Kasei, weight average molecular weight 570), 0.46 g of potassium carbonate, and 150 g of N-methyl-2-pyrrolidone (NMP) is mixed, the temperature is raised to 100 ° C., and then the absolute weight measured with a DMF solvent by polyether sulfone (manufactured by Sumitomo Chemical Co., Ltd., Sumika Excel PES 5900P, gel permeation chromatography). (Average molecular weight of 30,000 or more) 100 g was added. After the polyether sulfone was dissolved, it was heated at 200 ° C. and reacted for 4 hours. The resulting reaction mixture was then diluted with NMP and cooled to room temperature to precipitate unreacted potassium carbonate and by-product potassium chloride. The above solution was added dropwise to water to precipitate aromatic polysulfone, and unnecessary NMP was removed by filtration to obtain a precipitate.
The obtained precipitate was carefully washed repeatedly with methanol and water and dried by heating at 150 ° C. to obtain an aromatic polysulfone block copolymer having polyethylene glycol at the end.
[実験例2]
 上記で用いたポリエチレングリコールモノメチルエーテルの分子量及び配合量を、表1に記載のとおり変更(東京化成製、重量平均分子量2200)した以外は、上記の実験例1と同様にして、ポリエチレングリコールを末端に有する芳香族ポリスルホンブロックコポリマーを得た。
[Experimental Example 2]
Polyethylene glycol was terminated in the same manner as in Experimental Example 1 above, except that the molecular weight and compounding amount of the polyethylene glycol monomethyl ether used above were changed as shown in Table 1 (Tokyo Kasei Co., Ltd., weight average molecular weight 2200). The aromatic polysulfone block copolymer possessed by the above was obtained.
[実験例3~4]
 上記実験例1において、ポリエチレングリコールモノメチルエーテルの配合量を、表1に記載のとおり変更し、反応時間を200℃で14時間に変更した以外は、上記の実験例1と同様にして、ポリエチレングリコールを末端に有する芳香族ポリスルホンブロックコポリマーを得た。
[Experimental Examples 3-4]
In Experimental Example 1, polyethylene glycol was prepared in the same manner as in Experimental Example 1 except that the blending amount of polyethylene glycol monomethyl ether was changed as shown in Table 1 and the reaction time was changed to 14 hours at 200 ° C. An aromatic polysulfone block copolymer having a terminal was obtained.
[実験例5]
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽に、4,4’-ジクロロジフェニルスルホン(DCDPS)81.79g、4,4’-ジヒドロキシジフェニルスルホン(DHDPS)69.85g、ポリエチレングリコールモノメチルエーテル(重量平均分子量2200)11.40g及び炭酸カリウム41.35gを、窒素雰囲気下にNMP150ml中に懸濁させた。このバッチを1時間以内で190℃に加熱し、6時間反応させた。次いで、得られた反応混合溶液を、NMPで希釈し、室温まで冷却して、未反応の炭酸カリウム及び副生した塩化カリウムを析出させた。上述の溶液を水中に滴下し、芳香族ポリスルホンを析出させ、ろ過で不要なNMPを除去することにより、析出物を得た。
 得られた析出物を、入念にメタノールおよび水で繰返し洗浄し、150℃で加熱乾燥させた。
[Experimental Example 5]
81.79 g of 4,4'-dichlorodiphenyl sulfone (DCDPS), 4,4'-dihydroxydiphenyl sulfone (4,4'-dihydroxydiphenylsulfone) in a polymerization tank equipped with a stirrer, a nitrogen inlet tube, a thermometer, and a condenser with a receiver at the tip. 69.85 g of DHDPS), 11.40 g of polyethylene glycol monomethyl ether (weight average molecular weight 2200) and 41.35 g of potassium carbonate were suspended in 150 ml of NMP under a nitrogen atmosphere. The batch was heated to 190 ° C. within 1 hour and reacted for 6 hours. The resulting reaction mixture was then diluted with NMP and cooled to room temperature to precipitate unreacted potassium carbonate and by-product potassium chloride. The above solution was added dropwise to water to precipitate aromatic polysulfone, and unnecessary NMP was removed by filtration to obtain a precipitate.
