WO2021181783A1 - X-ray inspection device and x-ray inspection method - Google Patents
X-ray inspection device and x-ray inspection method Download PDFInfo
- Publication number
- WO2021181783A1 WO2021181783A1 PCT/JP2020/046688 JP2020046688W WO2021181783A1 WO 2021181783 A1 WO2021181783 A1 WO 2021181783A1 JP 2020046688 W JP2020046688 W JP 2020046688W WO 2021181783 A1 WO2021181783 A1 WO 2021181783A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- turning
- ray
- motion
- swivel
- circle
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/044—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using laminography or tomosynthesis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/10—Different kinds of radiation or particles
- G01N2223/101—Different kinds of radiation or particles electromagnetic radiation
- G01N2223/1016—X-ray
Definitions
- the present invention relates to an X-ray inspection apparatus that acquires a plurality of X-ray images of an object to be inspected and creates three-dimensional data.
- At that time at least one of the X-ray source, the object to be inspected, and the X-ray camera is swiveled to change the relative positions of each other.
- a moving motion is performed to the imaging position for photographing the inspection point, and then a turning motion is performed. Therefore, in order to shorten the inspection time of the object to be inspected, it is necessary to efficiently perform the above-mentioned turning motion and moving motion.
- an imaging path in which the time required to capture a plurality of radiation transmitting images is shortened based on the imaging conditions for capturing a radiation transmitting image is set by an individual processing time (for example, a radiation generator).
- the time required for the radiation to be irradiated to stabilize, the time required to move the radiation generator, the time required to translate the substrate holding unit on the plane on which the substrate rotation trajectory is stretched, the detector drive unit is the detector and
- a technique for solving a combination / optimization problem of a combination / optimization problem (such as the time required to move the substrate holding portion in conjunction with it) is known (see, for example, Patent Document 1).
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of shortening the inspection time of an inspected object in an X-ray inspection apparatus.
- the present invention for solving the above problems includes an X-ray source that generates X-rays to irradiate an inspection target, and an X-ray source.
- An X-ray camera that captures an X-ray image of the X-rays emitted from the X-ray source to the inspection target, and an X-ray camera.
- a holding unit for holding the inspection target is provided.
- the X-ray source, the X-ray camera, and any of the holding portions rotate as a swivel portion to capture the X-ray image while changing the imaging direction, and the inspection target.
- An X-ray inspection device that acquires and inspects three-dimensional images.
- the turning portion sequentially makes a turning motion at a plurality of places, and also performs a moving motion for moving from the turning end point of one turning motion to the turning start point of the next turning motion.
- the X-ray inspection apparatus is characterized in that the turning portion does not have a stop section that stops in the middle of the turning motion and the moving motion.
- the X-ray source, the X-ray camera, and the holding portion rotate as a swivel portion to change the imaging direction and X at the inspection location.
- a line image is taken, and a three-dimensional image of the inspection location is acquired and inspected.
- the swivel unit sequentially performs swivel motions at different places in order to acquire three-dimensional images of the plurality of inspection points.
- the turning unit performs a moving motion during each turning motion and for moving from the turning end point of one turning motion to the turning start point of the next turning motion. Then, it shifts from the turning motion to the moving motion without stopping.
- the swivel portion does not require an acceleration motion or a deceleration motion for stopping between the swivel motion and the locomotion motion.
- the X-ray source and the X-ray are described.
- the camera and one of the holding portions are specified as a trajectory that smoothly connects the turning circle of the one turning motion and the turning circle of the next turning motion at the turning end point and the turning start point.
- the specific moving trajectory may be a trajectory in which the linear velocity of the turning portion is continuous at the turning end point and / or the turning start point.
- the linear velocity and acceleration of the turning portion are continuous at the turning end point and / or the turning start point, or at the turning end point and / or the turning start point.
- the trajectory may be such that the linear velocity, acceleration, and jerk of the turning portion are continuous.
- the acceleration of the turning portion may be 0 at the turning end point and / or the turning start point.
- the linear velocity of the turning portion is required to be continuous at the turning end point and / or the turning start point. And it is desirable that the linear velocity and acceleration are continuous. Ideally, the linear velocity, acceleration and jerk are continuous. Further, when the acceleration is continuous, it is ideal that the acceleration is 0.
- the specific moving orbit may be defined by a polynomial expression. According to this, it is possible to obtain a specific moving trajectory by a general mathematical solution method.
- the turning start point and the turning end point in the turning circle of the one turning motion are the center of the turning circle of the previous turning motion and the next turning motion and the turning circle of the one turning motion. It may be the midpoint of the shorter arc on the turning circle of the one turning motion at the two intersections of the straight line connecting the centers and the turning circle of the one turning motion. According to this, it is possible to select the turning start point and the turning end point in the turning circle of the turning motion so that the specific moving trajectory is the shortest by a simple calculation.
- the specific moving trajectory is a trajectory that smoothly connects the turning circle of the one turning motion and the turning circle of the next turning motion at the turning end point and the turning start point. Since the orbit can be the shortest, the inspection time can be shortened more reliably.
- the turning end point of the one turning motion and the turning start point of the next turning motion are each set. It may be arranged at a predetermined angle position in the turning circle of the turning motion. According to this, even when the shorter arc cannot be specified, for example, when the turning circles are lined up in a horizontal row, the turning end point of one turning motion and the turning start point of the next turning motion can be determined. It can be set to any angle, and a specific movement trajectory can be calculated without any problem.
- the turning end point of the one turning motion and the turning start point of the next turning motion may be arranged at the same angle position in the turning circle of each turning motion. ..
- the turning end point of one turning motion and the turning start point of the next turning motion are determined to be 0 degree positions in the turning circle of each turning motion or arbitrary angle positions other than 0 degrees regardless of the case. You may.
- the swivel portion is any two of the X-ray source, the X-ray camera, and the holding portion, and the specific moving trajectory is the X-ray source and the X.
- the swivel circle of the one swivel motion and the swivel circle of the next swivel motion of the line camera and one of the two holding portions having a larger radius are completed. It may be a trajectory that smoothly connects the point and the turning start point.
- the swivel portion is any two of the X-ray source, the X-ray camera, and the holding portion
- the swivel portion is drawn by one of the swivel portions in order to acquire a three-dimensional image of the inspection portion.
- the swirling circle of motion and the swirling circle of the swivel motion drawn by the other are often different.
- one of the swivel portions, the X-ray source, the X-ray camera, and the holding portion which performs the swivel motion with a larger radius, makes one swivel of the specific moving trajectory.
- the turning circle of the motion and the turning circle of the next turning motion are defined as a trajectory that smoothly connects the turning end point and the turning start point. Further, the turning start point and turning end point in the turning circle of one turning motion are one with a straight line connecting the center of the turning circle of the previous turning motion and the next turning motion and the center of the turning circle of one turning motion. The midpoint of the shorter arc on the turning circle of one turning motion at the two intersections with the turning circle of the turning motion. Diligent research by the inventors has shown that this can reduce the total time of multiple turning and locomotions. Therefore, according to this, the inspection time can be shortened more reliably.
- the one that performs a turning motion with a smaller radius is the X-ray source and the X.
- the line camera and any two of the holding portions may be made to reach the turning start point in the turning circle of the next turning motion at the same time as the one performing the turning motion having a larger radius.
- the one that performs the turning motion with the smaller radius is the X-ray source and the X-ray camera. It is possible to reach the turning start point in the turning circle of the next turning motion at the same time as the one that performs the turning motion with a larger radius among any two of the holding portions. As a result, it is possible to start the next turning motion at an early stage by the turning portion.
- the specific moving orbit has a predetermined linear velocity, axial velocity, or acceleration of any one of the X-ray source, the X-ray camera, and the holding portion, which is the turning portion. It may be determined within a range that does not exceed the permissible value (permissible speed or permissible acceleration). According to this, it is possible to prevent the speed and acceleration of the X-ray source, the X-ray camera, the holding portion, etc. from becoming excessive when the swivel portion moves along a specific moving trajectory, and it is possible to prevent a failure of the device. , It is possible to improve the reliability.
- the moving range of any one of the X-ray source, the X-ray camera, and the holding portion, which is the turning portion exceeds a predetermined movement allowable range. It may be decided not to.
- the swivel in the specific movement trajectory so that the movement range of any one of the swivel portion, the X-ray source, the X-ray camera, and the holding portion does not exceed a predetermined permissible movement range.
- the movement time of the unit may be determined. According to this, when the swivel part moves along a specific movement trajectory, the X-ray source, the X-ray camera, the holding part, etc. collide with the structure in the device, or the limit range set by the software is set. If it exceeds the limit, inconveniences such as an error can be prevented, and reliability can be improved.
- the swivel portion may be the X-ray source and the X-ray camera, and the holding portion may be held at a predetermined position in the X-ray inspection apparatus.
- the inspection can be performed by fixing the inspection target and causing the X-ray camera and the X-ray source to perform swivel movement and movement movement above and below the inspection target, and the non-inspection object in the X-ray inspection device. It is possible to simplify the moving mechanism, carrying-in mechanism, etc.
- the present invention includes an X-ray source that generates X-rays to irradiate an inspection target, and an X-ray source.
- An X-ray camera that captures an X-ray image of the X-rays emitted from the X-ray source to the inspection target, and an X-ray camera.
- a holding unit for holding the inspection target is provided.
- the X-ray source, the X-ray camera, and any of the holding portions rotate as a swivel portion to capture the X-ray image while changing the imaging direction, and the inspection target. It is an X-ray inspection method using an X-ray inspection device that acquires and inspects a three-dimensional image.
- the swivel portion is sequentially swiveled at a plurality of locations, and at the same time, a locomotion is performed when moving from the swivel end point of one swivel motion to the swivel start point of the next swivel motion.
- X-rays characterized in that any one of the swivel portion, the X-ray source, the X-ray camera, and the holding portion is transferred from the swivel motion to the moving motion without stopping. It may be an inspection method.
- the specific moving trajectory may be a trajectory in which the linear velocity of the turning portion is continuous at the turning end point and / or the turning start point.
- the linear velocity and acceleration of the turning portion are continuous at the turning end point and / or the turning start point, or the turning at the turning end point and / or the turning start point. It may be an orbit in which the linear velocity, acceleration and jerk of the part are continuous. Further, when the acceleration is continuous at the turning end point and / or the turning start point, the acceleration may be set to 0.
- the specific moving orbit may be defined by a polynomial expression.
- the turning start point and the turning end point in the turning circle of the one turning motion are the center of the turning circle of the previous turning motion and the next turning motion and the center of the turning circle of the one turning motion. It may be the midpoint of the shorter arc on the turning circle of the one turning motion at the two intersections of the connected straight line and the turning circle of the one turning motion.
- the computer is made to calculate the specific moving trajectory, and any one of the X-ray source, the X-ray camera, and the holding portion, which is the turning portion, is set to the specific moving trajectory. It may be a program that outputs a drive signal for moving along the line.
- the present invention can be regarded as an X-ray inspection apparatus including at least a part of the above means.
- the present invention can also be regarded as an X-ray inspection method including at least a part of the processing performed by the above means.
