WO2021182311A1 - ドライエッチング方法、半導体デバイスの製造方法及びドライエッチングガス組成物 - Google Patents

ドライエッチング方法、半導体デバイスの製造方法及びドライエッチングガス組成物 Download PDF

Info

Publication number
WO2021182311A1
WO2021182311A1 PCT/JP2021/008547 JP2021008547W WO2021182311A1 WO 2021182311 A1 WO2021182311 A1 WO 2021182311A1 JP 2021008547 W JP2021008547 W JP 2021008547W WO 2021182311 A1 WO2021182311 A1 WO 2021182311A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic amine
dry etching
atom
hydrocarbon group
silicon oxide
Prior art date
Application number
PCT/JP2021/008547
Other languages
English (en)
French (fr)
Inventor
涼介 澤村
聖唯 鈴木
啓之 大森
章史 八尾
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to KR1020227035563A priority Critical patent/KR20220151210A/ko
Priority to CN202180020720.2A priority patent/CN115315786A/zh
Priority to US17/910,959 priority patent/US20230132629A1/en
Priority to JP2022507131A priority patent/JPWO2021182311A1/ja
Publication of WO2021182311A1 publication Critical patent/WO2021182311A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Definitions

  • the present disclosure relates to a dry etching method for dry etching silicon oxide, a method for manufacturing a semiconductor device using the dry etching method, and a dry etching gas composition.
  • etching a silicon oxide film existing on the surface of a semiconductor wafer as a CVD oxide film, a thermal oxide film, or a natural oxide film.
  • a method for etching such a silicon oxide film wet etching using a chemical solution and plasma etching using a reactive gas plasma are performed.
  • Patent Document 1 gaseous water is added in Patent Document 1, gaseous methanol in Patent Document 2, gaseous acetic acid in Patent Document 3, and gaseous isopropyl alcohol in Patent Document 4, respectively. Therefore, a method of dry etching SiO 2 without using plasma is disclosed.
  • Patent Document 5 supplying a mixed gas containing HF gas and NH 3 gas to the surface of the silicon oxide film on a substrate, and a mixed gas with the silicon oxide film by chemical reaction, ammonium fluorosilicate silicon oxide film AFS layer formation step (Chemical Oxide Removal; COR treatment) in which the reaction product layer is transformed into (AFS) and this reaction product layer is formed on the silicon layer of the substrate, and the AFS layer is heated and sublimated without supplying a mixed gas.
  • COR treatment Chemical Oxide Removal
  • AFS layer formation step in which the reaction product layer is transformed into (AFS) and this reaction product layer is formed on the silicon layer of the substrate, and the AFS layer is heated and sublimated without supplying a mixed gas.
  • a method of etching in two steps of a heating step Post Heat Treatment; PHT treatment
  • Patent Documents 1 to 4 have problems such as insufficient etching rate of SiO 2.
  • Patent Document 5 has a problem that the AFS layer remains as a residue on the surface of the silicon oxide film when only the COR treatment is performed. Further, when a thick AFS layer is formed in the COR treatment, it is necessary to heat the AFS layer to a temperature exceeding 200 ° C. in order to completely remove the AFS layer in the PHT treatment, which damages members other than the silicon oxide film. Was also concerned.
  • the present disclosure describes a dry etching method capable of etching silicon oxide at a sufficient speed even at a low temperature of 200 ° C. or lower without generating a residue, and a semiconductor device using the dry etching method. It is an object of the present invention to provide a manufacturing method, a dry etching gas composition and the like.
  • the present inventors have found that a result of intensive studies, include an organic amine compound as the base in place of NH 3, the silicon oxide reacts with HF and an organic amine compound, the sublimation temperature of the reaction product, fluorosilicate We have found that the reaction product can be removed at low temperature because it is significantly lower than that of ammonium, and that the etching rate of silicon oxide is further increased by using at least two kinds of organic amine compounds, and the present disclosure is completed. I came to let you.
  • the dry etching method of the present disclosure uses a silicon oxide, a gaseous hydrogen fluoride and a gaseous organic amine compound, a gaseous organic amine compound, a hydrogen fluoride salt, or a gaseous hydrogen fluoride, a gas.
  • This is a dry etching method for silicon oxide that reacts hydrogen fluoride salts of organic amine compounds and gaseous organic amine compounds.
  • the organic amine compound is characterized by being an organic amine mixture containing at least two compounds represented by the following general formula (1).
  • N is a nitrogen atom.
  • R 1 is a hydrocarbon group having 1 to 10 carbon atoms and which may have a ring, a hetero atom or a halogen atom.
  • R 2 , R 3 Is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms and may have a ring, a hetero atom or a halogen atom. However, the hydrocarbon group has 3 or more carbon atoms. , A branched chain structure or a cyclic structure.
  • the hetero atom of the hydrocarbon group is a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom. Further, both R 1 and R 2 have 1 or more carbon atoms. In the case of a hydrocarbon group, R 1 and R 2 may be directly bonded to form a cyclic structure.
  • R 3 may be formed.
  • the aromatic ring may be formed in the absence of the present.
  • R 1 , R 2 and R 3 may be the same hydrocarbon group or different hydrocarbon groups.
  • the above-mentioned organic amine mixture can be reacted with the silicon oxide, and the dry etching of the silicon oxide can be performed at a higher speed than in the conventional case.
  • the organic amine mixture contains at least a secondary amine and a tertiary amine, and the composition ratio thereof is the total amount of the secondary amine, the tertiary amine and the secondary amine. It is preferable to contain 10% by volume ppm to 10% by volume. Is preferable.
  • the organic amine mixture contains at least a secondary amine and a tertiary amine, and the composition ratio thereof is such that the secondary amine is compared with the total amount of the tertiary amine and the secondary amine.
  • dry etching of the silicon oxide can be performed at a higher speed.
  • the secondary amine is any one of dimethylamine, diethylamine, ethylisopropylamine and ethylpropylamine
  • the tertiary amine is any one of trimethylamine, triethylamine and dimethylethylamine.
  • the secondary amine is preferably dimethylamine, and the tertiary amine is more preferably trimethylamine.
  • a mixture of gaseous hydrogen fluoride and a gaseous organic amine, a hydrogen fluoride salt of a gaseous organic amine mixture, or a gaseous hydrogen fluoride and a gaseous organic amine mixture are added to the silicon oxide.
  • the hydrogen fluoride salt of the gaseous organic amine mixture is reacted, it is preferable to react without accompanying a plasma state.
  • Etching with a plasma state means that, for example, a halogen-based gas of about 0.1 to 10 Torr is put inside the reaction device, and high-frequency power is applied to the outer coil or the counter electrode to give a low-temperature gas plasma into the reaction device. Is generated, and etching of silicon oxide or the like is performed by the halogen-based active chemical species formed therein.
  • the above-mentioned organic amine mixture can be reacted without causing a plasma state, and the silicon oxide is dried at a speed faster than the conventional case without generating the above-mentioned gas plasma. Etching can be performed.
  • the method for manufacturing a semiconductor device of the present disclosure is characterized by including a step of etching a silicon oxide film by applying the above-mentioned dry etching method to a semiconductor substrate having a silicon oxide film.
  • a step of etching a silicon oxide film by applying the above-mentioned dry etching method to a semiconductor substrate having a silicon oxide film is included.
  • the silicon oxide film can be etched at a high speed, and the target semiconductor device can be manufactured quickly.
  • the dry etching gas composition of the present disclosure is a dry etching gas composition containing hydrogen fluoride and an organic amine mixture, and the organic amine mixture contains at least two compounds represented by the general formula (1). It is characterized by being a mixture of organic amines containing.
  • dry etching gas composition of the present disclosure contains hydrogen fluoride and the above-mentioned organic amine mixture, dry etching of the silicon oxide can be performed at a higher speed than in the conventional case.
  • the organic amine mixture of the present disclosure is an organic amine mixture for use in the above-mentioned dry etching method, and is characterized by containing at least two kinds of compounds represented by the above general formula (1).
  • silicon oxide can be etched at a higher speed than the conventional one even at a low temperature of 200 ° C. or lower without generating a residue.
  • FIG. 1 is a schematic view of a reaction apparatus which is an example of an etching apparatus used in the dry etching method according to the embodiment of the present disclosure.
  • FIG. 2 shows the concentration of amine 2 (amine 2 / (amine 1 + amine 2) (volume ppm)) and the amount of etching when dimethylamine was used as amine 2 in Examples 1 to 3 and Comparative Examples 1 and 2. It is a graph which shows the relationship with.
  • the dry etching method of the present disclosure hydrogen fluoride in a gas and an organic amine compound in a gas, a hydrogen fluoride salt in an organic amine compound in a gas, or hydrogen fluoride in a gas, an organic amine compound in a gas, and A dry etching method for silicon oxide that reacts with a hydrogen fluoride salt of a gaseous organic amine compound.
  • the organic amine compound is characterized by being an organic amine mixture containing at least two compounds represented by the following general formula (1).
  • N is a nitrogen atom.
  • R 1 is a hydrocarbon group having 1 to 10 carbon atoms and which may have a ring, a hetero atom or a halogen atom.
  • R 2 , R 3 Is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms and may have a ring, a hetero atom or a halogen atom. However, the hydrocarbon group has 3 or more carbon atoms. , A branched chain structure or a cyclic structure.
  • the hetero atom of the hydrocarbon group is a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom. Further, both R 1 and R 2 have 1 or more carbon atoms. In the case of a hydrocarbon group, R 1 and R 2 may be directly bonded to form a cyclic structure.
  • R 3 may be formed.
  • the aromatic ring may be formed in the absence of the present.
  • R 1 , R 2 and R 3 may be the same hydrocarbon group or different hydrocarbon groups.
  • an organic amine mixture containing gaseous hydrogen fluoride and at least two compounds represented by the above general formula (1) is supplied to an etching apparatus and brought into contact with a silicon oxide. Dry etch the silicon oxide. That is, a treatment gas containing the hydrogen fluoride and the organic amine mixture, a treatment gas containing a hydrogen fluoride salt of the organic amine mixture, or hydrogen fluoride of the hydrogen fluoride, the organic amine mixture and the machine amine mixture. A processing gas containing a salt is brought into contact with the silicon oxide to dry-etch the silicon oxide.
  • the silicon oxide becomes the hydrogen fluoride and the organic amine mixture. It undergoes a chemical reaction with and changes into a reaction product such as an organic amine salt of hexafluorosilicic acid. Silicon oxide is removed by sublimating this reaction product into a gas at the same time as it is formed, or by thermally decomposing it into a gas.
  • sublimation refers not only to the case where a solid becomes a gas without being thermally decomposed, but also to the case where the solid is thermally decomposed into a gas component.
  • hydrogen fluoride gas and the above-mentioned organic amine mixture may be separately supplied as the processing gas and mixed in the etching apparatus, or hydrogen fluoride and the organic amine mixture are mixed in advance.
  • Hydrogen fluoride salts of a plurality of organic amines obtained by the reaction may be supplied into the etching apparatus as a gas. Even when the hydrogen fluoride gas and the above-mentioned organic amine mixture are separately supplied and mixed in the etching apparatus, hydrogen fluoride salts of a plurality of organic amines are generated at least in a part in the etching apparatus.