The obtained precipitate was carefully washed repeatedly with methanol and water, and dried by heating at 150 ° C.
[実験例6]
 上記実験例1において、撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽に、ポリエチレングリコールモノメチルエーテル、炭酸カリウム及びN-メチル-2-ピロリドンに、さらにトルエン50mLを加えた以外は、実験例1と同様の操作を行った。
[Experimental Example 6]
In Experimental Example 1, polyethylene glycol monomethyl ether, potassium carbonate and N-methyl-2-pyrrolidone were added to a polymerization tank equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip. The same operation as in Experimental Example 1 was carried out except that 50 mL of toluene was added.
[実験例7]
 上記実験例2において、撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽に、ポリエチレングリコールモノメチルエーテル、炭酸カリウム及びN-メチル-2-ピロリドンに、さらにトルエン50mLを加えた以外は、実験例2と同様の操作を行った。
[Experimental Example 7]
In Experimental Example 2, polyethylene glycol monomethyl ether, potassium carbonate and N-methyl-2-pyrrolidone were added to a polymerization tank equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip. The same operation as in Experimental Example 2 was carried out except that 50 mL of toluene was added.
 実験例1~7で得られた芳香族ポリスルホンブロックコポリマーについて、重量平均絶対分子量(Mw)及び多分散度(Mw/Mn)を測定した。結果を表1に示す。 The weight average absolute molecular weight (Mw) and polydispersity (Mw / Mn) of the aromatic polysulfone block copolymers obtained in Experimental Examples 1 to 7 were measured. The results are shown in Table 1.
 上記の実験例1~4が、本発明を適用した実施例に該当する。 Experimental Examples 1 to 4 described above correspond to Examples to which the present invention is applied.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1に示される結果から、実験例1~4の、予め重合された芳香族ポリスルホン(a)を原料として用いて製造された芳香族ポリスルホンブロックコポリマーは、実験例5の、芳香族ポリスルホン(a)の単量体を原料として用いて製造された芳香族ポリスルホンブロックコポリマーよりも、Mwの値が高いことが示された。 From the results shown in Table 1, the aromatic polysulfone block copolymers produced using the pre-polymerized aromatic polysulfone (a) of Experimental Examples 1 to 4 as raw materials are the aromatic polysulfone (a) of Experimental Example 5. ) Was shown to have a higher Mw value than the aromatic polysulfone block copolymer produced using the monomer as a raw material.
 表1に示される結果から、実験例1~4の、水と共沸混合物を形成する溶媒を使用せずに製造された芳香族ポリスルホンブロックコポリマーは、実験例6~7の、水と共沸混合物を形成する溶媒を使用して製造された芳香族ポリスルホンブロックコポリマーよりも、Mwの値が高いことが示された。 From the results shown in Table 1, the aromatic polysulfone block copolymers produced in Experimental Examples 1 to 4 without using a solvent that forms an azeotropic mixture with water are azeotropically heated with water in Experimental Examples 6 to 7. It has been shown to have higher Mw values than aromatic polysulfone block copolymers made using solvents that form the mixture.
