JP2016087061A - Biological information measurement device - Google Patents

Biological information measurement device Download PDF

Info

Publication number
JP2016087061A
JP2016087061A JP2014224451A JP2014224451A JP2016087061A JP 2016087061 A JP2016087061 A JP 2016087061A JP 2014224451 A JP2014224451 A JP 2014224451A JP 2014224451 A JP2014224451 A JP 2014224451A JP 2016087061 A JP2016087061 A JP 2016087061A
Authority
JP
Japan
Prior art keywords
electrode
signal
person
biological information
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014224451A
Other languages
Japanese (ja)
Inventor
健二郎 丸山
Kenjiro Maruyama
健二郎 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2014224451A priority Critical patent/JP2016087061A/en
Publication of JP2016087061A publication Critical patent/JP2016087061A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device capable of measuring a variation in distance between an electrode and a person, a contact state caused by the person's motion, or the like concurrently with biological information measurement using the electrode.SOLUTION: A biological information measurement device comprises: three biological signal measurement electrodes 01 composed of a first electrode 02 and second electrode 03 that make a pair of differential electrodes provided on a person through an insulator or directly on the person's skin, and a third electrode 04 that is an electrode for inducing intermediate potential; a transmission electrode for transmitting a signal to the person's living body as means for communication through the living body; measurement means for detecting, as an electrocardiographic signal, potential between the pair of differential electrodes taking induced potential at the intermediate electrode as a reference, and means for detecting a signal of the transmission electrode received from the first electrode and second electrode through the living body; and transmission wave generation means for generating a transmission signal to be induced at the transmission electrode.SELECTED DRAWING: Figure 1

Description

本発明は、人に対向して設置した電極により、生体情報計測と位置計測を同時に行うことで生体情報をより詳しく計測する装置に関する。   The present invention relates to an apparatus for measuring biological information in more detail by simultaneously performing biological information measurement and position measurement with an electrode placed facing a person.

電極を人に接触または、近傍に設置することで生体情報である人の活動電位を計測することができるが、例えば心電電位による心拍計測は人の状態(眠気や異常発生等)という生体情報の計測として有効であることが知られている。   A person's action potential, which is biological information, can be measured by placing an electrode in contact with or in the vicinity of the person. For example, heartbeat measurement based on an electrocardiographic potential is biological information such as a person's state (drowsiness or abnormal occurrence). It is known to be effective as a measurement of

例えば車両のハンドル(ステアリングホイール)などに計測電極を設置し、活動電位を計測することで運転操作を行う運転手の心拍を計測する技術が開示されている。 (例えば特許文献1参照) 。   For example, a technique for measuring a heartbeat of a driver who performs a driving operation by installing a measurement electrode on a steering wheel (steering wheel) of a vehicle and measuring an action potential is disclosed. (For example, see Patent Document 1).

特許文献1では、車両のステアリングホイールに取り付けた電極と車両シートに取り付けた電極より車両運転者の心電電位を計測し、運転者の心臓活動を監視することにより、運転中における運転者の心臓の異常に起因する種々の不都合を未然に抑制することを可能としている。しかし、心電電位を計測できるのは、運転者がシートに着座しステアリングホイールを握った状態を維持している場合であり、運転者に不都合が発生しステアリングを握れない状態が発生し、電極と身体の接触が不十分となった場合、シートに着座しステアリングホイールを握っているが、運転動作や外部環境が要因となって引き起こされるノイズが心電電位に混入した場合は不都合を判断できる心電電位の情報が取得できなくなり、心電波形が計測できない状態になると、設置した電極のみでは人の状態をさらに詳しく計測することができないといった課題があった。   In Patent Document 1, the driver's heart during driving is measured by measuring the electrocardiographic potential of the vehicle driver from the electrode attached to the steering wheel of the vehicle and the electrode attached to the vehicle seat, and monitoring the heart activity of the driver. It is possible to suppress various inconveniences due to the abnormalities. However, the electrocardiographic potential can be measured when the driver is sitting on the seat and holding the steering wheel, and the driver is inconvenienced and the steering cannot be gripped. When the contact with the body becomes insufficient, the user sits on the seat and holds the steering wheel. However, if noise caused by driving or the external environment is mixed into the electrocardiogram, the inconvenience can be judged. When the electrocardiographic potential information cannot be acquired and the electrocardiographic waveform cannot be measured, there is a problem that the human state cannot be measured in more detail with only the installed electrodes.

また、装置の操作者の状態を、電極を使用した生体情報計測より検知する技術はこれまで報告されているが、操作行動に伴う身体の動きにより、検出電極と身体との距離や接触状態が変化し、検出信号の減少やS/Nの劣化の発生や計測自体ができなくなるなど、装置より出力される計測結果の信頼性に大きく影響をあたえる。より計測結果の信頼性を向上させるために電極による生体情報計測に圧力センサーを組み合わせた計測技術が開示されている。(特許文献2参照) 。   In addition, the technology to detect the state of the operator of the device from the biological information measurement using the electrode has been reported so far, but the distance and contact state between the detection electrode and the body due to the movement of the body accompanying the operation behavior. This greatly affects the reliability of the measurement result output from the apparatus, such as a decrease in the detection signal, the occurrence of S / N degradation, and the inability to perform measurement itself. In order to further improve the reliability of measurement results, a measurement technique is disclosed that combines biometric information measurement using electrodes with a pressure sensor. (See Patent Document 2).

