WO2021181915A1 - Warning display device - Google Patents

Warning display device Download PDF

Info

Publication number
WO2021181915A1
WO2021181915A1 PCT/JP2021/002382 JP2021002382W WO2021181915A1 WO 2021181915 A1 WO2021181915 A1 WO 2021181915A1 JP 2021002382 W JP2021002382 W JP 2021002382W WO 2021181915 A1 WO2021181915 A1 WO 2021181915A1
Authority
WO
WIPO (PCT)
Prior art keywords
alarm
data
unit
polishing
substrate
Prior art date
Application number
PCT/JP2021/002382
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 大滝
健人 吉田
貴正 中村
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2021181915A1 publication Critical patent/WO2021181915A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms

Definitions

  • the present invention relates to an alarm display device mounted on a device such as a substrate processing device.
  • substrate processing apparatus that performs a substrate polishing process.
  • a CMP (Chemical Mechanical Polishing) device which is an example of a substrate polishing device, is used in a process of polishing the surface of a substrate such as a wafer in the manufacture of a semiconductor device.
  • the CMP apparatus includes a polishing unit for polishing a substrate, a cleaning unit for cleaning a substrate, a drying unit for drying a substrate after cleaning, and a substrate for passing between these units. It is equipped with a transport unit and the like.
  • the CMP apparatus is equipped with a large number of devices in each unit in order to realize various functions including polishing, cleaning, drying, and transporting the substrate.
  • the CMP device is equipped with various sensors for directly or indirectly monitoring the operation of a large number of devices
  • the control unit of the CMP device is a unit based on the measured values sent from the various sensors. Control the operation of the equipment inside. For example, the control unit controls the opening degree of the valve arranged in the pipe through which the fluid flows so that the measured value of the flow rate of the liquid sent from the flow rate sensor matches a predetermined target value. Further, the control unit determines whether or not a defect (error) has occurred in the CMP device based on the measured values sent from various sensors, and if a malfunction occurs, an alarm is issued. For example, when the flow rate of the liquid exceeds the upper limit value or the lower limit value set for the target value for a predetermined time, the control unit issues an alarm for an abnormality in the flow rate of the fluid.
  • the number of inquiries regarding the detection conditions of alarms issued from CMP devices has increased.
  • the alarm detection condition may be investigated from the program stored in the control unit.
  • the operation data such as the operation log and / or the control log of the CMP device may be analyzed in cooperation with the user of the CMP device. This type of research and analysis is a relatively laborious task and requires time savings.
  • the operation data at the time of the alarm may be automatically deleted, and it may be difficult to identify the cause of the alarm. Further, when the operation data of the CMP device is stored in the centralized monitoring device of the user or the like, the viewing and analysis of the operation data may not be permitted by the user.
  • the above problem that occurs when trying to identify the cause of the alarm is not limited to the CMP device, but may occur in all devices equipped with a large number of devices.
  • a similar problem occurs in a substrate polishing apparatus that polishes a peripheral portion (also referred to as a bevel portion) of a substrate and a substrate plating apparatus that performs a plating treatment on the surface of a substrate.
  • an object of the present invention is to provide an alarm display device capable of displaying information that helps identify the cause of an alarm.
  • an alarm display device provided in a device equipped with a large number of devices, a data storage unit that stores alarm code data associated with each of the plurality of alarms in advance, the alarm code data, and the alarm code data.
  • a data collection unit that collects at least detailed alarm information data including a combination of EES (Equipment Engineering System) data and register data associated with the alarm code data and collected during a predetermined time, and an alarm have occurred.
  • EES Equipment Engineering System
  • an alarm data storage unit that stores the alarm detailed information data corresponding to the alarm
  • a display unit that can display the alarm detailed information data stored in the alarm data storage unit and a display unit that can display the alarm detailed information data stored in the alarm data storage unit are stored.
  • an alarm display device including a processing unit that graphs measured values of a monitoring sensor included in the detailed alarm information data and displays them on the display unit.
  • the data storage unit stores in advance the alarm coping method associated with each of the alarm code data, and the alarm detailed information data includes the alarm coping method, and the processing.
  • the unit displays the alarm coping method on the display unit.
  • the processing unit creates a moving image of the operating state of the device immediately before the alarm is generated based on the EES data and the register data, and displays the moving image on the display unit.
  • the processing unit when the processing unit can identify the cause of the alarm, the processing unit causes the display unit to display the cause of the alarm.
  • the alarm detailed information data corresponding to the alarm is stored in the alarm data storage unit. Therefore, when identifying the cause of the alarm at a later date, the alarm detailed information data is referred to. can do. Further, since the graph of the measured value of the monitoring sensor related to the alarm can be displayed on the display unit, the graph can be used as a visual aid for identifying the cause of the alarm.
  • FIG. 1 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment.
  • FIG. 2 is a perspective view schematically showing an example of the polishing unit shown in FIG.
  • FIG. 3A is a schematic view showing an example of a sensor arranged in the polishing unit shown in FIG.
  • FIG. 3B is a schematic view showing another example of the sensor arranged in the polishing unit shown in FIG.
  • FIG. 4 is a block diagram schematically showing an alarm display device according to an embodiment.
  • FIG. 5A is a schematic diagram showing an example of alarm code data.
  • FIG. 5B is a schematic diagram showing another example of alarm code data.
  • FIG. 5C is a schematic diagram showing still another example of the alarm code data.
  • FIG. 6 is a schematic diagram showing an example of the alarm history displayed on the display unit.
  • FIG. 7 is a schematic view showing an example of alarm individual information displayed on the display unit when the polishing head position abnormality shown in FIG. 6 is selected.
  • FIG. 8 is an example of a graph of measured values of the monitoring sensor displayed on the display unit.
  • FIG. 9 is a schematic diagram showing another example of alarm individual information.
  • FIG. 10A is an example of a graph of measured values of the flow meter, which is the alarm monitoring sensor shown in FIG. 9.
  • FIG. 10B is an example of a graph of measured values of the pressure gauge, which is the alarm monitoring sensor shown in FIG. 9.
  • FIG. 11 is a schematic diagram for explaining an example of a moving image of the operating state of the substrate polishing apparatus immediately before the alarm is generated.
  • FIG. 12 is another example of a graph of measured values of the flow meter, which is the alarm monitoring sensor shown in FIG.
  • FIG. 13 is a schematic diagram showing an example of alarm occurrence cause information to be displayed on the display unit.
  • FIG. 1 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment.
  • the substrate processing apparatus shown in FIG. 1 is a substrate polishing apparatus (CMP apparatus) that executes a series of polishing processes of polishing the surface of a wafer, which is an example of a substrate, cleaning the polished wafer, and drying the cleaned wafer.
  • CMP apparatus substrate polishing apparatus
  • FIG. 1 will be described as an example of the substrate processing apparatus.
  • the substrate polishing apparatus includes a substantially rectangular housing 10 and a load port 12 on which a substrate cassette accommodating a large number of wafers (substrates) is placed.
  • the load port 12 is arranged adjacent to the housing 10.
  • the load port 12 can be equipped with an open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Unified Pod).
  • SMIF and FOUP are airtight containers that can maintain an environment independent of the external space by storing the substrate cassette inside and covering it with a partition wall.
  • polishing units 14a to 14d for polishing the wafer, a first cleaning unit 16 for cleaning the polished wafer, and a second cleaning unit 18 are cleaned.
  • a drying unit 20 for drying the wafer is housed.
  • the polishing units 14a to 14d are arranged along the longitudinal direction of the substrate processing apparatus, and the cleaning units 16 and 18 and the drying unit 20 are also arranged along the longitudinal direction of the substrate processing apparatus.
  • the substrate polishing apparatus includes a plurality of polishing units 14a to 14d, but the substrate polishing apparatus is not limited to this example.
  • the substrate polishing apparatus may have one polishing unit.
  • the substrate polishing apparatus includes a bevel polishing unit for polishing the peripheral portion (also referred to as a bevel portion) of the substrate in place of the plurality of or one polishing unit, or in addition to the plurality of or one polishing unit. May be.
  • the first substrate transfer robot 22 is arranged in the area surrounded by the load port 12, the polishing unit 14a, and the drying unit 20, and the substrate transfer device 24 is arranged in parallel with the polishing units 14a to 14d.
  • the first substrate transfer robot 22 receives the substrate before polishing from the load port 12 and passes it to the substrate transfer device 24, and receives the dried substrate from the drying unit 20 and returns it to the load port 12.
  • the substrate transfer device 24 conveys the substrate received from the first substrate transfer robot 22 and transfers the substrate to and from each of the polishing units 14a to 14d.
  • Each of the polishing units 14a to 14d polishes the surface of the substrate by sliding the substrate against the polishing surface while supplying the polishing liquid (slurry) to the polishing surface.
  • a second substrate transfer robot 26 that transfers a substrate between the cleaning units 16 and 18 and the substrate transfer device 24 is arranged between the first cleaning unit 16 and the second cleaning unit 18, and the second cleaning is performed.
  • a third substrate transfer robot 28 that transfers a substrate between the units 18 and 20 is arranged between the unit 18 and the drying unit 20.
  • the first substrate transfer robot 22, the substrate transfer device 24, the second substrate transfer robot 26, and the third substrate transfer robot 28 include the load port 12, the polishing units 14a to 14d, the cleaning units 16 and 18, and the drying unit 20.
  • a substrate transfer unit for transferring wafers between them is configured.
  • a substrate cleaning device for scrubbing the substrate by rubbing roll sponges on both the front and back surfaces of the substrate in the presence of a chemical solution is used
  • a pen is used as the second cleaning unit 18.
  • a substrate cleaning device using a mold sponge (pen sponge) is used as the second cleaning unit 18.
  • a substrate cleaning device that scrubs the substrate by rubbing roll sponges on both the front and back surfaces of the substrate in the presence of a chemical solution may be used.
  • a spin drying device is used which holds the substrate, ejects IPA steam from a moving nozzle to dry the substrate, and further rotates the substrate at a high speed to dry the substrate.
  • the substrate is polished by at least one of the polishing units 14a to 14d.
  • the polished substrate is cleaned by the first cleaning unit 16 and the second cleaning unit 18, and the washed substrate is further dried by the drying unit 20.
  • the polished substrate may be cleaned by either the first cleaning unit 16 or the second cleaning unit 18.
  • FIG. 2 is a perspective view schematically showing an example of the polishing unit 14a shown in FIG. Since the polishing units 14a to 14d of the substrate polishing apparatus shown in FIG. 1 have the same configuration as each other, the polishing unit 14a will be described below.
  • the polishing unit 14a shown in FIG. 2 has a polishing table 35 to which a polishing pad 33 having a polishing surface 33a is attached, and a polishing head (top) that holds the wafer W and presses the wafer W against the polishing pad 33 on the polishing table 35. 37), a polishing liquid supply nozzle 38 for supplying a polishing liquid or a dressing liquid (for example, pure water) to the polishing pad 33, and a dresser for dressing the polishing surface 33a of the polishing pad 33. It includes a dressing device 40 having 41.
  • the polishing table 33 is connected to a table motor 31 arranged below the table shaft 35a via a table shaft 35a, and the table motor 31 rotates the polishing table 35 in the direction indicated by the arrow.
  • a polishing pad 33 is attached to the upper surface of the polishing table 35, and the upper surface of the polishing pad 33 constitutes a polishing surface 33a for polishing the wafer.
  • the polishing head 37 is connected to the lower end of the head shaft 36. The polishing head 37 is configured so that the wafer W can be held on the lower surface thereof by vacuum suction.
  • the head shaft 36 is moved up and down by a vertical movement mechanism (not shown).
  • the head shaft 36 is rotatably supported by the head arm 42, and the head arm 42 is driven by the head swivel motor 54 and is configured to swivel around the head swivel shaft 43.
  • the polishing head 37 moves between the polishing position above the polishing pad 33 and the standby position on the side of the polishing pad 33.
  • Wafer W is polished as follows.
  • the polishing head 37 and the polishing table 35 are rotated in the directions indicated by the arrows, and the polishing liquid (slurry) is supplied onto the polishing pad 33 from the polishing liquid supply nozzle 38.
  • the polishing head 37 presses the wafer W against the polishing surface 33a of the polishing pad 33.
  • the surface of the wafer W is polished by the mechanical action of the abrasive grains contained in the polishing liquid and the chemical action of the polishing liquid.
  • the dressing device 40 dresses (conditions) the polished surface 33a.
  • the dressing device 40 rotatably supports the dresser 41 which is slidably contacted with the polishing pad 33, the dresser shaft 45 to which the dresser 41 is connected, the air cylinder 47 provided at the upper end of the dresser shaft 45, and the dresser shaft 45. It is equipped with a dresser arm 48.
  • the lower surface of the dresser 41 constitutes a dressing surface 41a, and the dressing surface 41a is composed of abrasive grains (for example, diamond particles).
  • the air cylinder 47 is arranged on a support base 50 supported by a plurality of columns 51, and these columns 51 are fixed to the dresser arm 48.
  • the dresser arm 48 is driven by the dresser swivel motor 55 and is configured to swivel around the dresser swivel shaft 49.
  • the dresser shaft 45 is rotated by driving a motor (not shown), and the rotation of the dresser shaft 45 causes the dresser 41 to rotate about the dresser shaft 45 in the direction indicated by the arrow.
  • the air cylinder 47 functions as an actuator that moves the dresser 41 up and down via the dresser shaft 45 and presses the dresser 41 against the polishing surface (surface) 33a of the polishing pad 33 with a predetermined pressing force.
  • Dressing of the polishing pad 33 is performed as follows. While the dresser 41 rotates about the dresser shaft 45, pure water is supplied onto the polishing pad 33 from the polishing liquid supply nozzle 38. In this state, the dresser 41 is pressed against the polishing pad 33 by the air cylinder 47, and its dressing surface 41a is slidably contacted with the polishing surface 33a of the polishing pad 33. Further, the dresser arm 48 is swiveled around the dresser swivel shaft 49 to swing the dresser 41 in the radial direction of the polishing pad 33. In this way, the polishing pad 33 is slightly scraped off by the dresser 41, and the surface 33a thereof is dressed (regenerated).
  • the substrate polishing apparatus has a control unit 30 that is located inside the housing 10 and controls the operation of each unit of the substrate polishing apparatus. Further, the substrate polishing apparatus includes various sensors for directly or indirectly monitoring the operation of various devices arranged in each unit in the substrate polishing apparatus. The control unit 30 of the substrate polishing apparatus controls the operation of each apparatus in the substrate polishing apparatus based on the measured values sent from these sensors. Further, the control unit 30 determines whether or not a defect (error) has occurred in the substrate polishing device based on the measured values sent from various sensors, and if a defect occurs, an alarm is issued. It is configured.
  • a defect error
  • the polishing unit 14a of the substrate polishing apparatus includes a polishing liquid supply line 70 for supplying the polishing liquid to the polishing liquid supply nozzle 38, and a pressure gauge arranged in the polishing liquid supply line 70. It has 71 and a flow meter 72.
  • the pressure gauge 71 is a sensor that measures the pressure (supply pressure) of the polishing liquid flowing through the polishing liquid supply line 70
  • the flow meter 72 is a sensor that measures the flow rate of the polishing liquid flowing through the polishing liquid supply line 70.
  • the pressure gauge 71 and the flow meter 72 are connected to the control unit 30, and the measured values of the pressure gauge 71 and the flow meter 72 are transmitted to the control unit 30.
  • the control unit 30 opens the supply valve (flow rate adjusting valve) 76 arranged in the polishing liquid supply line 70 so that the measured value of the flow rate of the polishing liquid sent from the flow meter 72 matches a predetermined target value. Control the degree.
  • control unit 30 is configured to determine whether or not a defect has occurred in the polishing unit 14a based on the measured values sent from the pressure gauge 71 and the flow meter 72. For example, when the measured value of the flow meter 72 deviates from the permissible range defined by the predetermined upper limit value and the predetermined lower limit value for a predetermined time or more, the control unit issues an alarm for an abnormality in the flow rate of the polishing liquid.
  • the control unit 30 stores in advance a predetermined target value and an allowable range of the flow rate of the polishing liquid, and these target values and the allowable range (that is, the upper limit value and the lower limit value) are abnormalities of the polishing liquid in the polishing unit 14a. It functions as a threshold value for determining the presence or absence of occurrence of.
  • the polishing unit 14a of the substrate polishing apparatus includes a liquid leakage sensor 73 attached to the bottom wall 79 of the polishing unit 14a.
  • the liquid leakage sensor 73 is a sensor for detecting the leakage of liquid (for example, slurry and pure water) in the polishing unit 14a.
  • the liquid leakage sensor 73 is also connected to the control unit 30, and the control unit 30 monitors the presence or absence of liquid leakage in the polishing unit 14a. When the on signal is transmitted from the liquid leakage sensor 73 to the control unit 30, the control unit 30 issues a liquid leakage alarm.
  • the head swivel motor 54 arranged in the polishing unit 14a has a rotation position sensor 54a capable of detecting the rotation position (or rotation amount) of the head swivel motor 54.
  • the rotation position sensor 54a is also connected to the control unit 30, and the control unit 30 can determine the position of the polishing head 37 with respect to the polishing pad 33 from the measured value of the rotation position sensor 54a. Further, the control unit 30 monitors whether or not the polishing head 37 has moved to a desired polishing position based on the measured value of the rotation position sensor 54a before starting the polishing of the wafer W. Specifically, when the measured value of the rotation position sensor 54a does not match the predetermined target value, the control unit 30 issues an alarm for the abnormal position of the polishing head 37.
  • the polishing unit 14a has various sensors for monitoring the operation of each device of the polishing unit 14a, and these sensors are also connected to the control unit 30. ..
  • the control unit 30 monitors whether or not a defect has occurred in the polishing unit 14a based on the measured values of various sensors, and if a defect occurs, issues an alarm corresponding to the defect.