<キャストフィルムの作製>
 加熱容器内で、上記の実験例1の芳香族ポリスルホンブロックコポリマー18質量部およびNMP82質量部を混合し、80℃で2時間撹拌することで、淡黄色の溶液を得た。これを、厚さ3mmのガラス板の一面にフィルムアプリケーターを用いて塗布した後、高温熱風乾燥器を用いて60℃で乾燥することで、塗膜を形成した。この塗膜を、窒素を流しながら、250℃で熱処理することで、ガラス板上に厚さ30μmのフィルムを形成した。このフィルムをガラス板から剥離することにより、フィルムを得た。
 得られた実験例1フィルムについて、引張強さ及び引張伸びの値を測定した。
<Making cast film>
In a heating vessel, 18 parts by mass of the aromatic polysulfone block copolymer of Experimental Example 1 and 82 parts by mass of NMP were mixed and stirred at 80 ° C. for 2 hours to obtain a pale yellow solution. This was applied to one surface of a glass plate having a thickness of 3 mm using a film applicator, and then dried at 60 ° C. using a high-temperature hot air dryer to form a coating film. This coating film was heat-treated at 250 ° C. while flowing nitrogen to form a film having a thickness of 30 μm on a glass plate. A film was obtained by peeling this film from a glass plate.
The values of tensile strength and tensile elongation were measured for the obtained Experimental Example 1 film.
 実験例1のフィルムの引張強さは100MPaであり、引張伸びは10%であった。実験例1のフィルムは、引張強さ及び引張伸びの値が良好であり、機械的特性に優れることが示された。 The tensile strength of the film of Experimental Example 1 was 100 MPa, and the tensile elongation was 10%. The film of Experimental Example 1 had good tensile strength and tensile elongation values, and was shown to be excellent in mechanical properties.
<多孔質膜の作製>
 加熱容器内で、上記の実験例1~4、6又は7の芳香族ポリスルホンブロックコポリマー18質量部およびNMP82質量部を混合し、80℃で2時間撹拌することで、淡黄色の溶液を得た。これを、厚さ3mmのガラス板の一面にフィルムアプリケーターを用いて塗布した後、水に浸漬させることで、実験例1~4、6及び7の芳香族ポリスルホンブロックコポリマーの多孔質膜を形成した。この多孔質をガラス板から剥離し、水により複数回洗浄した後、測定開始まで膜を水中で保存し、透水速度を測定した。結果を表1に示す。
<Preparation of porous membrane>
In a heating container, 18 parts by mass of the aromatic polysulfone block copolymer of Experimental Examples 1 to 4, 6 or 7 and 82 parts by mass of NMP were mixed and stirred at 80 ° C. for 2 hours to obtain a pale yellow solution. .. This was applied to one surface of a glass plate having a thickness of 3 mm using a film applicator, and then immersed in water to form a porous film of the aromatic polysulfone block copolymers of Experimental Examples 1 to 4, 6 and 7. .. This porous material was peeled off from the glass plate, washed with water multiple times, and then the membrane was stored in water until the start of measurement, and the water permeability was measured. The results are shown in Table 1.
 実験例1、3と実験例6の多孔質膜との対比、及び、実験例2、4と実験例7との多孔質膜との対比によれば、実験例1~4の、水と共沸混合物を形成する溶媒を使用せずに製造された芳香族ポリスルホンブロックコポリマーは、実験例6~7の、水と共沸混合物を形成する溶媒を使用して製造された芳香族ポリスルホンブロックコポリマーよりも、それぞれ透水速度が向上しており、透水性に優れたフィルムを提供可能であることが示された。 According to the comparison between the porous membranes of Experimental Examples 1 and 3 and Experimental Example 6 and the comparison between the porous membranes of Experimental Examples 2 and 4 and Experimental Example 7, the same as that of water in Experimental Examples 1 to 4. The aromatic polysulfone block copolymer produced without using a solvent for forming a boiling mixture is more than the aromatic polysulfone block copolymer produced in Experimental Examples 6 to 7 using a solvent for forming a co-boiling mixture with water. However, it was shown that the water permeation rate was improved in each case, and it was possible to provide a film having excellent water permeation.
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。 Each configuration in each embodiment and a combination thereof are examples, and the configuration can be added, omitted, replaced, and other changes are possible without departing from the spirit of the present invention. Moreover, the present invention is not limited to each embodiment, but is limited only to the scope of claims.