  • the three components of the gaseous hydrogen fluoride, the gaseous organic amine mixture, and the hydrogen fluoride salt of the organic amine mixture may coexist and come into contact with the silicon oxide, and the organic amine mixture may be contacted. Only the hydrogen fluoride salt of is in contact with the silicon oxide, and only the mixture of gaseous hydrogen fluoride and the organic amine may be in contact with the silicon oxide. As a result, in any case, the reaction with the silicon oxide still produces an organic amine salt of hexafluorosilicic acid.
  • the mixing ratio of hydrogen fluoride and organic amine mixture contained in the treatment gas is the value obtained by dividing the total number of moles of the organic amine compound contained in the organic amine mixture by the number of moles of hydrogen fluoride, and is 0.001 or more and 100 or less. It is preferable, 0.01 or more and 10 or less is more preferable, and 0.1 or more and 5 or less is particularly preferable.
  • organic amine compound an organic amine mixture containing at least two kinds of the compounds represented by the general formula (1) can be used.
  • examples of R 1 include a methyl group, an ethyl group, a propyl group, a butyl group and the like, and some of the hydrogens constituting these organic groups are fluorine, chlorine and the like. It may be substituted with halogen.
  • examples of R 2 and R 3 include hydrogen atoms, methyl groups, ethyl groups, propyl groups, butyl groups and the like, and some or all of the hydrogen constituting these organic groups is made of halogens such as fluorine and chlorine. It may be replaced.
  • the organic amine represented by the general formula (1) may be a heterocyclic amine having a five-membered ring structure or a six-membered ring structure.
  • the compounds contained in the above organic amine mixture include monomethylamine, dimethylamine, trimethylamine, dimethylethylamine, diethylmethylamine, monoethylamine, diethylamine, triethylamine, mononormalpropylamine, ethylpropylamine, dinormalpropylamine, and the like.
  • Examples thereof include monoisopropylamine, ethylisopropylamine, diisopropylamine, monobutylamine, dibutylamine, monoternary butylamine, diterchary butylamine, pyrrolidine, piperidine, piperazine, pyridine and pyrazine.
  • a compound in which a part or all of the CH bond of the above compound is a CF bond.
  • 2,2,2-Trifluoroethylamine, perfluoroethylamine, bis (2,2,2-trifluoroethyl) amine, perfluorodiethylamine, 3-fluoropyridine 2,2,2-Trifluoroethylamine, perfluoroethylamine, bis (2,2,2-trifluoroethyl) amine, perfluorodiethylamine, 3-fluoropyridine
  • These compounds have a conjugate acid pKa of 3.2 or more of HF (hydrogen fluoride), can form a salt with hydrogen fluoride, and are constant in the temperature range of 20 to 100 ° C. It is preferable in that it has a vapor pressure and can be supplied as a gas without being decomposed in this temperature range.
  • HF hydrogen fluoride
  • the above compounds include monomethylamine, dimethylamine, trimethylamine, triethylamine, monoethylamine, monopropylamine, ethylpropylamine, isopropylamine, ethylisopropylamine, 1,1,1.
  • -Trifluorodimethylamine, 2,2,2-trifluoroethylamine, bis (2,2,2-trifluoroethyl) amine are preferable, and by mixing at least two of these compounds, the organic amine of the present disclosure is used. It is preferably a mixture.
  • the secondary amine and the tertiary amine are preferable as the organic amine compound in that the etching rate of the silicon oxide is high.
  • Specific examples of the secondary amine include dimethylamine, diethylamine, ethylisopropylamine, ethylpropylamine, dinormal propylamine, diisopropylamine, dibutylamine, and diterchary butylamine.
  • Specific examples of the tertiary amine include trimethylamine, dimethylethylamine, diethylmethylamine, and triethylamine.
  • the organic amine mixture of the present disclosure is not particularly limited, and may contain two kinds of organic amines represented by the above general formula (1), or may contain three kinds or more, and is a specific organic amine.
  • Examples of the combination of organic amines constituting the mixture include trimethylamine and dimethylamine, trimethylamine and monomethylamine, trimethylamine and dimethylethylamine, trimethylamine and dimethylamine and monomethylamine and dimethylethylamine, triethylamine and ethylisopropylamine, triethylamine and diethylamine, and the like. Be done.
  • the organic amine mixture may further contain ammonia.
  • the composition ratio of the organic amine mixture preferably contains the secondary amine in an amount of 10% by volume ppm to 10% by volume based on the total amount of the tertiary amine and the secondary amine, and the secondary amine is contained in the tertiary amine. Further, it is more preferable to contain 100 volume ppm to 5000 volume ppm with respect to the total amount of the secondary amine.
  • the secondary amine is any one of dimethylamine, diethylamine, ethylisopropylamine and ethylpropylamine
  • the tertiary amine is any one of trimethylamine, triethylamine and dimethylethylamine.
  • the secondary amine is preferably dimethylamine
  • the tertiary amine is more preferably trimethylamine.
  • the organic amine mixture preferably contains dimethylamine in an amount of 10% by volume ppm to 10% by volume based on the total amount of trimethylamine and dimethylamine, and contains dimethylamine in 100 parts by volume based on the total amount of trimethylamine and dimethylamine. It is more preferably contained in an amount of ppm to 5000 by volume ppm.
  • the dry etching gas composition of the present disclosure is a dry etching gas composition containing hydrogen fluoride and an organic amine mixture, and the organic amine mixture is at least two kinds of compounds represented by the following general formula (1). It is characterized in that it is an organic amine mixture containing.
  • N is a nitrogen atom.
  • R 1 is a hydrocarbon group having 1 to 10 carbon atoms and which may have a ring, a hetero atom or a halogen atom.
  • R 2 , R 3 Is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms and may have a ring, a hetero atom or a halogen atom. However, the hydrocarbon group has 3 or more carbon atoms.
  • a branched chain structure or a cyclic structure is a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom.
  • both R 1 and R 2 have 1 or more carbon atoms.
  • R 1 and R 2 may be directly bonded to form a cyclic structure.
  • R 3 may be formed.
  • the aromatic ring may be formed in the absence of the present.
  • R 1 , R 2 and R 3 may be the same hydrocarbon group or different hydrocarbon groups.
  • the organic amine mixture preferably contains at least a secondary amine and a tertiary amine
  • the secondary amine is any one of dimethylamine, diethylamine, ethylisopropylamine and ethylpropylamine. It is more preferably one kind, and the tertiary amine is more preferably any one of trimethylamine, triethylamine, and dimethylethylamine, the secondary amine is dimethylamine, and the tertiary amine is more preferably trimethylamine.
  • the dry etching gas composition of the present disclosure may be substantially only a mixture of hydrogen fluoride and the above organic amine. Further, the dry etching gas composition may or may not contain an inert gas.
  • the composition ratio of the organic amine mixture constituting the dry etching gas composition preferably contains the secondary amine in an amount of 10% by volume ppm to 10% by volume based on the total amount of the tertiary amine and the secondary amine. It is more preferable that the secondary amine is contained in a ratio of 100% by volume ppm to 5000% by volume with respect to the total amount of the tertiary amine and the secondary amine.
  • the inert gas is preferably at least one selected from the group consisting of N 2 , He, Ne, Ar, Kr and Xe, and Ar and N 2 are more preferable.
  • the proportion of the inert gas contained in the dry etching gas composition is the value obtained by dividing the number of moles of the inert gas by the number of moles of hydrogen fluoride, preferably 0 or more and 100 or less, more preferably 10 or less, and 5 or less. Especially preferable.
  • the contact temperature between the dry etching gas composition and the silicon oxide is equal to or higher than the temperature at which the reaction product of the silicon oxide, hydrogen fluoride, and the organic amine mixture sublimates or thermally decomposes. good.
  • the contact temperature is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and particularly preferably 120 ° C. or lower. Further, for example, the contact temperature is preferably 20 ° C. or higher, more preferably 50 ° C. or higher, and particularly preferably 80 ° C. or higher.
  • the pressure at the time of contact between the dry etching gas composition and the silicon oxide is not particularly limited, but is preferably 0.1 Pa or more and 100 kPa or less, more preferably 0.5 Pa or more and 50 kPa or less, and particularly preferably 1 Pa or more and 10 kPa or less.
  • the temperature and pressure do not have to be constant during the contact between the dry etching gas composition and the silicon oxide, and the temperature and pressure may be changed at regular time intervals.
  • the sublimation of the reaction product may be promoted by providing a time zone in which the temperature is raised or the pressure is lowered at regular intervals.
  • a COR step of bringing the dry etching gas composition into contact with the silicon oxide and a PHT step of sublimating the reaction product without supplying the dry etching gas composition are performed. It is also good.
  • the PHT step may be 200 ° C. or lower.
  • the method for manufacturing a semiconductor device of the present disclosure is characterized by including a step of etching a silicon oxide film by applying the above-mentioned dry etching method to a semiconductor substrate having a silicon oxide film.
  • the semiconductor substrate is usually a silicon substrate, and a silicon film, a silicon nitride film, a metal film, or the like may be exposed on the semiconductor substrate in addition to the silicon oxide film.
  • the silicon oxide film is selectively selected with respect to the silicon nitride film.
  • the (silicon oxide / silicon nitride) etching selectivity is preferably 2.5 or more, more preferably 5 or more, more preferably 8 or more, and particularly preferably 10 or more. ..
  • the (silicon oxide / silicon nitride) etching selectivity is a value obtained by dividing the etching rate of the silicon oxide film by the etching rate of the silicon nitride film.
  • the etching rate is a value obtained by dividing the change in film thickness before and after etching by the time required for etching. Therefore, the higher the (silicon oxide / silicon nitride) etching selectivity, the higher the ratio of etching silicon oxide as compared with silicon nitride.
  • the dry etching method of the present disclosure can be applied to a step of selectively dry etching only SiO 2 from a structure in which SiO 2 is adjacent to SiN.
  • a structure includes a structure in which the SiO 2 film is covered with a SiN film, a structure in which the SiO 2 film and the SiN film are laminated in order, and the like.
  • a laminated film of SiO 2 and SiN is formed on a semiconductor substrate, a through hole is formed in the laminated film, and an etching gas is supplied to the laminated film from the through hole to supply etching gas to the laminated film.
  • the semiconductor device manufacturing method of the present disclosure is not only applied to the above-mentioned semiconductor device manufacturing method, but also to other semiconductor device manufacturing methods involving etching of a silicon oxide film formed on a substrate. can do.
  • a second embodiment of the dry etching method of the present disclosure is a method in which a processing gas containing an organic amine mixture and a processing gas containing hydrogen fluoride are separately supplied to an etching apparatus for etching. That is, in the second embodiment, after the step of supplying the processing gas containing the organic amine mixture in the silicon oxide to the etching apparatus, the step of supplying the processing gas containing hydrogen fluoride to the etching apparatus is performed. A vacuuming step may be performed between the two steps described above.
  • an organic amine mixture containing at least two compounds represented by the general formula (1) shown in the first embodiment can be used. Since the organic amine mixture containing at least two kinds of the compounds represented by the general formula (1) has been described in the first embodiment, detailed description thereof will be omitted here.