  • FIG. 4 is a block diagram schematically showing an alarm display device according to an embodiment.
  • the alarm display device 60 shown in FIG. 4 is connected to the control unit 30 so as to be able to transmit and receive information such as data.
  • the control unit 30 is, for example, a programmable logic controller (PLC), and includes a processing unit 30a and a storage unit 30b.
  • PLC programmable logic controller
  • the control unit 30 may be a dedicated computer or a general-purpose computer (for example, a personal computer), or may include an FPGA (Field-Programmable gate array).
  • the storage unit 30b of the control unit 30 stores a program for executing the processing of the wafer W in each unit.
  • the processing unit 30a of the control unit 30 has a register 30c that temporarily stores register data when executing a program read from the storage unit 30b.
  • the register 30c is a memory device provided inside the processing unit 30a. More specifically, the register 30c is a small-capacity, high-speed memory device for temporarily storing register data when the processing unit 30a executes a program.
  • the register data is data representing a calculation result being processed by the processing unit 30a and a state of the processing unit 30a.
  • various sensors including a pressure gauge 71, a flow meter 72, a liquid leakage sensor 73, and a rotation position sensor 54a are connected to the control unit 30.
  • the control unit 30 controls the operation of the equipment in each unit based on the measured values sent from the various sensors.
  • the control unit 30 transmits the measured values of various sensors and the register data to the alarm display device 60.
  • various sensors may be directly connected to the alarm display device 60.
  • the alarm display device 60 transmits the measured values of various sensors to the control unit 30, and the control unit 30 transmits the register data to the alarm display device 60.
  • the alarm display device 60 shown in FIG. 4 is configured as a human machine interface (HMI) having a display unit 65, and is, for example, a graphical user interface (GUI) having a display unit 65 such as a touch panel.
  • the alarm display device 60 further includes an input unit 68 that receives an operation from the operator, a processing unit 61 that executes processing according to the operator's operation input to the input unit 68, and register data transmitted from the control unit 30.
  • a data collection unit 62 that collects EES data including measured values sent from various sensors and a data storage unit 64 that stores the data collected by the data collection unit 62 are provided.
  • the input unit 68 is, for example, a keyboard and a mouse operated by an operator.
  • the input unit 68 may be built in the display unit 65.
  • the data collection unit 62 collects the register data transmitted from the control unit 30 and the EES data including the measured values of various sensors.
  • the EES data is a general term for data for monitoring the operating status of the substrate polishing apparatus (substrate processing apparatus), and is, for example, a pressure sensor 71, a flow rate sensor 72, a liquid leakage sensor 73, and a rotation position. It includes measured values of various sensors such as the sensor 54a and operation information indicating the operating state of various devices mounted on the substrate polishing apparatus.
  • the operation information also includes position information of the wafer W in the substrate polishing apparatus and unit processing information indicating which unit is executing the processing of the wafer W.
  • the data collecting unit 62 creates alarm detailed information data including at least the alarm code data stored in advance in the data storage unit 64, the register data and the EES data related to the alarm code data, and the alarm details. Information data is stored in the data storage unit 64.
  • the alarm code data stored in the data storage unit 64 includes an alarm code, a name of an alarm corresponding to the alarm code, and a sensor (hereinafter, referred to as "monitoring sensor") to be used when identifying the alarm.
  • the alarm code data shown in FIG. 5A is alarm code data to which the alarm code A001 is attached, and the alarm code A001 corresponds to the alarm of "leakage".
  • the leak is detected, for example, based on the measured value (that is, the on signal) of the leak sensor 73 fixed to the bottom wall 79 of the polishing unit 14a. Therefore, the liquid leakage sensor 73 is a monitoring sensor for an alarm (that is, liquid leakage) to which the alarm code A001 is attached.
  • a pressure sensor provided in the pipe through which the liquid flows (for example, a pressure gauge 71 provided in the polishing liquid supply line 70 through which the polishing liquid flows) is also included in the alarm monitoring sensor to which the alarm code A001 is attached.
  • the example shown in FIG. 5B shows the alarm code data of the abnormal flow rate of the polishing liquid corresponding to the alarm code A002.
  • the abnormal flow rate of the polishing liquid is detected based on the measured value of the flow meter 72 arranged in the polishing liquid supply line 70. Therefore, the flow meter 72 is a monitoring sensor for an alarm (that is, an abnormality in the flow rate of the polishing liquid) to which the alarm code A002 is attached. Further, the abnormal flow rate of the polishing liquid is a defect that may occur when the supply pressure of the polishing liquid fluctuates. Therefore, the pressure gauge 71 provided in the polishing liquid supply line 70 through which the polishing liquid flows is also included in the alarm monitoring sensor to which the alarm code A002 is attached.
  • An abnormality in the flow rate of the polishing liquid may also occur due to an abnormality in the opening degree of the supply valve 76. Therefore, although not shown, when the supply valve 76 is provided with an opening degree sensor, this opening degree sensor is also included in the alarm monitoring sensor to which the alarm code A002 is attached.
  • FIG. 5C shows an alarm code for an abnormality in the polishing head position corresponding to the alarm code A003.
  • the polishing head position abnormality is detected based on the measured value of the rotation position sensor 54a of the head turning motor 54. Therefore, the rotation position sensor 54a is included in the monitoring sensor for the alarm (that is, the polishing head position abnormality) to which the alarm code A003 is attached.
  • Abnormal polishing head position may also occur due to fluctuations in the current and / or voltage supplied to the head swivel motor 54. Therefore, although not shown, if an ammeter and / or a voltmeter is provided in the power supply that supplies the current to the head swirl motor 54, the ammeter and / or the voltmeter is also attached with the alarm code A003. Included in the alarm monitoring sensor.
  • the data collection unit 62 extracts the register data and the EES data associated with the alarm code data from the register data transmitted from the control unit 30 and the EES data including the measured values of various sensors, and extracts the alarm detailed information data.
  • the data collection unit 62 includes the leak sensor 73, which is a monitoring sensor, and the pressure from the register data and the EES data transmitted from the control unit 30.
  • the register data and EES data related to the sensor 71 are extracted.
  • the extracted EES data includes at least the measured value of the liquid leakage sensor 73 and the measured value of the pressure sensor 71.
  • the data collecting unit 62 creates alarm detailed information data by combining the EES data including at least the measured values of the liquid leakage sensor 73 and the measured values of the pressure sensor 71 and the register data related to the EES data. ..
  • the data collection unit 62 creates alarm detailed information data from the register data and EES data accumulated during a predetermined time (for example, 10 seconds).
  • the data storage unit 64 has a storage unit 64a capable of storing various types of data.
  • the data collecting unit 62 updates the alarm detailed information data so that the alarm detailed information data for a predetermined time is accumulated in the storage unit 64a each time the register data and the EES data are transmitted from the control unit 30. go.
  • the control unit 30 transmits an alarm signal corresponding to the defect to the alarm display device 60, and the data collection unit 62 that has received the alarm signal responds to the alarm signal and said that.
  • the alarm detailed information data stored in the storage unit 64a at the time of receiving the alarm signal is stored in the alarm data storage unit 64b. By this operation, it becomes possible to use the detailed alarm information data immediately before the alarm is generated when identifying the cause of the alarm at a later date.
  • the alarm history is stored in the storage unit 30b of the control unit 30 and / or the data storage unit 64 of the alarm display device 60.
  • the data collection unit 62 is provided separately from the processing unit 61, but this embodiment is not limited to this example.
  • the processing unit 61 may also serve as the data collecting unit 62, or the data collecting unit 62 may be built in the processing unit 61.
  • FIG. 6 is a schematic diagram showing an example of the alarm history displayed on the display unit 65.
  • the alarm history includes the name of the issued alarm, the alarm code corresponding to the alarm, the alarm generation unit, and the alarm generation date and time.
  • the operator can select an alarm for identifying the cause of occurrence via the input unit 68.
  • FIG. 7 is a schematic view showing an example of alarm individual information displayed on the display unit 65 when the polishing head position abnormality shown in FIG. 6 is selected.
  • the individual alarm information shown in FIG. 7 includes the above-mentioned monitoring sensor and alarm generation conditions in addition to the alarm code, alarm name, alarm generation date and time, and alarm generation unit.
  • the alarm generation condition is associated with each of the alarm code data.
  • the alarm generation condition is included in the alarm code data stored in the data storage unit 64, for example, and the data collection unit 62 can create the alarm detailed information data including the alarm generation condition.
  • the data storage unit 64 may store the alarm generation condition in advance separately from the alarm code data.
  • the data collection unit 62 creates the alarm detailed information data so as to include the alarm generation condition associated with the alarm code data, and the processing unit 61 (or the data collection unit 62) creates the created alarm detailed information. Based on the data, the alarm individual information including the alarm generation condition is displayed on the display unit 65.
  • the screen displayed on the display unit 65 has an EES information button 80, and the operator operates the input unit 68 to press the EES information button 80 on the screen. Can be done.
  • the display unit 65 is a touch panel, the operator can directly press the EES information button 80 on the screen.
  • the processing unit 61 (or the data collecting unit 62) graphs the measured value of the monitoring sensor included in the EES data of the detailed alarm information data and displays it on the display unit 65.
  • FIG. 8 is an example of a graph of measured values of the monitoring sensor displayed on the display unit 65.
  • the vertical axis represents the measured value of the monitoring sensor (in this embodiment, the rotation position sensor 54a), and the horizontal axis represents time.
  • the set value of the rotation position sensor 54a corresponding to the desired polishing position of the polishing head 37 is shown by a thick solid line.
  • the operator can operate the head swivel motor 54 immediately before the alarm is generated (that is, the movement operation of the polishing head 37). ) Can recognize the details. Therefore, it becomes easy to identify the cause of the alarm based on the graph. That is, the graph of the measured value of such a monitoring sensor can be used as a visual aid for identifying the cause of the alarm.
  • FIG. 9 is a schematic diagram showing another example of individual alarm information.
  • FIG. 10A is an example of a graph of the measured values of the flow meter 72, which is the alarm monitoring sensor shown in FIG. 9, and
  • FIG. 10B is a graph of the measured values of the pressure gauge 71, which is the alarm monitoring sensor shown in FIG. This is an example.
  • the vertical axis represents the measured value of the monitoring sensor (that is, the flow meter 72 in FIG. 10A and the pressure gauge 71 in FIG. 10B), and the horizontal axis represents time. show. Since the configuration of the present embodiment, which is not particularly described, is the same as that of the embodiments shown in FIGS. 7 and 8, the duplicate description thereof will be omitted.
  • the alarm of the alarm individual information shown in FIG. 9 is an abnormal flow rate of the polishing liquid.
  • the monitoring sensor for the alarm of the abnormal flow rate of the polishing liquid includes the flow meter 72 and the pressure gauge 71. Therefore, when the EES information button 80 is pressed, the processing unit 61 displays a graph of the measured value of the flow meter 72 (see FIG. 10A) and a graph of the measured value of the pressure gauge 71 (see FIG. 10B) immediately before the alarm is generated. Display on 65.
  • a target value of the flow rate of the polishing liquid and an upper limit value and a lower limit value of the flow rate set with respect to the target value are drawn. Therefore, the operator who sees the graph of the measured values of the flow meter 72 displayed on the display unit 65 can recognize that the alarm has occurred because the flow rate of the polishing liquid exceeds the upper limit value (or the lower limit value). ..
  • the set value of the pressure of the polishing liquid is drawn. Therefore, the operator who sees the graph of the measured value of the pressure gauge 71 displayed on the display unit 65 can confirm the fluctuation of the supply pressure of the polishing liquid with respect to the set value. In the example shown in FIG. 10B, it can be confirmed that the measured value of the pressure gauge 71 greatly exceeds the set value and rises. Therefore, the operator who has confirmed the graphs shown in FIGS. 10A and 10B can recognize that the flow rate abnormality of the polishing liquid has occurred due to the increase in the supply pressure of the polishing liquid. That is, the operator can identify the cause of the abnormal flow rate of the polishing liquid as an increase in the supply pressure of the polishing liquid. In this way, by showing the graph of the measured value of the monitoring sensor included in the EES data on the display unit 65, the graph can be used as an aid for identifying the cause of the alarm occurrence through the visual sense.
  • the processing unit 61 may display the alarm coping method on the display unit 65.
  • the alarm coping method is a coping method for the alarm occurrence cause estimated in advance.
  • the alarm coping method is associated with each of the alarm code data and is stored in the data storage unit 64 in advance. In one embodiment, the alarm coping method may be included in the alarm code data.
  • the data collection unit 62 creates the alarm detailed information data so as to include the alarm response method, and the processing unit 61 (or the data collection unit 62) displays the alarm detailed information data including the alarm response method. Displayed in unit 65.
  • the flow meter 72 has not been able to accurately measure the flow rate as one of the causes of the alarm. Therefore, confirmation of the measured value of the flow meter 72, calibration of the flow meter 72, and replacement of the flow meter 72 are listed as alarm coping methods. Further, since the abnormality of the supply pressure of the polishing liquid is estimated as one of the causes of the alarm, the confirmation of the measured value of the pressure gauge 71 is also mentioned as one of the alarm coping methods.
  • the processing unit 61 may create a moving image of the operating status of the device immediately before the alarm is generated based on the register data and the EES data included in the detailed alarm information data, and display the moving image on the display unit 65.
  • the display unit 65 is provided with a moving image button 82, and by pressing the moving image button 82, a moving image of the operating status of the device immediately before the alarm is generated can be displayed on the display unit 65. can.
  • FIG. 11 is a schematic diagram for explaining an example of a moving image of the operating state of the substrate polishing apparatus immediately before the alarm is generated.
  • a schematic view showing the entire substrate polishing apparatus is drawn on the display unit 65, and the operating unit is hatched.
  • the operator who has watched this video can recognize the unit and the device that were operating immediately before the alarm was generated.
  • the operator can recognize that the polishing unit 14b and the first cleaning unit 16 are executing the polishing process of the wafer W and the cleaning process of the wafer W.
  • the operator receives the wafer W arranged in the substrate cassette 90a arranged in the load port 12 by the hand 95 of the first substrate transfer robot 22 that the head arm 42 of the polishing unit 14a is rotating. It can be recognized from the moving image that the wafer W is being transferred to and that the substrate transfer device 24 is transferring the wafer W.
  • the operation button sequence 87 is also displayed on the display unit 65. By pressing the various buttons arranged in the operation button row 87, various moving image operations such as playing, pausing, stopping, fast-forwarding, and rewinding the moving image can be executed.
  • FIG. 12 is another example of a graph of measured values of the flow meter 72, which is the alarm monitoring sensor shown in FIG. In the graph shown in FIG. 12, the measured values of the flow meter 72 diverge infinitely. This graph can be viewed by pressing the EES information button 80 displayed on the display unit 65.
  • the processing unit 61 can determine from the EES data for creating the graph that the flow meter 72 has a failure and that the failure of the flow meter 72 is the cause of the alarm. .. In this way, when the processing unit 61 can identify the cause of the alarm, the processing unit 61 may display the cause of the alarm on the display unit 65.
  • the processing unit 61 When the processing unit 61 displays the alarm occurrence cause on the display unit, the processing unit 61 causes the display unit 65 to display the occurrence cause button 65 (see the virtual line (dotted line) in FIG. 9). In this case, when the operator presses the occurrence cause button 65, the processing unit 61 causes the display unit 65 to display the alarm occurrence cause information.
  • FIG. 13 is a schematic diagram showing an example of alarm occurrence cause information displayed on the display unit 65.
  • the alarm occurrence cause information includes at least an alarm occurrence cause (in FIG. 13, a failure of the flow meter 72) and a countermeasure (replacement of the flow meter 72 in FIG. 13), and this information is displayed on the display unit 65. Display it. It is assumed that the operator wants to check the transition of the measured value of the monitoring sensor (in FIG. 13, the transition of the measured value of the flow meter 72). Therefore, the alarm occurrence cause information may include a method of confirming the transition of the measured value of the monitoring sensor (in FIG. 13, the transition of the measured value of the flow meter 72). In the example shown in FIG.
  • the method of confirming the transition of the measured value of the flow meter 72, which is the monitoring sensor, is to press the EES information button 80.
  • the EES information button 80 When the operator presses the EES information button 80, the graph shown in FIG. 12 is displayed on the display unit 65, so that the operator can easily confirm that the flow meter 72 is out of order.
  • the alarm display device is mounted on a substrate polishing apparatus (CMP apparatus) which is an example of a substrate processing apparatus.
  • CMP apparatus substrate polishing apparatus
  • the substrate processing apparatus is not limited to these embodiments.
  • an alarm display device may be mounted on a substrate processing device such as a substrate polishing device for polishing an edge portion of a substrate and a substrate plating device.
  • the alarm display device can be mounted on any device as long as it is a device on which a large number of devices are mounted and malfunctions of these devices are monitored from the measured values of various sensors.
  • the present invention can be used for an alarm display device mounted on a device such as a substrate processing device.
  • Alarm display device 61 Processing unit 62
  • Data collection unit 64
  • Data storage unit 64a Storage unit
  • Alarm data storage unit 65
  • Display unit 68
  • Input unit 71
  • Pressure gauge 72
  • Flow meter 73
  • Leakage sensor 80
  • Video button 83