- it can be regarded as a computer program for causing a computer to execute each step of these methods, or as a computer-readable storage medium in which the program is stored non-temporarily.
- Example 1 of this invention It is a figure which shows the outline of the X-ray inspection apparatus in Example 1 of this invention. It is a figure which shows the relationship between the turning motion and the moving motion of the X-ray source or the X-ray camera in Example 1 of this invention. It is a figure which shows the example of the trajectory of the turning motion and the moving motion of the X-ray source or the X-ray camera in Example 1 of this invention. It is a figure for demonstrating the method of deriving the shortest locomotion locomotion in Example 1 of this invention. It is a figure which shows the 2nd example of the locomotive locomotion of the X-ray source or the X-ray camera in Example 1 of this invention.
- the present invention is applied to the X-ray inspection apparatus 1 as shown in FIG.
- the X-ray source 10 irradiates the object S to be inspected with X-rays
- the X-ray camera 20 captures an X-ray image by the transmitted light.
- the X-ray source 10 and the X-ray camera 20 make swirling motions on the swirling circles 121 and 122, respectively, and take an X-ray image of the object S to be inspected at a plurality of positions on the orbit.
- both the X-ray source 10 and the X-ray camera 20 perform a moving motion to the next turning circle, and further move on the turning circle to take an X-ray image.
- a stop section is provided to temporarily stop as shown in FIG. 2 (a).
- acceleration motion and deceleration motion on the turning circle were added before and after the turning motion.
- the stop section when the X-ray source 10 and the X-ray camera 20 shift from the turning motion to the moving motion is eliminated.
- the extra stop state and the extra turning motion are omitted, and the X-ray source 10 and the X-ray camera 20 can move from the turning circle to the next turning circle more quickly.
- the turning circle and the next turning circle are set at the turning end point and the turning start point as the trajectories of the moving motion when moving from the turning circle to the next turning circle.
- the X-ray source 10 and the X-ray camera 20 can be moved more quickly without giving an excessive acceleration or impact.
- the distance between the turning end point in the turning circle and the turning start point in the next turning circle is set to the shortest, and the turning end point and the turning start point can be smoothly connected. Is.
- the present invention is applicable to the X-ray inspection device 1 in which the object S to be inspected is fixed and the X-ray source 10 and the X-ray camera 20 are swiveled above and below the object S to be inspected. As shown in FIG. 10, it is also possible to apply it to the X-ray inspection device 11 in which the X-ray source 10 is fixed and the X-ray camera 20 and the object S to be inspected rotate.
- the X-ray inspection apparatus is, for example, an apparatus for determining the quality of soldered electronic components soldered to a printed circuit board, bumps of a ball grid array (BGA), and the like. More specifically, the X-ray source and the object to be inspected are relatively moved to perform X-ray photography multiple times, the internal state of the inspection target location is acquired, and a cross-sectional image at an appropriate position is generated. Then, the quality is inspected based on the cross-sectional image.
- BGA ball grid array
- FIG. 1 shows a layout diagram of an X-ray source 10, a holding unit 40 for holding an object S to be inspected, and an X-ray camera 20 in the X-ray inspection apparatus 1 according to the first embodiment of the present invention.
- X-ray inspection apparatus 1 X-ray images are taken at a plurality of imaging positions for each inspection location in the object S to be inspected, which is conveyed by a conveying roller (not shown) and held by the holding unit 40, and three-dimensional data is obtained. get.
- the X-ray source 10 irradiates the object S to be inspected with X-rays, and the X-ray camera 20 captures an X-ray image of the transmitted light.
- Both the X-ray source 10 and the X-ray camera 20 can be moved by a stage (not shown).
- the X-ray source 10 and the X-ray camera 20 move on the swivel circles 121 and 122, respectively, by these stages, and imaging is performed at a plurality of positions on the swivel circles.
- the control of each part in the board inspection device 1 is performed based on the control signal from the control unit 100.
- the X-ray inspection device 1 includes a camera XY stage control unit 101, a camera control unit 102, and an X-ray source XY stage control unit 107 as control units 100. In addition, it includes a height measuring unit 103, an inspection target position control unit 104, an X-ray source control unit 105, and an imaging height control unit 106. Further, the X-ray inspection device 1 includes a calculation unit 111, a main storage unit 112, an auxiliary storage unit 113, an input unit 114, and an output unit 115.
- the camera XY stage control unit 101 drives the camera XY stage (not shown) and transmits a control signal for moving the X-ray camera 20 in the horizontal direction.
- the camera control unit 102 transmits a control signal for taking an X-ray image by the X-ray camera 20.
- the height measuring unit 103 receives a signal from the displacement meter 30 and measures the height of the inspected portion of the inspected object S.
- the inspection target position control unit 104 transmits a control signal to the transport roller and the holding unit 40 of the inspected object S to control the horizontal position and the vertical position of the inspected object S to the optimum positions for photographing.
- the X-ray source control unit 105 transmits a signal for adjusting the X-ray intensity in addition to the start and end of X-ray irradiation by the X-ray source 10.
- the imaging height control unit 106 transmits signals for height control of the X-ray source 10 and the X-ray camera 20.
- the X-ray source XY stage control unit 107 drives the X-ray source XY stage (not shown) and transmits a signal for horizontally moving the X-ray source 10.
- the signals output from the camera XY stage control unit 101, camera control unit 102, inspection target position control unit 104, X-ray source control unit 105, imaging height control unit 106, and X-ray source XY stage control unit 107 are calculated. It is determined based on the calculation result of the unit 111 and the information stored in the main storage unit 112 and the auxiliary storage unit 113.
- the imaging command unit 111a of the calculation unit 111 transmits information necessary for acquiring an X-ray image to each unit including the camera control unit 102. Further, the locus calculation unit 111b calculates the locus that the X-ray source 10 and the X-ray camera 20 should follow by a method described later. Further, information such as setting information and inspection results is exchanged with the user via the input unit 114 and the output unit 115.
- the X-ray camera 20 is a two-dimensional X-ray detector that detects X-rays emitted from the X-ray source 10 and transmitted through the object S to be inspected.
- the X-ray camera 20 I. I. An (Image Intensifier) tube or an FPD (flat panel detector) can be used. Although only one X-ray camera 20 is adopted here, a plurality of X-ray cameras may be used.
- the displacement meter 30 measures the distance to the object S to be inspected at a plurality of positions of the object S to be inspected. Therefore, it is possible to measure the warp and inclination of the object S to be inspected by the displacement meter 30. In the manufacturing process of the object S to be inspected, warpage or inclination may occur, and the amount thereof varies depending on the individual. Therefore, the warp and inclination of each object S to be inspected are measured, and the height position of the holding portion 40 is adjusted so that appropriate X-ray imaging can be performed.
- the X-ray inspection apparatus 1 can control the positions of the X-ray source 10 and the X-ray camera 20 so that the substrate can be imaged from various directions.
- three-dimensional data of the inspected portion of the inspected object S is generated by using a three-dimensional data generation method called CT (Computed Tomography). ..
- a general general-purpose arithmetic unit called a CPU central processing unit
- a memory such as a RAM can be used as the main storage unit 112.
- a ROM, an HDD, or the like can be used.
- the input unit 114 is an arbitrary device such as a keyboard, a button, a switch, and a mouse that allows a user to input an instruction to the calculation unit 111.
- the output unit 115 is an arbitrary device such as a display or a speaker that can present the output from the calculation unit 111 to the user by video, audio, or the like. That is, these functional parts can be realized by using a general computer system.
- the arithmetic unit 111 reads and executes the program stored in the auxiliary storage unit 113, the movement control of the X-ray source 10 and the X-ray camera 20 as shown below is performed.
- the X-ray source 10 and the X-ray camera 20 are each swirling circle 121 based on the control signals from the XY stage control unit 107 for the X-ray source and the XY stage control unit 101 for the camera. , 122, and X-ray images are taken at a plurality of positions on the orbit. Then, by swirling on the swirling circles 121 and 122 with respect to each inspection point on the object S to be inspected, it is possible to create a three-dimensional image of the inspection point.
- the X-ray source 10 and the X-ray camera 20 make one turning motion over 360 degrees (hereinafter, the nth turning) because there are a plurality of positions of the inspection points.
- a moving motion is performed to a position where the next test site can be photographed, and a turning motion (hereinafter, n + 1) over the next 360 degrees from that position is performed. (Also called the second turning motion) is started.
- FIG. 2 shows the locus of the X-ray source 10 or the X-ray camera 20 when the X-ray source 10 or the X-ray camera 20 performs the nth turning motion, the moving motion, and the n + 1th turning motion. show.
- the acceleration motion is performed before the nth turning motion
- the nth turning motion is performed at a constant velocity
- the nth turning motion is performed.
- a deceleration motion is performed to temporarily stop.
- the locomotion is performed along a predetermined trajectory. This is because during the turning motion of the X-ray source 10 or the X-ray camera 20, a high-speed, high-quality X-ray image is taken, so that it is necessary to perform a constant-velocity circular motion at high speed.
- the acceleration motion is performed again, and the X-ray source 10 or the X-ray camera 20 reaches the start point of the turning motion. It is accelerated to a predetermined speed before, and then the n + 1th turning motion (360 degrees) is started.
- the X-ray source 10 or the X-ray camera 20 was temporarily stopped in the stop section before and after the turning motion for capturing the X-ray image. Then, a turning motion for acceleration / deceleration before and after the stop is added.
- the inspection time becomes long because the X-ray source 10 or the X-ray camera 20 needs to be stopped and a turning motion for acceleration / deceleration before and after the stop is required. rice field.
- the stop section is eliminated during the movement from the nth turning motion to the n + 1th turning motion, and the turning for taking an X-ray image is performed.
- the locus that smoothly connects the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion is the linear velocity of the X-ray source 10 or the X-ray camera 20 at the turning end point and / or the turning start point. May be a continuous locus.
- it is desirable that the locus is such that the linear velocity and acceleration of the X-ray source 10 or the X-ray camera 20 are continuous at the turning end point and / or the turning start point.
- the linear velocity, acceleration and jerk of the X-ray source 10 or the X-ray camera 20 are continuous at the turning end point and / or the turning start point. Further, when the acceleration is continuous, it is ideal that the acceleration is 0.
- FIG. 3 shows an example of the locomotion trajectory in that case.
- the arrows and the numbers of circles 1 to 3 in the figure correspond to the nth turning motion, the moving motion, and the n + 1th turning motion, respectively.
- FIG. 3A shows an example of the locomotion trajectory of the X-ray camera 20.
- the locomotion locomotion 123a of the X-ray camera 20 has the swivel circle 122a of the nth swivel motion and the swivel circle 122b of the n + 1th swivel motion as the highest points of both. It is the shortest curve among the curves that smoothly connect at (hereinafter, this point is also referred to as a 0 degree position or a 360 degree position).
- FIG. 3B also shows an example of the locomotion trajectory of the X-ray source 10.
- the locomotion locomotion 123b of the X-ray source 10 has the swivel circle 121a of the nth swivel motion and the swivel circle 121b of the n + 1th swivel motion at the bottom of both. It is the shortest curve among the curves that smoothly connect at a point (hereinafter, this point is also referred to as a 180 degree position).