Claims (11)

  1.  末端に少なくとも1つのCl原子を有する芳香族ポリスルホン(a)を予め準備する工程と、
     前記芳香族ポリスルホン(a)と、末端に少なくとも1つのヒドロキシ基を有するポリオキシアルキレン化合物(b)と、を溶媒中で反応させる工程を含み、
     前記反応に使用される前記溶媒の総量に対する、水と共沸混合物を形成する溶媒の割合が0~20質量%である、ブロックコポリマーの製造方法。
    A step of preparing an aromatic polysulfone (a) having at least one Cl atom at the terminal in advance, and
    It comprises a step of reacting the aromatic polysulfone (a) with a polyoxyalkylene compound (b) having at least one hydroxy group at the terminal in a solvent.
    A method for producing a block copolymer in which the ratio of the solvent forming an azeotropic mixture with water to the total amount of the solvent used in the reaction is 0 to 20% by mass.
  2.  ゲル浸透クロマトグラフィーにより絶対分子量として取得された、前記芳香族ポリスルホン(a)の重量平均分子量が、30000以上である、請求項1に記載のブロックコポリマーの製造方法。 The method for producing a block copolymer according to claim 1, wherein the weight average molecular weight of the aromatic polysulfone (a) obtained as an absolute molecular weight by gel permeation chromatography is 30,000 or more.
  3.  前記ブロックコポリマーが、芳香族ポリスルホンブロック(A)及びポリオキシアルキレンブロック(B)を含み、
     ゲル浸透クロマトグラフィーにより絶対分子量として取得された、前記ブロックコポリマーの重量平均分子量が、40500~70000である、請求項1又は2に記載のブロックコポリマーの製造方法。
    The block copolymer comprises an aromatic polysulfone block (A) and a polyoxyalkylene block (B).
    The method for producing a block copolymer according to claim 1 or 2, wherein the block copolymer has a weight average molecular weight of 40,500 to 70,000, which is obtained as an absolute molecular weight by gel permeation chromatography.
  4.  前記ポリオキシアルキレンブロック(B)、前記芳香族ポリスルホンブロック(A)、及び前記ポリオキシアルキレンブロック(B)の順に、上記3つのブロックを有する直鎖状トリブロックコポリマー、並びに
     前記ポリオキシアルキレンブロック(B)及び前記芳香族ポリスルホンブロック(A)の上記2つのブロックを有する直鎖状ジブロックコポリマー、
     の少なくとも一方を含む、請求項3に記載のブロックコポリマーの製造方法。
    A linear triblock copolymer having the above three blocks, and the polyoxyalkylene block (B) in the order of the polyoxyalkylene block (B), the aromatic polysulfone block (A), and the polyoxyalkylene block (B). A linear diblock copolymer having the above two blocks of B) and the aromatic polysulfone block (A),
    The method for producing a block copolymer according to claim 3, which comprises at least one of the above.
  5.  前記芳香族ポリスルホンブロック(A)が、下記式(1)で表される構造単位を有する高分子鎖からなる、請求項3又は4に記載のブロックコポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、
     R及びRは、それぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基又はハロゲン原子を表し、
     n1及びn2は、それぞれ独立に、0~4の整数であり、
     n1又はn2が2以上である場合、複数個のR及びRは互いに同一でも異なっていてもよい。]
    The method for producing a block copolymer according to claim 3 or 4, wherein the aromatic polysulfone block (A) is composed of a polymer chain having a structural unit represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In equation (1),
    R 1 and R 2 independently represent an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom.
    n1 and n2 are independently integers of 0 to 4, respectively.
    When n1 or n2 is 2 or more, plural R 1 and R 2 may be the same or different from each other. ]
  6.  前記ポリオキシアルキレンブロック(B)が、下記式(2-1)で表される構造単位を有する高分子鎖からなる、請求項3~5のいずれか一項に記載のブロックコポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    The method for producing a block copolymer according to any one of claims 3 to 5, wherein the polyoxyalkylene block (B) is composed of a polymer chain having a structural unit represented by the following formula (2-1).