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

The present invention relates to a warning display device installed in a device such as a substrate processing device. A warning display device (60) is provided with: a data accumulating unit (64) which stores, in advance, warning code data associated with each of a plurality of warnings; a data collecting unit (62) which collects detailed warning information data including the warning code data, and a combination of EES data and register data, associated with the warning code data and collected during a prescribed period; a warning data storage unit (64b) which, when a warning has been issued, stores the detailed warning information data corresponding to the warning; a display unit (65) capable of displaying the detailed warning information data stored in the warning data storage unit (64b); and a processing unit (61) which converts measured values from monitoring sensors, included in the detailed warning information data stored in the warning data storage unit (64b), into a graph, and displays the same on the display unit.

Description

警報表示装置Alarm display device
 本発明は、基板処理装置などの装置に搭載される警報表示装置に関する。 The present invention relates to an alarm display device mounted on a device such as a substrate processing device.
 近年、半導体ウエハなどの基板に対して各種処理を行うために様々な基板処理装置が用いられている。この種の基板処理装置の例には、基板の研磨処理を行う基板研磨装置が含まれる。 In recent years, various substrate processing devices have been used to perform various processing on substrates such as semiconductor wafers. Examples of this type of substrate processing apparatus include a substrate polishing apparatus that performs a substrate polishing process.
 基板研磨装置の一例であるCMP(Chemical Mechanical Polishing)装置は、半導体デバイスの製造において、ウエハなどの基板の表面を研磨する工程に使用される。CMP装置は、基板の研磨処理を行うための研磨ユニット、基板の洗浄処理を行う洗浄ユニット、洗浄後の基板の乾燥処理を行うための乾燥ユニット、およびこれらユニット間で基板の受け渡しを行うための搬送ユニットなどを備えている。CMP装置は、基板の研磨、洗浄、乾燥、及び搬送を含む様々な機能を実現するために、各ユニット内に多数の機器を搭載している。 A CMP (Chemical Mechanical Polishing) device, which is an example of a substrate polishing device, is used in a process of polishing the surface of a substrate such as a wafer in the manufacture of a semiconductor device. The CMP apparatus includes a polishing unit for polishing a substrate, a cleaning unit for cleaning a substrate, a drying unit for drying a substrate after cleaning, and a substrate for passing between these units. It is equipped with a transport unit and the like. The CMP apparatus is equipped with a large number of devices in each unit in order to realize various functions including polishing, cleaning, drying, and transporting the substrate.
 さらに、CMP装置は、多数の機器の動作を直接的または間接的に監視するための各種センサを備えており、CMP装置の制御部は、各種センサから送られてくる測定値に基づいて各ユニット内の機器の動作を制御する。例えば、制御部は、流量センサから送られてくる液体の流量の測定値が所定の目標値に一致するように、該流体が流れる配管に配置されたバルブの開度を制御する。さらに、制御部は、各種センサから送られてくる測定値に基づいてCMP装置に不具合(エラー)が発生したか否かを決定しており、不具合が発生した場合は、警報を発する。例えば、制御部は、上記液体の流量が上記目標値に対して設定された上限値または下限値を所定時間超過した場合は、流体の流量異常の警報を発する。 Further, the CMP device is equipped with various sensors for directly or indirectly monitoring the operation of a large number of devices, and the control unit of the CMP device is a unit based on the measured values sent from the various sensors. Control the operation of the equipment inside. For example, the control unit controls the opening degree of the valve arranged in the pipe through which the fluid flows so that the measured value of the flow rate of the liquid sent from the flow rate sensor matches a predetermined target value. Further, the control unit determines whether or not a defect (error) has occurred in the CMP device based on the measured values sent from various sensors, and if a malfunction occurs, an alarm is issued. For example, when the flow rate of the liquid exceeds the upper limit value or the lower limit value set for the target value for a predetermined time, the control unit issues an alarm for an abnormality in the flow rate of the fluid.
特開2015-88591号公報Japanese Unexamined Patent Publication No. 2015-88591
 近年、CMP装置から発せられた警報の検出条件の問い合わせ件数が増加している。問い合わせのあった警報、および該警報の発生状況によっては、警報の検出条件を制御部に格納されたプログラムから調査する場合もある。さらに、警報の発生原因を特定するために、CMP装置のユーザーと協力して、該CMP装置の動作ログおよび/または制御ログなどの動作データの解析を行う場合もある。この種の調査および解析は比較的手間のかかる作業であり、時間短縮が求められている。 In recent years, the number of inquiries regarding the detection conditions of alarms issued from CMP devices has increased. Depending on the inquired alarm and the occurrence status of the alarm, the alarm detection condition may be investigated from the program stored in the control unit. Further, in order to identify the cause of the occurrence of the alarm, the operation data such as the operation log and / or the control log of the CMP device may be analyzed in cooperation with the user of the CMP device. This type of research and analysis is a relatively laborious task and requires time savings.
 さらに、警報の発生から長時間が経過していると、警報発生時の動作データが自動で消去されていることがあり、警報の発生原因を特定することが困難になる場合がある。また、CMP装置の動作データがユーザーの集中監視装置などに記憶されている場合は、動作データの閲覧および解析がユーザーから許可されない場合もある。 Furthermore, if a long time has passed since the alarm was generated, the operation data at the time of the alarm may be automatically deleted, and it may be difficult to identify the cause of the alarm. Further, when the operation data of the CMP device is stored in the centralized monitoring device of the user or the like, the viewing and analysis of the operation data may not be permitted by the user.
 なお、警報の発生原因を特定しようとする際に発生する上記問題は、CMP装置に限られず、多数の機器を備えた装置全般に発生しうる。例えば、基板の周縁部(ベベル部とも称される)を研磨する基板研磨装置、および基板の表面にめっき処理を施す基板めっき装置でも、同様の問題が発生する。 The above problem that occurs when trying to identify the cause of the alarm is not limited to the CMP device, but may occur in all devices equipped with a large number of devices. For example, a similar problem occurs in a substrate polishing apparatus that polishes a peripheral portion (also referred to as a bevel portion) of a substrate and a substrate plating apparatus that performs a plating treatment on the surface of a substrate.
 そこで、本発明は、警報の発生原因を特定する際の助けとなる情報を表示可能な警報表示装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an alarm display device capable of displaying information that helps identify the cause of an alarm.
 一態様では、多数の機器を搭載する装置に設けられる警報表示装置であって、複数の警報のそれぞれに関連付けられた警報コードデータを予め記憶しているデータ蓄積部と、前記警報コードデータと、該警報コードデータに関連付けられ、所定の時間の間に収集されたEES(Equipment Engineering System)データおよびレジスタデータの組み合わせと、を少なくとも含む警報詳細情報データを収集するデータ収集部と、警報が発生したときに、該警報に対応する前記警報詳細情報データを記憶する警報データ記憶部と、前記警報データ記憶部に記憶された警報詳細情報データを表示可能な表示部と、前記警報データ記憶部に記憶された警報詳細情報データに含まれる監視センサの測定値をグラフ化して、前記表示部に表示させる処理部と、を備えたことを特徴とする警報表示装置が提供される。 In one aspect, an alarm display device provided in a device equipped with a large number of devices, a data storage unit that stores alarm code data associated with each of the plurality of alarms in advance, the alarm code data, and the alarm code data. A data collection unit that collects at least detailed alarm information data including a combination of EES (Equipment Engineering System) data and register data associated with the alarm code data and collected during a predetermined time, and an alarm have occurred. Occasionally, an alarm data storage unit that stores the alarm detailed information data corresponding to the alarm, a display unit that can display the alarm detailed information data stored in the alarm data storage unit, and a display unit that can display the alarm detailed information data stored in the alarm data storage unit are stored. Provided is an alarm display device including a processing unit that graphs measured values of a monitoring sensor included in the detailed alarm information data and displays them on the display unit.
 一態様では、前記データ蓄積部は、前記警報コードデータのそれぞれに関連付けられた警報対処方法を予め記憶しており、前記警報詳細情報データには、前記警報対処方法が含まれており、前記処理部は、前記警報対処方法を前記表示部に表示させる。
 一態様では、前記処理部は、前記EESデータおよび前記レジスタデータに基づいて、前記警報発生直前の前記機器の動作状況の動画を作成し、該動画を前記表示部に表示させる。
 一態様では、前記処理部が前記警報の発生原因を特定できる場合は、前記処理部は、前記表示部に前記発生原因を表示させる。
In one aspect, the data storage unit stores in advance the alarm coping method associated with each of the alarm code data, and the alarm detailed information data includes the alarm coping method, and the processing. The unit displays the alarm coping method on the display unit.
In one aspect, the processing unit creates a moving image of the operating state of the device immediately before the alarm is generated based on the EES data and the register data, and displays the moving image on the display unit.
In one aspect, when the processing unit can identify the cause of the alarm, the processing unit causes the display unit to display the cause of the alarm.
 本発明によれば、警報が発せられると、該警報に対応する警報詳細情報データが警報データ記憶部に記憶されるので、後日、警報の発生原因を特定する際に、警報詳細情報データを参照することができる。さらに、警報に関連する監視センサの測定値のグラフを表示部に表示させることができるので、該グラフを視覚を通じた警報発生原因の特定の助けとすることができる。 According to the present invention, when an alarm is issued, the alarm detailed information data corresponding to the alarm is stored in the alarm data storage unit. Therefore, when identifying the cause of the alarm at a later date, the alarm detailed information data is referred to. can do. Further, since the graph of the measured value of the monitoring sensor related to the alarm can be displayed on the display unit, the graph can be used as a visual aid for identifying the cause of the alarm.
図1は、一実施形態に係る基板処理装置の全体構成を示す平面図である。FIG. 1 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment. 図2は、図1に示す研磨ユニットの一例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an example of the polishing unit shown in FIG. 図3Aは、図2に示す研磨ユニットに配置されたセンサの例を示す模式図である。FIG. 3A is a schematic view showing an example of a sensor arranged in the polishing unit shown in FIG. 図3Bは、図2に示す研磨ユニットに配置されたセンサの他の例を示す模式図である。FIG. 3B is a schematic view showing another example of the sensor arranged in the polishing unit shown in FIG. 図4は、一実施形態に係る警報表示装置を模式的に示したブロック図である。FIG. 4 is a block diagram schematically showing an alarm display device according to an embodiment. 図5Aは、警報コードデータの一例を示す模式図である。FIG. 5A is a schematic diagram showing an example of alarm code data. 図5Bは、警報コードデータの他の例を示す模式図である。FIG. 5B is a schematic diagram showing another example of alarm code data. 図5Cは、警報コードデータのさらに他の例を示す模式図である。FIG. 5C is a schematic diagram showing still another example of the alarm code data. 図6は、表示部に表示される警報履歴の一例を示す模式図である。FIG. 6 is a schematic diagram showing an example of the alarm history displayed on the display unit. 図7は、図6に示す研磨ヘッド位置異常が選択されたときに表示部に表示される警報個別情報の一例を示す模式図である。FIG. 7 is a schematic view showing an example of alarm individual information displayed on the display unit when the polishing head position abnormality shown in FIG. 6 is selected. 図8は、表示部に表示される監視センサの測定値のグラフの一例である。FIG. 8 is an example of a graph of measured values of the monitoring sensor displayed on the display unit. 図9は、警報個別情報の他の例を示す模式図である。FIG. 9 is a schematic diagram showing another example of alarm individual information. 図10Aは、図9に示す警報の監視センサである流量計の測定値のグラフの一例である。FIG. 10A is an example of a graph of measured values of the flow meter, which is the alarm monitoring sensor shown in FIG. 9. 図10Bは、図9に示す警報の監視センサである圧力計の測定値のグラフの一例である。FIG. 10B is an example of a graph of measured values of the pressure gauge, which is the alarm monitoring sensor shown in FIG. 9. 図11は、警報発生直前の基板研磨装置の動作状況の動画の例を説明するための模式図である。FIG. 11 is a schematic diagram for explaining an example of a moving image of the operating state of the substrate polishing apparatus immediately before the alarm is generated. 図12は、図9に示す警報の監視センサである流量計の測定値のグラフの他の例である。FIG. 12 is another example of a graph of measured values of the flow meter, which is the alarm monitoring sensor shown in FIG. 図13は、表示部に表示させる警報発生原因情報の一例を示す模式図である。FIG. 13 is a schematic diagram showing an example of alarm occurrence cause information to be displayed on the display unit.
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、一実施形態に係る基板処理装置の全体構成を示す平面図である。図1に示す基板処理装置は、基板の一例であるウエハの表面を研磨し、研磨後のウエハを洗浄し、洗浄後のウエハを乾燥させる一連の研磨プロセスを実行する基板研磨装置(CMP装置)である。以下では、図1に示す基板研磨装置を、基板処理装置の一例として説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment. The substrate processing apparatus shown in FIG. 1 is a substrate polishing apparatus (CMP apparatus) that executes a series of polishing processes of polishing the surface of a wafer, which is an example of a substrate, cleaning the polished wafer, and drying the cleaned wafer. Is. Hereinafter, the substrate polishing apparatus shown in FIG. 1 will be described as an example of the substrate processing apparatus.
 図1に示すように、基板研磨装置は、略矩形状のハウジング10と、多数のウエハ(基板)を収容する基板カセットが載置されるロードポート12を備えている。ロードポート12は、ハウジング10に隣接して配置されている。ロードポート12には、オープンカセット、SMIF(Standard Manufacturing Interface)ポッド、またはFOUP(Front Opening Unified Pod)を搭載することができる。SMIF、FOUPは、内部に基板カセットを収納し、隔壁で覆うことにより、外部空間とは独立した環境を保つことができる密閉容器である。 As shown in FIG. 1, the substrate polishing apparatus includes a substantially rectangular housing 10 and a load port 12 on which a substrate cassette accommodating a large number of wafers (substrates) is placed. The load port 12 is arranged adjacent to the housing 10. The load port 12 can be equipped with an open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Unified Pod). SMIF and FOUP are airtight containers that can maintain an environment independent of the external space by storing the substrate cassette inside and covering it with a partition wall.