- this point is also referred to as a 180 degree position.
- it is the X-ray source 10 and the X-ray camera 20 that the place where the locus of the moving motion and the turning circle of each turning motion are connected differs by 180 degrees between FIGS.
- a curve that smoothly connects the swirling circle of the nth swirling motion and the swirling circle of the n + 1th swirling motion at a predetermined point as shown in FIG. 3 is derived as a polynomial by a known mathematical method. Since it is possible, the method of deriving the curve will not be described in particular here. Further, regarding the method of deriving the shortest curve among the curves that smoothly connect the swirling circle of the nth swirling motion and the swirling circle of the n + 1th swirling motion at a predetermined point, a polynomial obtained by a known method is used. Mathematical parameters such as coefficients of each term of the curve may be assigned, and the one having the shortest length may be selected by iterative calculation.
- the moving time when the X-ray camera 20 moves along the locomotion 123a shown in FIG. 3A and the X-ray source 10 along the locomotion 123b shown in FIG. 3B In order to match the movement times in the case of the movement movement, the speed in the movement movement of the one having the longer movement time may be increased so that both movements are completed at the same time. By doing so, both can complete the locomotion at the same time and move to the next turning motion.
- the stop section when the X-ray source 10 and the X-ray camera 20 shift from the nth turning motion to the moving motion and shift from the moving motion to the n + 1th turning motion is set. It was decided that the X-ray source 10 and the X-ray camera 20 would not stop.
- the turning motion for taking an X-ray image it is not necessary to add a turning motion for acceleration / deceleration before and after the stop section, and immediately after the end of the turning motion, the moving motion to the next turning motion is started. It is possible to make a transition, and immediately after the end of the locomotion, it is possible to shift to the next turning movement. As a result, the inspection time in the X-ray inspection apparatus 1 can be shortened.
- the locomotion locomotion at the time of transition from the nth turning motion to the n + 1th turning motion is defined as the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion.
- the shortest curve among the curves smoothly connected at the turning end point and the turning start point (both at the 0 degree position in FIG. 3) was used.
- the X-ray source 10 and the X-ray camera 20 are moved more smoothly from the turning motion to the moving motion or from the moving motion to the turning motion (excessive acceleration or impact acts on the X-ray source 10 or the X-ray camera 20).
- the X-ray source 10 and the X-ray camera 20 can be moved more quickly from the turning motion to the moving motion or from the moving motion to the turning motion.
- Table 1 shows the results of comparing the time required for the nth turning motion, the moving motion, and the n + 1th turning motion in the X-ray inspection apparatus between the case where the present invention is not applied and the case where the present invention is applied. show.
- the locomotion locomotion 123a of the X-ray camera 20 and the locomotion locomotion 123b of the X-ray source 10 in FIG. 3 correspond to the specific locomotion trajectories in this embodiment. This point is the same for the following modifications and examples.
- the locus 123a of the moving motion of the X-ray camera 20 and the locus 123b of the moving motion of the X-ray source 10 are the shortest curves among the curves smoothly connecting the swirling circles, but they are not necessarily the shortest. It does not have to be, and any curve that smoothly connects the swirling circles and has a length that can sufficiently shorten the inspection time is sufficient.
- the straight line connecting the turning circle 122n of the previous nth turning motion and the center of the turning circle 122n + 1 in the turning circle 122n + 1. Find the intersection of and the turning circle 122n + 1. Further, the intersection of the straight line connecting the center of the swirling circle 122n + 1 and the center of the swirling circle 122n + 2 one after it and the swirling circle 122n + 1 is obtained. Then, the central point Pn + 1 of the shorter arc among the arcs sandwiched between the two intersections is set as the turning start point of the turning circle 122n + 1 of the n + 1th turning motion. Then, Pn and Pn + 1 are smoothly connected by a curve 123n. According to this, it is possible to smoothly connect the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion with a shorter curve.
- FIG. 5 shows an example of the locomotion trajectory determined according to this method.
- FIG. 5B shows the locomotion locomotion 123b between the swirling circle 121a of the nth swivel motion of the X-ray source 10 and the swirling circle 121b of the n + 1th swirling motion.
- FIG. 5A shows the locomotion locomotion 123a between the swivel circle 122a of the nth swivel motion of the X-ray camera 20 and the swivel circle 122b of the n + 1th swivel motion.
- the turning end point in the turning circle 121a and the turning start point in the turning circle 121b are determined by the method shown in FIG. 4 so that the locus 123b shown in FIG. 5B is the shortest.
- the shortest curve among the curves that smoothly connect the turning circle 121a and the turning circle 121b at the turning end point and the turning start point is obtained.
- FIG. 5A the curve that smoothly connects the turning circle 122a of the nth turning motion of the X-ray camera 20 and the turning circle 122b of the n + 1th turning motion at the turning end point and the turning start point.
- the locus 123a is obtained as the shortest curve.
- the turning end point and turning start point in FIG. 5A are points obtained as points having 180-degree phases different from the turning end point and turning start point in FIG. 5B, respectively.
- Table 2 shows the time required for the nth turning motion, the moving motion, and the n + 1th turning motion in the X-ray inspection apparatus when the present invention according to the modified example is not applied and when the present invention is applied. The result of comparison is shown.
- the elapsed time is improved by about 16% by applying the present invention to the X-ray inspection apparatus.
- the turning end point and the turning start point in the turning motion may be set at predetermined angular positions. In this case, it may be fixed at the 0 degree position or the 180 degree position, or may be changed for each turning circle. In this way, it is possible to avoid a situation in which the turning end point and the turning start point in the turning motion cannot be calculated.
- FIG. 6 when the distance between the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion is relatively long (for example, the distance between the centers of the turning circles is three times the diameter of the turning circles).
- Examples 123a and 123b of the locomotion trajectory of the above are shown.
- FIG. 6A the turning end point in the turning circle 122a of the nth turning motion of the X-ray camera 20 and the turning start point in the turning circle 122b of the n + 1th turning motion are fixed at the 0 degree position, and the nth turning motion is performed.
- the shortest curve among the curves smoothly connecting the turning circle 122a of the turning motion and the turning circle 122b of the n + 1th turning motion at the 0 degree position is obtained as the locus 123a.
- the turning end point in the turning circle 121a of the nth turning motion of the X-ray source 10 and the turning start point in the turning circle 121b of the n + 1th turning motion are fixed at 180 degree positions, and n
- the shortest curve among the curves smoothly connecting the turning circle 121a of the first turning motion and the turning circle 121b of the n + 1th turning motion at the 180-degree position is obtained as the locus 123b.
- Examples 123a and 123b of the locomotion locomotion are shown.
- FIG. 7B the turning end point in the turning circle 121a of the nth turning motion of the X-ray source 10 and the turning start point in the turning circle 121b of the n + 1th turning motion are optimized by the method of FIG.
- the shortest curve among the curves smoothly connecting the turning circle 121a of the nth turning motion and the turning circle 121b of the n + 1th turning motion at the optimized turning end point and the turning start point is obtained as the locus 123b. There is.
- FIG. 7 (a) shows the turning end point in the turning circle 122a of the nth turning motion of the X-ray camera 20 and the turning start point in the turning circle 122b of the n + 1th turning motion
- FIG. 7 (b) shows the turning end point in FIG. 7 (b). It is determined as a position where the movement is changed by 180 degrees with respect to the point and the turning start point. Then, the shortest curve among the curves smoothly connecting the turning circle 122a of the nth turning motion and the turning circle 122b of the n + 1th turning motion at the determined turning end point and the turning start point is obtained as the locus 123a. ing. Table 3 shows the effect of shortening the inspection time in the case shown in FIG.
- the turning end point in the turning circle 122a of the nth turning motion of the X-ray camera 20 and the turning start point in the turning circle 122b of the n + 1th turning motion are fixed at the 0 degree position, and the X-ray source is used.
- the turning end point in the turning circle 121a of the 10th nth turning motion and the turning start point in the turning circle 121b of the n + 1th turning motion were fixed at the 180-degree position, an improvement effect of about 12% was observed. ..
- FIG. 8 shows an example of the locomotion trajectory when the distance between the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion is relatively long, and is an example of the locomotion trajectory of the X-ray camera 20 and the X-ray source.
- the case where the turning end point in the turning circle of the nth turning motion and the turning start point in the turning circle of the n + 1th turning motion is optimized is shown.
- the turning end point in the turning circle of the nth turning motion of the X-ray source 10 and the turning start point in the turning circle of the n + 1th turning motion are optimized by the method of FIG.
- the turning end point in the turning circle of the 20th nth turning motion and the turning start point in the turning circle of the n + 1th turning motion change their phases by 180 degrees with respect to the turning end point and the turning start point of the X-ray source 10.
- the loci of the moving motion 123a and 123b in the case of the above are shown.
- the X-ray camera 20 reaches the turning start point in the turning circle 122b of the n + 1th turning motion, and at the same time, the X-ray source 10 reaches the turning start point in the turning circle 121b of the n + 1th turning motion.
- the speed of the X-ray source 10 during the locomotion is adjusted.
- the turning end point in the turning circle 122a of the nth turning motion of the X-ray camera 20 and the turning start point in the turning circle 122b of the n + 1th turning motion are optimized by the method of FIG.
- the turning end point in the turning circle 121a of the nth turning motion of the source 10 and the turning start point in the turning circle 121b of the n + 1th turning motion are 180 degrees with respect to the turning end point and the turning start point of the X-ray camera 20, respectively.
- the case where the phase is changed is shown. As can be seen from FIG. 8, the travel time in this case was 1.674 s in the case of FIG. 8 (a) and 1.552 s in the case of FIG. 9 (b).
- the distance between the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion is relatively long (for example, the distance between the centers of the turning circles is swirling).
- This is an example of the locomotion trajectory of (more than 3 times the diameter of the circle), and the turning end point in the nth turning motion of the X-ray camera 20 and the X-ray source 10 and the turning start point in the n + 1th turning motion are optimal.
- the turning end point in the nth turning motion and the turning start point in the n + 1th turning motion are optimized for the X-ray camera 20 and the X-ray source 10 having a larger turning radius. It has been found that the effect of shortening the time in locomotion is greater.
- the X-ray camera 20 and the X-ray source 10 have a larger turning radius. It is advisable to optimize the turning end point in the nth turning motion and the turning start point in the n + 1th turning motion.
- FIG. 9 shows a flowchart of the movement control routine of the X-ray source 10 and the X-ray camera 20 in this embodiment.
- This routine is a program stored in the main storage unit 112, and is executed by the calculation unit 111 and the control unit 100.
- step S01 the turning end point and the turning start point are set for the turning circle having the larger radius among the turning circle drawn by the X-ray source 10 and the turning circle drawn by the X-ray camera 20.
- the turning end point and the turning start point where the distance between the two becomes shorter are calculated by the calculation method shown in FIG.
- the description will be continued on the assumption that the swirling circle drawn by the X-ray camera 20 is larger than the swirling circle drawn by the X-ray source 10.
- step S02 a locus that smoothly connects the above two turning circles at the turning end point and the turning start point calculated in step S01 is calculated. Since this is performed by a mathematically known method for calculating a polynomial expression, detailed description thereof will be omitted here.