    Figure JPOXMLDOC01-appb-C000002
  7.  芳香族ポリスルホンブロック(A)及びポリオキシアルキレンブロック(B)を含むブロックコポリマーであって、
     ゲル浸透クロマトグラフィーにより絶対分子量として取得された、前記ブロックコポリマーの重量平均分子量が、40500~70000である、ブロックコポリマー。
    A block copolymer containing an aromatic polysulfone block (A) and a polyoxyalkylene block (B).
    A block copolymer having a weight average molecular weight of 40,500 to 70,000, which is obtained as an absolute molecular weight by gel permeation chromatography.
  8.  H-NMRにより算出された、前記ポリオキシアルキレンブロック(B)の数平均分子量が、5000以下である、請求項7に記載のブロックコポリマー。 1 The block copolymer according to claim 7, wherein the number average molecular weight of the polyoxyalkylene block (B) calculated by 1 H-NMR is 5000 or less.
  9.  前記ポリオキシアルキレンブロック(B)、前記芳香族ポリスルホンブロック(A)、及び前記ポリオキシアルキレンブロック(B)の順に、上記3つのブロックを有する直鎖状トリブロックコポリマー、及び
     前記ポリオキシアルキレンブロック(B)及び前記芳香族ポリスルホンブロック(A)の上記2つのブロックを有する直鎖状ジブロックコポリマー、
     の少なくとも一方を含む、請求項7又は8に記載のブロックコポリマー。
    A linear triblock copolymer having the above three blocks, and the polyoxyalkylene block (B) in the order of the polyoxyalkylene block (B), the aromatic polysulfone block (A), and the polyoxyalkylene block (B). A linear diblock copolymer having the above two blocks of B) and the aromatic polysulfone block (A),
    The block copolymer according to claim 7 or 8, which comprises at least one of.
  10.  前記芳香族ポリスルホンブロック(A)が、下記式(1)で表される構造単位を有する高分子鎖からなる、請求項7~9のいずれか一項に記載のブロックコポリマー。
    Figure JPOXMLDOC01-appb-C000003
    [式(1)中、
     R及びRは、それぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基又はハロゲン原子を表し、
     n1及びn2は、それぞれ独立に、0~4の整数であり、
     n1又はn2が2以上である場合、複数個のR及びRは互いに同一でも異なっていてもよい。]
    The block copolymer according to any one of claims 7 to 9, wherein the aromatic polysulfone block (A) comprises a polymer chain having a structural unit represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000003
    [In equation (1),
    R 1 and R 2 independently represent an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom.
    n1 and n2 are independently integers of 0 to 4, respectively.
    When n1 or n2 is 2 or more, plural R 1 and R 2 may be the same or different from each other. ]
  11.  前記ポリオキシアルキレンブロック(B)が、下記式(2-1)で表される構造単位を有する高分子鎖からなる、請求項7~10のいずれか一項に記載のブロックコポリマー。
    Figure JPOXMLDOC01-appb-C000004
    The block copolymer according to any one of claims 7 to 10, wherein the polyoxyalkylene block (B) is composed of a polymer chain having a structural unit represented by the following formula (2-1).