 ハウジング10の内部には、ウエハを研磨する複数(この実施形態では4つ)の研磨ユニット14a~14dと、研磨されたウエハを洗浄する第1洗浄ユニット16及び第2洗浄ユニット18と、洗浄されたウエハを乾燥させる乾燥ユニット20が収容されている。研磨ユニット14a~14dは、基板処理装置の長手方向に沿って配列され、洗浄ユニット16,18及び乾燥ユニット20も基板処理装置の長手方向に沿って配列されている。 Inside the housing 10, a plurality of (four in this embodiment) polishing units 14a to 14d for polishing the wafer, a first cleaning unit 16 for cleaning the polished wafer, and a second cleaning unit 18 are cleaned. A drying unit 20 for drying the wafer is housed. The polishing units 14a to 14d are arranged along the longitudinal direction of the substrate processing apparatus, and the cleaning units 16 and 18 and the drying unit 20 are also arranged along the longitudinal direction of the substrate processing apparatus.
 なお、本実施形態では、基板研磨装置は、複数の研磨ユニット14a~14dを備えているが、基板研磨装置は、この例に限定されない。例えば、基板研磨装置は、1つの研磨ユニットを有していてもよい。さらに、基板研磨装置は、基板の周縁部(ベベル部とも称される)を研磨するベベル研磨ユニットを、複数のまたは1つの研磨ユニットに代えて、または複数のまたは1つの研磨ユニットに加えて備えていてもよい。 In the present embodiment, the substrate polishing apparatus includes a plurality of polishing units 14a to 14d, but the substrate polishing apparatus is not limited to this example. For example, the substrate polishing apparatus may have one polishing unit. Further, the substrate polishing apparatus includes a bevel polishing unit for polishing the peripheral portion (also referred to as a bevel portion) of the substrate in place of the plurality of or one polishing unit, or in addition to the plurality of or one polishing unit. May be.
 ロードポート12、研磨ユニット14a、及び乾燥ユニット20に囲まれた領域には、第1基板搬送ロボット22が配置され、また研磨ユニット14a~14dと平行に、基板搬送装置24が配置されている。第1基板搬送ロボット22は、研磨前の基板をロードポート12から受け取って基板搬送装置24に渡すとともに、乾燥された基板を乾燥ユニット20から受け取ってロードポート12に戻す。基板搬送装置24は、第1基板搬送ロボット22から受け取った基板を搬送して、各研磨ユニット14a~14dとの間で基板の受け渡しを行う。各研磨ユニット14a~14dは、研磨面に研磨液(スラリー)を供給しながら、基板を研磨面に摺接させることで、基板の表面を研磨する。 The first substrate transfer robot 22 is arranged in the area surrounded by the load port 12, the polishing unit 14a, and the drying unit 20, and the substrate transfer device 24 is arranged in parallel with the polishing units 14a to 14d. The first substrate transfer robot 22 receives the substrate before polishing from the load port 12 and passes it to the substrate transfer device 24, and receives the dried substrate from the drying unit 20 and returns it to the load port 12. The substrate transfer device 24 conveys the substrate received from the first substrate transfer robot 22 and transfers the substrate to and from each of the polishing units 14a to 14d. Each of the polishing units 14a to 14d polishes the surface of the substrate by sliding the substrate against the polishing surface while supplying the polishing liquid (slurry) to the polishing surface.
 第1洗浄ユニット16と第2洗浄ユニット18の間に位置して、これらの洗浄ユニット16,18および基板搬送装置24の間で基板を搬送する第2基板搬送ロボット26が配置され、第2洗浄ユニット18と乾燥ユニット20との間に位置して、これらの各ユニット18,20の間で基板を搬送する第3基板搬送ロボット28が配置されている。これら第1基板搬送ロボット22、基板搬送装置24、第2基板搬送ロボット26、および第3基板搬送ロボット28は、ロードポート12、研磨ユニット14a~14d、洗浄ユニット16,18、および乾燥ユニット20の間でウエハの受け渡しを行うための基板搬送ユニットを構成する。 A second substrate transfer robot 26 that transfers a substrate between the cleaning units 16 and 18 and the substrate transfer device 24 is arranged between the first cleaning unit 16 and the second cleaning unit 18, and the second cleaning is performed. A third substrate transfer robot 28 that transfers a substrate between the units 18 and 20 is arranged between the unit 18 and the drying unit 20. The first substrate transfer robot 22, the substrate transfer device 24, the second substrate transfer robot 26, and the third substrate transfer robot 28 include the load port 12, the polishing units 14a to 14d, the cleaning units 16 and 18, and the drying unit 20. A substrate transfer unit for transferring wafers between them is configured.
 本実施形態では、第1洗浄ユニット16として、薬液の存在下で、基板の表裏両面にロールスポンジを擦り付けて基板をスクラブ洗浄する基板洗浄装置が使用されており、第2洗浄ユニット18として、ペン型スポンジ(ペンスポンジ)を用いた基板洗浄装置が使用されている。一実施形態では、第2洗浄ユニット18として、薬液の存在下で、基板の表裏両面にロールスポンジを擦り付けて基板をスクラブ洗浄する基板洗浄装置を使用してもよい。また、乾燥ユニット20として、基板を保持し、移動するノズルからIPA蒸気を噴出して基板を乾燥させ、更に高速で回転させることによって基板を乾燥させるスピン乾燥装置が使用されている。 In the present embodiment, as the first cleaning unit 16, a substrate cleaning device for scrubbing the substrate by rubbing roll sponges on both the front and back surfaces of the substrate in the presence of a chemical solution is used, and as the second cleaning unit 18, a pen is used. A substrate cleaning device using a mold sponge (pen sponge) is used. In one embodiment, as the second cleaning unit 18, a substrate cleaning device that scrubs the substrate by rubbing roll sponges on both the front and back surfaces of the substrate in the presence of a chemical solution may be used. Further, as the drying unit 20, a spin drying device is used which holds the substrate, ejects IPA steam from a moving nozzle to dry the substrate, and further rotates the substrate at a high speed to dry the substrate.
 基板は、研磨ユニット14a~14dの少なくとも1つにより研磨される。研磨された基板は、第1洗浄ユニット16と第2洗浄ユニット18により洗浄され、さらに洗浄された基板は乾燥ユニット20により乾燥される。一実施形態では、研磨された基板を、第1洗浄ユニット16と第2洗浄ユニット18のいずれか一方で洗浄してもよい。 The substrate is polished by at least one of the polishing units 14a to 14d. The polished substrate is cleaned by the first cleaning unit 16 and the second cleaning unit 18, and the washed substrate is further dried by the drying unit 20. In one embodiment, the polished substrate may be cleaned by either the first cleaning unit 16 or the second cleaning unit 18.
 図2は、図1に示す研磨ユニット14aの一例を模式的に示す斜視図である。なお、図1に示す基板研磨装置の研磨ユニット14a~14dは、互いに同一の構成を有しているため、以下では、研磨ユニット14aについて説明する。 FIG. 2 is a perspective view schematically showing an example of the polishing unit 14a shown in FIG. Since the polishing units 14a to 14d of the substrate polishing apparatus shown in FIG. 1 have the same configuration as each other, the polishing unit 14a will be described below.
 図2に示す研磨ユニット14aは、研磨面33aを有する研磨パッド33が取り付けられた研磨テーブル35と、ウエハWを保持しかつウエハWを研磨テーブル35上の研磨パッド33に押圧する研磨ヘッド(トップリングとも称される)37と、研磨パッド33に研磨液やドレッシング液(例えば、純水)を供給するための研磨液供給ノズル38と、研磨パッド33の研磨面33aのドレッシングを行うためのドレッサー41を有するドレッシング装置40と、を備えている。 The polishing unit 14a shown in FIG. 2 has a polishing table 35 to which a polishing pad 33 having a polishing surface 33a is attached, and a polishing head (top) that holds the wafer W and presses the wafer W against the polishing pad 33 on the polishing table 35. 37), a polishing liquid supply nozzle 38 for supplying a polishing liquid or a dressing liquid (for example, pure water) to the polishing pad 33, and a dresser for dressing the polishing surface 33a of the polishing pad 33. It includes a dressing device 40 having 41.
 研磨テーブル33は、テーブル軸35aを介してその下方に配置されるテーブルモータ31に連結されており、このテーブルモータ31により研磨テーブル35が矢印で示す方向に回転されるようになっている。この研磨テーブル35の上面には研磨パッド33が貼付されており、研磨パッド33の上面がウエハを研磨する研磨面33aを構成している。研磨ヘッド37はヘッドシャフト36の下端に連結されている。研磨ヘッド37は、真空吸引によりその下面にウエハWを保持できるように構成されている。ヘッドシャフト36は、上下動機構(図示せず)により上下動するようになっている。 The polishing table 33 is connected to a table motor 31 arranged below the table shaft 35a via a table shaft 35a, and the table motor 31 rotates the polishing table 35 in the direction indicated by the arrow. A polishing pad 33 is attached to the upper surface of the polishing table 35, and the upper surface of the polishing pad 33 constitutes a polishing surface 33a for polishing the wafer. The polishing head 37 is connected to the lower end of the head shaft 36. The polishing head 37 is configured so that the wafer W can be held on the lower surface thereof by vacuum suction. The head shaft 36 is moved up and down by a vertical movement mechanism (not shown).
 ヘッドシャフト36は、ヘッドアーム42に回転自在に支持されており、ヘッドアーム42は、ヘッド旋回モータ54に駆動されて、ヘッド旋回軸43を中心として旋回するように構成されている。ヘッド旋回モータ54を駆動することにより、研磨ヘッド37は、研磨パッド33の上方の研磨位置と、研磨パッド33の側方の待機位置との間を移動する。 The head shaft 36 is rotatably supported by the head arm 42, and the head arm 42 is driven by the head swivel motor 54 and is configured to swivel around the head swivel shaft 43. By driving the head swivel motor 54, the polishing head 37 moves between the polishing position above the polishing pad 33 and the standby position on the side of the polishing pad 33.
 ウエハWの研磨は次のようにして行われる。研磨ヘッド37および研磨テーブル35をそれぞれ矢印で示す方向に回転させ、研磨液供給ノズル38から研磨パッド33上に研磨液(スラリー)を供給する。この状態で、研磨ヘッド37は、ウエハWを研磨パッド33の研磨面33aに押し付ける。ウエハWの表面は、研磨液に含まれる砥粒の機械的作用と研磨液の化学的作用により研磨される。研磨終了後は、ドレッシング装置40による研磨面33aのドレッシング(コンディショニング)が行われる。 Wafer W is polished as follows. The polishing head 37 and the polishing table 35 are rotated in the directions indicated by the arrows, and the polishing liquid (slurry) is supplied onto the polishing pad 33 from the polishing liquid supply nozzle 38. In this state, the polishing head 37 presses the wafer W against the polishing surface 33a of the polishing pad 33. The surface of the wafer W is polished by the mechanical action of the abrasive grains contained in the polishing liquid and the chemical action of the polishing liquid. After the polishing is completed, the dressing device 40 dresses (conditions) the polished surface 33a.
 ドレッシング装置40は、研磨パッド33に摺接されるドレッサー41と、ドレッサー41が連結されるドレッサーシャフト45と、ドレッサーシャフト45の上端に設けられたエアシリンダ47と、ドレッサーシャフト45を回転自在に支持するドレッサーアーム48とを備えている。ドレッサー41の下面はドレッシング面41aを構成し、このドレッシング面41aは砥粒(例えば、ダイヤモンド粒子)から構成されている。エアシリンダ47は、複数の支柱51により支持された支持台50上に配置されており、これら支柱51はドレッサーアーム48に固定されている。 The dressing device 40 rotatably supports the dresser 41 which is slidably contacted with the polishing pad 33, the dresser shaft 45 to which the dresser 41 is connected, the air cylinder 47 provided at the upper end of the dresser shaft 45, and the dresser shaft 45. It is equipped with a dresser arm 48. The lower surface of the dresser 41 constitutes a dressing surface 41a, and the dressing surface 41a is composed of abrasive grains (for example, diamond particles). The air cylinder 47 is arranged on a support base 50 supported by a plurality of columns 51, and these columns 51 are fixed to the dresser arm 48.
 ドレッサーアーム48は、ドレッサー旋回モータ55に駆動されて、ドレッサー旋回軸49を中心として旋回するように構成されている。ドレッサーシャフト45は、図示しないモータの駆動により回転し、このドレッサーシャフト45の回転により、ドレッサー41がドレッサーシャフト45を中心に矢印で示す方向に回転するようになっている。エアシリンダ47は、ドレッサーシャフト45を介してドレッサー41を上下動させ、ドレッサー41を所定の押圧力で研磨パッド33の研磨面(表面)33aに押圧するアクチュエータとして機能する。 The dresser arm 48 is driven by the dresser swivel motor 55 and is configured to swivel around the dresser swivel shaft 49. The dresser shaft 45 is rotated by driving a motor (not shown), and the rotation of the dresser shaft 45 causes the dresser 41 to rotate about the dresser shaft 45 in the direction indicated by the arrow. The air cylinder 47 functions as an actuator that moves the dresser 41 up and down via the dresser shaft 45 and presses the dresser 41 against the polishing surface (surface) 33a of the polishing pad 33 with a predetermined pressing force.
 研磨パッド33のドレッシングは次のようにして行われる。ドレッサー41がドレッサーシャフト45を中心として回転しつつ、研磨液供給ノズル38から純水が研磨パッド33上に供給される。この状態で、ドレッサー41はエアシリンダ47により研磨パッド33に押圧され、そのドレッシング面41aが研磨パッド33の研磨面33aに摺接される。さらに、ドレッサーアーム48をドレッサー旋回軸49を中心として旋回させてドレッサー41を研磨パッド33の半径方向に揺動させる。このようにして、ドレッサー41により研磨パッド33が僅かに削り取られ、その表面33aがドレッシング(再生)される。 Dressing of the polishing pad 33 is performed as follows. While the dresser 41 rotates about the dresser shaft 45, pure water is supplied onto the polishing pad 33 from the polishing liquid supply nozzle 38. In this state, the dresser 41 is pressed against the polishing pad 33 by the air cylinder 47, and its dressing surface 41a is slidably contacted with the polishing surface 33a of the polishing pad 33. Further, the dresser arm 48 is swiveled around the dresser swivel shaft 49 to swing the dresser 41 in the radial direction of the polishing pad 33. In this way, the polishing pad 33 is slightly scraped off by the dresser 41, and the surface 33a thereof is dressed (regenerated).
 図1に示すように、基板研磨装置は、ハウジング10の内部に位置して、基板研磨装置の各ユニットの動作を制御する制御部30を有している。さらに、基板研磨装置は、該基板研磨装置内の各ユニットに配置された様々な機器の動作を直接的または間接的に監視するための各種センサを備えている。基板研磨装置の制御部30は、これらセンサから送られてくる測定値に基づいて基板研磨装置内の各機器の動作を制御する。さらに、制御部30は各種センサから送られてくる測定値に基づいて基板研磨装置に不具合(エラー)が発生したか否かを決定しており、不具合が発生した場合は、警報を発するように構成されている。 As shown in FIG. 1, the substrate polishing apparatus has a control unit 30 that is located inside the housing 10 and controls the operation of each unit of the substrate polishing apparatus. Further, the substrate polishing apparatus includes various sensors for directly or indirectly monitoring the operation of various devices arranged in each unit in the substrate polishing apparatus. The control unit 30 of the substrate polishing apparatus controls the operation of each apparatus in the substrate polishing apparatus based on the measured values sent from these sensors. Further, the control unit 30 determines whether or not a defect (error) has occurred in the substrate polishing device based on the measured values sent from various sensors, and if a defect occurs, an alarm is issued. It is configured.