- step S03 the movement time is calculated from the locomotion trajectory calculated in step S02 and the movement speed of the X-ray camera 20.
- step S04 whether or not either the linear speed or the axial speed of the X-ray camera 20 exceeds the permissible speed and the acceleration acting on the X-ray camera 20 when moving within the movement time calculated in step S03. It is determined whether or not the permissible acceleration is exceeded and whether or not the motion range in the turning motion and the moving motion of the X-ray camera 20 exceeds the permissible movement range.
- the linear velocity or the axial velocity of the X-ray camera 20 exceeds the permissible speed
- the acceleration acting on the X-ray camera 20 exceeds the permissible acceleration
- the motion range of the X-ray camera 20 exceeds the permissible movement. If it is determined that the range is exceeded, the permissible rotation speed of the motor or ball screw is exceeded, the X-ray camera 20 cannot withstand the acceleration and deteriorates, or the X-ray camera 20 is a member in the X-ray inspection device 1.
- step S02 Since it is determined that there is a risk of collision with the X-ray camera 20, the acceleration acting on the X-ray camera 20 becomes low, or the mathematical parameters of the curve are changed so that the motion range of the X-ray camera 20 becomes narrow, and then step S02 is performed again. Return to the processing of. Then, in the routines of steps S02 to S05, in step S04, either the linear velocity or the axial velocity of the X-ray camera 20 does not exceed the permissible speed, and the acceleration acting on the X-ray camera 20 does not exceed the permissible acceleration. And, it is repeatedly executed until it is determined that the motion range of the X-ray camera 20 does not exceed the allowable movement range.
- step S04 either the linear velocity or the axial velocity of the X-ray camera 20 does not exceed the permissible speed, the acceleration acting on the X-ray camera 20 does not exceed the permissible acceleration, and the motion range of the X-ray camera 20 is increased.
- the permissible speed is a speed value predetermined as a threshold value that does not exceed the permissible rotation speed of the motor or the ball screw.
- the permissible acceleration is a predetermined acceleration value as a threshold value at which the X-ray camera does not deteriorate even if it acts on the X-ray camera 20.
- the permissible movement range is a motion range predetermined as a threshold value of the motion range in which the X-ray camera 20 does not collide with other members in the device.
- step S06 the calculation of the travel time is completed.
- the process of step S06 proceeds to step S07.
- the processes from step S01 to step S06 are executed by the calculation unit 111.
- step S07 the control unit 100 receives the calculated travel time. Further, in step S08, information necessary for the moving motion of the X-ray source 10 and the X-ray camera 20 such as the moving position coordinates, the turning speed, the turning center, and the turning radius is received. When the processing of step S07 and step S08 is completed, the process proceeds to step S09.
- step S09 the locus of movement to the turning start point, which is the next movement destination, is calculated.
- the locus of movement corresponding to the movement time received in S07 is calculated again.
- step S10 the output for the X-ray source 10 and the X-ray camera 20 to move along the trajectory to the next turning start point is supported by controlling the movement of the X-ray source 10 and the X-ray camera 20. Output to the drive motor (not shown) of the XY stage.
- the processes from step S07 to step S10 are executed by the control unit 100.
- step S02 and step S03 the turning end point and turning are performed until it is determined in S04 that the speed (either linear speed or axial speed), acceleration, and moving position do not exceed the permissible values.
- the locus that smoothly connects the starting point and the moving time were calculated.
- the trajectory and movement that smoothly connects the turning end point and the turning start point until it is determined that any of the speed (either linear speed or axial speed), acceleration, or moving position does not exceed the permissible value.
- the flow may be such that the time is calculated.
- Example 2 of the present invention will be described.
- the present invention is applied to an X-ray inspection apparatus 1 in which the position of the object S to be inspected is fixed and the X-ray camera 20 and the X-ray source 10 are swiveled above and below the position.
- the present invention is applied to the X-ray inspection apparatus 11 in which the X-ray source 10 is fixed and the inspected object S and the X-ray camera 20 are swiveled will be described.
- FIG. 10 shows an example of arrangement of the X-ray camera 20, the object to be inspected S, and the X-ray source 10 in the X-ray inspection apparatus 11 in this embodiment.
- FIG. 9A shows an example in which the X-ray camera 20 is arranged above the object S to be inspected and the X-ray source 10 is arranged below the object S to be inspected.
- the X-ray source 10 is arranged above the object S to be inspected and the X-ray camera 20 is arranged below the object S to be inspected.
- the X-ray source 10 is fixed, and the X-ray camera 20 and the object S to be inspected perform a turning motion.
- FIG. 11 shows a case where the present invention is applied to the X-ray inspection apparatus 11 adopting the arrangement shown in FIG.
- the locomotives of the turning motion and the moving motion of the X-ray camera 20 and the object S to be inspected are shown when the point and the turning start point in the turning circle of the n + 1th turning motion are set to the 0 degree position.
- the turning end point in the turning circle of the nth turning motion and the turning start point of the n + 1th turning motion are both at the 0 degree position.
- FIG. 11A shows a locomotive of the turning motion and the moving motion of the X-ray camera 20.
- FIG. 11B is a locomotion locomotion of the object S to be inspected.
- FIG. 12 shows a case where the present invention is applied to the X-ray inspection apparatus 11 adopting the arrangement shown in FIG. 10A, and the turning circle of the nth turning motion of the X-ray camera 20 and the object S to be inspected.
- the locomotives of the turning motion and the moving motion of the X-ray camera 20 and the object S to be inspected when the turning end point in the above and the turning start point in the turning circle of the n + 1th turning motion are optimized are shown.
- FIG. 12 (a) shows the loci of the turning motion and the moving motion of the X-ray camera 20.
- FIG. 12B shows the locomotion locomotion and locomotion of the object S to be inspected.
- Table 4 shows the effect of shortening the travel time in this embodiment.
- the travel time can be shortened by 19% in the case shown in FIG. 11 and by 23% in the case shown in FIG. I understand.
- a holding unit (40) for holding the inspection target is provided.
- any one of the X-ray source (10), the X-ray camera (20), and the holding portion (40) swivels as a swivel portion (10, 20, 40) to change the shooting direction. It is an X-ray inspection apparatus (1, 11) which takes an X-ray image while changing and acquires and inspects a three-dimensional image of the inspection target (S).
- the turning portions (10, 20, 40) sequentially turn at a plurality of places, and also perform a moving motion for moving from the turning end point of one turning motion to the turning start point of the next turning motion.
- An X-ray inspection apparatus wherein the swivel portion does not have a stop section in which the swivel portion stops in the middle of the swivel motion and the locomotion motion.
- An X-ray source (10) that generates X-rays to irradiate the inspection target
- An X-ray camera (20) that captures an X-ray image of the X-ray emitted from the X-ray source to the inspection target, and an X-ray camera (20).
- a holding unit (40) for holding the inspection target is provided.
- any one of the X-ray source (10), the X-ray camera (20), and the holding portion (40) swivels as a swivel portion (10, 20, 40) to change the shooting direction. It is an X-ray inspection method using an X-ray inspection apparatus (1, 11) that takes an X-ray image while changing and acquires and inspects a three-dimensional image of the inspection target.
- the swivel portion is sequentially swiveled at a plurality of places, and a locomotion is performed to move from the swivel end point of one swivel motion to the swivel start point of the next swivel motion.
Landscapes
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Theoretical Computer Science (AREA)
- Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Pulmonology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
This X-ray inspection device acquires a three-dimensional image of and inspects an object under inspection and comprises an X-ray source for generating X-rays to be emitted onto the object under inspection, an X-ray camera for capturing X-ray images of the X-rays emitted from the X-ray source onto the object under inspection, and a holding part for holding the object under inspection. One from among the X-ray source, X-ray camera, and holding part turns as a turning part such that the X-ray images are captured while the capturing direction changes. The turning part sequentially turns in a plurality of locations and moves so as to shift from the turning end point of one turning motion to the turning start point of the next turning motion. There is no stopping period in which the turning part stops in the turning motion or shifting motion.
Description
本発明は、被検査物のX線画像を複数取得して3次元データを作成するX線検査装置に関する。
The present invention relates to an X-ray inspection apparatus that acquires a plurality of X-ray images of an object to be inspected and creates three-dimensional data.
従前より、基板表面等の被検査物のX線画像を複数の方向から撮影し、撮影された複数のX線画像から3次元データを作成し、検査箇所の内部構造の検査を行う技術がある。この例としては、トモシンセシスやCTなどの技術を挙げることができる。この技術においては、被検査物の検査箇所に対して、X線源からX線を照射し、透過したX線をX線カメラで撮影する。そして、X線源、被検査物、X線カメラの位置関係を相対的に変化させつつ複数枚のX線画像を撮影する。
Conventionally, there is a technique of taking X-ray images of an object to be inspected such as the surface of a substrate from a plurality of directions, creating three-dimensional data from the multiple X-ray images taken, and inspecting the internal structure of the inspection site. .. Examples of this include techniques such as tomosynthesis and CT. In this technique, the inspection site of the object to be inspected is irradiated with X-rays from an X-ray source, and the transmitted X-rays are photographed by an X-ray camera. Then, a plurality of X-ray images are taken while relatively changing the positional relationship between the X-ray source, the object to be inspected, and the X-ray camera.
その際、X線源、被検査物、X線カメラの少なくともいずれかを旋回運動させることにより互いの相対位置を変化させ、一回の旋回運動が終わり当該検査箇所の撮影が終わると、次の検査箇所を撮影するための撮影位置へ移動運動を行い、さらに旋回運動させる。よって、被検査物の検査時間を短縮するためには、上記した旋回運動と移動運動とを効率的に行う必要がある。
At that time, at least one of the X-ray source, the object to be inspected, and the X-ray camera is swiveled to change the relative positions of each other. A moving motion is performed to the imaging position for photographing the inspection point, and then a turning motion is performed. Therefore, in order to shorten the inspection time of the object to be inspected, it is necessary to efficiently perform the above-mentioned turning motion and moving motion.
この問題に対し、放射線透過画像を撮像するための撮像条件に基づいて、複数の放射線透過画像を撮像するために要する時間が短くなる撮像経路を、個々の処理の時間(例えば、放射線発生器が照射する放射線が安定するまでに要する時間、放射線発生器を移動するのに要する時間、基板保持部を基板回転軌道が張る平面上を平行移動するのに要する時間、検出器駆動部が検出器およびそれと連動して基板保持部を移動するのに要する時間等)の組み合わせ・最適化問題を解くことで求める技術が公知である(例えば、特許文献1を参照)。
To solve this problem, an imaging path in which the time required to capture a plurality of radiation transmitting images is shortened based on the imaging conditions for capturing a radiation transmitting image is set by an individual processing time (for example, a radiation generator). The time required for the radiation to be irradiated to stabilize, the time required to move the radiation generator, the time required to translate the substrate holding unit on the plane on which the substrate rotation trajectory is stretched, the detector drive unit is the detector and A technique for solving a combination / optimization problem of a combination / optimization problem (such as the time required to move the substrate holding portion in conjunction with it) is known (see, for example, Patent Document 1).
しかしながら、従来の技術においては、X線源、被検査物、X線カメラを移動させる際の移動方法や移動軌跡の最適化について充分に検討されていなかった。
However, in the conventional technology, the optimization of the movement method and the movement trajectory when moving the X-ray source, the object to be inspected, and the X-ray camera has not been sufficiently studied.
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、X線検査装置における被検査物の検査時間を短縮できる技術を提供することである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of shortening the inspection time of an inspected object in an X-ray inspection apparatus.
上記の課題を解決するための本発明は、検査対象に照射するX線を発生するX線源と、
前記X線源から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラと、
前記検査対象を保持する保持部と、を備え、
前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、旋回部として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置であって、
前記旋回部は、複数の場所において順次旋回運動するとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部が、前記旋回運動及び前記移動運動の途中で停止する停止区間が無いことを特徴とする、X線検査装置である。 The present invention for solving the above problems includes an X-ray source that generates X-rays to irradiate an inspection target, and an X-ray source.
An X-ray camera that captures an X-ray image of the X-rays emitted from the X-ray source to the inspection target, and an X-ray camera.
A holding unit for holding the inspection target is provided.
The X-ray source, the X-ray camera, and any of the holding portions rotate as a swivel portion to capture the X-ray image while changing the imaging direction, and the inspection target. An X-ray inspection device that acquires and inspects three-dimensional images.
The turning portion sequentially makes a turning motion at a plurality of places, and also performs a moving motion for moving from the turning end point of one turning motion to the turning start point of the next turning motion.
The X-ray inspection apparatus is characterized in that the turning portion does not have a stop section that stops in the middle of the turning motion and the moving motion.
前記X線源から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラと、
前記検査対象を保持する保持部と、を備え、
前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、旋回部として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置であって、
前記旋回部は、複数の場所において順次旋回運動するとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部が、前記旋回運動及び前記移動運動の途中で停止する停止区間が無いことを特徴とする、X線検査装置である。 The present invention for solving the above problems includes an X-ray source that generates X-rays to irradiate an inspection target, and an X-ray source.
An X-ray camera that captures an X-ray image of the X-rays emitted from the X-ray source to the inspection target, and an X-ray camera.
A holding unit for holding the inspection target is provided.
The X-ray source, the X-ray camera, and any of the holding portions rotate as a swivel portion to capture the X-ray image while changing the imaging direction, and the inspection target. An X-ray inspection device that acquires and inspects three-dimensional images.
The turning portion sequentially makes a turning motion at a plurality of places, and also performs a moving motion for moving from the turning end point of one turning motion to the turning start point of the next turning motion.
The X-ray inspection apparatus is characterized in that the turning portion does not have a stop section that stops in the middle of the turning motion and the moving motion.
すなわち、本発明におけるX線検査装置においては、X線源と、X線カメラと、保持部のうちのいずれかが、旋回部として旋回運動することで、撮影方向を変更しつつ検査箇所のX線画像を撮影して、該検査箇所の3次元画像を取得して検査する。そして、旋回部は、複数の検査箇所について3次元画像を取得するために、異なる場所において順次旋回運動を行う。
That is, in the X-ray inspection apparatus of the present invention, the X-ray source, the X-ray camera, and the holding portion rotate as a swivel portion to change the imaging direction and X at the inspection location. A line image is taken, and a three-dimensional image of the inspection location is acquired and inspected. Then, the swivel unit sequentially performs swivel motions at different places in order to acquire three-dimensional images of the plurality of inspection points.
また、旋回部は、各旋回運動中と、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行う。そして、旋回運動から移動運動に停止することなく移行する。
In addition, the turning unit performs a moving motion during each turning motion and for moving from the turning end point of one turning motion to the turning start point of the next turning motion. Then, it shifts from the turning motion to the moving motion without stopping.
ここで、従前の技術においては、旋回運動から移動運動または、移動運動から旋回運動に移行する際に、旋回部は一旦停止する必要があった。そして、旋回運動の途中に加速運動と減速運動をするための助走距離、制動距離が必要となっていた。これに対し本発明では、旋回部は、旋回運動と移動運動の間の停止のための加速運動や減速運動が不要である。その結果、X線画像の撮影のための旋回運動の前後において加速減速のための追加の旋回運動を行う必要がなくなる。従って、複数の旋回運動と移動運動の合計の運動時間を低減し、検査時間を短縮することが可能となる。
Here, in the conventional technology, it was necessary to temporarily stop the turning portion when shifting from the turning motion to the moving motion or from the moving motion to the turning motion. Then, the approaching distance and the braking distance for accelerating and decelerating in the middle of the turning motion are required. On the other hand, in the present invention, the swivel portion does not require an acceleration motion or a deceleration motion for stopping between the swivel motion and the locomotion motion. As a result, it is not necessary to perform an additional turning motion for acceleration / deceleration before and after the turning motion for taking an X-ray image. Therefore, it is possible to reduce the total exercise time of the plurality of turning motions and the moving motions and shorten the inspection time.
また、本発明においては、前記旋回部が、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点に移動する際に、該記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかは、前記一の旋回運動の旋回円と前記次の旋回運動の旋回円とを、前記旋回終了点と前記旋回開始点において滑らかに結ぶ軌道である特定移動軌道に沿って移動し、前記特定移動軌道は、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度が連続となる軌道としてもよい。
Further, in the present invention, when the turning portion moves from the turning end point of one turning motion to the turning start point of the next turning motion, the X-ray source and the X-ray are described. The camera and one of the holding portions are specified as a trajectory that smoothly connects the turning circle of the one turning motion and the turning circle of the next turning motion at the turning end point and the turning start point. The specific moving trajectory may be a trajectory in which the linear velocity of the turning portion is continuous at the turning end point and / or the turning start point.
また、本発明においては、前記特定移動軌道は、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度及び加速度が連続、または、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度、加速度及び躍度が連続となる軌道としてもよい。そして、この場合、前記旋回終了点および/または前記旋回開始点において前記旋回部の加速度が0であってもよい。
Further, in the present invention, in the specific moving trajectory, the linear velocity and acceleration of the turning portion are continuous at the turning end point and / or the turning start point, or at the turning end point and / or the turning start point. The trajectory may be such that the linear velocity, acceleration, and jerk of the turning portion are continuous. Then, in this case, the acceleration of the turning portion may be 0 at the turning end point and / or the turning start point.
すなわち、本発明の特定移動軌道においては、旋回終了点および/または旋回開始点において旋回部の線速度が連続となることが要求される。そして、線速度及び加速度が連続であることが望ましい。また、線速度、加速度及び躍度が連続であることが理想である。また、加速度が連続の場合には、加速度が0であることが理想である。
That is, in the specific moving trajectory of the present invention, the linear velocity of the turning portion is required to be continuous at the turning end point and / or the turning start point. And it is desirable that the linear velocity and acceleration are continuous. Ideally, the linear velocity, acceleration and jerk are continuous. Further, when the acceleration is continuous, it is ideal that the acceleration is 0.
これによれば、旋回運動から移動運動へ、または移動運動から旋回運動へ移行する際に旋回部に作用する加速や衝撃を緩和することができる。その結果、検査時間をより短縮することが可能となる。
According to this, it is possible to alleviate the acceleration and impact acting on the turning portion when shifting from the turning motion to the moving motion or from the moving motion to the turning motion. As a result, the inspection time can be further shortened.
また、本発明においては、前記特定移動軌道は、多項式によって定義されるようにしてもよい。これによれば、特定移動軌道を一般的な数学的解法により取得することが可能である。
Further, in the present invention, the specific moving orbit may be defined by a polynomial expression. According to this, it is possible to obtain a specific moving trajectory by a general mathematical solution method.
また、本発明においては、前記一の旋回運動の旋回円における旋回開始点および旋回終了点は、前の旋回運動及び前記次の旋回運動の旋回円の中心と前記一の旋回運動の旋回円の中心を結んだ直線と前記一の旋回運動の旋回円との2つ交点の、前記一の旋回運動の旋回円上における短い方の円弧の中点としてもよい。これによれば、容易な演算により、旋回運動の旋回円における旋回開始点及び旋回終了点を特定移動軌道が最短となるように選ぶことが可能となる。
Further, in the present invention, the turning start point and the turning end point in the turning circle of the one turning motion are the center of the turning circle of the previous turning motion and the next turning motion and the turning circle of the one turning motion. It may be the midpoint of the shorter arc on the turning circle of the one turning motion at the two intersections of the straight line connecting the centers and the turning circle of the one turning motion. According to this, it is possible to select the turning start point and the turning end point in the turning circle of the turning motion so that the specific moving trajectory is the shortest by a simple calculation.
すなわち、前記一の旋回運動の旋回円と前記次の旋回運動の旋回円とを、旋回終了点と旋回開始点において滑らかに結ぶ軌道は複数考えられるが、その軌道の長さが長い場合には、検査時間の短縮効果は限られたものとなる。それに対し、本発明においては、前記特定移動軌道は、前記一の旋回運動の旋回円と前記次の旋回運動の旋回円とを、前記旋回終了点と前記旋回開始点において滑らかに結ぶ軌道のうち最短の軌道とすることができるので、より確実に、検査時間を短縮することが可能である。
That is, there can be a plurality of orbits that smoothly connect the turning circle of the one turning motion and the turning circle of the next turning motion at the turning end point and the turning start point, but when the length of the trajectory is long, it is possible. , The effect of shortening the inspection time is limited. On the other hand, in the present invention, the specific moving trajectory is a trajectory that smoothly connects the turning circle of the one turning motion and the turning circle of the next turning motion at the turning end point and the turning start point. Since the orbit can be the shortest, the inspection time can be shortened more reliably.
そして、上記において、前記一の旋回運動の旋回円上における短い方の円弧が特定できない場合には、前記一の旋回運動の旋回終了点と、前記次の旋回運動の旋回開始点とは、各旋回運動の旋回円において所定の角度位置に配置されるようにしてもよい。これによれば、例えば、旋回円が横一列に並ぶ場合など、上記における短い方の円弧が特定できない場合でも、一の旋回運動の旋回終了点と、次の旋回運動の旋回開始点とを、任意の角度に設定することが可能であり、問題なく特定移動軌道を算出することができる。
Then, in the above, when the shorter arc on the turning circle of the one turning motion cannot be specified, the turning end point of the one turning motion and the turning start point of the next turning motion are each set. It may be arranged at a predetermined angle position in the turning circle of the turning motion. According to this, even when the shorter arc cannot be specified, for example, when the turning circles are lined up in a horizontal row, the turning end point of one turning motion and the turning start point of the next turning motion can be determined. It can be set to any angle, and a specific movement trajectory can be calculated without any problem.
また、本発明においては、前記一の旋回運動の旋回終了点と、前記次の旋回運動の旋回開始点とは、各旋回運動の旋回円において同一の角度位置に配置されるようにしてもよい。例えば、一の旋回運動の旋回終了点と、次の旋回運動の旋回開始点とを、場合によらず、各旋回運動の旋回円における0度位置、あるいは0度以外の任意の角度位置に決めてもよい。
Further, in the present invention, the turning end point of the one turning motion and the turning start point of the next turning motion may be arranged at the same angle position in the turning circle of each turning motion. .. For example, the turning end point of one turning motion and the turning start point of the next turning motion are determined to be 0 degree positions in the turning circle of each turning motion or arbitrary angle positions other than 0 degrees regardless of the case. You may.
また、本発明において、前記旋回部は、前記X線源と、前記X線カメラと、前記保持部のうちのいずれか2つであり、前記特定移動軌道は、前記X線源と、前記X線カメラと、前記保持部のうちのいずれか2つのうち、より大きな半径の旋回運動を行う方の、前記一の旋回運動の旋回円と前記次の旋回運動の旋回円とを、前記旋回終了点と前記旋回開始点において滑らかに結ぶ軌道であることとしてもよい。
Further, in the present invention, the swivel portion is any two of the X-ray source, the X-ray camera, and the holding portion, and the specific moving trajectory is the X-ray source and the X. The swivel circle of the one swivel motion and the swivel circle of the next swivel motion of the line camera and one of the two holding portions having a larger radius are completed. It may be a trajectory that smoothly connects the point and the turning start point.
ここで、旋回部を、X線源と、X線カメラと、保持部のうちのいずれか2つとした場合には、検査箇所の3次元画像を取得するために、旋回部の一方が描く旋回運動の旋回円と、他方が描く旋回運動の旋回円は異なる場合が多い。そして、本発明においては、旋回部である、X線源、X線カメラ、保持部のうちのいずれか2つのうち、より大きな半径の旋回運動を行う方について、特定移動軌道を、一の旋回運動の旋回円と次の旋回運動の旋回円とを、旋回終了点と旋回開始点において滑らかに結ぶ軌道と定めた。さらに、一の旋回運動の旋回円における旋回開始点および旋回終了点は、前の旋回運動及び次の旋回運動の旋回円の中心と一の旋回運動の旋回円の中心を結んだ直線と一の旋回運動の旋回円との2つ交点の、一の旋回運動の旋回円上における短い方の円弧の中点とした。発明者らの鋭意研究によれば、このようにすることで、複数の旋回運動と移動運動の合計時間を減らすことができることが分かった。よって、これによれば、検査時間をより確実に短縮することが可能となる。
Here, when the swivel portion is any two of the X-ray source, the X-ray camera, and the holding portion, the swivel portion is drawn by one of the swivel portions in order to acquire a three-dimensional image of the inspection portion. The swirling circle of motion and the swirling circle of the swivel motion drawn by the other are often different. Then, in the present invention, one of the swivel portions, the X-ray source, the X-ray camera, and the holding portion, which performs the swivel motion with a larger radius, makes one swivel of the specific moving trajectory. The turning circle of the motion and the turning circle of the next turning motion are defined as a trajectory that smoothly connects the turning end point and the turning start point. Further, the turning start point and turning end point in the turning circle of one turning motion are one with a straight line connecting the center of the turning circle of the previous turning motion and the next turning motion and the center of the turning circle of one turning motion. The midpoint of the shorter arc on the turning circle of one turning motion at the two intersections with the turning circle of the turning motion. Diligent research by the inventors has shown that this can reduce the total time of multiple turning and locomotions. Therefore, according to this, the inspection time can be shortened more reliably.
また、本発明においては、前記X線源と、前記X線カメラと、前記保持部のうちのいずれか2つのうち、より小さな半径の旋回運動を行う方は、前記X線源と、前記X線カメラと、前記保持部のうちのいずれか2つのうち、より大きな半径の旋回運動を行う方と同時に、次の旋回運動の旋回円における前記旋回開始点に到達するようにしてもよい。
Further, in the present invention, of the X-ray source, the X-ray camera, and the holding portion, the one that performs a turning motion with a smaller radius is the X-ray source and the X. The line camera and any two of the holding portions may be made to reach the turning start point in the turning circle of the next turning motion at the same time as the one performing the turning motion having a larger radius.
そうすれば、前記X線源と、前記X線カメラと、前記保持部のうちのいずれか2つのうち、より小さな半径の旋回運動を行う方を、前記X線源と、前記X線カメラと、前記保持部のうちのいずれか2つのうち、より大きな半径の旋回運動を行う方と同時に、次の旋回運動の旋回円における旋回開始点に到達させることができる。その結果、旋回部により早期に次の旋回運動を開始させることが可能である。
Then, of the X-ray source, the X-ray camera, and any two of the holding portions, the one that performs the turning motion with the smaller radius is the X-ray source and the X-ray camera. It is possible to reach the turning start point in the turning circle of the next turning motion at the same time as the one that performs the turning motion with a larger radius among any two of the holding portions. As a result, it is possible to start the next turning motion at an early stage by the turning portion.
また、本発明においては、前記特定移動軌道は、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかの線線速度、軸速度や加速度が所定の許容値(許容速度や許容加速度)を超えない範囲で決定されるようにしてもよい。これによれば、旋回部が特定移動軌道に沿って移動運動する際に、X線源、X線カメラ、保持部等の速度や加速度が過大になることを抑制でき、装置の故障を防止し、信頼性を向上させることが可能である。
Further, in the present invention, the specific moving orbit has a predetermined linear velocity, axial velocity, or acceleration of any one of the X-ray source, the X-ray camera, and the holding portion, which is the turning portion. It may be determined within a range that does not exceed the permissible value (permissible speed or permissible acceleration). According to this, it is possible to prevent the speed and acceleration of the X-ray source, the X-ray camera, the holding portion, etc. from becoming excessive when the swivel portion moves along a specific moving trajectory, and it is possible to prevent a failure of the device. , It is possible to improve the reliability.
また、本発明においては、前記特定移動軌道は、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかの移動範囲が、所定の移動許容範囲を超えないように決定されるようにしてもよい。あるいは、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかの移動範囲が、所定の許容移動範囲を超えないように、前記特定移動軌道における前記旋回部の移動時間が決定されるようにしてもよい。これによれば、旋回部が特定移動軌道に沿って移動運動する際に、X線源、X線カメラ、保持部等が、装置内の構造物に衝突したり、ソフトウェアで定めた制限範囲を超えることでエラーが発生する等の不都合を防止でき、信頼性を向上させることが可能である。
Further, in the present invention, in the specific moving trajectory, the moving range of any one of the X-ray source, the X-ray camera, and the holding portion, which is the turning portion, exceeds a predetermined movement allowable range. It may be decided not to. Alternatively, the swivel in the specific movement trajectory so that the movement range of any one of the swivel portion, the X-ray source, the X-ray camera, and the holding portion does not exceed a predetermined permissible movement range. The movement time of the unit may be determined. According to this, when the swivel part moves along a specific movement trajectory, the X-ray source, the X-ray camera, the holding part, etc. collide with the structure in the device, or the limit range set by the software is set. If it exceeds the limit, inconveniences such as an error can be prevented, and reliability can be improved.
また、本発明においては、前記旋回部は、前記X線源と前記X線カメラであり、前記保持部はX線検査装置内の所定位置に保持されていることとしてもよい。この場合には、検査対象を固定し、検査対象の上下においてX線カメラとX線源に旋回運動と移動運動を行わせることで検査を行うことができ、X線検査装置内における非検査物の移動機構、搬入機構等を単純化することが可能である。
Further, in the present invention, the swivel portion may be the X-ray source and the X-ray camera, and the holding portion may be held at a predetermined position in the X-ray inspection apparatus. In this case, the inspection can be performed by fixing the inspection target and causing the X-ray camera and the X-ray source to perform swivel movement and movement movement above and below the inspection target, and the non-inspection object in the X-ray inspection device. It is possible to simplify the moving mechanism, carrying-in mechanism, etc.
また、本発明は、検査対象に照射するX線を発生するX線源と、
前記X線源から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラと、
前記検査対象を保持する保持部と、を備え、
前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、旋回部として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置を用いたX線検査方法であって、
前記旋回部を、複数の場所において順次旋回運動させるとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動する際の移動運動を行い、
前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかを、前記旋回運動から前記移動運動中に停止させずに移行させることを特徴とする、X線検査方法であってもよい。 Further, the present invention includes an X-ray source that generates X-rays to irradiate an inspection target, and an X-ray source.
An X-ray camera that captures an X-ray image of the X-rays emitted from the X-ray source to the inspection target, and an X-ray camera.
A holding unit for holding the inspection target is provided.
The X-ray source, the X-ray camera, and any of the holding portions rotate as a swivel portion to capture the X-ray image while changing the imaging direction, and the inspection target. It is an X-ray inspection method using an X-ray inspection device that acquires and inspects a three-dimensional image.
The swivel portion is sequentially swiveled at a plurality of locations, and at the same time, a locomotion is performed when moving from the swivel end point of one swivel motion to the swivel start point of the next swivel motion.
X-rays characterized in that any one of the swivel portion, the X-ray source, the X-ray camera, and the holding portion is transferred from the swivel motion to the moving motion without stopping. It may be an inspection method.
前記X線源から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラと、
前記検査対象を保持する保持部と、を備え、
前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、旋回部として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置を用いたX線検査方法であって、
前記旋回部を、複数の場所において順次旋回運動させるとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動する際の移動運動を行い、
前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかを、前記旋回運動から前記移動運動中に停止させずに移行させることを特徴とする、X線検査方法であってもよい。 Further, the present invention includes an X-ray source that generates X-rays to irradiate an inspection target, and an X-ray source.
An X-ray camera that captures an X-ray image of the X-rays emitted from the X-ray source to the inspection target, and an X-ray camera.
A holding unit for holding the inspection target is provided.
The X-ray source, the X-ray camera, and any of the holding portions rotate as a swivel portion to capture the X-ray image while changing the imaging direction, and the inspection target. It is an X-ray inspection method using an X-ray inspection device that acquires and inspects a three-dimensional image.
The swivel portion is sequentially swiveled at a plurality of locations, and at the same time, a locomotion is performed when moving from the swivel end point of one swivel motion to the swivel start point of the next swivel motion.
X-rays characterized in that any one of the swivel portion, the X-ray source, the X-ray camera, and the holding portion is transferred from the swivel motion to the moving motion without stopping. It may be an inspection method.
また、その際には、前記旋回部が、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点に移動する際に、該記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかに、前記一の旋回運動の旋回円と前記次の旋回運動の旋回円とを、前記旋回終了点と前記旋回開始点において滑らかに結ぶ軌道である特定移動軌道に沿って移動させ、
前記特定移動軌道は、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度が連続となる軌道であるようにしてもよい。 Further, in that case, when the turning portion moves from the turning end point of one turning motion to the turning start point of the next turning motion, the X-ray source and the X-ray are described. A specific trajectory that smoothly connects the turning circle of the one turning motion and the turning circle of the next turning motion to the camera and one of the holding portions at the turning end point and the turning start point. Move along the moving trajectory,
The specific moving trajectory may be a trajectory in which the linear velocity of the turning portion is continuous at the turning end point and / or the turning start point.
前記特定移動軌道は、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度が連続となる軌道であるようにしてもよい。 Further, in that case, when the turning portion moves from the turning end point of one turning motion to the turning start point of the next turning motion, the X-ray source and the X-ray are described. A specific trajectory that smoothly connects the turning circle of the one turning motion and the turning circle of the next turning motion to the camera and one of the holding portions at the turning end point and the turning start point. Move along the moving trajectory,
The specific moving trajectory may be a trajectory in which the linear velocity of the turning portion is continuous at the turning end point and / or the turning start point.