特許文献2では、静電容量結合型の心電波形計測において圧力センサーを併用することで電極と被験者との静電容量を推定し、人の動きによって変動する心電信号のレベルを推定した静電容量値を基に補正することで計測結果の信頼性を向上させている。   In Patent Document 2, the electrostatic capacitance between the electrode and the subject is estimated by using a pressure sensor in combination with the capacitance-coupled electrocardiographic waveform measurement, and the level of the electrocardiogram signal that varies depending on the movement of the person is estimated. The reliability of the measurement result is improved by correcting based on the capacitance value.

しかし、圧力センサーの検出結果から心電計測結果が補正できるのは、電極に一定の圧力が加わった条件となるため、圧力が加わっていない状態である、電極に触れている状態では補正が機能しない。また、静電容量結合型の心電計測では、電極と身体が接触していなくても静電結合していれば心電を計測できるが、この場合も圧力センサーが機能しない問題があった。また、圧力センサーを使用した間接間的な静電容量の推定のため、被験者の衣類の種類の影響などにより補正精度が劣化する恐れがあり、電極と被験者との接触状態を検知するには不十分であった。   However, the ECG measurement result can be corrected from the detection result of the pressure sensor under the condition that a certain pressure is applied to the electrode, so the correction functions when the pressure is not applied or the electrode is touched. do not do. Further, in the capacitive coupling type electrocardiogram measurement, the electrocardiogram can be measured if the electrode and the body are not in contact with each other if they are electrostatically coupled, but there is also a problem that the pressure sensor does not function in this case. In addition, because of the indirect capacitance estimation using a pressure sensor, the correction accuracy may deteriorate due to the influence of the type of clothing of the subject, etc., which is inconvenient for detecting the contact state between the electrode and the subject. It was enough.

特開2011−24902号公報JP 2011-24902 A 特開2009−219554号公報JP 2009-219554 A

本発明は電極による生体情報計測を行うと同時に、人の動きによって発生する接触状態または電極と人との距離変化などを計測できる装置を提供することを目的とする。   It is an object of the present invention to provide an apparatus capable of measuring living body information using an electrode and simultaneously measuring a contact state generated by a person's movement or a distance change between the electrode and a person.

本発明の課題は、下記の構成で解決される。
すなわち、本発明は、人と絶縁物を介して、または前記人の皮膚に直接設置される、一対の差動電極である、第1の電極、第2の電極及び、中間電位を誘起する電極である第3の電極からなる3つの生体信号測定用電極と、
前記人の生体を介した通信手段として生体に信号を送信する送信電極と、
前記中間電極の誘起電位を基準として、前記一対の差動電極間の電位を心電信号として検知する計測手段と
前記第1の電極と第2の電極から生体を介して受信した前記送信電極の信号を検知する手段と、
前記送信電極に誘起させる送信信号を発生する送信波発生手段と
を備えることを特徴とする生体情報計測装置に関する。
The problems of the present invention are solved by the following configuration.
That is, the present invention provides a pair of differential electrodes, a first electrode, a second electrode, and an electrode for inducing an intermediate potential, which are installed via a person and an insulator or directly on the human skin. Three biological signal measuring electrodes consisting of a third electrode,
A transmitting electrode for transmitting a signal to a living body as a communication means via the human living body;
Measuring means for detecting the potential between the pair of differential electrodes as an electrocardiographic signal with reference to the induced potential of the intermediate electrode, and the transmitting electrode received via the living body from the first electrode and the second electrode Means for detecting the signal;
The present invention relates to a biological information measuring apparatus comprising transmission wave generating means for generating a transmission signal to be induced in the transmission electrode.

また、本発明は、前記第3の電極に中間電位と送信信号の加算信号電圧を誘起させる手段を備えることを特徴とする上記生体情報計測装置に関する。   In addition, the present invention relates to the biological information measuring apparatus, characterized in that the third electrode is provided with means for inducing an added signal voltage of an intermediate potential and a transmission signal on the third electrode.

また、本発明は、人と静電容量結合する近接センサー電極と、
人と絶縁物を介して、または前記人の皮膚に直接設置される、一対の差動電極である、第1の電極、第2の電極及び、中間電位を誘起する電極である第3の電極からなる3つの生体信号測定用電極と、
前記近接センサー電極に形成される静電容量を電圧信号として計測できる近接センサー回路と、
前記中間電極の誘起電位を基準として、前記一対の差動電極間の電位を心電信号として検知する計測手段と、
を備えることを特徴とする生体情報計測装置に関する。
The present invention also includes a proximity sensor electrode that capacitively couples with a person,
A first electrode, a second electrode, and a third electrode that is an electrode for inducing an intermediate potential, which are a pair of differential electrodes, which are directly installed on a person's skin through a person and an insulator. Three biological signal measuring electrodes consisting of:
A proximity sensor circuit capable of measuring the capacitance formed in the proximity sensor electrode as a voltage signal;
Measuring means for detecting the potential between the pair of differential electrodes as an electrocardiogram signal with reference to the induced potential of the intermediate electrode;
It is related with the biological information measuring device characterized by comprising.

また、本発明は、前記近接センサー回路は、
近接センサー電極に形成される静電容量を振幅変調信号として検出できる近接センサー回路であることを特徴とする上記生体情報計測装置に関する。
Further, according to the present invention, the proximity sensor circuit includes:
It is a proximity sensor circuit which can detect the electrostatic capacitance formed in a proximity sensor electrode as an amplitude modulation signal.

また、本発明は、前記生体信号測定用電極は、
それぞれ周囲に近接センサー電極が設置されていることを特徴とする電極を備えることを特徴とする上記生体情報計測装置に関する。
Further, the present invention provides the biological signal measuring electrode,
It is related with the said biometric information measuring device provided with the electrode characterized by the proximity sensor electrode being installed in each circumference | surroundings.

本発明により、第3の電極より送信される正弦波の周波数を生体情報の周波数帯域外に設定することで、新たに電極を追加することなく、2つの機能を同時に実行できる生体情報計測装置を提供することができた。   By setting the frequency of the sine wave transmitted from the third electrode outside the frequency band of the biological information according to the present invention, a biological information measuring device that can simultaneously execute two functions without adding a new electrode. Could be provided.

また、電極による生体情報計測と近接センサーによる人と電極との距離計測を行うことで、生体情報計測時の人の姿勢などの追加情報を同時に計測できる生体情報計測装置を提供することができた。
また、
In addition, it was possible to provide a biological information measuring device capable of simultaneously measuring additional information such as the posture of a person at the time of measuring biological information by measuring biological information using electrodes and measuring a distance between a person and an electrode using a proximity sensor. .
Also,

本発明の実施の第一の形態に係わる生体情報計測装置の構成図。1 is a configuration diagram of a biological information measuring apparatus according to a first embodiment of the present invention. 本発明の実施の第一の形態に係わる生体情報計測回路部の構成図1 is a configuration diagram of a biological information measurement circuit unit according to a first embodiment of the present invention. 本発明の実施の第一の形態に係わる電極の接触状態を検知する原理図。The principle figure which detects the contact state of the electrode concerning the 1st Embodiment of this invention. 本発明の実施の第一の形態に係わる心電波形と送信正弦波の周波数特性の関係図。The relationship figure of the frequency characteristic of the electrocardiogram waveform and transmission sine wave concerning the 1st embodiment of this invention. 本発明の実施の第二の形態に係わる生体情報測定装置の構成図。The block diagram of the biological information measuring device concerning the 2nd embodiment of this invention. 本発明の実施の第二の形態に係わる静電容量検出回路の構成図。The block diagram of the electrostatic capacitance detection circuit concerning the 2nd embodiment of this invention. 本発明の実施の第二の形態に係わる心電波形と近接データの周波数特性の関係図。The relationship figure of the frequency characteristic of the electrocardiogram waveform and proximity data concerning the 2nd embodiment of this invention. 発明の実施の第二の形態に係わるCPU00内で行われる検波処理ブロック図。The block diagram of the detection process performed within CPU00 concerning 2nd Embodiment of invention.

まず、本発明を実施するための第一の形態について、図面を参照しつつ説明する。
この構成によれば、操作者の生体に接触又は容量結合するように配置された第1及び第2の検出電極と身体に基準電位を誘起させる接触または非接触の第3の電極により生体情報である心電電位を計測し操作者の状態を検出できる。また、第3の電極には生体情報検出時の基準電位出力に正弦波信号を重畳し、第1及び第2の検出電極で読み取った信号から正弦波を検出することで検出電極と人との接触状態を検知することができる。例えば第1及び第2の検出電極より検出している生体情報にノイズが混入し有効なデータを取得できない場合でも、第3の電極より送信される正弦波を検出し電極の接触が確認できていれば、電極は接触されていると装置は判断することができる。なお、第3の電極から送信される正弦波は人工的に誘起させている信号強度があるので、微弱な生体電位と比較し、ノイズ耐性は強いため電極接触信号は検出できる。
First, a first embodiment for carrying out the present invention will be described with reference to the drawings.
According to this configuration, the first and second detection electrodes arranged so as to be in contact with or capacitively coupled to the living body of the operator and the third electrode, which is a contact or non-contact that induces a reference potential in the body, are used as biological information. A certain electrocardiogram potential can be measured to detect the operator's state. In addition, a sine wave signal is superimposed on the reference potential output at the time of detecting biological information on the third electrode, and the sine wave is detected from the signals read by the first and second detection electrodes, thereby detecting the detection electrode and the person. The contact state can be detected. For example, even when noise is mixed in the biological information detected from the first and second detection electrodes and effective data cannot be acquired, the contact of the electrodes can be confirmed by detecting the sine wave transmitted from the third electrode. If so, the device can determine that the electrodes are in contact. Note that since the sine wave transmitted from the third electrode has a signal strength artificially induced, the electrode contact signal can be detected because the noise resistance is higher than that of the weak biopotential.

第1および第2の各検出電極は生体情報の検出と電極接触状態の検出の二つの機能を有しているため、電極の接触状態を検知するためのセンサーをあらたに追加する必要がなくより簡単な構成の装置とすることができた。   Since each of the first and second detection electrodes has two functions of detection of biological information and detection of an electrode contact state, it is not necessary to newly add a sensor for detecting the contact state of the electrode. It was possible to obtain a device with a simple configuration.

上記、人の状態検出装置において生体情報計測と電極接触状態計測の正弦波は全て電極に発生する電位を検知することから動作信号が互いに干渉する場合や、生体情報の周波数帯域に混入し検出精度を劣化させる問題が発生するが、2つの機能を同時に互いに影響なく動作させるために電極接触状態計測において第3の電極より送信される正弦波の周波数を生体情報の周波数帯域外に設定することで2つの機能を同時に実行することが可能となった。   In the above-described human state detection device, all of the sine waves of the biological information measurement and the electrode contact state measurement detect the potential generated at the electrode. In order to operate the two functions simultaneously without affecting each other, the frequency of the sine wave transmitted from the third electrode in the electrode contact state measurement is set outside the frequency band of the biological information. Two functions can be executed simultaneously.

図1に本発明の好ましい形態の一つである生体情報計測装置の構成図を示す。当該装置は人に対向して設置される電極部01と検知信号を処理する信号処理回路部05を備えている。   FIG. 1 shows a configuration diagram of a biological information measuring apparatus which is one of the preferred embodiments of the present invention. The apparatus includes an electrode unit 01 installed facing a person and a signal processing circuit unit 05 for processing a detection signal.

電極部01は心電電位を検知する一対の差動電極、第1の電極、第2の電極と中間電位を与える第3の電極とを備えている。 The electrode unit 01 includes a pair of differential electrodes that detect an electrocardiographic potential, a first electrode, a second electrode, and a third electrode that provides an intermediate potential.

信号処理回路部05は第1の電極02と第2の電極03の差動電位から心電電位を計測する生体情報計測回路部06と第3の電極04に中間電位をあたえるフィードバック回路部11と、電極と人との接触状態を検知するために第3の電極04に誘起する正弦波を発生させる送信波発生回路部13とフィードバック回路部11と送信波発生回路部13からの信号を加算する加算回路12と電極との接触状態を検知する受信回路部07と、心電波形と電極接触状態の信号を加算する加算回路08とアンチエイリアシングフィルタとして機能するローパスフィルタ09とアナログ/デジタル変換回路10と、電極接触状態と心電波形より人の状態分析を行うCPU14とを備えている。   The signal processing circuit unit 05 includes a biological information measurement circuit unit 06 that measures an electrocardiographic potential from the differential potential of the first electrode 02 and the second electrode 03, and a feedback circuit unit 11 that applies an intermediate potential to the third electrode 04. In order to detect the contact state between the electrode and the person, the signals from the transmission wave generation circuit unit 13, the feedback circuit unit 11, and the transmission wave generation circuit unit 13 that generate a sine wave induced in the third electrode 04 are added. A receiving circuit unit 07 that detects a contact state between the adder circuit 12 and the electrode, an adder circuit 08 that adds the electrocardiogram waveform and the electrode contact state signal, a low-pass filter 09 that functions as an anti-aliasing filter, and an analog / digital conversion circuit 10 And a CPU 14 for analyzing the human condition from the electrode contact state and the electrocardiogram waveform.

図2に生体情報計測回路部06の好ましい形態の一部を示す。生体情報計測回路部06は第1の電極02と第2の電極03で発生する電荷移動をそれぞれ、電圧に変換する抵抗素子15とその電圧をバッファ処理するバッファ回路16とバッファ回路16の出力から電極の接触状態を検知する受信回路部07とフィードバック回路11への入力電圧を決定する抵抗素子17と差動電圧をシングルエンドに変換する差動増幅回路18とを備えている。   FIG. 2 shows a part of a preferable form of the biological information measuring circuit unit 06. The biometric information measurement circuit unit 06 includes the resistance element 15 that converts the charge transfer generated in the first electrode 02 and the second electrode 03 into a voltage, the buffer circuit 16 that buffers the voltage, and the output of the buffer circuit 16, respectively. A receiving circuit unit 07 that detects the contact state of the electrodes, a resistance element 17 that determines an input voltage to the feedback circuit 11, and a differential amplifier circuit 18 that converts the differential voltage to a single end are provided.

図3に電極の接触状態を検知する原理を示す。第3の電極04に正弦波の電圧を誘起させることで人の近界に電界の振動を発生させる。この電界の変化を第1の電極02で検知することで、電極と人との接触状態を知ることができる。この原理は第3の電極04を送信電極、第1の電極02を受信電極とし、人を媒体として正弦波を送信している。人と電極が離れていれば正弦波が受信できないので人と電極が接触していないことになる。また、第2の電極03においても第1の電極02と受信は同じに機能させることができる。   FIG. 3 shows the principle of detecting the contact state of the electrodes. By inducing a sinusoidal voltage on the third electrode 04, an electric field vibration is generated in the near field of a person. By detecting the change in the electric field with the first electrode 02, the contact state between the electrode and the person can be known. In this principle, the third electrode 04 is a transmission electrode, the first electrode 02 is a reception electrode, and a sine wave is transmitted using a person as a medium. Since the sine wave cannot be received if the person and the electrode are separated, the person and the electrode are not in contact. Further, the reception of the second electrode 03 can be the same as that of the first electrode 02.

図4に送信波発生回路部13より出力される正弦波の周波数と心電波形の周波数帯域の関係を示す。一般的に心電波形の周波数帯域は約0.05〜200Hz付近からなる。これより送信波発生回路部13より出力される正弦波の周波数を高く設定することで二つの信号の周波数帯域の重なりをなくし、第1の電極02、と第2の電極03において心電波形の検出と送信信号の受信を同時に行い、生体情報計測回路部06と受信回路部07にて周波数分離することが可能となった。   FIG. 4 shows the relationship between the frequency of the sine wave output from the transmission wave generating circuit unit 13 and the frequency band of the electrocardiographic waveform. Generally, the frequency band of the electrocardiogram waveform is about 0.05 to 200 Hz. Thus, by setting the frequency of the sine wave output from the transmission wave generating circuit unit 13 high, the overlap of the frequency bands of the two signals is eliminated, and the electrocardiographic waveform of the first electrode 02 and the second electrode 03 is eliminated. Detection and transmission signal reception are simultaneously performed, and it is possible to perform frequency separation in the biological information measurement circuit unit 06 and the reception circuit unit 07.

また、上記の周波数分離によって、第3の電極04においても、中間電位を決めるフィードバック電圧の周波数帯域と送信波発生回路部13から送信される正弦波の周波数帯域が異なるため、二つの電圧を加算回路12で加算処理し、一つの電極で中間電位の電圧と送信正弦波の電圧の同時誘起が可能となった。   Also, due to the frequency separation described above, the frequency band of the feedback voltage that determines the intermediate potential and the frequency band of the sine wave transmitted from the transmission wave generation circuit unit 13 are different in the third electrode 04, so two voltages are added. The addition processing is performed by the circuit 12, and it is possible to simultaneously induce the voltage of the intermediate potential and the voltage of the transmission sine wave with one electrode.

また、受信回路部07と生体情報計測回路部06で心電波形と送信正弦波信号は周波数帯域が異なっているので、二つの信号を加算し一つの信号とすることで、アンチエリアシングフィルタのローパスフィルタ09とアナログ/デジタル変換回路10をそれぞれ一つ設置すればよく、回路規模の縮小が可能となった。   In addition, since the ECG waveform and the transmission sine wave signal are different in the frequency band in the reception circuit unit 07 and the biological information measurement circuit unit 06, the two signals are added to form one signal. One low-pass filter 09 and one analog / digital conversion circuit 10 need only be installed, and the circuit scale can be reduced.

次に、本発明を実施するための第二の形態について、図面を参照しつつ説明する。本発明の第二の形態である生体情報計測装置では、一対の差動電極と中間電位を与える電極からなる3つの測定電極を備え、中間電位を基準として差動電極から心電電位を計測できることと、このとき、差動電極の周囲に設置された近接センサー電極を備え、人と電極間で形成される静電容量を検出でき、電極から人との距離が計測できることを特徴とする。   Next, a second embodiment for carrying out the present invention will be described with reference to the drawings. The biological information measuring apparatus according to the second aspect of the present invention includes three measurement electrodes including a pair of differential electrodes and an electrode for applying an intermediate potential, and can measure an electrocardiographic potential from the differential electrode with reference to the intermediate potential. At this time, a proximity sensor electrode installed around the differential electrode is provided, the capacitance formed between the person and the electrode can be detected, and the distance from the electrode to the person can be measured.

この構成によれば、電極が絶縁物を介して人に設置される静電容量結合型の心電計測の場合、人と電極により形成される静電容量が変化すると検出信号の振幅が変化するが、この時の静電容量の変化は主に電極と人との距離が変化することによって発生する。この距離変化を静電容量型の近接センサーで検知し、検知した値をもとに、生体情報をゲイン補正することで安定した検出が可能となる。   According to this configuration, in the case of capacitance-coupled electrocardiography where an electrode is installed on a person via an insulator, the amplitude of the detection signal changes when the capacitance formed by the person and the electrode changes. However, the change in capacitance at this time is mainly caused by the change in the distance between the electrode and the person. This distance change is detected by a capacitive proximity sensor, and the biometric information is gain-corrected based on the detected value, thereby enabling stable detection.

また、電極と人との距離が一定以上離れるとS/Nの劣化おこり心電波形が計測できなくなる。心電計測のみの装置だとその状況を判断することができずに、有効な情報がふくまれていない信号を処理して誤認識する可能せいが発生するが、本発明は近接センサー値より計測可能な範囲に人がいないことを認識でき、心電データが含まれていない情報を装置が解析し誤認識する可能性を低くすることができる。   Also, if the distance between the electrode and the person is more than a certain distance, the S / N deterioration occurs and the electrocardiographic waveform cannot be measured. In the case of an electrocardiograph only device, the situation cannot be judged, and a signal that does not contain valid information may be processed and misrecognized, but the present invention measures from the proximity sensor value. It is possible to recognize that there is no person in the possible range, and it is possible to reduce the possibility that the apparatus analyzes and misrecognizes information that does not include electrocardiogram data.

電極を直接皮膚に接触させる方式の心電計測においても、近接センサーの情報より接触非接触が認識できるので、取得心電波形の有効、無効を認識して心電波形からの分析時の誤認識を少なくできる。   Even in the electrocardiogram measurement method in which the electrode is directly in contact with the skin, contact non-contact can be recognized from the information of the proximity sensor. Can be reduced.

図5に本発明の好ましい形態の一つである人の状態検出装置の構成図を示す。当該装置は人に対向して設置される電極部201と検知信号を処理する信号処理回路部206を備えている。   FIG. 5 shows a configuration diagram of a human state detection apparatus which is one of the preferred embodiments of the present invention. The apparatus includes an electrode unit 201 installed facing a person and a signal processing circuit unit 206 that processes a detection signal.

電極部201は近接センサー電極部202と心電電位を検知する一対の差動電極、第1の電極203、第2の電極204と中間電位を与える第3の電極205とを備えている。   The electrode unit 201 includes a proximity sensor electrode unit 202, a pair of differential electrodes for detecting an electrocardiogram potential, a first electrode 203, a second electrode 204, and a third electrode 205 for applying an intermediate potential.

信号処理回路部206は近接センサー電極部202に形成される静電容量を電圧値に変換する近接センサー信号処理回路部207と、第1の電極203と第2の電極204の差動電位から心電電位を計測する生体情報計測回路部208と第3の電極205に中間電位をあたえるフィードバック回路209と、近接センサーの検出信号である、近接センサー信号処理回路部207の出力電圧と心電電位である生体情報計測回路部208の出力電圧の二つの信号を加算処理する加算回路210と、アンチエイリアシングフィルタとして機能するローパスフィルタ211とアナログ/デジタル変換回路212と、近接データと心電波形より、心電波形のゲイン補正や人の状態分析などデジタル処理を行うCPU213を備えている。   The signal processing circuit unit 206 includes a proximity sensor signal processing circuit unit 207 that converts the capacitance formed in the proximity sensor electrode unit 202 into a voltage value, and a differential potential between the first electrode 203 and the second electrode 204. A biological information measurement circuit unit 208 that measures the electric potential, a feedback circuit 209 that applies an intermediate potential to the third electrode 205, and an output voltage and an electrocardiographic potential of the proximity sensor signal processing circuit unit 207 that are detection signals of the proximity sensor. From an addition circuit 210 that adds two signals of output voltage of a certain biological information measurement circuit unit 208, a low-pass filter 211 that functions as an anti-aliasing filter, an analog / digital conversion circuit 212, proximity data, and an electrocardiogram waveform, A CPU 213 that performs digital processing such as radio wave type gain correction and human condition analysis is provided.

図6に近接センサー信号処理回路部207の好ましい形態の一つを示す。近接センサー信号処理回路部207はフィルタ回路部214とCPU213からのデジタル信号をアナログ信号に変換するデジタル/アナログ変換回路215を備えている。   FIG. 6 shows one preferred form of the proximity sensor signal processing circuit unit 207. The proximity sensor signal processing circuit unit 207 includes a filter circuit unit 214 and a digital / analog conversion circuit 215 that converts a digital signal from the CPU 213 into an analog signal.

近接センサー電極部202は近接センサー信号処理回路部207に内蔵されたフィルタ回路部214に接続されており、人と近接センサー電極部202との間で形成される静電容量はフィルタ回路部214の構成素子の一部として機能する。   The proximity sensor electrode unit 202 is connected to the filter circuit unit 214 built in the proximity sensor signal processing circuit unit 207, and the capacitance formed between the person and the proximity sensor electrode unit 202 is the filter circuit unit 214. It functions as a part of the component.

フィルタ回路部214にはデジタル/アナログ変換回路215より出力される正弦波が入力される。正弦波データはCPU213からデジタルデータとしてデジタル/アナログ変換回路215に出力されている。フィルタ処理された正弦波信号は加算回路210に出力される。   The sine wave output from the digital / analog conversion circuit 215 is input to the filter circuit unit 214. The sine wave data is output from the CPU 213 to the digital / analog conversion circuit 215 as digital data. The filtered sine wave signal is output to the adder circuit 210.

近接センサー電極部202と人との間に形成される静電容量が変化すると、フィルタ回路部214のカットオフ周波数が変化する。フィルタ回路部214に入力される正弦波はこのカットオフ周波数より高い値に設定することで、カットオフ周波数変化に伴い、フィルタ処理後の正弦波振幅には増減が発生する。これは、人と近接センサー電極の距離情報が、正弦波を基準周波数としてAM変調された情報として検出している。   When the capacitance formed between the proximity sensor electrode unit 202 and the person changes, the cutoff frequency of the filter circuit unit 214 changes. By setting the sine wave input to the filter circuit unit 214 to a value higher than the cut-off frequency, the sine wave amplitude after the filter process increases and decreases with the change in the cut-off frequency. In this case, the distance information between the person and the proximity sensor electrode is detected as information obtained by AM modulation using a sine wave as a reference frequency.

本発明の構成ではAM変調された近接データである近接センサー信号処理回路部207の出力と心電電位である生体情報計測回路部208の出力の二つのデータを加算回路210で加算処理しアナログ信号をデジタル信号に変換している。二つの信号を加算し一つの信号とすることで、アンチエリアシングフィルタのローパスフィルタ回路211とアナログ/デジタル変換回路212をそれぞれ一つ設置すればよく、回路規模の縮小が可能となった。   In the configuration of the present invention, two data of the output of the proximity sensor signal processing circuit unit 207 which is AM-modulated proximity data and the output of the biological information measurement circuit unit 208 which is an electrocardiographic potential are added and processed by the adding circuit 210. Is converted into a digital signal. By adding the two signals into one signal, it is sufficient to install one low-pass filter circuit 211 and an analog / digital conversion circuit 212 for the anti-aliasing filter, and the circuit scale can be reduced.

また、一般的に心電波形の周波数帯域は約0.05〜200Hz付近からなり、近接情報の周波数帯域も人の動作から考察すると直流成分である0Hzからの低周波領域となる。二つの信号を単純に加算処理すると信号帯域が重なり、デジタルデータ変換後の信号の分離ができなくなる。しかし、本発明の構成では近接情報を任意に設定した基準周波数である正弦波にAM変調しているため、基準周波数を心電波形の周波数帯域外に設定することで、アナログ信号状態で加算処理を行ったとしても、デジタル変換後に周波数帯域分離処理をおこなうことで心電波形と近接情報を取得できる。図7に周波数特性の関係図を示す。   In general, the frequency band of the electrocardiogram waveform is about 0.05 to 200 Hz, and the frequency band of the proximity information is a low frequency region from 0 Hz which is a direct current component when considering human operation. If the two signals are simply added, the signal bands overlap, and the signals after digital data conversion cannot be separated. However, in the configuration of the present invention, since the proximity information is AM-modulated to a sine wave that is a reference frequency arbitrarily set, addition processing is performed in an analog signal state by setting the reference frequency outside the frequency band of the electrocardiogram waveform. Even if it performs, an electrocardiogram waveform and proximity information can be acquired by performing frequency band separation processing after digital conversion. FIG. 7 shows a relationship diagram of frequency characteristics.

図8に本実施の形態に係わるCPU213におけるAM変調された近接センサー信号の検波方法について処理構成を示す。なお、この処理は全てデジタル信号処理を示す。AM変調信号は基準信号帯域を通過させるバンドパスフィルタブロック216で処理され、次に乗算処理ブロック217にて乗算処理される。検波回路ではデジタル/アナログ変換回路215へ出力される正弦波信号と乗算処理される。乗算処理された信号は最後に積分処理ブロック218で処理されることで復調された近接センサーデータを取得することができる。   FIG. 8 shows a processing configuration of the detection method of the AM-modulated proximity sensor signal in the CPU 213 according to the present embodiment. Note that this processing is all digital signal processing. The AM modulated signal is processed by a bandpass filter block 216 that passes the reference signal band, and then multiplied by a multiplication processing block 217. The detection circuit multiplies the sine wave signal output to the digital / analog conversion circuit 215. The multiplied signal is finally processed by the integration processing block 218, so that demodulated proximity sensor data can be obtained.

01・・・電極部
02・・・第1の電極
03・・・第2検出電極
04・・・第3検出電極
05・・・信号処理回路部
06・・・生体情報計測回路部
07・・・受信回路部
08・・・加算回路
09・・・ローパスフィルタ
10・・・アナログ/デジタル変換回路部
11・・・フィードバック回路部
12・・・加算回路
13・・・送信波発生回路部
14・・・CPU
15・・・抵抗素子
16・・・バッファ回路
17・・・抵抗素子
18・・・差動増幅回路

201・・・電極部
202・・・近接センサー電極部
203・・・第1の電極
204・・・第2の電極
205・・・第3の電極
206・・・信号処理回路部
207・・・近接センサー信号処理回路部
208・・・生体情報計測回路部
209・・・フィードバック回路部
210・・・加算回路
211・・・ローパスフィルタ回路
212・・・アナログ/デジタル変換回路
213・・・CPU
214・・・フィルタ回路部
215・・・デジタル/アナログ変換回路
216・・・バンドパスフィルタブロック
217・・・乗算処理ブロック
218・・・積分処理ブロック
01 ... Electrode unit 02 ... First electrode 03 ... Second detection electrode 04 ... Third detection electrode 05 ... Signal processing circuit unit 06 ... Biological information measurement circuit unit 07 ...・ Receiving circuit unit 08... Addition circuit 09 .. low pass filter 10... Analog / digital conversion circuit unit 11... Feedback circuit unit 12... Adding circuit 13. ..CPU
DESCRIPTION OF SYMBOLS 15 ... Resistance element 16 ... Buffer circuit 17 ... Resistance element 18 ... Differential amplifier circuit

201 ... Electrode unit 202 ... Proximity sensor electrode unit 203 ... First electrode 204 ... Second electrode 205 ... Third electrode 206 ... Signal processing circuit unit 207 ... Proximity sensor signal processing circuit unit 208 ... biological information measurement circuit unit 209 ... feedback circuit unit 210 ... addition circuit 211 ... low pass filter circuit 212 ... analog / digital conversion circuit 213 ... CPU
214 ... Filter circuit unit 215 ... Digital / analog conversion circuit 216 ... Band pass filter block 217 ... Multiplication processing block 218 ... Integration processing block

Claims (5)

人と絶縁物を介して、または前記人の皮膚に直接設置される、一対の差動電極である、第1の電極、第2の電極及び、中間電位を誘起する電極である第3の電極からなる3つの生体信号測定用電極と、
前記人の生体を介した通信手段として生体に信号を送信する送信電極と、
前記中間電極の誘起電位を基準として、前記一対の差動電極間の電位を心電信号として検知する計測手段と
前記第1の電極と第2の電極から生体を介して受信した前記送信電極の信号を検知する手段と、
前記送信電極に誘起させる送信信号を発生する送信波発生手段と
を備えることを特徴とする生体情報計測装置。
A first electrode, a second electrode, and a third electrode that is an electrode for inducing an intermediate potential, which are a pair of differential electrodes, which are directly installed on a person's skin through a person and an insulator. Three biological signal measuring electrodes consisting of:
A transmitting electrode for transmitting a signal to a living body as a communication means via the human living body;
Measuring means for detecting the potential between the pair of differential electrodes as an electrocardiographic signal with reference to the induced potential of the intermediate electrode, and the transmitting electrode received via the living body from the first electrode and the second electrode Means for detecting the signal;
A biological information measuring device comprising: a transmission wave generating means for generating a transmission signal to be induced in the transmission electrode.
前記第3の電極に中間電位と送信信号の加算信号電圧を誘起させる手段
を備えることを特徴とする請求項2記載の生体情報計測装置。
3. The biological information measuring apparatus according to claim 2, further comprising means for inducing an added signal voltage of an intermediate potential and a transmission signal in the third electrode.
人と静電容量結合する近接センサー電極と、
人と絶縁物を介して、または前記人の皮膚に直接設置される、一対の差動電極である、第1の電極、第2の電極及び、中間電位を誘起する電極である第3の電極からなる3つの生体信号測定用電極と、
前記近接センサー電極に形成される静電容量を電圧信号として計測できる近接センサー回路と、
前記中間電極の誘起電位を基準として、前記一対の差動電極間の電位を心電信号として検知する計測手段と、
を備えることを特徴とする生体情報計測装置。
A proximity sensor electrode that capacitively couples with a person;
A first electrode, a second electrode, and a third electrode that is an electrode for inducing an intermediate potential, which are a pair of differential electrodes, which are directly installed on a person's skin through a person and an insulator. Three biological signal measuring electrodes consisting of:
A proximity sensor circuit capable of measuring the capacitance formed in the proximity sensor electrode as a voltage signal;
Measuring means for detecting the potential between the pair of differential electrodes as an electrocardiogram signal with reference to the induced potential of the intermediate electrode;
A biological information measuring device comprising:
前記近接センサー回路は、
近接センサー電極に形成される静電容量を振幅変調信号として検出できる近接センサー回路であることを特徴とする請求項3記載の生体情報計測装置。
The proximity sensor circuit includes:
4. The biological information measuring device according to claim 3, wherein the biological information measuring device is a proximity sensor circuit capable of detecting an electrostatic capacitance formed on the proximity sensor electrode as an amplitude modulation signal.
前記生体信号測定用電極は、
それぞれ周囲に近接センサー電極が設置されていることを特徴とする電極を備えることを特徴とする請求項3または4記載の生体情報計測装置。
The biological signal measurement electrode is:
5. The biological information measuring device according to claim 3, further comprising an electrode characterized in that proximity sensor electrodes are provided around each of the electrodes.
JP2014224451A 2014-11-04 2014-11-04 Biological information measurement device Pending JP2016087061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014224451A JP2016087061A (en) 2014-11-04 2014-11-04 Biological information measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014224451A JP2016087061A (en) 2014-11-04 2014-11-04 Biological information measurement device

Publications (1)

Publication Number Publication Date
JP2016087061A true JP2016087061A (en) 2016-05-23

Family

ID=56015669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014224451A Pending JP2016087061A (en) 2014-11-04 2014-11-04 Biological information measurement device

Country Status (1)

Country Link
JP (1) JP2016087061A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150923A1 (en) * 2017-02-17 2018-08-23 アルプス電気株式会社 Biological information measurement device, attachment state detection method for biological information measurement device, and control program for biological information measurement device
WO2021181890A1 (en) * 2020-03-12 2021-09-16 ソニーグループ株式会社 Electrical signal measurement device, electrical signal measurement system, and electrical signal measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150923A1 (en) * 2017-02-17 2018-08-23 アルプス電気株式会社 Biological information measurement device, attachment state detection method for biological information measurement device, and control program for biological information measurement device
WO2021181890A1 (en) * 2020-03-12 2021-09-16 ソニーグループ株式会社 Electrical signal measurement device, electrical signal measurement system, and electrical signal measurement method

Similar Documents

Publication Publication Date Title
US11478193B2 (en) Contact detection for physiological sensor
CN111811829B (en) Steering wheel hands-off detection device and method
JP5370444B2 (en) Electrocardiograph
US10349858B2 (en) Heartbeat detecting device and biological signal processing device
JP2012187404A (en) Biosignal measurement device and method, unit measurement instrument for the same, and recording medium related to the method
JP7039002B2 (en) Wearable biosensor and noise canceling circuit
WO2012136744A4 (en) Ecg mat
US10561322B2 (en) Biological signal processing device and blood pressure measurement system
US10743787B2 (en) Noise mitigation for biosignals
US20140296681A1 (en) Electrocardiograph, method for measuring electrocardiogram, and computer program product
WO2015115114A1 (en) Blood pressure measurement system and pulse wave sensor
JP2016087061A (en) Biological information measurement device
KR101116621B1 (en) Biological signal sensing system using touch pad
US20160183834A1 (en) Semi-contact-type ecg measurement system and measurement method thereof
CN108601544A (en) For the electrometric device and method of the heart
CN215503051U (en) Driver hands-off and health detection device, steering wheel and protective sleeve
JP2011200558A (en) Biological information acquiring apparatus
JP5953168B2 (en) Bioelectric signal measuring device and vehicle seat
JP6788876B2 (en) Electrocardiogram signal processing device, personal authentication device and electrocardiogram signal processing method
JP2011072452A (en) Potential difference measuring device
CN111372509A (en) Biological signal detection
WO2021090955A1 (en) Biosignal detection device, heart rate signal detection server, vehicle, biosignal detection program, and heart rate signal detection program
JP2018134189A (en) Signal measurement device and signal measurement method
CN114224349A (en) Contact state detection device and wearable equipment
JP2020018442A (en) Biological signal measuring device and control method