 例えば、図3Aに示すように、基板研磨装置の研磨ユニット14aは、研磨液供給ノズル38に研磨液を供給するための研磨液供給ライン70と、該研磨液供給ライン70に配置された圧力計71および流量計72を有している。圧力計71は、研磨液供給ライン70を流れる研磨液の圧力(供給圧力)を測定するセンサであり、流量計72は、研磨液供給ライン70を流れる研磨液の流量を測定するセンサである。圧力計71および流量計72は、制御部30に接続されており、これら圧力計71および流量計72の測定値を制御部30に送信する。制御部30は、流量計72から送られてくる研磨液の流量の測定値が所定の目標値に一致するように、研磨液供給ライン70に配置された供給バルブ(流量調整バルブ)76の開度を制御する。 For example, as shown in FIG. 3A, the polishing unit 14a of the substrate polishing apparatus includes a polishing liquid supply line 70 for supplying the polishing liquid to the polishing liquid supply nozzle 38, and a pressure gauge arranged in the polishing liquid supply line 70. It has 71 and a flow meter 72. The pressure gauge 71 is a sensor that measures the pressure (supply pressure) of the polishing liquid flowing through the polishing liquid supply line 70, and the flow meter 72 is a sensor that measures the flow rate of the polishing liquid flowing through the polishing liquid supply line 70. The pressure gauge 71 and the flow meter 72 are connected to the control unit 30, and the measured values of the pressure gauge 71 and the flow meter 72 are transmitted to the control unit 30. The control unit 30 opens the supply valve (flow rate adjusting valve) 76 arranged in the polishing liquid supply line 70 so that the measured value of the flow rate of the polishing liquid sent from the flow meter 72 matches a predetermined target value. Control the degree.
 さらに、制御部30は、圧力計71および流量計72から送られてくる測定値に基づいて研磨ユニット14aに不具合が発生したか否かを決定するように構成される。例えば、流量計72の測定値が所定の上限値および下限値によって区画される許容範囲から所定の時間以上逸脱すると、制御部は、研磨液の流量異常の警報を発する。制御部30は、研磨液の流量の所定の目標値、および許容範囲を予め記憶しており、これら目標値および許容範囲(すなわち、上限値および下限値)は、研磨ユニット14aにおける研磨液の異常の発生の有無を判定するための閾値として機能する。 Further, the control unit 30 is configured to determine whether or not a defect has occurred in the polishing unit 14a based on the measured values sent from the pressure gauge 71 and the flow meter 72. For example, when the measured value of the flow meter 72 deviates from the permissible range defined by the predetermined upper limit value and the predetermined lower limit value for a predetermined time or more, the control unit issues an alarm for an abnormality in the flow rate of the polishing liquid. The control unit 30 stores in advance a predetermined target value and an allowable range of the flow rate of the polishing liquid, and these target values and the allowable range (that is, the upper limit value and the lower limit value) are abnormalities of the polishing liquid in the polishing unit 14a. It functions as a threshold value for determining the presence or absence of occurrence of.
 さらに、図3Bに示すように、基板研磨装置の研磨ユニット14aは、研磨ユニット14aの底壁79に取り付けられた漏液センサ73を備えている。漏液センサ73は、研磨ユニット14a内での液体(例えば、スラリーおよび純水)の漏洩を検知するためのセンサである。この漏液センサ73も制御部30に接続されており、制御部30は、研磨ユニット14a内での漏液の有無を監視している。漏液センサ73からon信号が制御部30に送信されると、制御部30は、漏液の警報を発する。 Further, as shown in FIG. 3B, the polishing unit 14a of the substrate polishing apparatus includes a liquid leakage sensor 73 attached to the bottom wall 79 of the polishing unit 14a. The liquid leakage sensor 73 is a sensor for detecting the leakage of liquid (for example, slurry and pure water) in the polishing unit 14a. The liquid leakage sensor 73 is also connected to the control unit 30, and the control unit 30 monitors the presence or absence of liquid leakage in the polishing unit 14a. When the on signal is transmitted from the liquid leakage sensor 73 to the control unit 30, the control unit 30 issues a liquid leakage alarm.
 さらに、図2に示すように、研磨ユニット14aに配置されたヘッド旋回モータ54は、該ヘッド旋回モータ54の回転位置(または回転量)を検出可能な回転位置センサ54aを有している。回転位置センサ54aも制御部30に接続されており、制御部30は、回転位置センサ54aの測定値から研磨パッド33に対する研磨ヘッド37の位置を決定することができる。さらに、制御部30は、ウエハWの研磨を開始する前に、回転位置センサ54aの測定値に基づいて、研磨ヘッド37が所望の研磨位置に移動したか否かを監視している。具体的には、回転位置センサ54aの測定値が所定の目標値に一致しない場合は、制御部30は、研磨ヘッド37の位置異常の警報を発する。 Further, as shown in FIG. 2, the head swivel motor 54 arranged in the polishing unit 14a has a rotation position sensor 54a capable of detecting the rotation position (or rotation amount) of the head swivel motor 54. The rotation position sensor 54a is also connected to the control unit 30, and the control unit 30 can determine the position of the polishing head 37 with respect to the polishing pad 33 from the measured value of the rotation position sensor 54a. Further, the control unit 30 monitors whether or not the polishing head 37 has moved to a desired polishing position based on the measured value of the rotation position sensor 54a before starting the polishing of the wafer W. Specifically, when the measured value of the rotation position sensor 54a does not match the predetermined target value, the control unit 30 issues an alarm for the abnormal position of the polishing head 37.
 これらセンサ71,72,73,54a以外にも、研磨ユニット14aは、該研磨ユニット14aの各機器の動作を監視する様々なセンサを有しており、これらセンサも制御部30に接続されている。制御部30は、各種センサの測定値に基づいて研磨ユニット14aに不具合が発生しているか否かを監視し、不具合が発生した場合は、該不具合に対応する警報を発する。 In addition to these sensors 71, 72, 73, 54a, the polishing unit 14a has various sensors for monitoring the operation of each device of the polishing unit 14a, and these sensors are also connected to the control unit 30. .. The control unit 30 monitors whether or not a defect has occurred in the polishing unit 14a based on the measured values of various sensors, and if a defect occurs, issues an alarm corresponding to the defect.
 次に、一実施形態に係る警報表示装置について説明する。図4は、一実施形態に係る警報表示装置を模式的に示したブロック図である。 Next, the alarm display device according to the embodiment will be described. FIG. 4 is a block diagram schematically showing an alarm display device according to an embodiment.
 図4に示す警報表示装置60は、制御部30とデータなどの情報を送受信可能に接続される。制御部30は、例えば、プログラマブルロジックコントローラ(PLC)であり、処理部30aと、記憶部30bとを備えている。一実施形態では、制御部30は、専用のコンピュータまたは汎用のコンピュータ(例えば、パーソナルコンピュータ)であってもよいし、FPGA(Field-Programmable gate array)を含んでいてもよい。 The alarm display device 60 shown in FIG. 4 is connected to the control unit 30 so as to be able to transmit and receive information such as data. The control unit 30 is, for example, a programmable logic controller (PLC), and includes a processing unit 30a and a storage unit 30b. In one embodiment, the control unit 30 may be a dedicated computer or a general-purpose computer (for example, a personal computer), or may include an FPGA (Field-Programmable gate array).
 制御部30の記憶部30bには、各ユニットでウエハWの処理を実行するためのプログラムが格納されている。制御部30の処理部30aは、記憶部30bから読み出したプログラムを実行する際に、レジスタデータを一時的に格納するレジスタ30cを有している。レジスタ30cは、処理部30aの内部に設けられたメモリ装置である。より具体的には、レジスタ30cは、処理部30aがプログラムを実行する際に一時的にレジスタデータを格納しておくための小容量で高速なメモリ装置である。レジスタデータは、処理部30aが処理中の計算結果や該処理部30aの状態を表すデータである。 The storage unit 30b of the control unit 30 stores a program for executing the processing of the wafer W in each unit. The processing unit 30a of the control unit 30 has a register 30c that temporarily stores register data when executing a program read from the storage unit 30b. The register 30c is a memory device provided inside the processing unit 30a. More specifically, the register 30c is a small-capacity, high-speed memory device for temporarily storing register data when the processing unit 30a executes a program. The register data is data representing a calculation result being processed by the processing unit 30a and a state of the processing unit 30a.
 図4に示すように、制御部30には、圧力計71、流量計72、漏液センサ73、および回転位置センサ54aを含む各種センサが接続されている。上述したように、制御部30は、各種センサから送られてくる測定値に基づいて各ユニット内の機器の動作を制御する。制御部30は、各種センサの測定値と、レジスタデータを警報表示装置60に送信する。一実施形態では、各種センサを警報表示装置60に直接接続してもよい。この場合、警報表示装置60は、各種センサの測定値を制御部30に送信し、制御部30は、レジスタデータを警報表示装置60に送信する。 As shown in FIG. 4, various sensors including a pressure gauge 71, a flow meter 72, a liquid leakage sensor 73, and a rotation position sensor 54a are connected to the control unit 30. As described above, the control unit 30 controls the operation of the equipment in each unit based on the measured values sent from the various sensors. The control unit 30 transmits the measured values of various sensors and the register data to the alarm display device 60. In one embodiment, various sensors may be directly connected to the alarm display device 60. In this case, the alarm display device 60 transmits the measured values of various sensors to the control unit 30, and the control unit 30 transmits the register data to the alarm display device 60.
 図4に示す警報表示装置60は、表示部65を有するヒューマンマシンインターフェイス(HMI)として構成されており、例えば、タッチパネルなどの表示部65を有するグラフィカルユーザーインターフェイス(GUI)である。警報表示装置60は、さらに、オペレータからの操作を受け付ける入力部68と、入力部68に入力されたオペレータの操作にしたがった処理を実行する処理部61と、制御部30から送信されたレジスタデータと各種センサから送られてくる測定値を含むEESデータとを収集するデータ収集部62と、データ収集部62が収集したデータを蓄積するデータ蓄積部64と、を備える。入力部68は、例えば、オペレータによって操作されるキーボードおよびマウスである。表示部65がタッチパネルである場合は、入力部68は、表示部65に内蔵されていてもよい。 The alarm display device 60 shown in FIG. 4 is configured as a human machine interface (HMI) having a display unit 65, and is, for example, a graphical user interface (GUI) having a display unit 65 such as a touch panel. The alarm display device 60 further includes an input unit 68 that receives an operation from the operator, a processing unit 61 that executes processing according to the operator's operation input to the input unit 68, and register data transmitted from the control unit 30. A data collection unit 62 that collects EES data including measured values sent from various sensors and a data storage unit 64 that stores the data collected by the data collection unit 62 are provided. The input unit 68 is, for example, a keyboard and a mouse operated by an operator. When the display unit 65 is a touch panel, the input unit 68 may be built in the display unit 65.
 データ収集部62は、制御部30から送信されたレジスタデータと、各種センサの測定値を含むEESデータと、を収集する。本明細書では、EESデータとは、基板研磨装置(基板処理装置)の稼働状況を監視しているデータの総称であり、例えば、圧力センサ71、流量センサ72、漏液センサ73、および回転位置センサ54aなどの各種センサの測定値と、基板研磨装置に搭載された各種機器の動作状態を表す動作情報が含まれる。動作情報には、基板研磨装置内でのウエハWの位置情報、およびいずれのユニットでウエハWの処理を実行しているか示すユニット処理情報も含まれる。 The data collection unit 62 collects the register data transmitted from the control unit 30 and the EES data including the measured values of various sensors. In the present specification, the EES data is a general term for data for monitoring the operating status of the substrate polishing apparatus (substrate processing apparatus), and is, for example, a pressure sensor 71, a flow rate sensor 72, a liquid leakage sensor 73, and a rotation position. It includes measured values of various sensors such as the sensor 54a and operation information indicating the operating state of various devices mounted on the substrate polishing apparatus. The operation information also includes position information of the wafer W in the substrate polishing apparatus and unit processing information indicating which unit is executing the processing of the wafer W.
 さらに、データ収集部62は、データ蓄積部64に予め格納された警報コードデータと、該警報コードデータに関連するレジスタデータとEESデータと、を少なくとも含む警報詳細情報データを作成し、この警報詳細情報データをデータ蓄積部64に記憶させる。 Further, the data collecting unit 62 creates alarm detailed information data including at least the alarm code data stored in advance in the data storage unit 64, the register data and the EES data related to the alarm code data, and the alarm details. Information data is stored in the data storage unit 64.
 データ蓄積部64に格納される警報コードデータは、警報コードと、該警報コードに対応する警報の名称と、該警報を特定する際に利用すべきセンサ(以下、「監視センサ」と称する)とを含んでいる。例えば、図5Aに示す警報コードデータは、警報コードA001が付された警報コードデータであり、該警報コードA001は、「漏液」の警報に対応している。漏液は、例えば、研磨ユニット14aの底壁79に固定された漏液センサ73の測定値(すなわち、on信号)に基づいて検知される。したがって、漏液センサ73は、警報コードA001が付された警報(すなわち、漏液)の監視センサである。さらに、漏液は、液体が流れる配管に過度の圧力が加わった際に発生するおそれがある不具合である。したがって、液体が流れる配管に設けられた圧力センサ(例えば、研磨液が流れる研磨液供給ライン70に設けられた圧力計71)も、警報コードA001が付された警報の監視センサに含まれる。 The alarm code data stored in the data storage unit 64 includes an alarm code, a name of an alarm corresponding to the alarm code, and a sensor (hereinafter, referred to as "monitoring sensor") to be used when identifying the alarm. Includes. For example, the alarm code data shown in FIG. 5A is alarm code data to which the alarm code A001 is attached, and the alarm code A001 corresponds to the alarm of "leakage". The leak is detected, for example, based on the measured value (that is, the on signal) of the leak sensor 73 fixed to the bottom wall 79 of the polishing unit 14a. Therefore, the liquid leakage sensor 73 is a monitoring sensor for an alarm (that is, liquid leakage) to which the alarm code A001 is attached. Further, liquid leakage is a defect that may occur when an excessive pressure is applied to a pipe through which a liquid flows. Therefore, a pressure sensor provided in the pipe through which the liquid flows (for example, a pressure gauge 71 provided in the polishing liquid supply line 70 through which the polishing liquid flows) is also included in the alarm monitoring sensor to which the alarm code A001 is attached.
 図5Bに示す例は、警報コードA002に対応する研磨液の流量異常の警報コードデータを示している。研磨液の流量異常は、研磨液供給ライン70に配置された流量計72の測定値に基づいて検知される。したがって、流量計72は、警報コードA002が付された警報(すなわち、研磨液の流量異常)の監視センサである。さらに、研磨液の流量異常は、研磨液の供給圧力が変動した際に発生するおそれのある不具合である。したがって、研磨液が流れる研磨液供給ライン70に設けられた圧力計71も、警報コードA002が付された警報の監視センサに含まれる。供給バルブ76の開度異常によっても、研磨液の流量異常が発生するおそれがある。そのため、図示はしないが、供給バルブ76に開度センサが設けられている場合は、この開度センサも、警報コードA002が付された警報の監視センサに含まれる。 The example shown in FIG. 5B shows the alarm code data of the abnormal flow rate of the polishing liquid corresponding to the alarm code A002. The abnormal flow rate of the polishing liquid is detected based on the measured value of the flow meter 72 arranged in the polishing liquid supply line 70. Therefore, the flow meter 72 is a monitoring sensor for an alarm (that is, an abnormality in the flow rate of the polishing liquid) to which the alarm code A002 is attached. Further, the abnormal flow rate of the polishing liquid is a defect that may occur when the supply pressure of the polishing liquid fluctuates. Therefore, the pressure gauge 71 provided in the polishing liquid supply line 70 through which the polishing liquid flows is also included in the alarm monitoring sensor to which the alarm code A002 is attached. An abnormality in the flow rate of the polishing liquid may also occur due to an abnormality in the opening degree of the supply valve 76. Therefore, although not shown, when the supply valve 76 is provided with an opening degree sensor, this opening degree sensor is also included in the alarm monitoring sensor to which the alarm code A002 is attached.
 図5Cに示す例は、警報コードA003に対応する研磨ヘッド位置異常の警報コードを示している。研磨ヘッド位置異常は、ヘッド旋回モータ54の回転位置センサ54aの測定値に基づいて検知される。したがって、回転位置センサ54aは、警報コードA003が付された警報(すなわち、研磨ヘッド位置異常)の監視センサに含まれる。研磨ヘッド位置異常は、ヘッド旋回モータ54に供給される電流および/または電圧の変動によっても発生するおそれがある。そのため、図示はしないが、ヘッド旋回モータ54に電流を供給する電源に、電流計および/または電圧計が設けられている場合は、これら電流計および/または電圧計も、警報コードA003が付された警報の監視センサに含まれる。 The example shown in FIG. 5C shows an alarm code for an abnormality in the polishing head position corresponding to the alarm code A003. The polishing head position abnormality is detected based on the measured value of the rotation position sensor 54a of the head turning motor 54. Therefore, the rotation position sensor 54a is included in the monitoring sensor for the alarm (that is, the polishing head position abnormality) to which the alarm code A003 is attached. Abnormal polishing head position may also occur due to fluctuations in the current and / or voltage supplied to the head swivel motor 54. Therefore, although not shown, if an ammeter and / or a voltmeter is provided in the power supply that supplies the current to the head swirl motor 54, the ammeter and / or the voltmeter is also attached with the alarm code A003. Included in the alarm monitoring sensor.
 データ収集部62は、制御部30から送信されたレジスタデータと、各種センサの測定値を含むEESデータのなかから、警報コードデータに関連付けられたレジスタデータとEESデータを抽出して警報詳細情報データを作成する。例えば、「漏液」の警報詳細情報データを作成する場合は、データ収集部62は、制御部30から送信されたレジスタデータおよびEESデータのなかから、監視センサである漏液センサ73、および圧力センサ71に関するレジスタデータおよびEESデータを抽出する。なお、抽出されたEESデータには、漏液センサ73の測定値、および圧力センサ71の測定値が少なくとも含まれている。 The data collection unit 62 extracts the register data and the EES data associated with the alarm code data from the register data transmitted from the control unit 30 and the EES data including the measured values of various sensors, and extracts the alarm detailed information data. To create. For example, when creating the alarm detailed information data of "leakage", the data collection unit 62 includes the leak sensor 73, which is a monitoring sensor, and the pressure from the register data and the EES data transmitted from the control unit 30. The register data and EES data related to the sensor 71 are extracted. The extracted EES data includes at least the measured value of the liquid leakage sensor 73 and the measured value of the pressure sensor 71.
 さらに、データ収集部62は、これら漏液センサ73の測定値、および圧力センサ71の測定値を少なくとも含むEESデータと、該EESデータに関連するレジスタデータとを組み合わせて警報詳細情報データを作成する。データ収集部62は、所定時間(例えば、10秒)の間に蓄積されたレジスタデータとEESデータとから警報詳細情報データを作成する。 Further, the data collecting unit 62 creates alarm detailed information data by combining the EES data including at least the measured values of the liquid leakage sensor 73 and the measured values of the pressure sensor 71 and the register data related to the EES data. .. The data collection unit 62 creates alarm detailed information data from the register data and EES data accumulated during a predetermined time (for example, 10 seconds).
 基板研磨装置が稼働している間は、制御部30からレジスタデータおよびEESデータが随時警報表示装置60に送信されてくる。データ蓄積部64は、各種データを格納可能な記憶部64aを有している。データ収集部62は、制御部30からレジスタデータおよびEESデータが送信されるたびに、記憶部64aに所定時間分の警報詳細情報データが蓄積されるように、該警報詳細情報データを更新していく。 While the substrate polishing device is in operation, register data and EES data are transmitted from the control unit 30 to the alarm display device 60 at any time. The data storage unit 64 has a storage unit 64a capable of storing various types of data. The data collecting unit 62 updates the alarm detailed information data so that the alarm detailed information data for a predetermined time is accumulated in the storage unit 64a each time the register data and the EES data are transmitted from the control unit 30. go.
 基板研磨装置で不具合が発生すると、制御部30は、該不具合に対応する警報信号を警報表示装置60に送信し、警報信号を受信したデータ収集部62は、該警報信号に対応し、かつ該警報信号を受信した時点で記憶部64aに記憶されている警報詳細情報データを警報データ記憶部64bに記憶させる。この動作によって、後日、警報の発生原因を特定する際に、警報発生直前の警報詳細情報データを利用することが可能となる。なお、警報履歴は、制御部30の記憶部30bおよび/または警報表示装置60のデータ蓄積部64に記憶されている。 When a defect occurs in the substrate polishing device, the control unit 30 transmits an alarm signal corresponding to the defect to the alarm display device 60, and the data collection unit 62 that has received the alarm signal responds to the alarm signal and said that. The alarm detailed information data stored in the storage unit 64a at the time of receiving the alarm signal is stored in the alarm data storage unit 64b. By this operation, it becomes possible to use the detailed alarm information data immediately before the alarm is generated when identifying the cause of the alarm at a later date. The alarm history is stored in the storage unit 30b of the control unit 30 and / or the data storage unit 64 of the alarm display device 60.
 図4に示した警報表示装置60では、データ収集部62を、処理部61とは別に設けているが、本実施形態は、この例に限定されない。例えば、処理部61がデータ収集部62を兼用してもよいし、データ収集部62を処理部61に内蔵してもよい。 In the alarm display device 60 shown in FIG. 4, the data collection unit 62 is provided separately from the processing unit 61, but this embodiment is not limited to this example. For example, the processing unit 61 may also serve as the data collecting unit 62, or the data collecting unit 62 may be built in the processing unit 61.
 次に、警報の発生原因を特定する際の警報表示装置60の使用方法を説明する。まず、オペレータは、入力部68を操作して、制御部30の記憶部30bおよび/または警報表示装置60のデータ蓄積部64に記憶されている警報履歴を表示部65に表示させる。図6は、表示部65に表示される警報履歴の一例を示す模式図である。 Next, how to use the alarm display device 60 when identifying the cause of the alarm will be described. First, the operator operates the input unit 68 to display the alarm history stored in the storage unit 30b of the control unit 30 and / or the data storage unit 64 of the alarm display device 60 on the display unit 65. FIG. 6 is a schematic diagram showing an example of the alarm history displayed on the display unit 65.
 図6に示すように、警報履歴は、発報された警報の名称と、該警報に対応する上記警報コードと、警報の発生ユニットと、警報の発生日時とを含んでいる。オペレータは、入力部68を介して、発生原因の特定を行う警報を選択することができる。 As shown in FIG. 6, the alarm history includes the name of the issued alarm, the alarm code corresponding to the alarm, the alarm generation unit, and the alarm generation date and time. The operator can select an alarm for identifying the cause of occurrence via the input unit 68.
 入力部68を介して警報履歴から警報を選択すると、処理部61(または、データ収集部62)は、表示部65に選択された警報に対応する警報個別情報を表示する。図7は、図6に示す研磨ヘッド位置異常が選択されたときに表示部65に表示される警報個別情報の一例を示す模式図である。 When an alarm is selected from the alarm history via the input unit 68, the processing unit 61 (or the data collection unit 62) displays the alarm individual information corresponding to the selected alarm on the display unit 65. FIG. 7 is a schematic view showing an example of alarm individual information displayed on the display unit 65 when the polishing head position abnormality shown in FIG. 6 is selected.
 図7に示す警報個別情報は、警報コード、警報名称、警報発生日時、警報発生ユニットに加えて、上記監視センサと、警報発生条件とを含んでいる。警報発生条件は、警報コードデータのそれぞれに関連付けられている。警報発生条件は、例えば、データ蓄積部64に格納された警報コードデータに含まれており、データ収集部62は、警報発生条件を含む警報詳細情報データを作成することができる。一実施形態では、データ蓄積部64は、警報コードデータとは別に、警報発生条件を予め記憶していてもよい。この場合、データ収集部62は、警報コードデータに関連付けられた警報発生条件を含むように警報詳細情報データを作成し、処理部61(または、データ収集部62)は、作成された警報詳細情報データに基づいて警報発生条件を含む警報個別情報を表示部65に表示する。 The individual alarm information shown in FIG. 7 includes the above-mentioned monitoring sensor and alarm generation conditions in addition to the alarm code, alarm name, alarm generation date and time, and alarm generation unit. The alarm generation condition is associated with each of the alarm code data. The alarm generation condition is included in the alarm code data stored in the data storage unit 64, for example, and the data collection unit 62 can create the alarm detailed information data including the alarm generation condition. In one embodiment, the data storage unit 64 may store the alarm generation condition in advance separately from the alarm code data. In this case, the data collection unit 62 creates the alarm detailed information data so as to include the alarm generation condition associated with the alarm code data, and the processing unit 61 (or the data collection unit 62) creates the created alarm detailed information. Based on the data, the alarm individual information including the alarm generation condition is displayed on the display unit 65.
 さらに、図7に示す例では、表示部65に表示される画面は、EES情報ボタン80を有しており、オペレータは、入力部68を操作して、画面上のEES情報ボタン80を押すことができる。表示部65がタッチパネルである場合は、オペレータは、画面上のEES情報ボタン80を直接押すことができる。 Further, in the example shown in FIG. 7, the screen displayed on the display unit 65 has an EES information button 80, and the operator operates the input unit 68 to press the EES information button 80 on the screen. Can be done. When the display unit 65 is a touch panel, the operator can directly press the EES information button 80 on the screen.
 オペレータがEES情報ボタン80を押すと、処理部61(または、データ収集部62)は、警報詳細情報データのEESデータに含まれる監視センサの測定値をグラフ化して、表示部65に表示させる。 When the operator presses the EES information button 80, the processing unit 61 (or the data collecting unit 62) graphs the measured value of the monitoring sensor included in the EES data of the detailed alarm information data and displays it on the display unit 65.
 図8は、表示部65に表示される監視センサの測定値のグラフの一例である。図8に示すグラフにおいて、縦軸は監視センサ(本実施形態では、回転位置センサ54a)の測定値を表し、横軸は時間を表す。さらに、図8に示すグラフにおいて、研磨ヘッド37の所望の研磨位置に対応する回転位置センサ54aの設定値を太い実線で示している。 FIG. 8 is an example of a graph of measured values of the monitoring sensor displayed on the display unit 65. In the graph shown in FIG. 8, the vertical axis represents the measured value of the monitoring sensor (in this embodiment, the rotation position sensor 54a), and the horizontal axis represents time. Further, in the graph shown in FIG. 8, the set value of the rotation position sensor 54a corresponding to the desired polishing position of the polishing head 37 is shown by a thick solid line.
 図8に示すように、EESデータに含まれる監視センサの測定値のグラフが表示部65に示されるので、オペレータは、警報発生直前のヘッド旋回モータ54の動作(すなわち、研磨ヘッド37の移動動作)の詳細を認識できる。したがって、該グラフに基づいて警報の発生原因の特定が容易になる。すなわち、このような監視センサの測定値のグラフを、視覚を通じた警報発生原因の特定の助けとすることができる。 As shown in FIG. 8, since the graph of the measured value of the monitoring sensor included in the EES data is shown on the display unit 65, the operator can operate the head swivel motor 54 immediately before the alarm is generated (that is, the movement operation of the polishing head 37). ) Can recognize the details. Therefore, it becomes easy to identify the cause of the alarm based on the graph. That is, the graph of the measured value of such a monitoring sensor can be used as a visual aid for identifying the cause of the alarm.
 図9は、警報個別情報の他の例を示す模式図である。図10Aは、図9に示す警報の監視センサである流量計72の測定値のグラフの一例であり、図10Bは、図9に示す警報の監視センサである圧力計71の測定値のグラフの一例である。図10Aおよび図10Bに示すグラフにおいても、縦軸は監視センサ(すなわち、図10Aでは、流量計72であり、図10Bでは、圧力計71である)の測定値を表し、横軸は時間を表す。特に説明しない本実施形態の構成は、図7および図8に示す実施形態と同様であるため、その重複する説明を省略する。 FIG. 9 is a schematic diagram showing another example of individual alarm information. FIG. 10A is an example of a graph of the measured values of the flow meter 72, which is the alarm monitoring sensor shown in FIG. 9, and FIG. 10B is a graph of the measured values of the pressure gauge 71, which is the alarm monitoring sensor shown in FIG. This is an example. In the graphs shown in FIGS. 10A and 10B, the vertical axis represents the measured value of the monitoring sensor (that is, the flow meter 72 in FIG. 10A and the pressure gauge 71 in FIG. 10B), and the horizontal axis represents time. show. Since the configuration of the present embodiment, which is not particularly described, is the same as that of the embodiments shown in FIGS. 7 and 8, the duplicate description thereof will be omitted.