    Figure JPOXMLDOC01-appb-C000004
PCT/JP2021/008797 2020-03-09 2021-03-05 Block copolymer production method and block copolymer WO2021182348A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020040191 2020-03-09
JP2020-040191 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021182348A1 true WO2021182348A1 (en) 2021-09-16

Family

ID=77671648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008797 WO2021182348A1 (en) 2020-03-09 2021-03-05 Block copolymer production method and block copolymer

Country Status (1)

Country Link
WO (1) WO2021182348A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033164A1 (en) * 2021-09-06 2023-03-09 住友化学株式会社 Block copolymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239385A (en) * 1999-02-23 2000-09-05 Bayer Ag Production of polyether block copolysulfone
JP2001525856A (en) * 1995-07-27 2001-12-11 サーシ バイオメディカル インコーポレイテッド Block copolymer
JP2004075741A (en) * 2002-08-12 2004-03-11 Asahi Kasei Corp Branched polyethylene oxide-polysulfone block copolymer having excellent blood compatibility
JP2010058066A (en) * 2008-09-04 2010-03-18 Kurita Water Ind Ltd Pressure flotation apparatus
JP2015227391A (en) * 2014-05-30 2015-12-17 東レ株式会社 Amorphous thermoplastic resin and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525856A (en) * 1995-07-27 2001-12-11 サーシ バイオメディカル インコーポレイテッド Block copolymer
JP2000239385A (en) * 1999-02-23 2000-09-05 Bayer Ag Production of polyether block copolysulfone
JP2004075741A (en) * 2002-08-12 2004-03-11 Asahi Kasei Corp Branched polyethylene oxide-polysulfone block copolymer having excellent blood compatibility
JP2010058066A (en) * 2008-09-04 2010-03-18 Kurita Water Ind Ltd Pressure flotation apparatus
JP2015227391A (en) * 2014-05-30 2015-12-17 東レ株式会社 Amorphous thermoplastic resin and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033164A1 (en) * 2021-09-06 2023-03-09 住友化学株式会社 Block copolymer

Similar Documents

Publication Publication Date Title
US7897691B2 (en) Proton exchange membranes for fuel cell applications
JP5464143B2 (en) Blends of branched polyaryl ethers and hydrophilic polymers
KR101546816B1 (en) Ion conducting polymer comprising partially branched multiblock copolymer and use thereof
CN101426836B (en) Aromatic compound and sulfonated polyarylene polymer
JP5674395B2 (en) Novel amphiphilic block copolymer, process for producing the same, polymer electrolyte containing the same, and polymer electrolyte membrane using the same
KR20060115886A (en) Multiblock copolymers containing hydrophilic-hydrophobic segments for proton exchange membrane
Yang et al. Synthesis of poly [arylene ether sulfone-b-vinylidene fluoride] block copolymers
KR100911970B1 (en) Halogenated Aromatic Compound, Copolymer Thereof, and Proton-Conductive Membrane Comprising the Copolymer
WO2007079004A2 (en) Fluorinated polyarylenethioethersulfone polymers having sulfonate pendants and phenyl-endcapping groups for use as proton exchange membranes
Wang et al. Synthesis and characterization of poly (arylene ether ketone)(co) polymers containing sulfonate groups
WO2021182348A1 (en) Block copolymer production method and block copolymer
WO2021182342A1 (en) Block copolymer
CN112673051A (en) Poly (arylene ether)
CN111051385A (en) Novel film polymers and films
CN110922596A (en) Polyether ether benzimide-ether sulfone copolymer, preparation method and application thereof, polyether ether ketone-ether sulfone copolymer and preparation method thereof
JP3852108B2 (en) Polyarylene polymer and proton conducting membrane
JP6894313B2 (en) Aromatic polysulfone composition
JP6987516B2 (en) Aromatic polysulfone, aromatic polysulfone composition, and method for producing aromatic polysulfone.
Lakshmi et al. Synthesis, characterisation and membrane properties of sulphonated poly (aryl ether sulphone) copolymers
CN106076130B (en) Preparation method of bisphenol A/bisphenol fluorene type polyarylethersulfone ketone ultrafiltration membrane
JP2004244517A (en) Polyarylene copolymer, its preparation method and proton conducting membrane
CN109096485A (en) The novel crystallizable polyether-ether-ketone keto-resin and preparation method that can dissolve the side group containing phthalein
Liu et al. Synthesis of novel poly (aryl ether sulfone) s bearing bulky pendants for gas separation membranes
EP1862489B1 (en) Block Copolymer and Use Thereof
KR20140133748A (en) Ion-conducting polymer comprising controlled sulfonated poly(phenyl sulfone) and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP