WO2021181890A1 - Electrical signal measurement device, electrical signal measurement system, and electrical signal measurement method - Google Patents

Electrical signal measurement device, electrical signal measurement system, and electrical signal measurement method Download PDF

Info

Publication number
WO2021181890A1
WO2021181890A1 PCT/JP2021/001586 JP2021001586W WO2021181890A1 WO 2021181890 A1 WO2021181890 A1 WO 2021181890A1 JP 2021001586 W JP2021001586 W JP 2021001586W WO 2021181890 A1 WO2021181890 A1 WO 2021181890A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric signal
electrode
living body
measuring device
signal measuring
Prior art date
Application number
PCT/JP2021/001586
Other languages
French (fr)
Japanese (ja)
Inventor
真央 勝原
一成 吉藤
僚 佐々木
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2022505808A priority Critical patent/JPWO2021181890A1/ja
Publication of WO2021181890A1 publication Critical patent/WO2021181890A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]

Definitions

  • This technology relates to an electric signal measuring device, an electric signal measuring system, and an electric signal measuring method.
  • Non-Patent Document 1 and Patent Document 1 the component corresponding to the common mode noise is inverted and amplified and returned to the living body via the electrode to reduce the common mode noise. Techniques for reduction are described.
  • wet electrodes called wet electrodes are generally used for research and medical applications.
  • the wet electrode is an electrode that reduces the contact impedance with a living body by using gel, physiological saline, or the like.
  • the dry electrode can be easily attached, but there is a problem that the reduction of common mode noise becomes insufficient when the contact state between the electrode and the living body changes due to, for example, body movement or improper attachment.
  • the present technology provides an electric signal measuring device, an electric signal measuring system, and an electric signal measuring method for measuring biological information with high accuracy even if the contact state between the electrode and the living body changes due to body movement or the like. Is the main purpose.
  • an electrode for detecting an electric signal from a living body and a voltage used for common mode feedback based on contact state information between the living body and the electrode obtained from the electric signal.
  • an electric signal measuring device including at least a determination unit for determining the above voltage and a feedback unit for applying the voltage to the living body.
  • the electrode may be a dry electrode.
  • the contact state information may include contact impedance.
  • the contact state information may include the amplitude of the electrical signal.
  • the determination unit may determine the voltage by comparing the contact state information with a predetermined threshold value.
  • the determination unit may analyze the tendency of the contact state information to determine the voltage.
  • the electrode may have a switch.
  • the electrode may have a variable resistor.
  • the present technology includes an electrode that detects an electric signal from a living body and a determination unit that determines a voltage used for common mode feedback based on contact state information between the living body and the electrode obtained from the electric signal.
  • an electric signal measurement system including at least a feedback unit that applies the voltage to the living body.
  • the electrode detects an electric signal from a living body, and the voltage used for common mode feedback is determined based on the contact state information between the living body and the electrode obtained from the electric signal. And the electrode applies the voltage to the living body, and at least the electric signal measurement method is provided.
  • the present technology will be described in the following order. 1.
  • First Embodiment of the present technology (Example 1 of an electric signal measuring device) (1) Outline of this embodiment (2) Judgment unit (3) Verification 2.
  • a second embodiment of the present technology (Example 2 of an electric signal measuring device) 3.
  • Third Embodiment of the present technology (Example 3 of an electric signal measuring device) 4.
  • Fourth Embodiment of the present technology (Example 4 of an electric signal measuring device) 5.
  • Fifth Embodiment of the present technology Example 5 of an electric signal measuring device
  • a sixth embodiment of the present technology (Example 6 of an electric signal measuring device) 7. Seventh Embodiment of this technology (electric signal measurement system) 8.
  • Eighth Embodiment of the present technology (electric signal measurement method)
  • FIG. 1 is a circuit diagram showing a circuit configuration of the electric signal measuring device according to the first embodiment.
  • the electric signal measuring device 1000 includes at least a plurality of electrodes 100 to 300, a determination unit 500, and a feedback unit 400.
  • Each of the plurality of electrodes 100 to 300 is arranged at a position in contact with the skin surface of the living body S or at a position close to the skin surface of the living body S.
  • Each of the plurality of electrodes 100 to 300 detects an electric signal from the living body S.
  • an electroencephalogram (EEG) signal an electrocardiogram (ECG) signal, a magnetocardiogram (MCG) signal, a magnetoencephalogram (MEG) signal, a surface electromyogram (EMG) signal, an electrooculogram (EOG) signal, And there are skin potential (EDA) signals and the like.
  • the plurality of electrodes 100 to 300 will be described in more detail.
  • the plurality of electrodes 100 to 300 may be composed of a first detection electrode 100, a second detection electrode 200, and a third detection electrode 300.
  • the number of the plurality of electrodes 100 to 300 is not limited to three.
  • each of the first detection electrode 100 and the second detection electrode 200 detects an electric signal from the living body S.
  • the third detection electrode 300 detects an electric signal that serves as a reference for the electric potential from the living body S.
  • Each of the plurality of electrodes 100 to 300 may be a dry electrode.
  • Each of the plurality of electrodes 100 to 300 is a dry electrode, and even if the contact state between the electrodes and the living body changes due to body movement or the like, the electric signal measuring device 1000 measures the electric signal from the living body S with high accuracy. can.
  • the feedback unit 400 applies a voltage to the living body S. More specifically, the feedback unit 400 reduces the common mode noise by inverting and amplifying the component corresponding to the common mode noise and returning it to the living body (common feedback).
  • the first detection electrode 100 is composed of a first passive electrode 110 and a first active electrode 120.
  • the first active electrode 120 has, for example, a first switch 121, a first instrumentation amplifier 122, a first resistor 123, a first AD converter 124, a first switch switching unit 125, and the like. Can be done.
  • the second detection electrode 200 is composed of a second passive electrode 210 and a second active electrode 220, similarly to the first detection electrode 100.
  • the second active electrode 220 has, for example, a second switch 221, a second instrumentation amplifier 222, a second resistor 223, a second AD converter 224, a second switch switching unit 225, and the like. Can be done.
  • the third detection electrode 300 is composed of a third passive electrode 310 and a first operational amplifier 321.
  • the feedback unit 400 is composed of a fourth passive electrode 410 and a second operational amplifier 421.
  • the determination unit 500 is electrically connected to each of the plurality of electrodes 100 to 300 and the feedback unit 400.
  • the determination unit 500 obtains contact state information between the living body S and each of the plurality of electrodes 100 to 300 from the electric signals detected by each of the plurality of electrodes 100 to 300. Then, the determination unit 500 determines the voltage used for the common mode feedback based on the contact state information.
  • the determination unit 500 can be realized by using, for example, a microcomputer or the like.
  • the feedback unit 400 applies the voltage determined by the determination unit 500 to the living body S.
  • FIG. 2 is a flowchart showing the procedure of the determination unit according to the present embodiment.
  • the determination unit 500 obtains contact state information between the living body S and each of the plurality of electrodes 100 to 300 from the electric signals detected by each of the plurality of electrodes 100 to 300 (S1).
  • This contact state information may include, for example, the contact impedance or the amplitude of the electric signal.
  • the determination unit 500 determines the voltage used for common feedback based on the obtained contact state information (S2).
  • This determination method is not particularly limited, but to explain one example, the determination unit 500 may determine the voltage by comparing the contact state information with a predetermined threshold value. For example, when the contact impedance, which is an example of the contact state information, is equal to or higher than a predetermined threshold value (S2: Yes), the determination unit 500 disconnects the detection electrode that detects the electric signal including the contact state information from the circuit (S3). ..
  • the predetermined threshold value is not particularly limited.
  • the first detection electrode 100 detects an electric signal including contact state information equal to or higher than a predetermined threshold value. That is, it is assumed that the contact state between the first passive electrode 110 included in the first detection electrode 100 and the living body S is poor.
  • the determination unit 500 disconnects the first detection electrode 100 from the circuit. At this time, the determination unit 500 gives a disconnection instruction to the first switch switching unit 125. The first switch switching unit 125 changes the first switch 121 from the on state to the off state. As a result, the first detection electrode 100 is disconnected from the circuit.
  • the first switch 121 is realized by using, for example, a MOSFET.
  • the first switch switching unit 125 changes the first switch 121 from the on state to the off state by applying a predetermined voltage to the first switch 121.
  • the detection electrode may be separated by digital signal processing.
  • the determination unit 500 analyzes the tendency of the contact state information included in the electric signals detected by all the detection electrodes, and determines the voltage used for the common mode feedback. That is, when the determination is completed for all the detection electrodes (S4: Yes), the determination unit 500 determines the voltage used for the common mode feedback (S5).
  • the return unit 400 applies the voltage determined by the determination unit 500 to the living body S.
  • the common mode feedback is appropriately performed, so that the electric signal measuring device 1000 can measure the electric signal with high accuracy.
  • the timing at which each of the plurality of switches 121 and 221 is turned on and off may be each time an electric signal is detected or every time a predetermined number of times are specified.
  • an external reference signal obtained from an acceleration sensor or the like may be used as a trigger for determination by the determination unit 500.
  • the determination unit 500 configured by an event-driven algorithm may start the process when, for example, the contact state information changes to a predetermined threshold value or more.
  • the determination unit 500 may determine using the amplitude of the electric signal in addition to the above-mentioned contact impedance. For example, when this amplitude is equal to or greater than a predetermined threshold value, the determination unit 500 may disconnect the detection electrode that detects the electric signal including this amplitude from the circuit. By using the amplitude of the electric signal, the same effect can be obtained with a simpler circuit without using a current source.
  • the determination unit 500 may determine the voltage used for the common mode feedback by using a statistical algorithm.
  • the determination unit 500 may determine the voltage used for the common mode feedback, for example, based on the degree of variation from the average value in all the detection electrodes.
  • FIG. 3 is a circuit diagram showing a circuit configuration of a comparative example of an electric signal measuring device for explaining the effect of the present technology.
  • the electric signal measuring device 2000 includes at least a plurality of electrodes 100 to 300, a control unit 700, and a feedback unit 400.
  • the plurality of electrodes 100 to 300 for example, it is assumed that the contact state between the first passive electrode 110 of the first detection electrode 100 and the living body S is poor. In this case, the electric signal detected by the first detection electrode 100 contains a lot of noise.
  • the control unit 700 performs common feedback by applying a voltage to the living body S via the feedback unit 400 based on the electric signals obtained by each of the plurality of electrodes 100 to 300.
  • the electric signal from the living body S cannot be measured with high accuracy because the noise is superimposed and applied.
  • the electric signal measuring device 1000 has an effect that the electric signal from the living body S can be measured with high accuracy by removing the noise. Similar effects occur in other embodiments described below.
  • the measurement target is not limited to the living body.
  • a solid, a liquid, a gas, or the like having arbitrary circuit characteristics may be the object of measurement.
  • FIG. 4 is a circuit diagram of the electric signal measuring device used for this verification. Note that this circuit diagram is merely an example, and the circuit configuration of the electric signal measuring device 1000 is not limited to that shown in FIG.
  • this circuit includes a first channel Ch1 and a second channel Ch2.
  • Each of the first channel Ch1 and the second channel Ch2 has an input terminal (Sigma_IN, REF_IN) corresponding to an electrode. It is assumed that the contact impedance of the second channel Ch2 is higher than the contact impedance of the first channel Ch1.
  • FIG. 5 is an explanatory diagram of the verification result.
  • the first graph G1 shows the frequency and amplitude of the electric signal input to each of the plurality of input terminals (Sigma_IN, REF_IN) when the common mode feedback (DRL: Driven Right Leg) is not performed. Shown. As shown in the first graph G1, this electric signal contains common mode noise.
  • the second graph G2 shows the frequencies of the electric signals input to each of the plurality of input terminals (Sigma_IN, REF_IN) when the common mode feedback is performed based on the electric signals obtained from the first channel Ch1. And the amplitude are shown.
  • the electric signal obtained from the first channel Ch1 having a low contact impedance is used for the common mode feedback.
  • the electric signal obtained from the second channel Ch2 having a high contact impedance is not used for common feedback.
  • the common mode noise shown in the first graph G1 has been removed. Further, since the electric signal obtained from the second channel Ch2 having a high contact impedance is not used, the electric signal is measured with high accuracy.
  • the third graph G3 shows the frequencies of the electric signals input to each of the plurality of input terminals (Sigma_IN, REF_IN) when the common mode feedback is performed based on the electric signals obtained from the second channel Ch2. And the amplitude are shown.
  • the electrical signal obtained from the first channel Ch1 having a low contact impedance is not used for common mode feedback.
  • the electric signal obtained from the second channel Ch2 having a high contact impedance is not used for common feedback.
  • the amplitude is unstable and the electric signal can be measured with high accuracy. No. Moreover, the common mode noise is not removed.
  • the fourth graph G4 is input to each of a plurality of input terminals (Sig_IN, REF_IN) when common mode feedback is performed based on the electric signals obtained from the first channel Ch1 and the second channel Ch2. It shows the frequency and amplitude of the resulting electrical signal. This is the conventional common mode feedback.
  • FIG. 6 is an explanatory diagram of the verification result. In FIG. 6, the removal rate of common mode noise in each of the three patterns is shown.
  • the first pattern (left side) corresponds to the second graph G2 in FIG. 5, and is the common mode noise when the common mode feedback is performed based on the electric signal obtained from the first channel Ch1.
  • the removal rate of is shown. Of the three patterns, the removal rate of common mode noise is the highest. As a result, the electric signal is measured with high accuracy.
  • the second pattern corresponds to the third graph G3 in FIG. 5, and is the common mode noise when the common mode feedback is performed based on the electric signal obtained from the second channel Ch2.
  • the removal rate of is shown. Of the three patterns, the removal rate of common mode noise is the lowest.
  • the second channel Ch2 corresponds to an error electrode.
  • the third pattern (right side) corresponds to the fourth graph G4 in FIG. 5, and common mode feedback was performed based on the electric signals obtained from the first channel Ch1 and the second channel Ch2.
  • the removal rate of common mode noise at that time is shown. Insufficient removal of common mode noise.
  • this technology increases the removal rate of common mode noise.
  • the electric signal detected by the electrodes is measured with high accuracy.
  • FIG. 7 is a circuit diagram showing a circuit configuration of the electric signal measuring device according to the second embodiment.
  • the same components as those of the electric signal measuring device according to the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • each of the first active electrode 120 and the second active electrode 220 may have a variable resistor instead of the switch. That is, the first detection electrode 100 may have a first variable resistor 126. The second detection electrode 200 may have a second variable resistor 226.
  • the first switch switching unit 125 can change the resistance value of the first variable resistor 126. Specifically, the first switch switching unit 125 can change the resistance value of the first variable resistor 126, for example, by changing the voltage applied to the first variable resistor 126.
  • the second switch switching unit 225 can change the resistance value of the second variable resistor 226.
  • the determination unit 500 can adjust the amount of current flowing through each of the first variable resistor 126 and the second variable resistor 226. For example, when disconnecting the first detection electrode 100 from the circuit, the determination unit 500 instructs the first switch switching unit 125 to disconnect. The first switch switching unit 125 raises the resistance value of the first variable resistor 126. This reduces the amount of current flowing through the first variable resistor 126. As a result, the first detection electrode 100 is disconnected from the circuit.
  • the first switch switching unit 125 is provided independently of the first active electrode 120, but for example, the first active electrode 120 may have the first switch switching unit 125. The same applies to the second switch switching unit 225.
  • FIG. 8 is a circuit diagram showing a circuit configuration of the electric signal measuring device according to the third embodiment.
  • the same components as those of the electric signal measuring device according to the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the determination unit 500 may have a function of switching each on / off state of the plurality of switches 121 and 221. That is, the electric signal measuring device 1000 according to the present embodiment does not have to independently include the switch switching unit.
  • the determination unit 500 changes the first switch 121 from the on state to the off state. As a result, the first detection electrode 100 is disconnected from the circuit.
  • FIG. 9 is a circuit diagram showing a circuit configuration of the electric signal measuring device according to the fourth embodiment.
  • the same components as those of the electric signal measuring device according to the first to third embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the determination unit 500 may have a function of converting an analog signal into a digital signal. That is, as shown in FIG. 9, the electric signal measuring device 1000 according to the present embodiment does not have to be independently provided with the AD converter.
  • the determination unit 500 acquires the electric signals detected by each of the plurality of electrodes 100 to 300 as analog signals.
  • the determination unit 500 converts the electric signal of this analog signal into a digital signal, and determines the voltage used for the common mode feedback. Since it is not necessary to provide a plurality of AD converters, this technology can contribute to miniaturization of the device, for example.
  • FIG. 10 is a circuit diagram showing a circuit configuration of the electric signal measuring device according to the fifth embodiment.
  • the same components as those of the electric signal measuring devices according to the first to fourth embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the second operational amplifier 421 included in the feedback unit 400 and each of the plurality of instrumentation amplifiers 122 and 222 are connected.
  • the feedback unit 400 can apply a voltage to the living body S and also apply a voltage to each of the plurality of instrumentation amplifiers 122 and 222.
  • the electric signal measuring device 1000 according to the present embodiment does not have to include a detection electrode for detecting an electric signal as a reference of the electric potential from the living body S. Thereby, this technology can contribute to the miniaturization of the device, for example.
  • FIG. 11 is a circuit diagram showing a circuit configuration of the electric signal measuring device according to the sixth embodiment.
  • the same components as those of the electric signal measuring devices according to the first to fifth embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the electric signal measuring device 1000 does not have to be independently provided with an AD converter.
  • the determination unit 500 can convert an analog signal into a digital signal.
  • the electric signal measuring device 1000 may have a DA converter 600.
  • the DA converter 600 can convert a digital signal into an analog signal.
  • the determination unit 500 analyzes the tendency of the contact state information included in the electric signals obtained from each of the plurality of electrodes 100 to 300. Then, the determination unit 500 determines the voltage used for the common feedback. This voltage is applied to the living body S via the DA converter 600 and the feedback unit 400 without passing through each of the plurality of electrodes 100 to 300.
  • each of the first active electrode 120 and the second active electrode 220 does not have to have a switch or the like.
  • this technology can contribute to, for example, miniaturization of the device.
  • the electric signal measuring device 1000 has a function of the determination unit 500 to convert an analog signal into a digital signal, it may be provided with an AD converter independently.
  • FIG. 12 is a block diagram showing a configuration of an electric signal measurement system according to a seventh embodiment.
  • the electric signal measurement system according to the seventh embodiment may use the techniques according to the first to sixth embodiments. Therefore, the same components as those of the electric signal measuring devices according to the first to sixth embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the electric signal measurement system 10000 includes at least a plurality of electrodes 100 to 300, a determination unit 500, and a feedback unit 400.
  • Each of the plurality of electrodes 100 to 300 is arranged at a position in contact with the skin surface of the living body S or at a position close to the skin surface of the living body S. Each of the plurality of electrodes 100 to 300 detects an electric signal from the living body S.
  • the feedback unit 400 applies a voltage to the living body S. More specifically, the feedback unit 400 reduces the common mode noise by inverting and amplifying the component corresponding to the common mode noise and returning it to the living body (common feedback).
  • the determination unit 500 is electrically connected to each of the plurality of electrodes 100 to 300 and the feedback unit 400.
  • the determination unit 500 obtains contact state information between the living body S and each of the plurality of electrodes 100 to 300 from the electric signals detected by each of the plurality of electrodes 100 to 300. Then, the determination unit 500 determines the voltage used for the common mode feedback based on the contact state information.
  • the determination unit 500 can be realized by using, for example, a microcomputer or the like.
  • the feedback unit 400 applies the voltage determined by the determination unit 500 to the living body S.
  • FIG. 13 is a flowchart showing the procedure of the electric signal measurement method according to the eighth embodiment.
  • the electric signal measurement method according to the present embodiment may use the techniques according to the first to seventh embodiments.
  • the electrode detects an electric signal from a living body (S100), and the contact state between the living body and the electrode obtained from the electric signal. Based on the information, it includes at least determining the voltage to be used for the common mode feedback (S200) and applying the voltage to the living body by the electrode (S300).
  • determining the voltage used for common mode feedback (S200) can be realized by using, for example, a microcomputer or the like.
  • the present technology can also have the following configurations.
  • the electrode is a dry electrode.
  • the contact state information includes the contact impedance.
  • the contact state information includes the amplitude of the electrical signal.
  • the electric signal measuring device according to any one of [1] to [3].
  • the determination unit determines the voltage by comparing the contact state information with a predetermined threshold value.
  • the electric signal measuring device according to any one of [1] to [4].
  • the determination unit analyzes the tendency of the contact state information and determines the voltage.
  • the electric signal measuring device according to any one of [1] to [5].
  • the electrode has a switch.
  • the electric signal measuring device according to any one of [1] to [6].
  • the electrode has a variable resistance, The electric signal measuring device according to any one of [1] to [7].
  • a feedback unit that applies the voltage to the living body, At least equipped with an electrical signal measurement system.
  • Electrodes detect electrical signals from the living body, Determining the voltage used for common mode feedback based on the contact state information between the living body and the electrode obtained from the electric signal.
  • An electrical signal measurement method that includes at least.
  • S Living body 1000: Electrical signal measuring device 100, 200, 300: Electrode 121, 221: Switch 126, 226: Variable resistance 400: Feedback unit 500: Judging unit 600: DA converter 10000: Electrical signal measuring system S100: Electrode is living body S200: Determining the voltage used for common mode feedback S300: Applying voltage to the living body

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Provided is an electrical signal measurement device comprising at least: an electrode for detecting an electrical signal from a living body in order to measure biological information with high precision even when the state of contact between the electrode and the living body changes due to body movement, etc.; a determination unit for determining a voltage to use in common-mode feedback on the basis of information on the state of contact between the living body and the electrode, obtained from the electrical signal; and a feedback unit for applying the voltage to the living body.

Description

電気信号計測装置、電気信号計測システム、及び電気信号計測方法Electrical signal measuring device, electrical signal measuring system, and electrical signal measuring method
 本技術は、電気信号計測装置、電気信号計測システム、及び電気信号計測方法に関する。 This technology relates to an electric signal measuring device, an electric signal measuring system, and an electric signal measuring method.
 従来、日常生活において、例えば脳波信号、心電図信号、又は皮膚電位信号等の生体情報を計測する技術が利用されている。生体情報の計測において、外界電磁界の存在によってコモンモードノイズが生じることが知られている。このコモンモードノイズによって、生体情報が高精度に計測されないという問題がある。 Conventionally, in daily life, a technique for measuring biological information such as an electroencephalogram signal, an electrocardiogram signal, or a skin potential signal has been used. It is known that common mode noise is generated by the presence of an external electromagnetic field in the measurement of biological information. Due to this common mode noise, there is a problem that biological information cannot be measured with high accuracy.
 このコモンモードノイズを低減するために、例えば非特許文献1や特許文献1等において、コモンモードノイズに相当する成分を反転増幅して、電極を介して生体に帰還することによって、コモンモードノイズを低減する技術が説明されている。 In order to reduce this common mode noise, for example, in Non-Patent Document 1 and Patent Document 1, the component corresponding to the common mode noise is inverted and amplified and returned to the living body via the electrode to reduce the common mode noise. Techniques for reduction are described.
特表2012-532731号公報Japanese Patent Publication No. 2012-532731
 研究用途や医療用途等では、ウェット電極と呼ばれる湿式電極が一般的に用いられている。湿式電極は、ジェルや生理食塩水等を用いて生体との接触インピーダンスを低減する電極である。 Wet electrodes called wet electrodes are generally used for research and medical applications. The wet electrode is an electrode that reduces the contact impedance with a living body by using gel, physiological saline, or the like.
 しかし、日常生活においては、例えばユーザの皮膚表面の汚れや経時変化、あるいは手間がかかる等の理由から、ウェット電極が用いられることが難しい。日常生活においては、ドライ電極と呼ばれる乾式電極が用いられることが想定される。 However, in daily life, it is difficult to use a wet electrode because, for example, the skin surface of the user is dirty, changes over time, or it takes time and effort. In daily life, it is assumed that a dry electrode called a dry electrode is used.
 乾式電極は、簡便に装着できるが、例えば体動や、装着の不具合等によって電極と生体との接触状態が変化すると、コモンモードノイズの低減が不十分になるという問題がある。 The dry electrode can be easily attached, but there is a problem that the reduction of common mode noise becomes insufficient when the contact state between the electrode and the living body changes due to, for example, body movement or improper attachment.
 そこで本技術では、例えば体動等により電極と生体との接触状態が変化しても、生体情報を高精度に計測する電気信号計測装置、電気信号計測システム、及び電気信号計測方法を提供することを主目的とする。 Therefore, the present technology provides an electric signal measuring device, an electric signal measuring system, and an electric signal measuring method for measuring biological information with high accuracy even if the contact state between the electrode and the living body changes due to body movement or the like. Is the main purpose.
 前記課題を解決するために、本技術は、生体からの電気信号を検知する電極と、前記電気信号から得られる、前記生体と前記電極との接触状態情報に基づいて、コモンモードフィードバックに用いる電圧を判定する判定部と、前記電圧を前記生体へ印加する帰還部と、を少なくとも備えている、電気信号計測装置を提供する。
 前記電極が乾式電極であってもよい。
 前記接触状態情報には、接触インピーダンスが含まれていてもよい。
 前記接触状態情報には、前記電気信号の振幅が含まれていてもよい。
 前記判定部が、前記接触状態情報と所定の閾値とを比較して、前記電圧を判定してもよい。
 前記判定部が、前記接触状態情報の傾向を分析して、前記電圧を判定してもよい。
 前記電極が、スイッチを有していてもよい。
 前記電極が、可変抵抗を有していてもよい。
 また、本技術は、生体からの電気信号を検知する電極と、前記電気信号から得られる、前記生体と前記電極との接触状態情報に基づいて、コモンモードフィードバックに用いる電圧を判定する判定部と、前記電圧を前記生体へ印加する帰還部と、を少なくとも備えている、電気信号計測システムを提供する。
 また、本技術は、電極が生体からの電気信号を検知することと、前記電気信号から得られる、前記生体と前記電極との接触状態情報に基づいて、コモンモードフィードバックに用いる電圧を判定することと、前記電極が前記電圧を前記生体へ印加することと、を少なくとも含む、電気信号計測方法を提供する。
In order to solve the above problems, the present technology uses an electrode for detecting an electric signal from a living body and a voltage used for common mode feedback based on contact state information between the living body and the electrode obtained from the electric signal. Provided is an electric signal measuring device including at least a determination unit for determining the above voltage and a feedback unit for applying the voltage to the living body.
The electrode may be a dry electrode.
The contact state information may include contact impedance.
The contact state information may include the amplitude of the electrical signal.
The determination unit may determine the voltage by comparing the contact state information with a predetermined threshold value.
The determination unit may analyze the tendency of the contact state information to determine the voltage.
The electrode may have a switch.
The electrode may have a variable resistor.
Further, the present technology includes an electrode that detects an electric signal from a living body and a determination unit that determines a voltage used for common mode feedback based on contact state information between the living body and the electrode obtained from the electric signal. Provided is an electric signal measurement system including at least a feedback unit that applies the voltage to the living body.
Further, in this technique, the electrode detects an electric signal from a living body, and the voltage used for common mode feedback is determined based on the contact state information between the living body and the electrode obtained from the electric signal. And the electrode applies the voltage to the living body, and at least the electric signal measurement method is provided.
本技術の一実施形態に係る電気信号計測装置の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the electric signal measuring apparatus which concerns on one Embodiment of this technique. 本技術の一実施形態に係る判定部の手順を示すフローチャートである。It is a flowchart which shows the procedure of the determination part which concerns on one Embodiment of this technique. 電気信号計測装置の比較例の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the comparative example of the electric signal measuring apparatus. 検証に用いられた電気信号計測装置の回路図である。It is a circuit diagram of the electric signal measuring device used for the verification. 検証結果の説明図である。It is explanatory drawing of the verification result. 検証結果の説明図である。It is explanatory drawing of the verification result. 本技術の一実施形態に係る電気信号計測装置の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the electric signal measuring apparatus which concerns on one Embodiment of this technique. 本技術の一実施形態に係る電気信号計測装置の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the electric signal measuring apparatus which concerns on one Embodiment of this technique. 本技術の一実施形態に係る電気信号計測装置の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the electric signal measuring apparatus which concerns on one Embodiment of this technique. 本技術の一実施形態に係る電気信号計測装置の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the electric signal measuring apparatus which concerns on one Embodiment of this technique. 本技術の一実施形態に係る電気信号計測装置の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the electric signal measuring apparatus which concerns on one Embodiment of this technique. 本技術の一実施形態に係る電気信号計測システムの構成を示すブロック図である。It is a block diagram which shows the structure of the electric signal measurement system which concerns on one Embodiment of this technique. 本技術の一実施形態に係る電気信号計測方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the electric signal measurement method which concerns on one Embodiment of this technique.
 以下、本技術を実施するための好適な形態について説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、特に断りがない限り、図面において、「上」とは図中の上方向又は上側を意味し、「下」とは、図中の下方向又は下側を意味し、「左」とは図中の左方向又は左側を意味し、「右」とは図中の右方向又は右側を意味する。また、図面については、同一又は同等の要素又は部材には同一の符号を付し、重複する説明は省略する。 Hereinafter, a suitable mode for carrying out this technology will be described. The embodiments described below show an example of typical embodiments of the present technology, and the scope of the present technology is not narrowly interpreted by this. Unless otherwise specified, in the drawings, "upper" means an upper direction or an upper side in the drawing, "lower" means a lower direction or a lower side in the drawing, and "left" means. It means the left direction or the left side in the figure, and "right" means the right direction or the right side in the figure. Further, in the drawings, the same or equivalent elements or members are designated by the same reference numerals, and duplicate description will be omitted.
 本技術の説明は以下の順序で行う。
 1.本技術の第1の実施形態(電気信号計測装置の例1)
 (1)本実施形態の概要
 (2)判定部
 (3)検証
 2.本技術の第2の実施形態(電気信号計測装置の例2)
 3.本技術の第3の実施形態(電気信号計測装置の例3)
 4.本技術の第4の実施形態(電気信号計測装置の例4)
 5.本技術の第5の実施形態(電気信号計測装置の例5)
 6.本技術の第6の実施形態(電気信号計測装置の例6)
 7.本技術の第7の実施形態(電気信号計測システム)
 8.本技術の第8の実施形態(電気信号計測方法)
The present technology will be described in the following order.
1. 1. First Embodiment of the present technology (Example 1 of an electric signal measuring device)
(1) Outline of this embodiment (2) Judgment unit (3) Verification 2. A second embodiment of the present technology (Example 2 of an electric signal measuring device)
3. 3. Third Embodiment of the present technology (Example 3 of an electric signal measuring device)
4. Fourth Embodiment of the present technology (Example 4 of an electric signal measuring device)
5. Fifth Embodiment of the present technology (Example 5 of an electric signal measuring device)
6. A sixth embodiment of the present technology (Example 6 of an electric signal measuring device)
7. Seventh Embodiment of this technology (electric signal measurement system)
8. Eighth Embodiment of the present technology (electric signal measurement method)
[1.本技術の第1の実施形態(電気信号計測装置の例1)]
[(1)本実施形態の概要]
 本技術の第1の実施形態に係る電気信号計測装置について図1を参照しつつ説明する。図1は、第1の実施形態に係る電気信号計測装置の回路構成を示す回路図である。
[1. First Embodiment of the present technology (Example 1 of an electric signal measuring device)]
[(1) Outline of the present embodiment]
The electric signal measuring device according to the first embodiment of the present technology will be described with reference to FIG. FIG. 1 is a circuit diagram showing a circuit configuration of the electric signal measuring device according to the first embodiment.
 図1に示されるとおり、本実施形態に係る電気信号計測装置1000は、複数の電極100~300と、判定部500と、帰還部400と、を少なくとも備えている。 As shown in FIG. 1, the electric signal measuring device 1000 according to the present embodiment includes at least a plurality of electrodes 100 to 300, a determination unit 500, and a feedback unit 400.
 複数の電極100~300のそれぞれは、生体Sの皮膚表面と接触する位置に、又は生体Sの皮膚表面から近い位置に配置される。複数の電極100~300のそれぞれは、生体Sからの電気信号を検知する。この電気信号の一例として、脳波(EEG)信号、心電図(ECG)信号、心磁図(MCG)信号、脳磁図(MEG)信号、表面筋電図(EMG)信号、眼球電位図(EOG)信号、及び皮膚電位(EDA)信号等がある。 Each of the plurality of electrodes 100 to 300 is arranged at a position in contact with the skin surface of the living body S or at a position close to the skin surface of the living body S. Each of the plurality of electrodes 100 to 300 detects an electric signal from the living body S. As an example of this electric signal, an electroencephalogram (EEG) signal, an electrocardiogram (ECG) signal, a magnetocardiogram (MCG) signal, a magnetoencephalogram (MEG) signal, a surface electromyogram (EMG) signal, an electrooculogram (EOG) signal, And there are skin potential (EDA) signals and the like.
 複数の電極100~300についてより詳しく説明する。複数の電極100~300は、第1の検知電極100、第2の検知電極200、及び第3の検知電極300から構成されていてよい。なお、複数の電極100~300の数は3つに限られない。 The plurality of electrodes 100 to 300 will be described in more detail. The plurality of electrodes 100 to 300 may be composed of a first detection electrode 100, a second detection electrode 200, and a third detection electrode 300. The number of the plurality of electrodes 100 to 300 is not limited to three.
 本実施形態では、第1の検知電極100及び第2の検知電極200のそれぞれは、生体Sからの電気信号を検知する。第3の検知電極300は、電位の基準となる電気信号を生体Sから検知する。 In the present embodiment, each of the first detection electrode 100 and the second detection electrode 200 detects an electric signal from the living body S. The third detection electrode 300 detects an electric signal that serves as a reference for the electric potential from the living body S.
 複数の電極100~300のそれぞれは、乾式電極であってもよい。複数の電極100~300のそれぞれが乾式電極であり、例えば体動等により電極と生体との接触状態が変化しても、電気信号計測装置1000は、生体Sからの電気信号を高精度に計測できる。 Each of the plurality of electrodes 100 to 300 may be a dry electrode. Each of the plurality of electrodes 100 to 300 is a dry electrode, and even if the contact state between the electrodes and the living body changes due to body movement or the like, the electric signal measuring device 1000 measures the electric signal from the living body S with high accuracy. can.
 帰還部400は、生体Sへ電圧を印加する。より詳しく説明すると、帰還部400は、コモンモードノイズに相当する成分を反転増幅して生体に帰還(コモンフィードバック)することによって、コモンモードノイズを低減する。 The feedback unit 400 applies a voltage to the living body S. More specifically, the feedback unit 400 reduces the common mode noise by inverting and amplifying the component corresponding to the common mode noise and returning it to the living body (common feedback).
 第1の検知電極100は、第1のパッシブ電極110及び第1のアクティブ電極120から構成されている。第1のアクティブ電極120は、例えば第1のスイッチ121、第1のインスツルメンテーションアンプ122、第1の抵抗123、第1のADコンバータ124、及び第1のスイッチ切換部125等を有することができる。 The first detection electrode 100 is composed of a first passive electrode 110 and a first active electrode 120. The first active electrode 120 has, for example, a first switch 121, a first instrumentation amplifier 122, a first resistor 123, a first AD converter 124, a first switch switching unit 125, and the like. Can be done.
 第2の検知電極200は、第1の検知電極100と同様に、第2のパッシブ電極210及び第2のアクティブ電極220から構成されている。第2のアクティブ電極220は、例えば第2のスイッチ221、第2のインスツルメンテーションアンプ222、第2の抵抗223、第2のADコンバータ224、及び第2のスイッチ切換部225等を有することができる。 The second detection electrode 200 is composed of a second passive electrode 210 and a second active electrode 220, similarly to the first detection electrode 100. The second active electrode 220 has, for example, a second switch 221, a second instrumentation amplifier 222, a second resistor 223, a second AD converter 224, a second switch switching unit 225, and the like. Can be done.
 第3の検知電極300は、第3のパッシブ電極310及び第1のオペアンプ321から構成されている。 The third detection electrode 300 is composed of a third passive electrode 310 and a first operational amplifier 321.
 帰還部400は、第4のパッシブ電極410及び第2のオペアンプ421から構成されている。 The feedback unit 400 is composed of a fourth passive electrode 410 and a second operational amplifier 421.
 判定部500は、複数の電極100~300のそれぞれ及び帰還部400と電気的に接続されている。判定部500は、複数の電極100~300のそれぞれが検知した電気信号から、生体Sと、複数の電極100~300のそれぞれとの接触状態情報を得る。そして、判定部500は、この接触状態情報に基づいて、コモンモードフィードバックに用いる電圧を判定する。判定部500は、例えばマイクロコンピュータ等を用いることによって実現できる。 The determination unit 500 is electrically connected to each of the plurality of electrodes 100 to 300 and the feedback unit 400. The determination unit 500 obtains contact state information between the living body S and each of the plurality of electrodes 100 to 300 from the electric signals detected by each of the plurality of electrodes 100 to 300. Then, the determination unit 500 determines the voltage used for the common mode feedback based on the contact state information. The determination unit 500 can be realized by using, for example, a microcomputer or the like.
 帰還部400は、判定部500が判定した電圧を生体Sへ印加する。 The feedback unit 400 applies the voltage determined by the determination unit 500 to the living body S.
[(2)判定部]
 判定部500が行う処理の流れについて図2を参照しつつ説明する。図2は、本実施形態に係る判定部の手順を示すフローチャートである。
[(2) Judgment unit]
The flow of processing performed by the determination unit 500 will be described with reference to FIG. FIG. 2 is a flowchart showing the procedure of the determination unit according to the present embodiment.
 図2に示されるとおり、判定部500は、複数の電極100~300のそれぞれが検知した電気信号から、生体Sと複数の電極100~300のそれぞれとの接触状態情報を得る(S1)。この接触状態情報には、例えば接触インピーダンスが含まれていてもよいし、電気信号の振幅が含まれていてもよい。 As shown in FIG. 2, the determination unit 500 obtains contact state information between the living body S and each of the plurality of electrodes 100 to 300 from the electric signals detected by each of the plurality of electrodes 100 to 300 (S1). This contact state information may include, for example, the contact impedance or the amplitude of the electric signal.
 次に、判定部500は、得られた接触状態情報に基づいて、コモンフィードバックに用いる電圧を判定する(S2)。この判定方法は特に限られないが、一例について説明すると、判定部500は、前記接触状態情報と所定の閾値とを比較して、前記電圧を判定してもよい。例えば接触状態情報の一例である接触インピーダンスが所定の閾値以上であるとき(S2:Yes)、判定部500は、この接触状態情報を含む電気信号を検知した検知電極を、回路から切り離す(S3)。なお、この所定の閾値は特に限られない。 Next, the determination unit 500 determines the voltage used for common feedback based on the obtained contact state information (S2). This determination method is not particularly limited, but to explain one example, the determination unit 500 may determine the voltage by comparing the contact state information with a predetermined threshold value. For example, when the contact impedance, which is an example of the contact state information, is equal to or higher than a predetermined threshold value (S2: Yes), the determination unit 500 disconnects the detection electrode that detects the electric signal including the contact state information from the circuit (S3). .. The predetermined threshold value is not particularly limited.
 この切り離しについて図1を参照しつつ説明する。本実施形態に係る電気信号計測装置1000では、例えば第1の検知電極100が所定の閾値以上の接触状態情報を含む電気信号を検知したとする。つまり、第1の検知電極100が備える第1のパッシブ電極110と生体Sとの接触状態が悪いとする。 This disconnection will be explained with reference to FIG. In the electric signal measuring device 1000 according to the present embodiment, for example, it is assumed that the first detection electrode 100 detects an electric signal including contact state information equal to or higher than a predetermined threshold value. That is, it is assumed that the contact state between the first passive electrode 110 included in the first detection electrode 100 and the living body S is poor.
 判定部500は、第1の検知電極100を回路から切り離す。このとき、判定部500は、第1のスイッチ切換部125へ切り離し指示をする。第1のスイッチ切換部125は、第1のスイッチ121をオン状態からオフ状態に変化させる。これにより、第1の検知電極100は回路から切り離される。 The determination unit 500 disconnects the first detection electrode 100 from the circuit. At this time, the determination unit 500 gives a disconnection instruction to the first switch switching unit 125. The first switch switching unit 125 changes the first switch 121 from the on state to the off state. As a result, the first detection electrode 100 is disconnected from the circuit.
 第1のスイッチ121は、例えばMOSFETが用いられることによって実現される。このとき、第1のスイッチ切換部125は、第1のスイッチ121へ所定の電圧を印加することにより、第1のスイッチ121をオン状態からオフ状態に変化させる。 The first switch 121 is realized by using, for example, a MOSFET. At this time, the first switch switching unit 125 changes the first switch 121 from the on state to the off state by applying a predetermined voltage to the first switch 121.
 なお、詳細は後述するが、検知電極の切り離しは物理的なスイッチが用いられなくてもよい。例えばデジタル信号処理によって検知電極の切り離しが行われてもよい。 Although the details will be described later, it is not necessary to use a physical switch to disconnect the detection electrode. For example, the detection electrode may be separated by digital signal processing.
 図2の説明に戻る。判定部500は、全ての検知電極が検知した電気信号に含まれる接触状態情報の傾向を分析して、コモンモードフィードバックに用いる電圧を判定する。すなわち、全ての検知電極について判定が完了したとき(S4:Yes)、判定部500は、コモンモードフィードバックに用いる電圧を判定する(S5)。 Return to the explanation in Fig. 2. The determination unit 500 analyzes the tendency of the contact state information included in the electric signals detected by all the detection electrodes, and determines the voltage used for the common mode feedback. That is, when the determination is completed for all the detection electrodes (S4: Yes), the determination unit 500 determines the voltage used for the common mode feedback (S5).
 続いて、帰還部400は、判定部500が判定した前記電圧を生体Sへ印加する。これにより、コモンモードフィードバックが適切になされるため、電気信号計測装置1000は、電気信号を高精度に計測できる。 Subsequently, the return unit 400 applies the voltage determined by the determination unit 500 to the living body S. As a result, the common mode feedback is appropriately performed, so that the electric signal measuring device 1000 can measure the electric signal with high accuracy.
 なお、複数のスイッチ121、221のそれぞれがオンオフされるタイミングは、電気信号が検知されるごとでもよいし、事前に指定された回数ごとでもよい。 The timing at which each of the plurality of switches 121 and 221 is turned on and off may be each time an electric signal is detected or every time a predetermined number of times are specified.
 さらには、例えば加速度センサ等から得られた外部参照信号が、判定部500による判定のトリガーとして用いられてもよい。あるいは、例えばイベントドリブンのアルゴリズムで構成されている判定部500が、例えば接触状態情報が所定の閾値以上に変化したときに処理を開始してもよい。 Further, for example, an external reference signal obtained from an acceleration sensor or the like may be used as a trigger for determination by the determination unit 500. Alternatively, for example, the determination unit 500 configured by an event-driven algorithm may start the process when, for example, the contact state information changes to a predetermined threshold value or more.
 判定部500は、上述した接触インピーダンスのほかに、電気信号の振幅を用いて判定してもよい。例えばこの振幅が所定の閾値以上であるとき、判定部500は、この振幅を含む電気信号を検知した検知電極を、回路から切り離してもよい。電気信号の振幅を用いることにより、電流源を用いずに、より単純な回路で同様の効果を得ることができる。 The determination unit 500 may determine using the amplitude of the electric signal in addition to the above-mentioned contact impedance. For example, when this amplitude is equal to or greater than a predetermined threshold value, the determination unit 500 may disconnect the detection electrode that detects the electric signal including this amplitude from the circuit. By using the amplitude of the electric signal, the same effect can be obtained with a simpler circuit without using a current source.
 なお、判定部500は、統計的なアルゴリズムを用いて、コモンモードフィードバックに用いる電圧を判定してもよい。判定部500は、例えば全ての検知電極における平均値からのばらつき具合に基づいて、コモンモードフィードバックに用いる電圧を判定してもよい。 The determination unit 500 may determine the voltage used for the common mode feedback by using a statistical algorithm. The determination unit 500 may determine the voltage used for the common mode feedback, for example, based on the degree of variation from the average value in all the detection electrodes.
 ここで、本技術の効果について図3を参照しつつ説明する。図3は、本技術の効果を説明するための電気信号計測装置の比較例の回路構成を示す回路図である。 Here, the effect of this technology will be explained with reference to FIG. FIG. 3 is a circuit diagram showing a circuit configuration of a comparative example of an electric signal measuring device for explaining the effect of the present technology.
 図3に示されるとおり、比較例に係る電気信号計測装置2000は、複数の電極100~300と、制御部700と、帰還部400と、を少なくとも備えている。複数の電極100~300のうち、例えば第1の検知電極100が有する第1のパッシブ電極110と生体Sとの接触状態が悪い場合を想定する。この場合、第1の検知電極100が検知する電気信号には、ノイズが多く含まれることになる。 As shown in FIG. 3, the electric signal measuring device 2000 according to the comparative example includes at least a plurality of electrodes 100 to 300, a control unit 700, and a feedback unit 400. Of the plurality of electrodes 100 to 300, for example, it is assumed that the contact state between the first passive electrode 110 of the first detection electrode 100 and the living body S is poor. In this case, the electric signal detected by the first detection electrode 100 contains a lot of noise.
 制御部700は、複数の電極100~300のそれぞれが得た電気信号に基づいて、帰還部400を介して生体Sに電圧を印加することにより、コモンフィードバックを行う。しかし、このノイズが重畳されて印加されることにより、生体Sからの電気信号を高精度に計測できないという問題がある。 The control unit 700 performs common feedback by applying a voltage to the living body S via the feedback unit 400 based on the electric signals obtained by each of the plurality of electrodes 100 to 300. However, there is a problem that the electric signal from the living body S cannot be measured with high accuracy because the noise is superimposed and applied.
 本技術の一実施形態に係る電気信号計測装置1000は、このノイズの除去により、生体Sからの電気信号を高精度に計測できるという効果が生じる。後述する他の実施形態においても同様の効果が生じる。 The electric signal measuring device 1000 according to the embodiment of the present technology has an effect that the electric signal from the living body S can be measured with high accuracy by removing the noise. Similar effects occur in other embodiments described below.
 なお、本実施形態では生体からの電気信号を計測しているが、計測の対象は生体に限られない。任意の回路特性を有する例えば固体、液体、又は気体等が計測の対象であってもよい。 Although the electrical signal from the living body is measured in this embodiment, the measurement target is not limited to the living body. For example, a solid, a liquid, a gas, or the like having arbitrary circuit characteristics may be the object of measurement.
[(3)検証]
 このノイズの除去の効果を検証した結果について図4~6を参照しつつ説明する。図4は、この検証に用いられた電気信号計測装置の回路図である。なお、この回路図はあくまでも一例であり、電気信号計測装置1000の回路構成は、図4に示されるものに限られない。
[(3) Verification]
The results of verifying the effect of removing noise will be described with reference to FIGS. 4 to 6. FIG. 4 is a circuit diagram of the electric signal measuring device used for this verification. Note that this circuit diagram is merely an example, and the circuit configuration of the electric signal measuring device 1000 is not limited to that shown in FIG.
 図4に示されるとおり、この回路は、第1のチャンネルCh1及び第2のチャンネルCh2を備えている。第1のチャンネルCh1及び第2のチャンネルCh2のそれぞれは、電極に該当する入力端子(Sig_IN、REF_IN)を有している。なお、第2のチャンネルCh2の接触インピーダンスは、第1のチャンネルCh1の接触インピーダンスよりも高くなっているとする。 As shown in FIG. 4, this circuit includes a first channel Ch1 and a second channel Ch2. Each of the first channel Ch1 and the second channel Ch2 has an input terminal (Sigma_IN, REF_IN) corresponding to an electrode. It is assumed that the contact impedance of the second channel Ch2 is higher than the contact impedance of the first channel Ch1.
 図5は検証結果の説明図である。図5において、第1のグラフG1は、コモンモードフィードバック(DRL:Driven Right Leg)を行わなかったときの、複数の入力端子(Sig_IN、REF_IN)のそれぞれに入力された電気信号の周波数及び振幅を示している。第1のグラフG1に示されるとおり、この電気信号にはコモンモードノイズが含まれている。 FIG. 5 is an explanatory diagram of the verification result. In FIG. 5, the first graph G1 shows the frequency and amplitude of the electric signal input to each of the plurality of input terminals (Sigma_IN, REF_IN) when the common mode feedback (DRL: Driven Right Leg) is not performed. Shown. As shown in the first graph G1, this electric signal contains common mode noise.
 第2のグラフG2は、第1のチャンネルCh1より得られた電気信号に基づいて、コモンモードフィードバックを行ったときの、複数の入力端子(Sig_IN、REF_IN)のそれぞれに入力された電気信号の周波数及び振幅を示している。接触インピーダンスが低い第1のチャンネルCh1より得られた電気信号が、コモンモードフィードバックに用いられている。接触インピーダンスが高い第2のチャンネルCh2より得られた電気信号は、コモンフィードバックに用いられていない。 The second graph G2 shows the frequencies of the electric signals input to each of the plurality of input terminals (Sigma_IN, REF_IN) when the common mode feedback is performed based on the electric signals obtained from the first channel Ch1. And the amplitude are shown. The electric signal obtained from the first channel Ch1 having a low contact impedance is used for the common mode feedback. The electric signal obtained from the second channel Ch2 having a high contact impedance is not used for common feedback.
 第2のグラフG2に示されるとおり、第1のグラフG1に示されていたコモンモードノイズが除去されている。また、接触インピーダンスが高い第2のチャンネルCh2より得られた電気信号が用いられていないため、電気信号が高精度に計測されている。 As shown in the second graph G2, the common mode noise shown in the first graph G1 has been removed. Further, since the electric signal obtained from the second channel Ch2 having a high contact impedance is not used, the electric signal is measured with high accuracy.
 第3のグラフG3は、第2のチャンネルCh2より得られた電気信号に基づいて、コモンモードフィードバックを行ったときの、複数の入力端子(Sig_IN、REF_IN)のそれぞれに入力された電気信号の周波数及び振幅を示している。接触インピーダンスが低い第1のチャンネルCh1より得られた電気信号は、コモンモードフィードバックに用いられていない。接触インピーダンスが高い第2のチャンネルCh2より得られた電気信号が、コモンフィードバックに用いられていない。 The third graph G3 shows the frequencies of the electric signals input to each of the plurality of input terminals (Sigma_IN, REF_IN) when the common mode feedback is performed based on the electric signals obtained from the second channel Ch2. And the amplitude are shown. The electrical signal obtained from the first channel Ch1 having a low contact impedance is not used for common mode feedback. The electric signal obtained from the second channel Ch2 having a high contact impedance is not used for common feedback.
 第3のグラフG3に示されるとおり、接触インピーダンスが高い第2のチャンネルCh2より得られた電気信号が用いられているため、振幅が不安定になっており、電気信号を高精度に計測できていない。また、コモンモードノイズが除去されていない。 As shown in the third graph G3, since the electric signal obtained from the second channel Ch2 having a high contact impedance is used, the amplitude is unstable and the electric signal can be measured with high accuracy. No. Moreover, the common mode noise is not removed.
 第4のグラフG4は、第1のチャンネルCh1及び第2のチャンネルCh2より得られた電気信号に基づいて、コモンモードフィードバックを行ったときの、複数の入力端子(Sig_IN、REF_IN)のそれぞれに入力された電気信号の周波数及び振幅を示している。これは従来行われているコモンモードフィードバックである。 The fourth graph G4 is input to each of a plurality of input terminals (Sig_IN, REF_IN) when common mode feedback is performed based on the electric signals obtained from the first channel Ch1 and the second channel Ch2. It shows the frequency and amplitude of the resulting electrical signal. This is the conventional common mode feedback.
 第4のグラフG4に示されるとおり、コモンモードノイズの除去が不十分である。 As shown in the fourth graph G4, the removal of common mode noise is insufficient.
 コモンモードノイズの除去率(CMRR:Common Mode Rejection Ratio)について、さらに図6を参照しつつ説明する。図6は検証結果の説明図である。図6において、3つのパターンのそれぞれにおけるコモンモードノイズの除去率について示されている。 The common mode noise rejection ratio (CMRR: Common Mode Rejection Ratio) will be further described with reference to FIG. FIG. 6 is an explanatory diagram of the verification result. In FIG. 6, the removal rate of common mode noise in each of the three patterns is shown.
 第1のパターン(左側)は、図5における第2のグラフG2と対応しており、第1のチャンネルCh1より得られた電気信号に基づいて、コモンモードフィードバックを行ったときの、コモンモードノイズの除去率が示されている。3つのパターンの中で、コモンモードノイズの除去率が最も高くなっている。これにより、電気信号が高精度に計測される。 The first pattern (left side) corresponds to the second graph G2 in FIG. 5, and is the common mode noise when the common mode feedback is performed based on the electric signal obtained from the first channel Ch1. The removal rate of is shown. Of the three patterns, the removal rate of common mode noise is the highest. As a result, the electric signal is measured with high accuracy.
 第2のパターン(中央)は、図5における第3のグラフG3と対応しており、第2のチャンネルCh2より得られた電気信号に基づいて、コモンモードフィードバックを行ったときの、コモンモードノイズの除去率が示されている。3つのパターンの中で、コモンモードノイズの除去率が最も低くなっている。第2のチャンネルCh2は、エラー電極に相当している。 The second pattern (center) corresponds to the third graph G3 in FIG. 5, and is the common mode noise when the common mode feedback is performed based on the electric signal obtained from the second channel Ch2. The removal rate of is shown. Of the three patterns, the removal rate of common mode noise is the lowest. The second channel Ch2 corresponds to an error electrode.
 第3のパターン(右側)は、図5における第4のグラフG4と対応しており、第1のチャンネルCh1及び第2のチャンネルCh2より得られた電気信号に基づいて、コモンモードフィードバックを行ったときの、コモンモードノイズの除去率が示されている。コモンモードノイズの除去が不十分である。 The third pattern (right side) corresponds to the fourth graph G4 in FIG. 5, and common mode feedback was performed based on the electric signals obtained from the first channel Ch1 and the second channel Ch2. The removal rate of common mode noise at that time is shown. Insufficient removal of common mode noise.
 以上の検証により、本技術によってコモンモードノイズの除去率が高くなることがわかる。コモンモードノイズの除去率が高くなることにより、電極が検知した電気信号が高精度に計測される。 From the above verification, it can be seen that this technology increases the removal rate of common mode noise. By increasing the removal rate of common mode noise, the electric signal detected by the electrodes is measured with high accuracy.
[2.本技術の第2の実施形態(電気信号計測装置の例2)]
 本技術の第2の実施形態に係る電気信号計測装置について図7を参照しつつ説明する。図7は、第2の実施形態に係る電気信号計測装置の回路構成を示す回路図である。なお、第1の実施形態に係る電気信号計測装置と同様の構成要素については、同様の符号を付して、詳細な説明を省略する。
[2. Second Embodiment of the present technology (Example 2 of an electric signal measuring device)]
The electric signal measuring device according to the second embodiment of the present technology will be described with reference to FIG. 7. FIG. 7 is a circuit diagram showing a circuit configuration of the electric signal measuring device according to the second embodiment. The same components as those of the electric signal measuring device according to the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図7に示されるとおり、第1のアクティブ電極120及び第2のアクティブ電極220のそれぞれは、スイッチの代わりに可変抵抗を有していてもよい。すなわち、第1の検知電極100は、第1の可変抵抗126を有していてもよい。第2の検知電極200は、第2の可変抵抗226を有していてもよい。 As shown in FIG. 7, each of the first active electrode 120 and the second active electrode 220 may have a variable resistor instead of the switch. That is, the first detection electrode 100 may have a first variable resistor 126. The second detection electrode 200 may have a second variable resistor 226.
 第1のスイッチ切換部125は、第1の可変抵抗126の抵抗値を変化させることができる。具体的には、第1のスイッチ切換部125は、例えば第1の可変抵抗126に印加する電圧を変化させることにより、第1の可変抵抗126の抵抗値を変化させることができる。 The first switch switching unit 125 can change the resistance value of the first variable resistor 126. Specifically, the first switch switching unit 125 can change the resistance value of the first variable resistor 126, for example, by changing the voltage applied to the first variable resistor 126.
 同様に、第2のスイッチ切換部225は、第2の可変抵抗226の抵抗値を変化させることができる。 Similarly, the second switch switching unit 225 can change the resistance value of the second variable resistor 226.
 これにより、判定部500は、第1の可変抵抗126及び第2の可変抵抗226のそれぞれを流れる電流の量を調整できる。例えば、第1の検知電極100を回路から切り離すとき、判定部500は、第1のスイッチ切換部125へ切り離し指示をする。第1のスイッチ切換部125は、第1の可変抵抗126の抵抗値を高くする。これにより、第1の可変抵抗126を流れる電流の量が減少する。その結果、第1の検知電極100は回路から切り離される。 Thereby, the determination unit 500 can adjust the amount of current flowing through each of the first variable resistor 126 and the second variable resistor 226. For example, when disconnecting the first detection electrode 100 from the circuit, the determination unit 500 instructs the first switch switching unit 125 to disconnect. The first switch switching unit 125 raises the resistance value of the first variable resistor 126. This reduces the amount of current flowing through the first variable resistor 126. As a result, the first detection electrode 100 is disconnected from the circuit.
 なお、第1のスイッチ切換部125は、第1のアクティブ電極120から独立して備えられているが、例えば第1のアクティブ電極120が第1のスイッチ切換部125を有していてもよい。第2のスイッチ切換部225についても同様である。 The first switch switching unit 125 is provided independently of the first active electrode 120, but for example, the first active electrode 120 may have the first switch switching unit 125. The same applies to the second switch switching unit 225.
[3.本技術の第3の実施形態(電気信号計測装置の例3)]
 本技術の第3の実施形態に係る電気信号計測装置について図8を参照しつつ説明する。図8は、第3の実施形態に係る電気信号計測装置の回路構成を示す回路図である。なお、第1及び第2の実施形態に係る電気信号計測装置と同様の構成要素については、同様の符号を付して、詳細な説明を省略する。
[3. Third Embodiment of the present technology (Example 3 of an electric signal measuring device)]
The electric signal measuring device according to the third embodiment of the present technology will be described with reference to FIG. FIG. 8 is a circuit diagram showing a circuit configuration of the electric signal measuring device according to the third embodiment. The same components as those of the electric signal measuring device according to the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
 図8に示されるとおり、判定部500は、複数のスイッチ121、221のそれぞれのオンオフ状態を切り換える機能を有していてもよい。すなわち、本実施形態に係る電気信号計測装置1000は、スイッチ切換部を独立して備えていなくてもよい。 As shown in FIG. 8, the determination unit 500 may have a function of switching each on / off state of the plurality of switches 121 and 221. That is, the electric signal measuring device 1000 according to the present embodiment does not have to independently include the switch switching unit.
 例えば、第1の検知電極100を回路から切り離すとき、判定部500は、第1のスイッチ121をオン状態からオフ状態に変化させる。これにより、第1の検知電極100は回路から切り離される。 For example, when the first detection electrode 100 is disconnected from the circuit, the determination unit 500 changes the first switch 121 from the on state to the off state. As a result, the first detection electrode 100 is disconnected from the circuit.
[4.本技術の第4の実施形態(電気信号計測装置の例4)]
 本技術の第4の実施形態に係る電気信号計測装置について図9を参照しつつ説明する。図9は、第4の実施形態に係る電気信号計測装置の回路構成を示す回路図である。なお、第1~第3の実施形態に係る電気信号計測装置と同様の構成要素については、同様の符号を付して、詳細な説明を省略する。
[4. Fourth Embodiment of the present technology (Example 4 of an electric signal measuring device)]
The electric signal measuring device according to the fourth embodiment of the present technology will be described with reference to FIG. FIG. 9 is a circuit diagram showing a circuit configuration of the electric signal measuring device according to the fourth embodiment. The same components as those of the electric signal measuring device according to the first to third embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
 判定部500は、アナログ信号をデジタル信号に変換する機能を有していてもよい。すなわち、図9に示されるとおり、本実施形態に係る電気信号計測装置1000は、ADコンバータを独立して備えていなくてもよい。 The determination unit 500 may have a function of converting an analog signal into a digital signal. That is, as shown in FIG. 9, the electric signal measuring device 1000 according to the present embodiment does not have to be independently provided with the AD converter.
 判定部500は、複数の電極100~300のそれぞれが検知した電気信号をアナログ信号のまま取得する。判定部500は、このアナログ信号の電気信号をデジタル信号に変換して、コモンモードフィードバックに用いる電圧を判定する。
 複数のADコンバータを備える必要がないため、本技術は、例えば装置の小型化に貢献できる。
The determination unit 500 acquires the electric signals detected by each of the plurality of electrodes 100 to 300 as analog signals. The determination unit 500 converts the electric signal of this analog signal into a digital signal, and determines the voltage used for the common mode feedback.
Since it is not necessary to provide a plurality of AD converters, this technology can contribute to miniaturization of the device, for example.
[5.本技術の第5の実施形態(電気信号計測装置の例5)]
 本技術の第5の実施形態に係る電気信号計測装置について図10を参照しつつ説明する。図10は、第5の実施形態に係る電気信号計測装置の回路構成を示す回路図である。なお、第1~第4の実施形態に係る電気信号計測装置と同様の構成要素については、同様の符号を付して、詳細な説明を省略する。
[5. Fifth Embodiment of the present technology (Example 5 of an electric signal measuring device)]
The electric signal measuring device according to the fifth embodiment of the present technology will be described with reference to FIG. FIG. 10 is a circuit diagram showing a circuit configuration of the electric signal measuring device according to the fifth embodiment. The same components as those of the electric signal measuring devices according to the first to fourth embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
 図10に示されるとおり、帰還部400が有する第2のオペアンプ421と、複数のインスツルメンテーションアンプ122、222のそれぞれとが接続されている。帰還部400は、生体Sへ電圧を印加するとともに、複数のインスツルメンテーションアンプ122、222のそれぞれへ電圧を印加できる。これにより、本実施形態に係る電気信号計測装置1000は、電位の基準となる電気信号を生体Sから検知する検知電極を備えていなくてもよい。
 これにより、本技術は、例えば装置の小型化に貢献できる。
As shown in FIG. 10, the second operational amplifier 421 included in the feedback unit 400 and each of the plurality of instrumentation amplifiers 122 and 222 are connected. The feedback unit 400 can apply a voltage to the living body S and also apply a voltage to each of the plurality of instrumentation amplifiers 122 and 222. As a result, the electric signal measuring device 1000 according to the present embodiment does not have to include a detection electrode for detecting an electric signal as a reference of the electric potential from the living body S.
Thereby, this technology can contribute to the miniaturization of the device, for example.
[6.本技術の第6の実施形態(電気信号計測装置の例6)]
 本技術の第6の実施形態に係る電気信号計測装置について図11を参照しつつ説明する。図11は、第6の実施形態に係る電気信号計測装置の回路構成を示す回路図である。なお、第1~第5の実施形態に係る電気信号計測装置と同様の構成要素については、同様の符号を付して、詳細な説明を省略する。
[6. Sixth Embodiment of the present technology (Example 6 of an electric signal measuring device)]
The electric signal measuring device according to the sixth embodiment of the present technology will be described with reference to FIG. FIG. 11 is a circuit diagram showing a circuit configuration of the electric signal measuring device according to the sixth embodiment. The same components as those of the electric signal measuring devices according to the first to fifth embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
 図11に示されるとおり、本実施形態に係る電気信号計測装置1000は、ADコンバータを独立して備えていなくてもよい。判定部500は、判定部500は、アナログ信号をデジタル信号に変換できる。 As shown in FIG. 11, the electric signal measuring device 1000 according to the present embodiment does not have to be independently provided with an AD converter. The determination unit 500 can convert an analog signal into a digital signal.
 また、電気信号計測装置1000は、DAコンバータ600を有していてもよい。DAコンバータ600は、デジタル信号をアナログ信号に変換できる。 Further, the electric signal measuring device 1000 may have a DA converter 600. The DA converter 600 can convert a digital signal into an analog signal.
 判定部500は、複数の電極100~300それぞれで得られた電気信号に含まれる接触状態情報の傾向を分析する。そして、判定部500は、コモンフィードバックに用いる電圧を判定する。この電圧は、複数の電極100~300のそれぞれを介さずに、DAコンバータ600及び帰還部400を介して生体Sに印加される。 The determination unit 500 analyzes the tendency of the contact state information included in the electric signals obtained from each of the plurality of electrodes 100 to 300. Then, the determination unit 500 determines the voltage used for the common feedback. This voltage is applied to the living body S via the DA converter 600 and the feedback unit 400 without passing through each of the plurality of electrodes 100 to 300.
 これにより、第1のアクティブ電極120及び第2のアクティブ電極220のそれぞれは、スイッチ等を有していなくてもよい。その結果、本技術は、例えば装置の小型化に貢献できる。 As a result, each of the first active electrode 120 and the second active electrode 220 does not have to have a switch or the like. As a result, this technology can contribute to, for example, miniaturization of the device.
 なお、本実施形態に係る電気信号計測装置1000は、判定部500がアナログ信号をデジタル信号に変換する機能を有しているが、ADコンバータを独立して備えていてもよい。 Although the electric signal measuring device 1000 according to the present embodiment has a function of the determination unit 500 to convert an analog signal into a digital signal, it may be provided with an AD converter independently.
[7.本技術の第7の実施形態(電気信号計測システム)]
 本技術の第7の実施形態に係る電気信号計測システムについて図12を参照しつつ説明する。図12は、第7の実施形態に係る電気信号計測システムの構成を示すブロック図である。なお、第7の実施形態に係る電気信号計測システムは、第1~第6の実施形態に係る技術を利用してもよい。そのため、第1~第6の実施形態に係る電気信号計測装置と同様の構成要素については、同様の符号を付して、詳細な説明を省略する。
[7. Seventh Embodiment of this technology (electric signal measurement system)]
The electric signal measurement system according to the seventh embodiment of the present technology will be described with reference to FIG. FIG. 12 is a block diagram showing a configuration of an electric signal measurement system according to a seventh embodiment. The electric signal measurement system according to the seventh embodiment may use the techniques according to the first to sixth embodiments. Therefore, the same components as those of the electric signal measuring devices according to the first to sixth embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
 図12に示されるとおり、本実施形態に係る電気信号計測システム10000は、複数の電極100~300と、判定部500と、帰還部400と、を少なくとも備えている。 As shown in FIG. 12, the electric signal measurement system 10000 according to the present embodiment includes at least a plurality of electrodes 100 to 300, a determination unit 500, and a feedback unit 400.
 複数の電極100~300のそれぞれは、生体Sの皮膚表面と接触する位置に、又は生体Sの皮膚表面から近い位置に配置される。複数の電極100~300のそれぞれは、生体Sからの電気信号を検知する。 Each of the plurality of electrodes 100 to 300 is arranged at a position in contact with the skin surface of the living body S or at a position close to the skin surface of the living body S. Each of the plurality of electrodes 100 to 300 detects an electric signal from the living body S.
 帰還部400は、生体Sへ電圧を印加する。より詳しく説明すると、帰還部400は、コモンモードノイズに相当する成分を反転増幅して生体に帰還(コモンフィードバック)することによって、コモンモードノイズを低減する。 The feedback unit 400 applies a voltage to the living body S. More specifically, the feedback unit 400 reduces the common mode noise by inverting and amplifying the component corresponding to the common mode noise and returning it to the living body (common feedback).
 判定部500は、複数の電極100~300のそれぞれ及び帰還部400と電気的に接続されている。判定部500は、複数の電極100~300のそれぞれが検知した電気信号から、生体Sと、複数の電極100~300のそれぞれとの接触状態情報を得る。そして、判定部500は、この接触状態情報に基づいて、コモンモードフィードバックに用いる電圧を判定する。判定部500は、例えばマイクロコンピュータ等を用いることによって実現できる。 The determination unit 500 is electrically connected to each of the plurality of electrodes 100 to 300 and the feedback unit 400. The determination unit 500 obtains contact state information between the living body S and each of the plurality of electrodes 100 to 300 from the electric signals detected by each of the plurality of electrodes 100 to 300. Then, the determination unit 500 determines the voltage used for the common mode feedback based on the contact state information. The determination unit 500 can be realized by using, for example, a microcomputer or the like.
 帰還部400は、判定部500が判定した電圧を生体Sへ印加する。 The feedback unit 400 applies the voltage determined by the determination unit 500 to the living body S.
[8.本技術の第8の実施形態(電気信号計測方法)]
 本技術の第8の実施形態に係る電気信号計測方法について図13を参照しつつ説明する。図13は、第8の実施形態に係る電気信号計測方法の手順を示すフローチャートである。なお、本実施形態に係る電気信号計測方法は、第1~第7の実施形態に係る技術を利用してもよい。
[8. Eighth Embodiment of the present technology (electric signal measurement method)]
The electric signal measurement method according to the eighth embodiment of the present technology will be described with reference to FIG. FIG. 13 is a flowchart showing the procedure of the electric signal measurement method according to the eighth embodiment. The electric signal measurement method according to the present embodiment may use the techniques according to the first to seventh embodiments.
 図13に示されるとおり、本実施形態に係る電気信号計測方法は、電極が生体からの電気信号を検知すること(S100)と、前記電気信号から得られる、前記生体と前記電極との接触状態情報に基づいて、コモンモードフィードバックに用いる電圧を判定すること(S200)と、前記電極が前記電圧を前記生体へ印加すること(S300)と、を少なくとも含む。 As shown in FIG. 13, in the electric signal measuring method according to the present embodiment, the electrode detects an electric signal from a living body (S100), and the contact state between the living body and the electrode obtained from the electric signal. Based on the information, it includes at least determining the voltage to be used for the common mode feedback (S200) and applying the voltage to the living body by the electrode (S300).
 なお、コモンモードフィードバックに用いる電圧を判定すること(S200)は、例えばマイクロコンピュータ等を用いることにより実現できる。 It should be noted that determining the voltage used for common mode feedback (S200) can be realized by using, for example, a microcomputer or the like.
 これ以外にも、本技術の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。 In addition to this, as long as it does not deviate from the gist of the present technology, it is possible to select the configuration mentioned in the above embodiment or change it to another configuration as appropriate.
 なお、本明細書中に記載した効果はあくまで例示であって限定されるものではなく、また他の効果があってもよい。 Note that the effects described in this specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術は、以下のような構成をとることもできる。
[1]
 生体からの電気信号を検知する電極と、
 前記電気信号から得られる、前記生体と前記電極との接触状態情報に基づいて、コモンモードフィードバックに用いる電圧を判定する判定部と、
 前記電圧を前記生体へ印加する帰還部と、
 を少なくとも備えている、電気信号計測装置。
[2]
 前記電極が乾式電極である、
 [1]に記載の電気信号計測装置。
[3]
 前記接触状態情報には、接触インピーダンスが含まれている、
 [1]又は[2]に記載の電気信号計測装置。
[4]
 前記接触状態情報には、前記電気信号の振幅が含まれている、
 [1]~[3]のいずれか一つに記載の電気信号計測装置。
[5]
 前記判定部が、前記接触状態情報と所定の閾値とを比較して、前記電圧を判定する、
 [1]~[4]のいずれか一つに記載の電気信号計測装置。
[6]
 前記判定部が、前記接触状態情報の傾向を分析して、前記電圧を判定する、
 [1]~[5]のいずれか一つに記載の電気信号計測装置。
[7]
 前記電極が、スイッチを有している、
 [1]~[6]のいずれか一つに記載の電気信号計測装置。
[8]
 前記電極が、可変抵抗を有している、
 [1]~[7]のいずれか一つに記載の電気信号計測装置。
[9]
 生体からの電気信号を検知する電極と、
 前記電気信号から得られる、前記生体と前記電極との接触状態情報に基づいて、コモンモードフィードバックに用いる電圧を判定する判定部と、
 前記電圧を前記生体へ印加する帰還部と、
 を少なくとも備えている、電気信号計測システム。
[10]
 電極が生体からの電気信号を検知することと、
 前記電気信号から得られる、前記生体と前記電極との接触状態情報に基づいて、コモンモードフィードバックに用いる電圧を判定することと、
 前記電極が前記電圧を前記生体へ印加することと、
 を少なくとも含む、電気信号計測方法。
The present technology can also have the following configurations.
[1]
Electrodes that detect electrical signals from living organisms and
A determination unit that determines the voltage used for common mode feedback based on the contact state information between the living body and the electrode obtained from the electric signal.
A feedback unit that applies the voltage to the living body,
At least equipped with an electrical signal measuring device.
[2]
The electrode is a dry electrode.
The electric signal measuring device according to [1].
[3]
The contact state information includes the contact impedance.
The electric signal measuring device according to [1] or [2].
[4]
The contact state information includes the amplitude of the electrical signal.
The electric signal measuring device according to any one of [1] to [3].
[5]
The determination unit determines the voltage by comparing the contact state information with a predetermined threshold value.
The electric signal measuring device according to any one of [1] to [4].
[6]
The determination unit analyzes the tendency of the contact state information and determines the voltage.
The electric signal measuring device according to any one of [1] to [5].
[7]
The electrode has a switch.
The electric signal measuring device according to any one of [1] to [6].
[8]
The electrode has a variable resistance,
The electric signal measuring device according to any one of [1] to [7].
[9]
Electrodes that detect electrical signals from living organisms and
A determination unit that determines the voltage used for common mode feedback based on the contact state information between the living body and the electrode obtained from the electric signal.
A feedback unit that applies the voltage to the living body,
At least equipped with an electrical signal measurement system.
[10]
When the electrodes detect electrical signals from the living body,
Determining the voltage used for common mode feedback based on the contact state information between the living body and the electrode obtained from the electric signal.
When the electrode applies the voltage to the living body,
An electrical signal measurement method that includes at least.
S:生体
1000:電気信号計測装置
100、200、300:電極
121、221:スイッチ
126、226:可変抵抗
400:帰還部
500:判定部
600:DAコンバータ
10000:電気信号計測システム
S100:電極が生体からの電気信号を検知すること
S200:コモンモードフィードバックに用いる電圧を判定すること
S300:電圧を生体へ印加すること
S: Living body 1000: Electrical signal measuring device 100, 200, 300: Electrode 121, 221: Switch 126, 226: Variable resistance 400: Feedback unit 500: Judging unit 600: DA converter 10000: Electrical signal measuring system S100: Electrode is living body S200: Determining the voltage used for common mode feedback S300: Applying voltage to the living body

Claims (10)

  1.  生体からの電気信号を検知する電極と、
     前記電気信号から得られる、前記生体と前記電極との接触状態情報に基づいて、コモンモードフィードバックに用いる電圧を判定する判定部と、
     前記電圧を前記生体へ印加する帰還部と、
     を少なくとも備えている、電気信号計測装置。
    Electrodes that detect electrical signals from living organisms and
    A determination unit that determines the voltage used for common mode feedback based on the contact state information between the living body and the electrode obtained from the electric signal.
    A feedback unit that applies the voltage to the living body,
    At least equipped with an electrical signal measuring device.
  2.  前記電極が乾式電極である、
     請求項1に記載の電気信号計測装置。
    The electrode is a dry electrode.
    The electric signal measuring device according to claim 1.
  3.  前記接触状態情報には、接触インピーダンスが含まれている、
     請求項1に記載の電気信号計測装置。
    The contact state information includes the contact impedance.
    The electric signal measuring device according to claim 1.
  4.  前記接触状態情報には、前記電気信号の振幅が含まれている、
     請求項1に記載の電気信号計測装置。
    The contact state information includes the amplitude of the electrical signal.
    The electric signal measuring device according to claim 1.
  5.  前記判定部が、前記接触状態情報と所定の閾値とを比較して、前記電圧を判定する、
     請求項1に記載の電気信号計測装置。
    The determination unit determines the voltage by comparing the contact state information with a predetermined threshold value.
    The electric signal measuring device according to claim 1.
  6.  前記判定部が、前記接触状態情報の傾向を分析して、前記電圧を判定する、
     請求項1に記載の電気信号計測装置。
    The determination unit analyzes the tendency of the contact state information and determines the voltage.
    The electric signal measuring device according to claim 1.
  7.  前記電極が、スイッチを有している、
     請求項1に記載の電気信号計測装置。
    The electrode has a switch.
    The electric signal measuring device according to claim 1.
  8.  前記電極が、可変抵抗を有している、
     請求項1に記載の電気信号計測装置。
    The electrode has a variable resistance,
    The electric signal measuring device according to claim 1.
  9.  生体からの電気信号を検知する電極と、
     前記電気信号から得られる、前記生体と前記電極との接触状態情報に基づいて、コモンモードフィードバックに用いる電圧を判定する判定部と、
     前記電圧を前記生体へ印加する帰還部と、
     を少なくとも備えている、電気信号計測システム。
    Electrodes that detect electrical signals from living organisms and
    A determination unit that determines the voltage used for common mode feedback based on the contact state information between the living body and the electrode obtained from the electric signal.
    A feedback unit that applies the voltage to the living body,
    At least equipped with an electrical signal measurement system.
  10.  電極が生体からの電気信号を検知することと、
     前記電気信号から得られる、前記生体と前記電極との接触状態情報に基づいて、コモンモードフィードバックに用いる電圧を判定することと、
     前記電極が前記電圧を前記生体へ印加することと、
     を少なくとも含む、電気信号計測方法。
    When the electrodes detect electrical signals from the living body,
    Determining the voltage used for common mode feedback based on the contact state information between the living body and the electrode obtained from the electric signal.
    When the electrode applies the voltage to the living body,
    An electrical signal measurement method that includes at least.
PCT/JP2021/001586 2020-03-12 2021-01-19 Electrical signal measurement device, electrical signal measurement system, and electrical signal measurement method WO2021181890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022505808A JPWO2021181890A1 (en) 2020-03-12 2021-01-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-042601 2020-03-12
JP2020042601 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021181890A1 true WO2021181890A1 (en) 2021-09-16

Family

ID=77670614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001586 WO2021181890A1 (en) 2020-03-12 2021-01-19 Electrical signal measurement device, electrical signal measurement system, and electrical signal measurement method

Country Status (2)

Country Link
JP (1) JPWO2021181890A1 (en)
WO (1) WO2021181890A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168605A (en) * 1991-12-25 1993-07-02 Nippon Koden Corp Biological signal amplifying circuit
JP2014124438A (en) * 2012-12-27 2014-07-07 Denso Corp Electrocardiographic measurement system
JP2016087061A (en) * 2014-11-04 2016-05-23 東洋インキScホールディングス株式会社 Biological information measurement device
JP2018047135A (en) * 2016-09-23 2018-03-29 ホシデン株式会社 Electrocardiograph

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168605A (en) * 1991-12-25 1993-07-02 Nippon Koden Corp Biological signal amplifying circuit
JP2014124438A (en) * 2012-12-27 2014-07-07 Denso Corp Electrocardiographic measurement system
JP2016087061A (en) * 2014-11-04 2016-05-23 東洋インキScホールディングス株式会社 Biological information measurement device
JP2018047135A (en) * 2016-09-23 2018-03-29 ホシデン株式会社 Electrocardiograph

Also Published As

Publication number Publication date
JPWO2021181890A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
EP2843833B1 (en) Reconfigurable measuring apparatus and method for controlling apparatus
JP5450436B2 (en) Non-contact type biopotential sensor
US8390374B2 (en) Apparatus and method for amplification with high front-end gain in the presence of large DC offsets
JP4415215B2 (en) Bioelectrical impedance measurement system and method in the presence of interference
US8442628B2 (en) Differential voltage sensing method
US10694971B2 (en) Reconfigurable sensor circuit
KR102083559B1 (en) Electrode for living body, apparatus and method for processing biological signal
KR20180018922A (en) Improved bio-potential measurement system
WO2021181890A1 (en) Electrical signal measurement device, electrical signal measurement system, and electrical signal measurement method
TW200932194A (en) A feed-forward automatic-gain control amplifier (FFAGCA) for biomedical application
Dabbaghian et al. An 8-Channel ambulatory EEG recording IC with in-channel fully-analog real-time motion artifact extraction and removal
CN113876336B (en) Dynamic switching device and dynamic switching method for myoelectricity acquisition reference electrode
KR101764603B1 (en) Bio signal Read-out Circuit
WO2021171833A1 (en) Electric signal measurement device and electric signal measurement system
KR101693809B1 (en) Low voltage biosignal measurement circuit
Webster Amplifiers and signal processing
KR20170009034A (en) Amplifying device for detecting bio-signal with improving CMRR
Nagasato et al. Capacitively coupled ECG sensor system with digitally assisted noise cancellation for wearable application
KR101504116B1 (en) EEG signal detecting device
Bohorquez et al. A digitally-assisted sensor interface for biomedical applications
TWI752867B (en) Circuitry of a biopotential acquisition system
US20230270367A1 (en) Apparatus for biopotential measurement
US20210330267A1 (en) Low-noise biopotential acquisition system for dry electrode application
KR101832733B1 (en) Bio-potential measurement system
KR20230140101A (en) Apparatus for Processing Biological Signal with Dual Positive Feedback

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768021

Country of ref document: EP

Kind code of ref document: A1