 図9に示す警報個別情報の警報は、研磨液の流量異常である。上述したように、研磨液の流量異常の警報に対する監視センサには、流量計72と圧力計71とが含まれる。したがって、EES情報ボタン80を押すと、処理部61は、警報発生直前の流量計72の測定値のグラフ(図10A参照)、および圧力計71の測定値のグラフ(図10B参照)を表示部65に表示させる。図10Aに示すグラフには、研磨液の流量の目標値と、該目標値に対して設定された流量の上限値および下限値が描かれている。したがって、表示部65に表示された流量計72の測定値のグラフを見たオペレータは、研磨液の流量が上限値(または、下限値)を超過したため、警報が発生したと認識することができる。 The alarm of the alarm individual information shown in FIG. 9 is an abnormal flow rate of the polishing liquid. As described above, the monitoring sensor for the alarm of the abnormal flow rate of the polishing liquid includes the flow meter 72 and the pressure gauge 71. Therefore, when the EES information button 80 is pressed, the processing unit 61 displays a graph of the measured value of the flow meter 72 (see FIG. 10A) and a graph of the measured value of the pressure gauge 71 (see FIG. 10B) immediately before the alarm is generated. Display on 65. In the graph shown in FIG. 10A, a target value of the flow rate of the polishing liquid and an upper limit value and a lower limit value of the flow rate set with respect to the target value are drawn. Therefore, the operator who sees the graph of the measured values of the flow meter 72 displayed on the display unit 65 can recognize that the alarm has occurred because the flow rate of the polishing liquid exceeds the upper limit value (or the lower limit value). ..
 さらに、図10Bに示すグラフには、研磨液の圧力の設定値が描かれている。したがって、表示部65に表示された圧力計71の測定値のグラフを見たオペレータは、設定値に対する研磨液の供給圧力の変動を確認することができる。図10Bに示す例では、圧力計71の測定値が設定値を大きく超えて上昇していることが確認できる。したがって、図10Aおよび図10Bに示すグラフを確認したオペレータは、研磨液の供給圧力が上昇したことによって、研磨液の流量異常が発生したことを認識できる。すなわち、オペレータは、研磨液の流量異常の発生原因を研磨液の供給圧力の上昇と特定することができる。このように、EESデータに含まれる監視センサの測定値のグラフが表示部65に示されることで、該グラフを視覚を通じた警報発生原因の特定の助けとすることができる。 Further, in the graph shown in FIG. 10B, the set value of the pressure of the polishing liquid is drawn. Therefore, the operator who sees the graph of the measured value of the pressure gauge 71 displayed on the display unit 65 can confirm the fluctuation of the supply pressure of the polishing liquid with respect to the set value. In the example shown in FIG. 10B, it can be confirmed that the measured value of the pressure gauge 71 greatly exceeds the set value and rises. Therefore, the operator who has confirmed the graphs shown in FIGS. 10A and 10B can recognize that the flow rate abnormality of the polishing liquid has occurred due to the increase in the supply pressure of the polishing liquid. That is, the operator can identify the cause of the abnormal flow rate of the polishing liquid as an increase in the supply pressure of the polishing liquid. In this way, by showing the graph of the measured value of the monitoring sensor included in the EES data on the display unit 65, the graph can be used as an aid for identifying the cause of the alarm occurrence through the visual sense.
 図9に示すように、処理部61は、警報対処方法を表示部65に表示してもよい。警報対処方法は、予め推定された警報発生原因に対する対処方法である。警報対処方法は、警報コードデータのそれぞれに関連付けられており、予めデータ蓄積部64に記憶されている。一実施形態では、警報対処方法は、警報コードデータに含まれていてもよい。本実施形態では、データ収集部62は、警報対処方法を含むように警報詳細情報データを作成し、処理部61(または、データ収集部62)は、警報対処方法を含む警報詳細情報データを表示部65に表示する。 As shown in FIG. 9, the processing unit 61 may display the alarm coping method on the display unit 65. The alarm coping method is a coping method for the alarm occurrence cause estimated in advance. The alarm coping method is associated with each of the alarm code data and is stored in the data storage unit 64 in advance. In one embodiment, the alarm coping method may be included in the alarm code data. In the present embodiment, the data collection unit 62 creates the alarm detailed information data so as to include the alarm response method, and the processing unit 61 (or the data collection unit 62) displays the alarm detailed information data including the alarm response method. Displayed in unit 65.
 図9に示す例では、流量計72が正確な流量測定を実施できていないことを、警報発生原因の1つとして推定している。したがって、流量計72の測定値の確認と、流量計72の較正、および流量計72の交換を警報対処方法として挙げている。さらに、研磨液の供給圧力の異常も、警報発生原因の1つとして推定しているため、圧力計71の測定値の確認も警報対処方法の1つとして挙げている。表示部65に表示された警報対処方法を読んだオペレータは、EES情報ボタン80を押すことで、流量計72の測定値の推移を表すグラフ、および圧力計71の測定値の推移を表すグラフを容易に確認することできる。したがって、早期に警報発生原因を特定できる可能性が高まる。 In the example shown in FIG. 9, it is estimated that the flow meter 72 has not been able to accurately measure the flow rate as one of the causes of the alarm. Therefore, confirmation of the measured value of the flow meter 72, calibration of the flow meter 72, and replacement of the flow meter 72 are listed as alarm coping methods. Further, since the abnormality of the supply pressure of the polishing liquid is estimated as one of the causes of the alarm, the confirmation of the measured value of the pressure gauge 71 is also mentioned as one of the alarm coping methods. The operator who has read the alarm coping method displayed on the display unit 65 presses the EES information button 80 to display a graph showing the transition of the measured value of the flow meter 72 and a graph showing the transition of the measured value of the pressure gauge 71. It can be easily confirmed. Therefore, it is more likely that the cause of the alarm can be identified at an early stage.
 さらに、処理部61は、警報詳細情報データに含まれるレジスタデータおよびEESデータに基づいて、警報発生直前の機器の動作状況の動画を作成し、該動画を表示部65に表示させてもよい。図9に示す例では、表示部65には、動画ボタン82が設けられており、該動画ボタン82を押すことで、警報発生直前の機器の動作状況の動画を表示部65に表示させることができる。 Further, the processing unit 61 may create a moving image of the operating status of the device immediately before the alarm is generated based on the register data and the EES data included in the detailed alarm information data, and display the moving image on the display unit 65. In the example shown in FIG. 9, the display unit 65 is provided with a moving image button 82, and by pressing the moving image button 82, a moving image of the operating status of the device immediately before the alarm is generated can be displayed on the display unit 65. can.
 図11は、警報発生直前の基板研磨装置の動作状況の動画の例を説明するための模式図である。図11に示す例では、表示部65には、基板研磨装置の全体を表す模式図が描かれ、動作中のユニットには、ハッチングが付されている。この動画を見たオペレータは、警報発生直前に動作していたユニット、および機器を認識することができる。例えば、オペレータは、研磨ユニット14bと第1洗浄ユニット16とがウエハWの研磨処理とウエハWの洗浄処理を実行中であったことを認識できる。さらに、オペレータは、研磨ユニット14aのヘッドアーム42が旋回移動中であること、第1基板搬送ロボット22のハンド95がロードポート12に配置された基板カセット90a内に配置されたウエハWを受け取るために移動していること、および基板搬送装置24がウエハWを搬送中であることを動画から認識することができる。 FIG. 11 is a schematic diagram for explaining an example of a moving image of the operating state of the substrate polishing apparatus immediately before the alarm is generated. In the example shown in FIG. 11, a schematic view showing the entire substrate polishing apparatus is drawn on the display unit 65, and the operating unit is hatched. The operator who has watched this video can recognize the unit and the device that were operating immediately before the alarm was generated. For example, the operator can recognize that the polishing unit 14b and the first cleaning unit 16 are executing the polishing process of the wafer W and the cleaning process of the wafer W. Further, the operator receives the wafer W arranged in the substrate cassette 90a arranged in the load port 12 by the hand 95 of the first substrate transfer robot 22 that the head arm 42 of the polishing unit 14a is rotating. It can be recognized from the moving image that the wafer W is being transferred to and that the substrate transfer device 24 is transferring the wafer W.
 表示部65には、操作ボタン列87も表示される。この操作ボタン列87に配置された各種ボタンを押すことにより、動画の再生、一時停止、停止、早送り、および巻き戻しなどの各種動画操作を実行することができる。 The operation button sequence 87 is also displayed on the display unit 65. By pressing the various buttons arranged in the operation button row 87, various moving image operations such as playing, pausing, stopping, fast-forwarding, and rewinding the moving image can be executed.
 図12は、図9に示す警報の監視センサである流量計72の測定値のグラフの他の例である。図12に示すグラフでは、流量計72の測定値が無限大に発散している。このグラフは、表示部65に表示されたEES情報ボタン80を押すことで見ることが可能である。 FIG. 12 is another example of a graph of measured values of the flow meter 72, which is the alarm monitoring sensor shown in FIG. In the graph shown in FIG. 12, the measured values of the flow meter 72 diverge infinitely. This graph can be viewed by pressing the EES information button 80 displayed on the display unit 65.
 その一方で、処理部61は、該グラフを作成するためのEESデータから流量計72に故障が発生していること、および流量計72の故障が警報発生原因であることを決定することができる。このように、処理部61が警報発生原因を特定できる場合は、処理部61は、表示部65に警報発生原因を表示させてもよい。 On the other hand, the processing unit 61 can determine from the EES data for creating the graph that the flow meter 72 has a failure and that the failure of the flow meter 72 is the cause of the alarm. .. In this way, when the processing unit 61 can identify the cause of the alarm, the processing unit 61 may display the cause of the alarm on the display unit 65.
 処理部61が表示部に警報発生原因を表示させる場合は、処理部61は、表示部65に発生原因ボタン65(図9の仮想線(点線)参照)を表示させる。この場合、オペレータが発生原因ボタン65を押すことにより、処理部61は、表示部65に警報発生原因情報を表示させる。 When the processing unit 61 displays the alarm occurrence cause on the display unit, the processing unit 61 causes the display unit 65 to display the occurrence cause button 65 (see the virtual line (dotted line) in FIG. 9). In this case, when the operator presses the occurrence cause button 65, the processing unit 61 causes the display unit 65 to display the alarm occurrence cause information.
 図13は、表示部65に表示させる警報発生原因情報の一例を示す模式図である。警報発生原因情報は、警報発生原因(図13では、流量計72の故障)と、その対処方法(図13では、流量計72の交換)とを少なくとも含んでおり、これら情報を表示部65に表示させる。オペレータが監視センサの測定値の推移(図13では、流量計72の測定値の推移)を確認したいと考える場合が想定される。そのため、警報発生原因情報には、監視センサの測定値の推移(図13では、流量計72の測定値の推移)を確認する方法が含まれてもよい。図13に示す例では、監視センサである流量計72の測定値の推移を確認する方法は、EES情報ボタン80を押すことである。オペレータがEES情報ボタン80を押すと、図12に示すグラフが表示部65に表示されるので、オペレータは、流量計72が故障していることを容易に確認することができる。 FIG. 13 is a schematic diagram showing an example of alarm occurrence cause information displayed on the display unit 65. The alarm occurrence cause information includes at least an alarm occurrence cause (in FIG. 13, a failure of the flow meter 72) and a countermeasure (replacement of the flow meter 72 in FIG. 13), and this information is displayed on the display unit 65. Display it. It is assumed that the operator wants to check the transition of the measured value of the monitoring sensor (in FIG. 13, the transition of the measured value of the flow meter 72). Therefore, the alarm occurrence cause information may include a method of confirming the transition of the measured value of the monitoring sensor (in FIG. 13, the transition of the measured value of the flow meter 72). In the example shown in FIG. 13, the method of confirming the transition of the measured value of the flow meter 72, which is the monitoring sensor, is to press the EES information button 80. When the operator presses the EES information button 80, the graph shown in FIG. 12 is displayed on the display unit 65, so that the operator can easily confirm that the flow meter 72 is out of order.
 上述した実施形態では、警報表示装置は、基板処理装置の一例である基板研磨装置(CMP装置)に搭載されている。しかしながら、基板処理装置は、これらの実施形態に限定されない。例えば、基板のエッジ部を研磨する基板研磨装置、および基板めっき装置などの基板処理装置に、警報表示装置を搭載してもよい。さらに、多数の機器を搭載し、これら機器の不具合を各種センサの測定値から監視している装置である限り、警報表示装置は、任意の装置に搭載可能である。 In the above-described embodiment, the alarm display device is mounted on a substrate polishing apparatus (CMP apparatus) which is an example of a substrate processing apparatus. However, the substrate processing apparatus is not limited to these embodiments. For example, an alarm display device may be mounted on a substrate processing device such as a substrate polishing device for polishing an edge portion of a substrate and a substrate plating device. Further, the alarm display device can be mounted on any device as long as it is a device on which a large number of devices are mounted and malfunctions of these devices are monitored from the measured values of various sensors.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲とすべきである。 The above-described embodiment is described for the purpose of allowing a person having ordinary knowledge in the technical field to which the present invention belongs to carry out the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Therefore, the present invention is not limited to the described embodiments and should be the broadest scope according to the technical ideas defined by the claims.
 本発明は、基板処理装置などの装置に搭載される警報表示装置に利用可能である。 The present invention can be used for an alarm display device mounted on a device such as a substrate processing device.
 30  制御部
 54a 回転位置センサ
 60  警報表示装置
 61  処理部
 62  データ収集部
 64  データ蓄積部
 64a 記憶部
 64b 警報データ記憶部
 65  表示部
 68  入力部
 71  圧力計
 72  流量計
 73  漏液センサ
 80  EES情報ボタン
 82  動画ボタン
 83  発生原因ボタン
 87  操作ボタン列
30 Control unit 54a Rotation position sensor 60 Alarm display device 61 Processing unit 62 Data collection unit 64 Data storage unit 64a Storage unit 64b Alarm data storage unit 65 Display unit 68 Input unit 71 Pressure gauge 72 Flow meter 73 Leakage sensor 80 EES information button 82 Video button 83 Cause button 87 Operation button sequence