また、その際、前記特定移動軌道は、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度及び加速度が連続、または、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度、加速度及び躍度が連続となる軌道としてもよい。また、前記旋回終了点および/または前記旋回開始点において前記加速度が連続である場合には、加速度が0となるようにしてもよい。
At that time, in the specific moving trajectory, the linear velocity and acceleration of the turning portion are continuous at the turning end point and / or the turning start point, or the turning at the turning end point and / or the turning start point. It may be an orbit in which the linear velocity, acceleration and jerk of the part are continuous. Further, when the acceleration is continuous at the turning end point and / or the turning start point, the acceleration may be set to 0.
また、その際、前記特定移動軌道は、多項式によって定義されるようにしてもよい。
At that time, the specific moving orbit may be defined by a polynomial expression.
また、その際、前記一の旋回運動の旋回円における旋回開始点および旋回終了点は、前の旋回運動及び前記次の旋回運動の旋回円の中心と前記一の旋回運動の旋回円の中心を結んだ直線と前記一の旋回運動の旋回円との2つ交点の、前記一の旋回運動の旋回円上における短い方の円弧の中点としてもよい。
At that time, the turning start point and the turning end point in the turning circle of the one turning motion are the center of the turning circle of the previous turning motion and the next turning motion and the center of the turning circle of the one turning motion. It may be the midpoint of the shorter arc on the turning circle of the one turning motion at the two intersections of the connected straight line and the turning circle of the one turning motion.
また、本発明は、コンピュータに、前記特定移動軌道を算出させるとともに、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかに、前記特定移動軌道に沿って沿って移動するための駆動信号を出力させる、プログラムであってもよい。
Further, in the present invention, the computer is made to calculate the specific moving trajectory, and any one of the X-ray source, the X-ray camera, and the holding portion, which is the turning portion, is set to the specific moving trajectory. It may be a program that outputs a drive signal for moving along the line.
以上のように本発明は、上記手段の少なくとも一部を含むX線検査装置として捉えることができる。また、本発明は、上記手段が行う処理の少なくとも一部を含むX線検査方法として捉えることもできる。また、これらの方法の各ステップをコンピュータに実行させるためのコンピュータプログラムや、当該プログラムを非一時的に記憶したコンピュータ読取可能な記憶媒体として捉えることもできる。上記構成および処理の各々は技術的な矛盾が生じない限り互いに組み合わせて本発明を構成することができる。
As described above, the present invention can be regarded as an X-ray inspection apparatus including at least a part of the above means. The present invention can also be regarded as an X-ray inspection method including at least a part of the processing performed by the above means. Further, it can be regarded as a computer program for causing a computer to execute each step of these methods, or as a computer-readable storage medium in which the program is stored non-temporarily. Each of the above configurations and processes can be combined with each other to construct the present invention as long as there is no technical contradiction.
本発明によれば、X線検査装置における非検査物の検査時間を短縮することが可能となる。
According to the present invention, it is possible to shorten the inspection time of a non-inspected object in an X-ray inspection apparatus.
〔適用例〕
以下に本発明の適用例の概要について一部の図面を用いて説明する。本発明は図1に示すようなX線検査装置1に適用される。X線検査装置1では、X線源10から被検査物SにX線を照射し、透過光によるX線画像をX線カメラ20によって撮影する。X線源10およびX線カメラ20はそれぞれ旋回円121,122上を旋回運動し、軌道上の複数の位置において被検査物SのX線画像の撮影を行う。その後、別の検査箇所を検査するために、X線源10、X線カメラ20はともに、次の旋回円まで移動運動を行い、さらに旋回円上を移動しつつX線画像の撮影を行う。 [Application example]
The outline of the application example of the present invention will be described below with reference to some drawings. The present invention is applied to theX-ray inspection apparatus 1 as shown in FIG. In the X-ray inspection apparatus 1, the X-ray source 10 irradiates the object S to be inspected with X-rays, and the X-ray camera 20 captures an X-ray image by the transmitted light. The X-ray source 10 and the X-ray camera 20 make swirling motions on the swirling circles 121 and 122, respectively, and take an X-ray image of the object S to be inspected at a plurality of positions on the orbit. After that, in order to inspect another inspection point, both the X-ray source 10 and the X-ray camera 20 perform a moving motion to the next turning circle, and further move on the turning circle to take an X-ray image.
以下に本発明の適用例の概要について一部の図面を用いて説明する。本発明は図1に示すようなX線検査装置1に適用される。X線検査装置1では、X線源10から被検査物SにX線を照射し、透過光によるX線画像をX線カメラ20によって撮影する。X線源10およびX線カメラ20はそれぞれ旋回円121,122上を旋回運動し、軌道上の複数の位置において被検査物SのX線画像の撮影を行う。その後、別の検査箇所を検査するために、X線源10、X線カメラ20はともに、次の旋回円まで移動運動を行い、さらに旋回円上を移動しつつX線画像の撮影を行う。 [Application example]
The outline of the application example of the present invention will be described below with reference to some drawings. The present invention is applied to the
ここで、X線源10、X線カメラ20が旋回運動から移動運動に移行する場合には、図2(a)に示すように、一旦停止する停止区間が設けられていた。これに伴い、旋回運動の前後において旋回円上の加速運動及び減速運動が追加されていた。本適用例では、図2(b)に示すように、X線源10、X線カメラ20が旋回運動から移動運動に移行する場合の停止区間を無くした。余分な停止状態や余分な旋回運動が省略され、X線源10、X線カメラ20がより迅速に旋回円から次の旋回円に移動することが可能となる。
Here, when the X-ray source 10 and the X-ray camera 20 shift from the turning motion to the moving motion, a stop section is provided to temporarily stop as shown in FIG. 2 (a). Along with this, acceleration motion and deceleration motion on the turning circle were added before and after the turning motion. In this application example, as shown in FIG. 2B, the stop section when the X-ray source 10 and the X-ray camera 20 shift from the turning motion to the moving motion is eliminated. The extra stop state and the extra turning motion are omitted, and the X-ray source 10 and the X-ray camera 20 can move from the turning circle to the next turning circle more quickly.
また、本適用例では、図3に示すように、旋回円から次の旋回円に移動する際の移動運動の軌道として、旋回円と次の旋回円とを、旋回終了点と旋回開始点において滑らかに結ぶ軌道を用いることとした。これにより、X線源10、X線カメラ20に過度な加速度や衝撃を与えることなく、より迅速に移動することが可能となる。なお、その際、図4に示すような方法で、旋回円における旋回終了点と次の旋回円における旋回開始点の距離を最短とし、その旋回終了点と旋回開始点を滑らかに結ぶことが可能である。
Further, in this application example, as shown in FIG. 3, the turning circle and the next turning circle are set at the turning end point and the turning start point as the trajectories of the moving motion when moving from the turning circle to the next turning circle. We decided to use a smooth orbit. As a result, the X-ray source 10 and the X-ray camera 20 can be moved more quickly without giving an excessive acceleration or impact. At that time, by the method shown in FIG. 4, the distance between the turning end point in the turning circle and the turning start point in the next turning circle is set to the shortest, and the turning end point and the turning start point can be smoothly connected. Is.
なお、本発明は、図1に示すように、被検査物Sを固定し、その上下においてX線源10とX線カメラ20を旋回運動させるX線検査装置1に適用可能であると同時に、図10に示すように、X線源10を固定し、X線カメラ20及び被検査物Sを旋回運動させるX線検査装置11に適用することも可能である。
As shown in FIG. 1, the present invention is applicable to the X-ray inspection device 1 in which the object S to be inspected is fixed and the X-ray source 10 and the X-ray camera 20 are swiveled above and below the object S to be inspected. As shown in FIG. 10, it is also possible to apply it to the X-ray inspection device 11 in which the X-ray source 10 is fixed and the X-ray camera 20 and the object S to be inspected rotate.
以下に各図面(上記の適用例で一旦説明した図も含む)を順次参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている具体的構成は、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
〔実施例1〕 Hereinafter, embodiments for carrying out the present invention will be described in detail exemplarily based on examples with reference to the respective drawings (including the drawings once described in the above application examples). However, the specific configurations described in this example are not intended to limit the scope of the present invention to those alone unless otherwise specified.
[Example 1]
〔実施例1〕 Hereinafter, embodiments for carrying out the present invention will be described in detail exemplarily based on examples with reference to the respective drawings (including the drawings once described in the above application examples). However, the specific configurations described in this example are not intended to limit the scope of the present invention to those alone unless otherwise specified.
[Example 1]
本発明の実施例1に係るX線検査装置は、例えば、プリント基板にはんだ付けされた電子部品のはんだ付け状態やボールグリッドアレイ(BGA)のバンプ等の良否判定をする装置である。より具体的には、X線源と被検査物とを相対的に移動させて複数回のX線撮影を行い、検査対象場所の内部の状態を取得し、適切な位置での断面画像を生成して、当該断面画像に基づいて良否を検査する。
The X-ray inspection apparatus according to the first embodiment of the present invention is, for example, an apparatus for determining the quality of soldered electronic components soldered to a printed circuit board, bumps of a ball grid array (BGA), and the like. More specifically, the X-ray source and the object to be inspected are relatively moved to perform X-ray photography multiple times, the internal state of the inspection target location is acquired, and a cross-sectional image at an appropriate position is generated. Then, the quality is inspected based on the cross-sectional image.
<装置構成>
図1には、本発明の実施例1に係るX線検査装置1における、X線源10、被検査物Sを保持する保持部40、X線カメラ20の配置図を示す。X線検査装置1においては、搬送ローラ(不図示)によって搬送され保持部40に保持される被検査物Sにおける各検査箇所について、複数の撮影位置においてX線画像を撮影して3次元データを取得する。具体的には、X線源10から被検査物SにX線を照射し、透過光によるX線画像をX線カメラ20によって撮影する。X線源10、X線カメラ20はともに、ステージ(不図示)によって移動可能である。X線源10およびX線カメラ20はこれらのステージによってそれぞれ旋回円121,122上を移動し、旋回円上の複数の位置において撮影が行われる。 <Device configuration>
FIG. 1 shows a layout diagram of anX-ray source 10, a holding unit 40 for holding an object S to be inspected, and an X-ray camera 20 in the X-ray inspection apparatus 1 according to the first embodiment of the present invention. In the X-ray inspection apparatus 1, X-ray images are taken at a plurality of imaging positions for each inspection location in the object S to be inspected, which is conveyed by a conveying roller (not shown) and held by the holding unit 40, and three-dimensional data is obtained. get. Specifically, the X-ray source 10 irradiates the object S to be inspected with X-rays, and the X-ray camera 20 captures an X-ray image of the transmitted light. Both the X-ray source 10 and the X-ray camera 20 can be moved by a stage (not shown). The X-ray source 10 and the X-ray camera 20 move on the swivel circles 121 and 122, respectively, by these stages, and imaging is performed at a plurality of positions on the swivel circles.