  • an organic amine mixture containing a secondary amine and a tertiary amine is preferable, the secondary amine is any one of dimethylamine, diethylamine, ethylisopropylamine, and ethylpropylamine, and the tertiary amine is It is more preferably any one of trimethylamine, triethylamine and dimethylethylamine, and a mixture of organic amines containing trimethylamine and dimethylamine is particularly preferable.
  • dry etching of silicon oxide can be performed at a higher speed than in the conventional case.
  • the organic amine mixture is first introduced into the etching apparatus, and when the silicon oxide and the gaseous organic amine mixture are brought into contact with each other, at least two kinds of organic amine mixtures are formed on the surface of the silicon oxide. It is considered that the organic amine compound is adsorbed.
  • gaseous hydrogen fluoride is introduced into the etching apparatus, and when hydrogen fluoride comes into contact with the silicon oxide adsorbed by the organic amine compound constituting the organic amine mixture, at least two types constituting the adsorbed organic amine mixture are formed. It is believed that the organic amine compound is transformed into a reaction product such as an organic amine salt of hexafluorosilicic acid.
  • the reaction product finally produced is an organic amine salt of hexafluorosilicic acid as in the case of the first embodiment, and the above compound is sublimated into a gas or thermally decomposed at the same time as it is produced. And become a gas.
  • the first gas introduced into the etching apparatus may consist substantially only of the organic amine mixture, and the second gas introduced may consist only of hydrogen fluoride. Further, the organic amine mixture and hydrogen fluoride may or may not contain an inert gas.
  • the inert gas at least one selected from the group consisting of N 2 , He, Ne, Ar, Kr and Xe can be used.
  • the proportion of the inert gas contained in the treatment gas is a value obtained by dividing the number of moles of the inert gas by the number of moles of hydrogen fluoride, and is preferably 0 or more and 100 or less, more preferably 10 or less, and particularly preferably 5 or less.
  • the contact temperature between the organic amine mixture and the silicon oxide is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and 120 ° C. or lower. Is particularly preferred.
  • the contact temperature between hydrogen fluoride and the silicon oxide is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and particularly preferably 120 ° C. or lower.
  • each contact temperature is preferably 20 ° C. or higher, more preferably 50 ° C. or higher, and particularly preferably 80 ° C. or higher.
  • the contact temperature between the organic amine mixture and the silicon oxide and the contact temperature between hydrogen fluoride and the silicon oxide may be the same or different.
  • the pressure at the time of contact between the organic amine mixture and the silicon oxide and the pressure at the time of contact between hydrogen fluoride and the silicon oxide are preferably 0.1 Pa or more and 100 kPa or less, more preferably 0.5 Pa or more and 50 kPa or less. It is particularly preferably 1 Pa or more and 10 kPa or less.
  • the aspect of the silicon oxide to be etched is the same as that of the first embodiment, and the silicon oxide film is selected with respect to the silicon nitride film by the dry etching method according to the second embodiment. Can be etched.
  • the silicon oxide / silicon nitride etching selectivity is preferably 2.5 or more, more preferably 5 or more, and particularly preferably 10 or more.
  • a step of supplying the organic amine mixture may be performed after the step of supplying the processing gas containing hydrogen fluoride gas. Further, the step of supplying the processing gas containing hydrogen fluoride gas and the step of supplying the organic amine mixture may be alternately repeated.
  • a processing container having a mounting portion on which a substrate to be processed having a silicon oxide film is placed and a hydrogen fluoride gas for supplying a processing gas containing hydrogen fluoride to the processing container.
  • the supply section, the organic amine mixture supply section for supplying the dry etching gas composition containing the organic amine mixture to the treatment container, the vacuum exhaust section for reducing the pressure inside the treatment container, and the above-mentioned placing section are heated. Dry etching can be performed by using an etching apparatus provided with a heating unit for performing the process. If necessary, the etching apparatus may further include an inert gas supply unit for supplying the inert gas to the processing container.
  • FIG. 1 is a schematic view of a reaction apparatus 1 which is an example of an etching apparatus used in the dry etching method according to the embodiment of the present disclosure.
  • a stage (mounting unit) 3 heated by a heater (heating unit) 8 is installed in the chamber (processing container) 2 constituting the reaction device 1.
  • a heater (not shown) is also installed around the chamber 2 so that the chamber wall can be heated.
  • the processing gas is introduced from the hydrogen fluoride gas supply unit 5a and the organic amine mixture supply unit 5b installed in the upper part of the chamber 2, and the dry etching gas composition is brought into contact with the sample (processed substrate) 4 installed on the stage 3. Let me.
  • the gas in the chamber 2 is discharged via the gas discharge line 6.
  • the chamber 2 includes an inert gas supply unit 5c, and may supply the inert gas if necessary. Further, a vacuum exhaust pump (vacuum exhaust section) (not shown) is connected to the gas discharge line to create a decompression environment in the chamber 2, and a pressure gauge 7 is installed in the chamber 2. Instead of the hydrogen fluoride gas supply unit 5a and the organic amine mixture supply unit 5b, a hydrogen fluoride gas supply unit for the organic amine mixture may be provided.
  • the operation when removing the silicon oxide from the sample 4 (the substrate to be treated having the silicon oxide film) in the present embodiment will also be briefly described.
  • the chamber 2 After the temperature of the stage 3 is heated to a predetermined value by the heater 8, the chamber 2 is subjected to the conditions based on the first embodiment or the second embodiment from the hydrogen fluoride gas supply unit 5a and the organic amine mixture supply unit 5b.
  • a treatment gas is introduced into the sample 4 and the treatment gas is brought into contact with each other.
  • the reaction product is sublimated at the same time as it is produced by the reaction, and is removed from the chamber 2 through the gas discharge line 6.
  • the reaction device 1 includes a control unit.
  • This control unit consists of, for example, a computer, and includes a program, a memory, and a CPU.
  • the program incorporates a group of steps to carry out a series of operations according to the first embodiment or the second embodiment, and according to the program, adjusting the temperature of the sample 4, opening and closing the valve of each gas supply unit, and so on. The flow rate of each gas is adjusted, the pressure in the chamber 2 is adjusted, and the like.
  • This program is stored in a computer storage medium such as a compact disk, a hard disk, a magneto-optical disk, a memory card, or the like, and is installed in a control unit.
  • the silicon oxide can be etched at a higher speed without using plasma even at a low temperature of 200 ° C. or lower. Is possible.
  • the dry etching method according to the first embodiment or the dry etching method according to the second embodiment even at a low temperature of 200 ° C. or lower, no residue derived from the formation of the reaction product layer is left on the silicon oxide surface. Since it can be etched, it is also possible to etch the silicon oxide in one step without performing the PHT treatment for sublimating the reaction product. As a result, the silicon oxide can be etched more efficiently than the cycle etching in which the etching is performed by switching between the COR treatment and the PHT treatment.
  • the silicon oxide is etched by using this method even when the substrate is not heated to a high temperature exceeding 200 ° C. Therefore, it can be suitably applied to a substrate using a material having low heat resistance.
  • silicon oxide can be selectively etched with respect to polycrystalline silicon.
  • the silicon oxide can be etched with a higher silicon oxide / silicon nitride etching selectivity than the conventional method using ammonia.
  • the silicon oxide can be etched at a higher speed than when water or alcohol is added or when one kind of organic amine is used.
  • Examples 1 to 4 and Comparative Examples 1 to 3 described below dry etching was performed using a reaction device substantially similar to the reaction device shown in FIG. Further, a silicon wafer on which a silicon oxide film was formed was placed in the reaction apparatus as a substrate to be processed, and the etching amount of silicon oxide was measured.
  • Examples 1 to 4, Comparative Examples 1 to 3 First, the substrate to be processed was placed on the stage in the chamber, the inside of the chamber was evacuated, and then the temperature of the stage was set to the temperature of the first treatment shown in Table 1 below. Then, as the first treatment, a treatment gas such as the organic amine mixture shown in Table 1 was supplied into the chamber at a pressure of 30 Torr and held for 30 seconds. Then, the inside of the chamber was evacuated to 1 Torr, and then as a second treatment, hydrogen fluoride (HF) gas was supplied at a pressure of 30 Torr and held for 30 seconds. After that, the inside of the chamber was vacuumed to 10 Pa, replaced with an inert gas, and then the silicon wafer was taken out. The etching amount was calculated by comparing with the thickness of the silicon oxide film measured in 1.
  • a treatment gas such as the organic amine mixture shown in Table 1 was supplied into the chamber at a pressure of 30 Torr and held for 30 seconds.
  • HF hydrogen fluoride
  • Table 1 below shows the types of treatment gases (amine 1 and amine 2) such as organic amine mixtures in the first treatment, and the amine 2 concentration (amine 2 content ratio (volume ppm) with respect to the total amount of amine 1 and amine 2). )) Temperature of the silicon wafer in the first treatment, processing gas (HF) in the second treatment, temperature of the silicon wafer in the second treatment, etching of the silicon oxide film etched by these treatments. Shows the amount. In Examples 1 to 4, as shown in Table 1, the content ratio (volume ppm) of amine 2 to the total amount of amine 1 and amine 2 is changed, but other conditions are the same as described above. Is going.
  • amine 1 and amine 2 such as organic amine mixtures in the first treatment
  • amine 2 concentration amine 2 content ratio (volume ppm) with respect to the total amount of amine 1 and amine 2).
  • Comparative Example 1 As shown in Table 1, only dimethylamine and HF were used instead of the organic amine mixture, in Comparative Example 2, only trimethylamine and HF were used, and in Comparative Example 3, only ammonia was used. And HF are introduced into the chamber under the above-mentioned conditions, respectively, and dry etching is performed.
  • FIG. 2 shows the concentration of amine 2 (amine 2 / (amine 1 + amine 2) (volume ppm)) when dimethylamine was used as amine 2 in Examples 1 to 3 and Comparative Examples 1 and 2 described above.
  • the etching amount is greatly increased as compared with the case where the concentration of dimethylamine is 100% by volume (1,000,000 by volume ppm) and the concentration of dimethylamine is 0 by volume ppm. You can see that there is.
  • the etching amount is increased as compared with the case where the above-mentioned organic amine is used alone. It is presumed that it is. From this, it was confirmed that the etching effect proceeds even with one kind of organic amine compound, but the etching effect is further improved by using two kinds of organic amine compounds (secondary amine + tertiary amine). ..
  • the etching amount of the silicon oxide film was about 140 to.
  • Example 4 using triethylamine having a diethylamine content of 180 ppm, the etching amount of the silicon oxide film was 123 nm.
  • the etching amount tends to increase in the range of 10% by volume ppm to 10% by volume (100,000 ppm) of dimethylamine as compared with dimethylamine alone and trimethylamine alone.
  • the content ratio of dimethylamine is about 100 volume ppm to about 5000 volume ppm
  • the etching amount is about 160 nm or more, and it can be seen that the etching rate is greatly increased in this range.

Abstract

シリコン酸化物に、気体のフッ化水素及び気体の有機アミン化合物、気体の有機アミン化合物のフッ化水素塩、又は、気体のフッ化水素、気体の有機アミン化合物及び気体の有機アミン化合物のフッ化水素塩を反応させるシリコン酸化物のドライエッチング方法であって、上記有機アミン化合物は、下記一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物であることを特徴とするドライエッチング方法。 R-N=R・・・(1) (一般式(1)においてNは窒素原子である。Rは、炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。R、Rは、水素原子又は炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。但し、炭化水素基は、炭素数が3以上の場合にあっては、分岐鎖構造あるいは環状構造をとっていてもよい。炭化水素基のヘテロ原子は、窒素原子、酸素原子、硫黄原子又はリン原子である。更に、RとRが共に炭素数1以上の炭化水素基の場合、RとRが直接結合して環状構造をとっていてもよい。更に、RまたはRが二重結合で直接結合して環状構造を取る場合に、Rが存在せずに芳香環を形成してもよい。また、R、R及びRは、同じ炭化水素基であってもよく、異なる炭化水素基であってもよい。)

Description

ドライエッチング方法、半導体デバイスの製造方法及びドライエッチングガス組成物
本開示は、シリコン酸化物をドライエッチングするドライエッチング方法、該ドライエッチング方法を用いた半導体デバイスの製造方法及びドライエッチングガス組成物に関する。
半導体デバイスの製造プロセスにおいて、CVD系酸化膜や熱酸化膜、自然酸化膜として半導体ウェハの表面に存在するシリコン酸化膜をエッチングする工程がある。このようなシリコン酸化膜のエッチング方法として、薬液を用いるウェットエッチングや、反応性ガスプラズマを利用したプラズマエッチングが行われている。
しかしながら、ウェットエッチングにおいては、エッチング対象でない部材に、薬液による悪影響が生じやすいという問題があった。また、プラズマエッチングでは、プラズマに起因する電気的ダメージをウェハに与えてしまうという問題があった。
これらの問題に対して、プラズマを用いずにドライエッチングする方法が試みられている。例えば、フッ化水素ガスに対して、特許文献1では気体の水を、特許文献2では気体のメタノールを、特許文献3では気体の酢酸を、特許文献4では気体のイソプロピルアルコールを、それぞれ添加して、プラズマを用いずにSiOをドライエッチングする方法が開示されている。
また、SiOを高速にエッチングするために、フッ化水素ガスとアンモニアガスを含む混合ガスを用いる方法が検討されている。例えば、特許文献5には、基板上のシリコン酸化膜の表面にHFガス及びNHガスを含む混合ガスを供給し、シリコン酸化膜と混合ガスとを化学反応させ、シリコン酸化膜をケイフッ化アンモニウム(AFS)に変質させ、この反応生成物層を基板のシリコン層上に生成させるAFS層生成工程(Chemical Oxide Removal;COR処理)と、混合ガスの供給を行わずにAFS層を加熱して昇華又は熱分解させる加熱工程(Post Heat Treatment;PHT処理)の2段階でエッチングする方法が開示されている。
特開平6-181188号公報 特開平8-81788号公報 特表平9-509531号公報 特表2001-503571号公報 特開2007-180418号公報(特許第4890025号公報)
しかしながら、特許文献1~4に記載の方法では、SiOのエッチング速度が十分でない、などの問題点があった。
特許文献5に記載の方法では、仮にCOR処理のみを行った場合、シリコン酸化膜の表面にAFS層が残渣として残るという問題点があった。また、COR処理において厚いAFS層が形成された場合には、PHT処理でAFS層を完全に除去するために、200℃を超える温度に加熱する必要があり、シリコン酸化膜以外の部材へのダメージも懸念されていた。
更に、COR処理に比べてPHT処理の際の処理温度を高くする必要があるため、工程を切り替えるたびにチャンバーを加熱冷却する必要や、工程ごとにチャンバーを分ける必要があるという問題があり、生産性が低下する要因となっていた。
本開示は、上記課題に鑑み、残渣を発生させずに200℃以下の低温でも、十分な速度で、シリコン酸化物をエッチングすることのできるドライエッチング方法、該ドライエッチング方法を用いた半導体デバイスの製造方法及びドライエッチングガス組成物等を提供することを目的とする。
本発明者らは、鋭意検討の結果、NHに代わる塩基として有機アミン化合物を用いても、シリコン酸化物がHFと有機アミン化合物と反応すること、その反応生成物の昇華温度が、ケイフッ化アンモニウムに比べて大幅に低下するため、低温で反応生成物を除去できること、及び、少なくとも2種類の有機アミン化合物を用いることによりシリコン酸化物のエッチング速度がさらに増大することを見出し、本開示を完成させるに至った。
具体的には、本開示のドライエッチング方法は、シリコン酸化物に、気体のフッ化水素及び気体の有機アミン化合物、気体の有機アミン化合物のフッ化水素塩、又は、気体のフッ化水素、気体の有機アミン化合物及び気体の有機アミン化合物のフッ化水素塩を反応させるシリコン酸化物のドライエッチング方法であって、
上記有機アミン化合物は、下記の一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物であることを特徴とする。
Figure JPOXMLDOC01-appb-C000005
(一般式(1)においてNは窒素原子である。Rは、炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。R、Rは、水素原子又は炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。但し、炭化水素基は、炭素数が3以上の場合にあっては、分岐鎖構造あるいは環状構造をとっていてもよい。炭化水素基のヘテロ原子は、窒素原子、酸素原子、硫黄原子又はリン原子である。更に、RとRが共に炭素数1以上の炭化水素基の場合、RとRが直接結合して環状構造をとっていてもよい。更に、RまたはRが二重結合で直接結合して環状構造を取る場合に、Rが存在せずに芳香環を形成してもよい。また、R、R及びRは、同じ炭化水素基であってもよく、異なる炭化水素基であってもよい。)
本開示のドライエッチング方法では、シリコン酸化物に、上記した有機アミン混合物を反応させることができ、従来の場合より早い速度でシリコン酸化物のドライエッチングを行うことができる。
本開示のドライエッチング方法では、上記有機アミン混合物が、少なくとも二級アミン及び三級アミンを含むことが望ましく、その組成割合は、上記二級アミンを上記三級アミン及び上記二級アミンの合計量に対して10体積ppm~10体積%含むことが好ましい。
ことが好ましい。
本開示のドライエッチング方法において、上記有機アミン混合物が、少なくとも二級アミン及び三級アミンを含み、その組成割合が、上記二級アミンを上記三級アミン及び上記二級アミンの合計量に対して10体積ppm~10体積%含むと、より早い速度でシリコン酸化物のドライエッチングを行うことができる。
本開示のドライエッチング方法において、上記二級アミンがジメチルアミン、ジエチルアミン、エチルイソプロピルアミン、エチルプロピルアミンのいずれか1種であり、上記三級アミンがトリメチルアミン、トリエチルアミン、ジメチルエチルアミンのいずれか1種であることが好ましく、上記二級アミンがジメチルアミンであり、上記三級アミンがトリメチルアミンであることがより好ましい。
本開示のドライエッチング方法においては、シリコン酸化物に、気体のフッ化水素及び気体の有機アミン混合物、気体の有機アミン混合物のフッ化水素塩、又は、気体のフッ化水素、気体の有機アミン混合物及び気体の有機アミン混合物のフッ化水素塩を反応させる際、プラズマ状態を伴わずに反応させることが好ましい。
プラズマ状態を伴うエッチングとは、反応装置の内部に、例えば、0.1~10Torr程度のハロゲン系ガス等を入れ,外側のコイルあるいは対向電極に高周波電力を与えて反応装置中に低温のガスプラズマを発生させ、その中にできるハロゲン系の活性化学種によりシリコン酸化物等のエッチングを行うことをいう。
本開示のドライエッチング方法においては、上記した有機アミン混合物を、プラズマ状態を伴わずに反応させることができ、上記したガスプラズマを発生させることなく、従来の場合より早い速度でシリコン酸化物のドライエッチングを行うことができる。
本開示の半導体デバイスの製造方法は、シリコン酸化物膜を有する半導体基板に対して、上述のドライエッチング方法を適用して、シリコン酸化物膜をエッチングする工程を含むことを特徴とする。
本開示の半導体デバイスの製造方法によれば、シリコン酸化物膜を有する半導体基板に対して、上述のドライエッチング方法を適用して、シリコン酸化物膜をエッチングする工程を含むので、半導体基板上のシリコン酸化物膜のエッチングを早い速度で行うことができ、目的の半導体デバイスを迅速に製造することができる。
本開示のドライエッチングガス組成物は、フッ化水素と有機アミン混合物とを含むドライエッチングガス組成物であって、上記有機アミン混合物は、上記一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物であることを特徴とする。
本開示のドライエッチングガス組成物がフッ化水素と上述の有機アミン混合物とを含むので、従来の場合より早い速度でシリコン酸化物のドライエッチングを行うことができる。
本開示の有機アミン混合物は、上述のドライエッチング方法に使用するための有機アミン混合物であって、上記一般式(1)に示される化合物の少なくとも2種を含むことを特徴とする。
本開示のドライエッチング方法により、残渣を発生させずに200℃以下の低温でも、従来に比べてより早い速度で、シリコン酸化物をエッチングすることができる。
図1は、本開示の実施形態に係るドライエッチング方法に用いるエッチング装置の一例である反応装置の概略図である。 図2は、実施例1~3、並びに、比較例1及び2におけるアミン2としてジメチルアミンを使用したときのアミン2の濃度(アミン2/(アミン1+アミン2)(体積ppm))とエッチング量との関係を示すグラフである。
以下、本開示について詳細に説明するが、以下に記載する構成要件の説明は本開示の実施形態の一例であり、これらの具体的内容に限定はされない。その要旨の範囲内で種々変形して実施することができる。
本開示のドライエッチング方法は、シリコン酸化物に、気体のフッ化水素及び気体の有機アミン化合物、気体の有機アミン化合物のフッ化水素塩、又は、気体のフッ化水素、気体の有機アミン化合物及び気体の有機アミン化合物のフッ化水素塩を反応させるシリコン酸化物のドライエッチング方法であって、
上記有機アミン化合物は、下記の一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物であることを特徴とする。
Figure JPOXMLDOC01-appb-C000006
(一般式(1)においてNは窒素原子である。Rは、炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。R、Rは、水素原子又は炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。但し、炭化水素基は、炭素数が3以上の場合にあっては、分岐鎖構造あるいは環状構造をとっていてもよい。炭化水素基のヘテロ原子は、窒素原子、酸素原子、硫黄原子又はリン原子である。更に、RとRが共に炭素数1以上の炭化水素基の場合、RとRが直接結合して環状構造をとっていてもよい。更に、RまたはRが二重結合で直接結合して環状構造を取る場合に、Rが存在せずに芳香環を形成してもよい。また、R、R及びRは、同じ炭化水素基であってもよく、異なる炭化水素基であってもよい。)
[第1の実施形態]
第1の実施形態においては、気体のフッ化水素及び上記一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物を、エッチング装置に供給し、シリコン酸化物に接触させることで、シリコン酸化物をドライエッチングする。すなわち、上記フッ化水素及び上記有機アミン混合物を含む処理ガス、上記有機アミン混合物のフッ化水素塩を含む処理ガス、又は、上記フッ化水素、上記有機アミン混合物及び上記機アミン混合物のフッ化水素塩を含む処理ガスを、シリコン酸化物に接触させシリコン酸化物をドライエッチングする。
シリコン酸化物に、フッ化水素と上記一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物とを含む処理ガスを接触させると、シリコン酸化物がフッ化水素と上記有機アミン混合物と化学反応を起こし、ヘキサフルオロケイ酸の有機アミン塩などの反応生成物に変化する。この反応生成物が、生成すると同時に昇華して気体になるか、熱分解して気体になることで、シリコン酸化物が除去される。なお本開示では、昇華とは、固体が熱分解せずに気体になることを指すだけでなく、固体が熱分解して気体の成分になることも含む場合も指す。