Claims (4)

  1.  多数の機器を搭載する装置に設けられる警報表示装置であって、
     複数の警報のそれぞれに関連付けられた警報コードデータを予め記憶しているデータ蓄積部と、
     前記警報コードデータと、該警報コードデータに関連付けられ、所定の時間の間に収集されたEESデータおよびレジスタデータの組み合わせと、を少なくとも含む警報詳細情報データを収集するデータ収集部と、
     警報が発生したときに、該警報に対応する前記警報詳細情報データを記憶する警報データ記憶部と、
     前記警報データ記憶部に記憶された警報詳細情報データを表示可能な表示部と、
     前記警報データ記憶部に記憶された警報詳細情報データに含まれる監視センサの測定値をグラフ化して、前記表示部に表示させる処理部と、を備えたことを特徴とする警報表示装置。
    An alarm display device installed in a device equipped with a large number of devices.
    A data storage unit that stores alarm code data associated with each of a plurality of alarms in advance, and
    A data collection unit that collects detailed alarm information data including at least a combination of the alarm code data and EES data and register data associated with the alarm code data and collected during a predetermined time.
    When an alarm is generated, an alarm data storage unit that stores the alarm detailed information data corresponding to the alarm, and an alarm data storage unit.
    A display unit capable of displaying detailed alarm information data stored in the alarm data storage unit, and a display unit capable of displaying detailed alarm information data.
    An alarm display device including a processing unit that graphs measured values of a monitoring sensor included in detailed alarm information data stored in the alarm data storage unit and displays them on the display unit.
  2.  前記データ蓄積部は、前記警報コードデータのそれぞれに関連付けられた警報対処方法を予め記憶しており、
     前記警報詳細情報データには、前記警報対処方法が含まれており、
     前記処理部は、前記警報対処方法を前記表示部に表示させることを特徴とする請求項1に記載の警報表示装置。
    The data storage unit stores in advance an alarm coping method associated with each of the alarm code data.
    The alarm detailed information data includes the alarm coping method.
    The alarm display device according to claim 1, wherein the processing unit displays the alarm coping method on the display unit.
  3.  前記処理部は、前記EESデータおよび前記レジスタデータに基づいて、前記警報発生直前の前記機器の動作状況の動画を作成し、該動画を前記表示部に表示させることを特徴とする請求項1または2に記載の警報表示装置。 The processing unit creates a moving image of the operating state of the device immediately before the alarm is generated based on the EES data and the register data, and displays the moving image on the display unit. 2. The alarm display device according to 2.
  4.  前記処理部が前記警報の発生原因を特定できる場合は、前記処理部は、前記表示部に前記発生原因を表示させることを特徴とする請求項1乃至3のいずれか一項に記載の警報表示装置。 The alarm display according to any one of claims 1 to 3, wherein when the processing unit can identify the cause of the alarm, the processing unit displays the cause of the alarm on the display unit. Device.
PCT/JP2021/002382 2020-03-13 2021-01-25 Warning display device WO2021181915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020044245A JP2021144597A (en) 2020-03-13 2020-03-13 Alarm display device
JP2020-044245 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021181915A1 true WO2021181915A1 (en) 2021-09-16

Family

ID=77671349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002382 WO2021181915A1 (en) 2020-03-13 2021-01-25 Warning display device

Country Status (2)

Country Link
JP (1) JP2021144597A (en)
WO (1) WO2021181915A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425098A (en) * 1987-07-21 1989-01-27 Hitachi Ltd Instrumentation and control system maintenance support system for nuclear power plant
JP2006065746A (en) * 2004-08-30 2006-03-09 Toshiba Corp Data collector, and service information providing system
JP2017112212A (en) * 2015-12-16 2017-06-22 株式会社荏原製作所 Substrate processing apparatus and quality assurance method therefor
JP2020025088A (en) * 2018-08-03 2020-02-13 株式会社Kokusai Electric Substrate processing system, substrate processing device, and manufacturing method for semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425098A (en) * 1987-07-21 1989-01-27 Hitachi Ltd Instrumentation and control system maintenance support system for nuclear power plant
JP2006065746A (en) * 2004-08-30 2006-03-09 Toshiba Corp Data collector, and service information providing system
JP2017112212A (en) * 2015-12-16 2017-06-22 株式会社荏原製作所 Substrate processing apparatus and quality assurance method therefor
JP2020025088A (en) * 2018-08-03 2020-02-13 株式会社Kokusai Electric Substrate processing system, substrate processing device, and manufacturing method for semiconductor device

Also Published As

Publication number Publication date
JP2021144597A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
US7914363B2 (en) Smart conditioner rinse station
CN100429752C (en) Polishing apparatus and substrate processing apparatus
US9403256B2 (en) Recording measurements by sensors for a carrier head
JP6672207B2 (en) Apparatus and method for polishing a surface of a substrate
EP3765238A1 (en) Consumable part monitoring in chemical mechanical polisher
JP2008528300A (en) Substrate polishing method and apparatus
KR102166779B1 (en) Substrate polishing apparatus
JP2015220402A (en) Substrate cleaning device and method performed by substrate cleaning device
US10317890B2 (en) Failure detection apparatus for substrate processing apparatus, and substrate processing apparatus
US20220410343A1 (en) Substrate cleaning apparatus, polishing apparatus, buffing apparatus, substrate cleaning method, substrate processing apparatus, and machine learning apparatus
TW201338913A (en) Remote monitoring system for polishing end point detection device
JP2018174230A (en) Substrate processing apparatus
EP3272459B1 (en) Apparatus and method for polishing a surface of a substrate
WO2021181915A1 (en) Warning display device
JP2020021863A (en) Substrate processing method and substrate processing apparatus
US11292101B2 (en) Chemical mechanical polishing apparatus and method
JP5093651B2 (en) Work information management system
US11279001B2 (en) Method and apparatus for monitoring chemical mechanical polishing process
JP2017177298A (en) Abnormality detection system and method of substrate processing apparatus
JP2009117648A (en) Semiconductor manufacturing equipment with built-in gui
JP2021157693A (en) Operation assisting device, operation assisting program, operation assisting method and polishing device
TWI773798B (en) Non-transitory computer-readable storage medium storing a program of screen control and semiconductor manufacturing apparatus
JP2020196078A (en) Polishing apparatus
US11911868B2 (en) Substrate processing apparatus, substrate processing method, and storage medium that stores program to cause computer in substrate processing apparatus to execute substrate processing method
JP2018186148A (en) Operational method for substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768155

Country of ref document: EP

Kind code of ref document: A1