本開示のドライエッチング方法では、処理ガスとして、フッ化水素ガスと上記有機アミン混合物を別々に供給して、エッチング装置内で混合してもよいし、事前にフッ化水素と有機アミン混合物とを反応させて得られた複数の有機アミンのフッ化水素塩をガスとしてエッチング装置内に供給してもよい。フッ化水素ガスと上記有機アミン混合物を別々に供給して、エッチング装置内で混合した場合にも、エッチング装置内で少なくとも一部に複数の有機アミンのフッ化水素塩が生成する。従って、エッチング装置内では、気体のフッ化水素と気体の有機アミン混合物と上記有機アミン混合物のフッ化水素塩の3つの成分が共存して、シリコン酸化物と接触してもよく、有機アミン混合物のフッ化水素塩のみがシリコン酸化物と接触してもよく、気体のフッ化水素と有機アミン混合物のみがシリコン酸化物と接触してもよい。
結果的には、いずれの場合においても、シリコン酸化物との反応により、ヘキサフルオロケイ酸の有機アミン塩が生成することに変わりはない。
処理ガスに含まれるフッ化水素と有機アミン混合物の混合比は、有機アミン混合物に含まれる有機アミン化合物の合計モル数をフッ化水素のモル数で除した値で、0.001以上100以下が好ましく、0.01以上10以下がより好ましく、0.1以上5以下が特に好ましい。
本開示のドライエッチング方法では、上記有機アミン化合物として、上記一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物を使用することができる。
一般式(1)に示す化合物において、Rとしては、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、これらの有機基を構成する一部の水素がフッ素、塩素等のハロゲンにより置換されていてもよい。R及びRとしては、例えば、水素原子、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、これらの有機基を構成する一部又は全部の水素がフッ素、塩素等のハロゲンにより置換されていてもよい。上記一般式(1)に示される有機アミンは、五員環構造又は六員環構造を有する複素環式アミンであってもよい。
上記有機アミン混合物に含まれる化合物の具体例としては、モノメチルアミン、ジメチルアミン、トリメチルアミン、ジメチルエチルアミン、ジエチルメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノノルマルプロピルアミン、エチルプロピルアミン、ジノルマルプロピルアミン、モノイソプロピルアミン、エチルイソプロピルアミン、ジイソプロピルアミン、モノブチルアミン、ジブチルアミン、モノターシャリーブチルアミン、ジターシャリーブチルアミン、ピロリジン、ピペリジン、ピペラジン、ピリジン、ピラジンなどが挙げられる。また、他の具体例として、上記化合物のC-H結合の一部、もしくは全部をC-F結合とした化合物(トリフルオロメチルアミン、1,1,1-トリフルオロジメチルアミン、パーフルオロジメチルアミン、2,2,2-トリフルオロエチルアミン、パーフルオロエチルアミン、ビス(2,2,2-トリフルオロエチル)アミン、パーフルオロジエチルアミン、3-フルオロピリジン)などが挙げられる。
これらの化合物は、共役酸のpKaがHF(フッ化水素)の3.2以上であり、フッ化水素と塩を形成することが可能である上に、20~100℃の温度範囲で一定の蒸気圧を有し、更にはこの温度範囲で分解せず、ガスとして供給することが可能である点で好ましく、これらの化合物の少なくとも2種を混合することにより、本開示の有機アミン混合物とすることができる。
特に、入手が容易であるという点などから、上記化合物としては、モノメチルアミン、ジメチルアミン、トリメチルアミン、トリエチルアミン、モノエチルアミン、モノプロピルアミン、エチルプロピルアミン、イソプロピルアミン、エチルイソプロピルアミン、1,1,1-トリフルオロジメチルアミン、2,2,2-トリフルオロエチルアミン、ビス(2,2,2-トリフルオロエチル)アミンが好ましく、これらの化合物の少なくとも2種を混合することにより、本開示の有機アミン混合物とすることが好ましい。
また、シリコン酸化物のエッチング速度が速い点で、上記有機アミン化合物としては、二級アミン及び三級アミンが好ましい。二級アミンの具体例としては、ジメチルアミン、ジエチルアミン、エチルイソプロピルアミン、エチルプロピルアミン、ジノルマルプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジターシャリーブチルアミンが挙げられる。三級アミンの具体例としては、トリメチルアミン、ジメチルエチルアミン、ジエチルメチルアミン、トリエチルアミンが挙げられる。
本開示の有機アミン混合物は、特に限定されず、上記した一般式(1)に示される有機アミンを2種含んでいてもよく、3種やそれ以上含んでいてもよく、具体的な有機アミン混合物を構成する有機アミンの組み合わせとしては、トリメチルアミンとジメチルアミン、トリメチルアミンとモノメチルアミン、トリメチルアミンとジメチルエチルアミン、トリメチルアミンとジメチルアミンとモノメチルアミンとジメチルエチルアミン、トリエチルアミンとエチルイソプロピルアミン、トリエチルアミンとジエチルアミン、等が挙げられる。
なお、有機アミン混合物には、さらにアンモニアを含んでもよい。
上記有機アミン混合物の組成割合は、上記二級アミンを上記三級アミン及び上記二級アミンの合計量に対して10体積ppm~10体積%含むことが好ましく、上記二級アミンを上記三級アミン及び上記二級アミンの合計量に対して100体積ppm~5000体積ppm含むことがさらに好ましい。
本開示のドライエッチング方法においては、上記二級アミンがジメチルアミン、ジエチルアミン、エチルイソプロピルアミン、エチルプロピルアミンのいずれか1種であり、上記三級アミンがトリメチルアミン、トリエチルアミン、ジメチルエチルアミンのいずれか1種であることが好ましく、上記二級アミンがジメチルアミンであり、上記三級アミンがトリメチルアミンであることがさらに好ましい。
この場合、有機アミン混合物は、ジメチルアミンをトリメチルアミン及びジメチルアミンの合計量に対して10体積ppm~10体積%含むものであることがより好ましく、ジメチルアミンをトリメチルアミン及びジメチルアミンの合計量に対して100体積ppm~5000体積ppm含むものであることがさらに好ましい。
本開示のドライエッチングガス組成物は、フッ化水素と有機アミン混合物とを含むドライエッチングガス組成物であって、上記有機アミン混合物は、下記の一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物であることを特徴とする。
Figure JPOXMLDOC01-appb-C000007
(一般式(1)においてNは窒素原子である。Rは、炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。R、Rは、水素原子又は炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。但し、炭化水素基は、炭素数が3以上の場合にあっては、分岐鎖構造あるいは環状構造をとっていてもよい。炭化水素基のヘテロ原子は、窒素原子、酸素原子、硫黄原子又はリン原子である。更に、RとRが共に炭素数1以上の炭化水素基の場合、RとRが直接結合して環状構造をとっていてもよい。更に、RまたはRが二重結合で直接結合して環状構造を取る場合に、Rが存在せずに芳香環を形成してもよい。また、R、R及びRは、同じ炭化水素基であってもよく、異なる炭化水素基であってもよい。)
また、本開示のドライエッチングガス組成物において、有機アミン混合物は、少なくとも二級アミン及び三級アミンを含むことが好ましく、二級アミンがジメチルアミン、ジエチルアミン、エチルイソプロピルアミン、エチルプロピルアミンのいずれか1種であり、三級アミンがトリメチルアミン、トリエチルアミン、ジメチルエチルアミンのいずれか1種であることがより好ましく、上記二級アミンがジメチルアミンであり、上記三級アミンがトリメチルアミンであることがさらに好ましい。
本開示のドライエッチングガス組成物は、実質的にフッ化水素と上記有機アミン混合物のみであってもよい。また、上記ドライエッチングガス組成物中に不活性ガスを含んでもよいし、含まなくてもよい。
また。ドライエッチングガス組成物を構成する有機アミン混合物の組成割合は、上記二級アミンを上記三級アミン及び上記二級アミンの合計量に対して10体積ppm~10体積%含むことが好ましく、上記二級アミンを上記三級アミン及び上記二級アミンの合計量に対して100体積ppm~5000体積ppmの割合で含むことがさらに好ましい。
不活性ガスとしては、N、He、Ne、Ar、Kr及びXeからなる群より選ばれる少なくとも1種であることが好ましく、Ar、Nがより好ましい。ドライエッチングガス組成物に含まれる不活性ガスの割合は、不活性ガスのモル数をフッ化水素のモル数で除した値で、0以上100以下が好ましく、10以下がより好ましく、5以下が特に好ましい。
ドライエッチングガス組成物とシリコン酸化物との接触温度(シリコン酸化物の温度)は、シリコン酸化物とフッ化水素と有機アミン混合物との反応生成物が、昇華又は熱分解する温度以上であればよい。但し、生産性や被処理基板へのダメージを考えると、接触温度は、200℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることが特に好ましい。また、例えば、接触温度は20℃以上であることが好ましく、50℃以上であることがより好ましく、80℃以上であることが特に好ましい。
ドライエッチングガス組成物とシリコン酸化物との接触する際の圧力は特に限定されないが、0.1Pa以上100kPa以下が好ましく、0.5Pa以上50kPa以下がより好ましく、1Pa以上10kPa以下が特に好ましい。
なお、ドライエッチングガス組成物とシリコン酸化物との接触中に、温度と圧力が一定である必要はなく、一定時間ごとに温度と圧力を変化させてもよい。例えば、一定時間ごとに、温度を高くしたり圧力を下げたりする時間帯を設けて、反応生成物の昇華を促進してもよい。
また、特許文献5に記載のように、ドライエッチングガス組成物とシリコン酸化物とを接触させるCOR工程と、ドライエッチングガス組成物の供給を行わずに反応生成物を昇華させるPHT工程を行ってもよい。但し、本実施形態においてPHT工程は200℃以下であってもよい。
本開示の半導体デバイスの製造方法は、シリコン酸化物膜を有する半導体基板に対して、上述のドライエッチング方法を適用して、シリコン酸化物膜をエッチングする工程を含むことを特徴とする。
半導体基板は、通常はシリコン基板であり、半導体基板上には、シリコン酸化物膜以外に、シリコン膜、シリコン窒化物膜、金属膜などが露出していてもよい。
特に、シリコン酸化物膜とシリコン窒化物膜の両方が露出した被処理基板に対して本実施形態のドライエッチング方法を用いることで、シリコン酸化物膜を、シリコン窒化物膜に対して選択的にエッチングすることができる。(シリコン酸化物/シリコン窒化物)エッチング選択比は、2.5以上であることが好ましく、5以上であることがより好ましく、8以上であることがより好ましく、10以上であることが特に好ましい。(シリコン酸化物/シリコン窒化物)エッチング選択比とは、シリコン酸化物膜のエッチング速度をシリコン窒化物膜のエッチング速度で除した値をいう。また、エッチング速度とは、エッチング前後の膜の厚さの変化を、エッチングに要した時間で除した値をいう。従って、(シリコン酸化物/シリコン窒化物)エッチング選択比が高いほど、シリコン窒化物に比べてシリコン酸化物をエッチングする割合が高くなる。
半導体基板上に半導体デバイスを形成する場合に、SiOがSiNに隣接する構造からSiOのみを選択的にドライエッチングする工程に、本開示のドライエッチング方法を適用することができる。このような構造としては、SiO膜をSiN膜が覆う構造や、SiO膜とSiN膜が順に積層した構造などがある。例えば、3次元メモリの製造プロセスにおいて、半導体基板に、SiOとSiNの積層膜を形成し、この積層膜に貫通孔を形成し、貫通孔から積層膜にエッチングガスを供給して本開示のドライエッチング方法を適用して、SiNを残しながらSiOを選択的にエッチングすることで、多数のSiN層が間隙を有しつつ平行に並んだ構造の半導体デバイスを製造することができる。
本開示の半導体デバイスの製造方法は、上記した半導体デバイスの製造方法のみに適用されるものではなく、基板上に形成されたシリコン酸化物膜のエッチングを伴う他の半導体デバイスの製造方法にも適用することができる。
[第2の実施形態]
本開示のドライエッチング方法の第2の実施形態は、有機アミン混合物を含む処理ガスと、フッ化水素を含む処理ガスを、分けてエッチング装置に供給してエッチングする方法である。すなわち、第2の実施形態では、シリコン酸化物に有機アミン混合物を含む処理ガスをエッチング装置に供給する工程の後に、フッ化水素を含む処理ガスをエッチング装置に供給する工程を行う。上記した2つの工程の間に、真空引き工程を行ってもよい。
上記有機アミン混合物としては、第1の実施形態で示した一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物を使用することができる。一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物については、第1の実施形態で説明したので、ここでは、詳しい説明は省略する。有機アミン混合物のなかでは、二級アミン及び三級アミンを含む有機アミン混合物が好ましく、二級アミンがジメチルアミン、ジエチルアミン、エチルイソプロピルアミン、エチルプロピルアミンのいずれか1種であり、三級アミンがトリメチルアミン、トリエチルアミン、ジメチルエチルアミンのいずれか1種であることがより好ましく、トリメチルアミンとジメチルアミンとを含む有機アミン混合物が特に好ましい。この有機アミン混合物を使用することにより、従来の場合より早い速度でシリコン酸化物のドライエッチングを行うことができる。
第2の実施形態では、最初に有機アミン混合物をエッチング装置内に導入し、シリコン酸化物と気体の有機アミン混合物を接触させると、シリコン酸化物の表面に有機アミン混合物を構成する少なくとも2種類の有機アミン化合物が吸着すると考えられる。その後に気体のフッ化水素をエッチング装置内に導入し、有機アミン混合物を構成する有機アミン化合物が吸着したシリコン酸化物にフッ化水素が接触すると、吸着した有機アミン混合物を構成する少なくとも2種類の有機アミン化合物がヘキサフルオロケイ酸の有機アミン塩などの反応生成物に変化すると考えられる。従って、最終的には生成する反応生成物は、第1実施形態の場合と同様のヘキサフルオロケイ酸の有機アミン塩であり、上記化合物は、生成すると同時に昇華して気体になるか、熱分解して気体になる。
エッチング装置内に導入する最初のガスは、実質的に有機アミン混合物のみからなるものであってもよく、2番目に導入するガスは、フッ化水素のみからなっていてもよい。また、有機アミン混合物やフッ化水素中には不活性ガスを含んでもよいし、含まなくてもよい。不活性ガスとしては、N、He、Ne、Ar、Kr及びXeからなる群より選ばれる少なくとも1種を使用することができる。処理ガスに含まれる不活性ガスの割合は、不活性ガスのモル数をフッ化水素のモル数で除した値で、0以上100以下が好ましく、10以下がより好ましく、5以下が特に好ましい。
シリコン酸化物にそれぞれの処理ガスを供給する工程において、有機アミン混合物とシリコン酸化物との接触温度は200℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることが特に好ましい。また、フッ化水素とシリコン酸化物との接触温度は、200℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることが特に好ましい。また、例えば、それぞれの接触温度は20℃以上であることが好ましく、50℃以上であることがより好ましく、80℃以上であることが特に好ましい。有機アミン混合物とシリコン酸化物との接触温度と、フッ化水素とシリコン酸化物との接触温度は、同じであっても、異なっていてもよい。
有機アミン混合物とシリコン酸化物との接触の際の圧力、フッ化水素とシリコン酸化物との接触の際の圧力は、0.1Pa以上100kPa以下が好ましく、0.5Pa以上50kPa以下がより好ましく、1Pa以上10kPa以下が特に好ましい。
エッチングの対象となるシリコン酸化物の態様も第1の実施形態と同様であることが好ましく、第2の実施形態に係るドライエッチング方法により、シリコン酸化物膜を、シリコン窒化物膜に対して選択的にエッチングすることができる。シリコン酸化物/シリコン窒化物エッチング選択比は、2.5以上であることが好ましく、5以上であることがより好ましく、10以上であることが特に好ましい。
なお、本開示のドライエッチング方法において、フッ化水素ガスを含む処理ガスを供給する工程の後に、有機アミン混合物を供給する工程を行ってもよい。さらには、フッ化水素ガスを含む処理ガスを供給する工程と、有機アミン混合物を供給する工程を、交互に繰り返してもよい。
 [エッチング装置]
本実施形態のドライエッチング方法では、酸化シリコン膜を有する被処理基板を載置する載置部を有する処理容器と、上記処理容器にフッ化水素を含む処理ガスを供給するためのフッ化水素ガス供給部と、上記処理容器に有機アミン混合物を含むドライエッチングガス組成物を供給するための有機アミン混合物供給部と、上記処理容器内を減圧するための真空排気部と、上記載置部を加熱するための加熱部と、を備えたエッチング装置を使用することによりドライエッチングを実施することができる。なお、エッチング装置には、必要に応じて、上記処理容器に不活性ガスを供給するための不活性ガス供給部をさらに備えてもよい。
図1は、本開示の実施形態に係るドライエッチング方法に用いるエッチング装置の一例である反応装置1の概略図である。
反応装置1を構成するチャンバー(処理容器)2内には、ヒーター(加熱部)8により加熱されるステージ(載置部)3が設置されている。また、チャンバー2の周囲にもヒーター(図示せず)が設置されており、チャンバー壁を加熱できるようになっている。チャンバー2上部に設置されたフッ化水素ガス供給部5a及び有機アミン混合物供給部5bから処理ガスを導入し、ステージ3上に設置した試料(被処理基板)4に対しドライエッチングガス組成物を接触させる。チャンバー2内のガスはガス排出ライン6を経由して排出される。チャンバー2は、不活性ガス供給部5cを備えており、必要により不活性ガスを供給してもよい。また、ガス排出ラインには図示しない真空排気ポンプ(真空排気部)が接続され、チャンバー2内を減圧環境にすることができ、さらにチャンバー2には圧力計7が設置されている。なお、フッ化水素ガス供給部5a及び有機アミン混合物供給部5bに代えて、有機アミン混合物のフッ化水素塩ガス供給部を設けてもよい。
本実施形態における試料4(シリコン酸化物膜を有する被処理基板)からシリコン酸化物を除去する場合の操作についても簡単に説明する。
ヒーター8によりステージ3の温度を所定値にまで加熱した後、フッ化水素ガス供給部5a及び有機アミン混合物供給部5bから第1の実施形態又は第2の実施形態に基づいた条件で、チャンバー2内に処理ガスを導入し、試料4と処理ガスとを接触させる。この際に、反応生成物は、反応して生成すると同時に昇華し、ガス排出ライン6を通じてチャンバー2から除去される。
さらに反応装置1は制御部を備えている。この制御部は、例えばコンピュータからなり、プログラム、メモリ、CPUを備えている。プログラムは、第1の実施形態又は第2の実施形態における一連の動作を実施するようにステップ群が組み込まれており、プログラムに従って、試料4の温度の調整、各ガス供給部のバルブの開閉、各ガスの流量の調整、チャンバー2内の圧力の調整などを行う。このプログラムは、コンピュータ記憶媒体、例えばコンパクトディスク、ハードディスク、光磁気ディスク、メモリーカード等に収納され制御部にインストールされる。
[本実施形態の効果]
上記した第1の実施形態に係るドライエッチング方法又は第2の実施形態に係るドライエッチング方法を用いることにより、200℃以下の低温でも、プラズマを用いずにシリコン酸化物をより高速でエッチングすることが可能である。
第1の実施形態に係るドライエッチング方法又は第2の実施形態に係るドライエッチング方法においては、200℃以下の低温でも、反応生成物層の形成に由来する残渣をシリコン酸化物表面に残さずにエッチングすることができるため、反応生成物を昇華させるためのPHT処理を行わずに、一つの工程でシリコン酸化物をエッチングすることも可能である。その結果、COR処理とPHT処理を切り替えてエッチングを行うサイクルエッチングよりも効率的にシリコン酸化物をエッチングすることができる。
第1の実施形態に係るドライエッチング方法又は第2の実施形態に係るドライエッチング方法では、基板を、200℃を超える高温に加熱しない場合でも、本方法を用いることによりシリコン酸化物をエッチングすることができるため、耐熱性の低い材料を使用した基板に対して好適に適用することができる。
第1の実施形態に係るドライエッチング方法又は第2の実施形態に係るドライエッチング方法では、多結晶シリコンに対して選択的にシリコン酸化物をエッチングすることができる。本実施形態のドライエッチング方法では、有機アミン混合物を使用することで、アンモニアを用いる従来の方法よりも高いシリコン酸化物/シリコン窒化物エッチング選択比にて、シリコン酸化物をエッチングすることができる。また、本実施形態のドライエッチング方法では、水やアルコールを添加する場合や1種類の有機アミンを用いる場合と比べると、シリコン酸化物をより高速でエッチングすることができる。
以下に本開示の実施例を比較例とともに挙げるが、本開示は以下の実施例に制限されるものではない。
下記する実施例1~4と比較例1~3では、図1に示す反応装置と略同様の反応装置を使用し、ドライエッチングを行った。また、反応装置内に被処理基板として酸化シリコン膜が形成されたシリコンウェハを載置し、酸化シリコンのエッチング量を測定した。
[実施例1~4、比較例1~3]
まず、チャンバー内のステージ上に被処理基板を載置し、チャンバー内を真空引きしたのち、ステージの温度を下記の表1に示す1回目処理の温度にした。その後、1回目の処理として、チャンバー内に表1に示す有機アミン混合物等の処理ガスを30Torrの圧力となるように供給して30秒間保持した。その後、チャンバー内を1Torrになるまで真空引きし、続いて2回目の処理としてフッ化水素(HF)ガスを30Torrの圧力となるように供給して30秒間保持した。その後、チャンバー内を10Paまで真空引きし、不活性ガスで置換した後にシリコンウェハを取り出し、光干渉式膜厚計(FILMETRICS社製F20)で、それぞれ酸化シリコン膜の膜厚を測定し、エッチング前に測定した酸化シリコン膜の厚さと比較することによりエッチング量を計算した。
下記の表1には、1回目の処理における有機アミン混合物等の処理ガスの種類(アミン1及びアミン2)、アミン2濃度(アミン1及びアミン2の合計量に対するアミン2の含有割合(体積ppm))、1回目の処理の際のシリコンウェハの温度、2回目の処理における処理ガス(HF)、2回目の処理の際のシリコンウェハの温度、これらの処理によりエッチングされた酸化シリコン膜のエッチング量を示している。
なお、実施例1~4では、表1に示すように、アミン1及びアミン2の合計量に対するアミン2の含有割合(体積ppm)を変えているが、その他の条件は、上述した同じ条件で行っている。
一方、比較例1では、表1に示すように、有機アミン混合物ではなく、ジメチルアミンのみとHFとを、また、比較例2では、トリメチルアミンのみとHFとを、さらに、比較例3ではアンモニアのみとHFとを、それぞれ上述の条件でチャンバーに導入してドライエッチングを行っている。
Figure JPOXMLDOC01-appb-T000008
表1の実施例1~3、並びに、比較例1及び2との比較の結果より明らかなように、2種類の有機アミン化合物としてジメチルアミンとトリメチルアミンとを用いることにより、ジメチルアミンのみ(1,000,000体積ppm=100体積%)、トリメチルアミンのみを用いた場合と比較して、エッチング量が大きく増大している。
図2は、上記した実施例1~3、並びに、比較例1及び2におけるアミン2としてジメチルアミンを使用したときのアミン2の濃度(アミン2/(アミン1+アミン2)(体積ppm))とエッチング量との関係を示すグラフであるが、ジメチルアミンの濃度が100体積%(1,000,000体積ppm)及びジメチルアミンの濃度が0体積ppmと比較して、エッチング量が大きく増大していることが分かる。
また、上記の実施例を参照すれば、実施例4に示す2種類の有機アミン化合物(ジエチルアミン+トリエチルアミン)を用いた場合も、上記有機アミンを単独で用いた場合と比較してエッチング量が増大しているものと推定される。
このことにより、1種類の有機アミン化合物であってもエッチングは進行するものの、2種類の有機アミン化合物を用いる(二級アミン+三級アミン)ことによりエッチング効果が更に向上することが確認できた。
具体的には、ジメチルアミン含有割合が38体積ppm、670体積ppm、9500体積ppmのトリメチルアミンとジメチルアミンの混合ガスを用いた実施例1~3においては、酸化シリコン膜のエッチング量は約140~180nmであり、ジメチルアミンガスのみを用いた比較例1及びジメチルアミン/(ジメチルアミン+トリメチルアミン)=0体積ppmの比較例2と比較してエッチング量が大きく増大した。
また、ジエチルアミン含有量が180ppmのトリエチルアミンを用いた実施例4においては酸化シリコン膜のエッチング量は123nmとなった。
また、図2を全体としてみると、ジメチルアミンの含有割合が10体積ppm~10体積%(100,000ppm)の範囲で、ジメチルアミンのみ及びトリメチルアミンのみと比較してエッチング量が増大する傾向がみられ、特にジメチルアミンの含有割合が約100体積ppm~約5000体積ppmでは、エッチング量が約160nm以上となっており、この範囲でエッチング速度が大きく増大していることが分かる。
1  反応装置(エッチング装置)
2  チャンバー(処理容器)
3  ステージ(載置部)
4  試料(被処理基板)
5a  フッ化水素ガス供給部
5b  有機アミン混合物供給部
5c  不活性ガス供給部
6  ガス排出ライン
7  圧力計
8  ヒーター(加熱部) 

Claims (29)

  1. シリコン酸化物に、気体のフッ化水素及び気体の有機アミン化合物、気体の有機アミン化合物のフッ化水素塩、又は、気体のフッ化水素、気体の有機アミン化合物及び気体の有機アミン化合物のフッ化水素塩を反応させるシリコン酸化物のドライエッチング方法であって、
    前記有機アミン化合物は、下記の一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物であることを特徴とするドライエッチング方法。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)においてNは窒素原子である。Rは、炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。R、Rは、水素原子又は炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。但し、炭化水素基は、炭素数が3以上の場合にあっては、分岐鎖構造あるいは環状構造をとっていてもよい。炭化水素基のヘテロ原子は、窒素原子、酸素原子、硫黄原子又はリン原子である。更に、RとRが共に炭素数1以上の炭化水素基の場合、RとRが直接結合して環状構造をとっていてもよい。更に、RまたはRが二重結合で直接結合して環状構造を取る場合に、Rが存在せずに芳香環を形成してもよい。また、R、R及びRは、同じ炭化水素基であってもよく、異なる炭化水素基であってもよい。)
  2. 前記有機アミン混合物が、少なくとも二級アミン及び三級アミンを含む請求項1に記載のドライエッチング方法。
  3. 前記有機アミン混合物の組成割合は、前記二級アミンを前記三級アミン及び前記二級アミンの合計量に対して10体積ppm~10体積%含む請求項2に記載のドライエッチング方法。
  4. 前記有機アミン混合物の組成割合は、前記二級アミンを前記三級アミン及び前記二級アミンの合計量に対して100体積ppm~5000体積ppm含む請求項3に記載のドライエッチング方法。
  5. 前記二級アミンがジメチルアミン、ジエチルアミン、エチルイソプロピルアミン、エチルプロピルアミンのいずれか1種であり、前記三級アミンがトリメチルアミン、トリエチルアミン、ジメチルエチルアミンのいずれか1種である請求項2~4のいずれか1項に記載のドライエッチング方法。
  6. 前記二級アミンがジメチルアミンであり、前記三級アミンがトリメチルアミンである請求項5に記載のドライエッチング方法。
  7. シリコン酸化物に、気体のフッ化水素及び気体の有機アミン混合物、気体の有機アミン混合物のフッ化水素塩、又は、気体のフッ化水素、気体の有機アミン混合物及び気体の有機アミン混合物のフッ化水素塩を反応させる際、プラズマ状態を伴わずに反応させる請求項1~6のいずれか1項に記載のドライエッチング方法。
  8. 前記反応させる際の前記シリコン酸化物の温度が、200℃以下であることを特徴とする請求項1~7のいずれか1項に記載のドライエッチング方法。
  9. 前記反応は、
    前記フッ化水素及び前記有機アミン混合物を含む処理ガス、前記有機アミン混合物のフッ化水素塩を含む処理ガス、又は、前記フッ化水素、前記有機アミン混合物及び前記有機アミン混合物のフッ化水素塩を含む処理ガスを、前記シリコン酸化物に接触させる工程からなることを特徴とする請求項1~8のいずれか1項に記載のドライエッチング方法。
  10. 前記処理ガスに含まれるフッ化水素と前記有機アミン混合物の比は、前記有機アミン混合物に含まれる有機アミン化合物の合計モル数をフッ化水素のモル数で除した値で、0.001以上100以下であることを特徴とする請求項9に記載のドライエッチング方法。
  11. 前記反応は、
    シリコン酸化物に前記有機アミン混合物を含む処理ガスを接触させる工程と、前記シリコン酸化物にフッ化水素を含む処理ガスを接触させる工程からなることを特徴とする請求項1~8のいずれか1項に記載のドライエッチング方法。
  12. シリコン酸化物膜とシリコン窒化物膜の両方が露出した被処理基板に対して、シリコン酸化物膜を、選択的にエッチングする請求項1~11のいずれか1項に記載のドライエッチング方法。
  13. シリコン酸化物膜のシリコン窒化物膜に対する選択比は、2.5以上であることを特徴とする請求項12に記載のドライエッチング方法。
  14. 前記有機アミン混合物が、さらにアンモニアを含む請求項1~13のいずれか1項に記載のドライエッチング方法。
  15. シリコン酸化物膜を有する半導体基板に対して、請求項1~14のいずれか1項に記載のドライエッチング方法を適用して、シリコン酸化物膜をエッチングする工程を含むことを特徴とする半導体デバイスの製造方法。
  16. フッ化水素と有機アミン混合物とを含むドライエッチングガス組成物であって、
    前記有機アミン混合物は、下記の一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物であることを特徴とするドライエッチングガス組成物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)においてNは窒素原子である。Rは、炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。R、Rは、水素原子又は炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。但し、炭化水素基は、炭素数が3以上の場合にあっては、分岐鎖構造あるいは環状構造をとっていてもよい。炭化水素基のヘテロ原子は、窒素原子、酸素原子、硫黄原子又はリン原子である。更に、RとRが共に炭素数1以上の炭化水素基の場合、RとRが直接結合して環状構造をとっていてもよい。更に、RまたはRが二重結合で直接結合して環状構造を取る場合に、Rが存在せずに芳香環を形成してもよい。また、R、R及びRは、同じ炭化水素基であってもよく、異なる炭化水素基であってもよい。)
  17. 前記有機アミン混合物が、少なくとも二級アミン及び三級アミンを含む請求項16に記載のドライエッチングガス組成物。
  18. 前記有機アミン混合物は、前記二級アミンを前記三級アミン及び前記二級アミンの合計量に対して10体積ppm~10体積%含むことを特徴とする請求項17に記載のドライエッチングガス組成物。
  19. 前記二級アミンがジメチルアミン、ジエチルアミン、エチルイソプロピルアミン、エチルプロピルアミンのいずれか1種であり、前記三級アミンがトリメチルアミン、トリエチルアミン、ジメチルエチルアミンのいずれか1種である請求項17又は18に記載のドライエッチングガス組成物。
  20. 前記二級アミンがジメチルアミンであり、前記三級アミンがトリメチルアミンである請求項19に記載のドライエッチングガス組成物。
  21. 前記有機アミン混合物が、さらにアンモニアを含む請求項16~20のいずれか1項に記載のドライエッチングガス組成物。
  22. 前記ドライエッチングガス組成物は、さらに不活性ガスを含み、前記不活性ガスは、N、He、Ne、Ar、Kr及びXeからなる群より選ばれる少なくとも1種である請求項16~21のいずれか1項に記載のドライエッチングガス組成物。
  23. フッ化水素と有機アミン混合物とを含む、ドライエッチングのための組成物であって、
    前記有機アミン混合物は、下記一般式(1)に示される化合物の少なくとも2種を含む有機アミン混合物であることを特徴とする、ドライエッチングのための組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(1)においてNは窒素原子である。Rは、炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。R、Rは、水素原子又は炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。但し、炭化水素基は、炭素数が3以上の場合にあっては、分岐鎖構造あるいは環状構造をとっていてもよい。炭化水素基のヘテロ原子は、窒素原子、酸素原子、硫黄原子又はリン原子である。更に、RとRが共に炭素数1以上の炭化水素基の場合、RとRが直接結合して環状構造をとっていてもよい。更に、RまたはRが二重結合で直接結合して環状構造を取る場合に、Rが存在せずに芳香環を形成してもよい。また、R、R及びRは、同じ炭化水素基であってもよく、異なる炭化水素基であってもよい。)
  24. 請求項1~14のいずれか1項に記載のドライエッチング方法に使用するための有機アミン混合物であって、下記の一般式(1)に示される化合物の少なくとも2種を含むことを特徴とする有機アミン混合物。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(1)においてNは窒素原子である。Rは、炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。R、Rは、水素原子又は炭素数1~10の、環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基である。但し、炭化水素基は、炭素数が3以上の場合にあっては、分岐鎖構造あるいは環状構造をとっていてもよい。炭化水素基のヘテロ原子は、窒素原子、酸素原子、硫黄原子又はリン原子である。更に、RとRが共に炭素数1以上の炭化水素基の場合、RとRが直接結合して環状構造をとっていてもよい。更に、RまたはRが二重結合で直接結合して環状構造を取る場合に、Rが存在せずに芳香環を形成してもよい。また、R、R及びRは、同じ炭化水素基であってもよく、異なる炭化水素基であってもよい。)
  25. 前記有機アミン混合物が、少なくとも二級アミン及び三級アミンを含む請求項24に記載の有機アミン混合物。
  26. 前記有機アミン混合物は、前記二級アミンを前記三級アミン及び前記二級アミンの合計量に対して10体積ppm~10体積%含む請求項25に記載の有機アミン混合物。
  27. 前記二級アミンがジメチルアミン、ジエチルアミン、エチルイソプロピルアミン、エチルプロピルアミンのいずれか1種であり、前記三級アミンがトリメチルアミン、トリエチルアミン、ジメチルエチルアミンのいずれか1種である請求項25又は26に記載の有機アミン混合物。
  28. 前記二級アミンがジメチルアミンであり、前記三級アミンがトリメチルアミンである請求項27に記載の有機アミン混合物。
  29. 前記有機アミン混合物が、さらにアンモニアを含む請求項24~28のいずれか1項に記載の有機アミン混合物。
PCT/JP2021/008547 2020-03-13 2021-03-04 ドライエッチング方法、半導体デバイスの製造方法及びドライエッチングガス組成物 WO2021182311A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227035563A KR20220151210A (ko) 2020-03-13 2021-03-04 드라이 에칭 방법, 반도체 디바이스의 제조 방법 및 드라이 에칭 가스 조성물
CN202180020720.2A CN115315786A (zh) 2020-03-13 2021-03-04 干蚀刻方法、半导体器件的制造方法及干蚀刻气体组合物
US17/910,959 US20230132629A1 (en) 2020-03-13 2021-03-04 Dry etching method, method for producing semiconductor device, and dry etching gas composition
JP2022507131A JPWO2021182311A1 (ja) 2020-03-13 2021-03-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020044078 2020-03-13
JP2020-044078 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021182311A1 true WO2021182311A1 (ja) 2021-09-16

Family

ID=77671653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008547 WO2021182311A1 (ja) 2020-03-13 2021-03-04 ドライエッチング方法、半導体デバイスの製造方法及びドライエッチングガス組成物

Country Status (6)

Country Link
US (1) US20230132629A1 (ja)
JP (1) JPWO2021182311A1 (ja)
KR (1) KR20220151210A (ja)
CN (1) CN115315786A (ja)
TW (1) TW202140858A (ja)
WO (1) WO2021182311A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152941A1 (ja) * 2022-02-14 2023-08-17 株式会社日立ハイテク エッチング処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199827A (ja) * 1990-11-29 1992-07-21 Nisshin Hightech Kk ドライエッチング方法
JPH10303181A (ja) * 1997-04-28 1998-11-13 Mitsui Chem Inc 乾式プロセスガス
KR100870914B1 (ko) * 2008-06-03 2008-11-28 주식회사 테스 실리콘 산화막의 건식 식각 방법
US20090275205A1 (en) * 2008-05-02 2009-11-05 Micron Technology, Inc. Methods of removing silicon oxide and gaseous mixtures for achieving same
US20170316946A1 (en) * 2016-04-29 2017-11-02 Applied Materials, Inc. Methods for chemical etching of silicon

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2833946B2 (ja) 1992-12-08 1998-12-09 日本電気株式会社 エッチング方法および装置
EP0698282B1 (en) 1993-05-13 2000-09-06 Interuniversitair Micro-Elektronica Centrum Vzw Method for etching silicon oxide layers using mixtures of HF and carboxylic acid
US5439553A (en) 1994-03-30 1995-08-08 Penn State Research Foundation Controlled etching of oxides via gas phase reactions
US6065481A (en) 1997-03-26 2000-05-23 Fsi International, Inc. Direct vapor delivery of enabling chemical for enhanced HF etch process performance
JP4890025B2 (ja) 2005-12-28 2012-03-07 東京エレクトロン株式会社 エッチング方法及び記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199827A (ja) * 1990-11-29 1992-07-21 Nisshin Hightech Kk ドライエッチング方法
JPH10303181A (ja) * 1997-04-28 1998-11-13 Mitsui Chem Inc 乾式プロセスガス
US20090275205A1 (en) * 2008-05-02 2009-11-05 Micron Technology, Inc. Methods of removing silicon oxide and gaseous mixtures for achieving same
KR100870914B1 (ko) * 2008-06-03 2008-11-28 주식회사 테스 실리콘 산화막의 건식 식각 방법
US20170316946A1 (en) * 2016-04-29 2017-11-02 Applied Materials, Inc. Methods for chemical etching of silicon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152941A1 (ja) * 2022-02-14 2023-08-17 株式会社日立ハイテク エッチング処理方法
JP7474903B2 (ja) 2022-02-14 2024-04-25 株式会社日立ハイテク エッチング処理方法

Also Published As

Publication number Publication date
KR20220151210A (ko) 2022-11-14
CN115315786A (zh) 2022-11-08
TW202140858A (zh) 2021-11-01
US20230132629A1 (en) 2023-05-04
JPWO2021182311A1 (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
JP6700571B1 (ja) シリコン酸化物のエッチング方法及びエッチング装置
TWI591712B (zh) 使用低溫蝕刻劑沉積與電漿後處理的方向性二氧化矽蝕刻
KR101165970B1 (ko) 기판의 에칭 방법 및 시스템
TWI662615B (zh) 半導體製造裝置及半導體裝置的製造方法
TWI331364B (ja)
JP4805948B2 (ja) 基板処理装置
JP2016058727A (ja) 自己整合コンタクト方式のための犠牲プレメタル誘電体
KR20140004579A (ko) 높은 선택도에 의한 폴리실리콘 및 자연 산화물의 제거
TW201843336A (zh) 半導體製造裝置及半導體裝置的製造方法
WO2021182311A1 (ja) ドライエッチング方法、半導体デバイスの製造方法及びドライエッチングガス組成物
US20220172956A1 (en) Dry etching method
JP2000058505A (ja) シリコンからのSiO2/金属の気相除去
KR101131730B1 (ko) 반도체 웨이퍼의 보호 방법 및 반도체 장치의 제조 방법
TWI306275B (ja)
TW202414569A (zh) 矽氧化物之蝕刻方法及蝕刻裝置
JPH05326477A (ja) 半導体基板表面のハロゲン除去方法
US6420274B1 (en) Method for conditioning process chambers
US20220068657A1 (en) Etching method and etching apparatus
Rotondaro et al. Gas-Phase Wafer Cleaning Technology
EP4307346A1 (en) Surface treatment method, dry etching method, cleaning method, semiconductor device manufacturing method, and etching device
JPH0917766A (ja) 基板の洗浄方法
KR20050112858A (ko) 웨이퍼 상의 레지스트 제거 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507131

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227035563

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21766933

Country of ref document: EP

Kind code of ref document: A1