図1には、本発明の実施例1に係るX線検査装置1における、X線源10、被検査物Sを保持する保持部40、X線カメラ20の配置図を示す。X線検査装置1においては、搬送ローラ(不図示)によって搬送され保持部40に保持される被検査物Sにおける各検査箇所について、複数の撮影位置においてX線画像を撮影して3次元データを取得する。具体的には、X線源10から被検査物SにX線を照射し、透過光によるX線画像をX線カメラ20によって撮影する。X線源10、X線カメラ20はともに、ステージ(不図示)によって移動可能である。X線源10およびX線カメラ20はこれらのステージによってそれぞれ旋回円121,122上を移動し、旋回円上の複数の位置において撮影が行われる。 <Device configuration>
FIG. 1 shows a layout diagram of an
基板検査装置1における各部の制御は制御部100からの制御信号に基づいて行われる。X線検査装置1は、制御部100として、カメラ用XYステージ制御部101、カメラ制御部102、X線源用XYステージ制御部107を備える。加えて、高さ計測部103、検査対象位置制御部104、X線源制御部105、撮像高さ制御部106を備える。さらに、X線検査装置1は、演算部111、主記憶部112、補助記憶部113、入力部114、出力部115を備える。
The control of each part in the board inspection device 1 is performed based on the control signal from the control unit 100. The X-ray inspection device 1 includes a camera XY stage control unit 101, a camera control unit 102, and an X-ray source XY stage control unit 107 as control units 100. In addition, it includes a height measuring unit 103, an inspection target position control unit 104, an X-ray source control unit 105, and an imaging height control unit 106. Further, the X-ray inspection device 1 includes a calculation unit 111, a main storage unit 112, an auxiliary storage unit 113, an input unit 114, and an output unit 115.
カメラ用XYステージ制御部101は、カメラ用XYステージ(不図示)を駆動しX線カメラ20の水平方向の移動を行うための制御信号を送信する。カメラ制御部102は、X線カメラ20によるX線画像の撮影を行うための制御信号を送信する。高さ計測部103は、変位計30からの信号を受信して被検査物Sの被検箇所の高さを計測する。検査対象位置制御部104は、搬送ローラ及び被検査物Sの保持部40に制御信号を送信し被検査物Sの水平方向位置及び垂直方向位置を撮影に最適な位置に制御する。
The camera XY stage control unit 101 drives the camera XY stage (not shown) and transmits a control signal for moving the X-ray camera 20 in the horizontal direction. The camera control unit 102 transmits a control signal for taking an X-ray image by the X-ray camera 20. The height measuring unit 103 receives a signal from the displacement meter 30 and measures the height of the inspected portion of the inspected object S. The inspection target position control unit 104 transmits a control signal to the transport roller and the holding unit 40 of the inspected object S to control the horizontal position and the vertical position of the inspected object S to the optimum positions for photographing.
X線源制御部105は、X線源10によるX線の照射の開始、終了の他、X線強度を調整するための信号を送信する。撮像高さ制御部106は、X線源10及びX線カメラ20の高さ制御用の信号を送信する。X線源用XYステージ制御部107は、X線源用XYステージ(不図示)を駆動しX線源10の水平方向の移動を行うための信号を送信する。カメラ用XYステージ制御部101、カメラ制御部102、検査対象位置制御部104、X線源制御部105、撮像高さ制御部106、X線源用XYステージ制御部107から出力される信号は演算部111の演算結果及び、主記憶部112、補助記憶部113に記憶された情報に基づいて決定される。
The X-ray source control unit 105 transmits a signal for adjusting the X-ray intensity in addition to the start and end of X-ray irradiation by the X-ray source 10. The imaging height control unit 106 transmits signals for height control of the X-ray source 10 and the X-ray camera 20. The X-ray source XY stage control unit 107 drives the X-ray source XY stage (not shown) and transmits a signal for horizontally moving the X-ray source 10. The signals output from the camera XY stage control unit 101, camera control unit 102, inspection target position control unit 104, X-ray source control unit 105, imaging height control unit 106, and X-ray source XY stage control unit 107 are calculated. It is determined based on the calculation result of the unit 111 and the information stored in the main storage unit 112 and the auxiliary storage unit 113.
特に演算部111の撮像命令部111aは、カメラ制御部102を含む各部に対し、X線画像取得に必要な情報を送信する。また、軌跡算出部111bは、後述する手法により、X線源10及びX線カメラ20が沿うべき軌跡を算出する。また、ユーザとの間の設定情報、検査結果等の情報の授受は、入力部114及び出力部115を介して行われる。
In particular, the imaging command unit 111a of the calculation unit 111 transmits information necessary for acquiring an X-ray image to each unit including the camera control unit 102. Further, the locus calculation unit 111b calculates the locus that the X-ray source 10 and the X-ray camera 20 should follow by a method described later. Further, information such as setting information and inspection results is exchanged with the user via the input unit 114 and the output unit 115.
X線カメラ20は、X線源10から照射され、被検査物Sを透過したX線を検出する2次元X線検出器である。X線カメラ20としては、I.I.(Image Intensifier)管や、FPD(フラットパネルディテクタ)を用いることができる。ここでは1つのみのX線カメラ20が採用されているが、複数個のX線カメラを用いても構わない。
The X-ray camera 20 is a two-dimensional X-ray detector that detects X-rays emitted from the X-ray source 10 and transmitted through the object S to be inspected. As the X-ray camera 20, I. I. An (Image Intensifier) tube or an FPD (flat panel detector) can be used. Although only one X-ray camera 20 is adopted here, a plurality of X-ray cameras may be used.
変位計30は、被検査物Sまでの距離を、被検査物Sの複数の位置について計測する。したがって、変位計30によって被検査物Sの反りや傾きを計測することが可能である。被検査物Sの製造過程においては、反りや傾きが生じることがあり、その量は個体によって異なる。そこで、それぞれの被検査物Sの反りや傾きを計測して、保持部40の高さ位置を調整して適切なX線撮影が行えるようにする。
The displacement meter 30 measures the distance to the object S to be inspected at a plurality of positions of the object S to be inspected. Therefore, it is possible to measure the warp and inclination of the object S to be inspected by the displacement meter 30. In the manufacturing process of the object S to be inspected, warpage or inclination may occur, and the amount thereof varies depending on the individual. Therefore, the warp and inclination of each object S to be inspected are measured, and the height position of the holding portion 40 is adjusted so that appropriate X-ray imaging can be performed.
以上の構成により、X線検査装置1は、様々な方向から基板を撮像できるように、X線源10とX線カメラ20の位置を制御することができる。本実施例では、このように様々な方向からの撮像結果を基に、CT(Computed Tomography)と呼ばれる3次元データ生成手法を用いて、被検査物Sの被検箇所の3次元データを生成する。
With the above configuration, the X-ray inspection apparatus 1 can control the positions of the X-ray source 10 and the X-ray camera 20 so that the substrate can be imaged from various directions. In this embodiment, based on the imaging results from various directions in this way, three-dimensional data of the inspected portion of the inspected object S is generated by using a three-dimensional data generation method called CT (Computed Tomography). ..
なお、演算部111としては、CPU(中央演算処理装置)と呼ばれる一般的な汎用演算装置を用いることができる。主記憶部112としてはRAMなどのメモリを用いることができる。補助記憶部113は、ROMやHDDなどを用いることができる。入力部114は、キーボード、ボタン、スイッチ、マウスなど、ユーザが演算部111に対して指示を入力可能な任意の装置である。出力部115は、ディスプレイ、スピーカなど、映像や音声等によって演算部111からの出力をユーザに提示可能な任意の装置である。すなわち、一般的なコンピュータシステムを用いて、これらの機能部を実現することができる。補助記憶部113に格納されたプログラムを演算部111が読み込んで実行することにより、以下に示す、X線源10およびX線カメラ20の移動制御が行われる。
As the arithmetic unit 111, a general general-purpose arithmetic unit called a CPU (central processing unit) can be used. A memory such as a RAM can be used as the main storage unit 112. As the auxiliary storage unit 113, a ROM, an HDD, or the like can be used. The input unit 114 is an arbitrary device such as a keyboard, a button, a switch, and a mouse that allows a user to input an instruction to the calculation unit 111. The output unit 115 is an arbitrary device such as a display or a speaker that can present the output from the calculation unit 111 to the user by video, audio, or the like. That is, these functional parts can be realized by using a general computer system. When the arithmetic unit 111 reads and executes the program stored in the auxiliary storage unit 113, the movement control of the X-ray source 10 and the X-ray camera 20 as shown below is performed.
ここで、図1に示すように、X線源10およびX線カメラ20は、X線源用XYステージ制御部107及びカメラ用XYステージ制御部101からの制御信号に基づいて、夫々旋回円121,122上を移動し、軌道上の複数の位置においてX線画像の撮影が行われる。そして、被検査物S上の各検査箇所に対して旋回円121、122上を旋回運動することで、当該検査箇所の3次元画像の作成が可能となる。そして、被検査物Sの検査を行う場合には、検査箇所の位置が複数あるために、X線源10およびX線カメラ20は一回の360度に亘る旋回運動(以下、n回目の旋回運動ともいう)を行って当該検査箇所のX線画像を取得した後に、次の被検箇所を撮影可能な位置まで移動運動を行い、その位置から次の360度に亘る旋回運動(以下、n+1回目の旋回運動ともいう)を開始する。
Here, as shown in FIG. 1, the X-ray source 10 and the X-ray camera 20 are each swirling circle 121 based on the control signals from the XY stage control unit 107 for the X-ray source and the XY stage control unit 101 for the camera. , 122, and X-ray images are taken at a plurality of positions on the orbit. Then, by swirling on the swirling circles 121 and 122 with respect to each inspection point on the object S to be inspected, it is possible to create a three-dimensional image of the inspection point. When the object S to be inspected is inspected, the X-ray source 10 and the X-ray camera 20 make one turning motion over 360 degrees (hereinafter, the nth turning) because there are a plurality of positions of the inspection points. After performing an X-ray image of the inspection site by performing an exercise (also referred to as an exercise), a moving motion is performed to a position where the next test site can be photographed, and a turning motion (hereinafter, n + 1) over the next 360 degrees from that position is performed. (Also called the second turning motion) is started.
図2には、X線源10またはX線カメラ20が、n回目の旋回運動を行い、移動運動を行い、n+1回目の旋回運動を行う場合のX線源10またはX線カメラ20の軌跡を示す。その際、図2(a)に示すように、より詳細には、n回目の旋回運動を行う前に加速運動が行われ、n回目の旋回運動は等速で行われ、n回目の旋回運動(360度)が完了した後に、減速運動が行われ一旦停止する。そして、その後に、予め決められた軌跡に沿って移動運動が行われる。これは、X線源10またはX線カメラ20の旋回運動中は、高速で高画質なX線画像の撮影を行うため、高速で等速円運動を行う必要があるからである。
FIG. 2 shows the locus of the X-ray source 10 or the X-ray camera 20 when the X-ray source 10 or the X-ray camera 20 performs the nth turning motion, the moving motion, and the n + 1th turning motion. show. At that time, as shown in FIG. 2A, more specifically, the acceleration motion is performed before the nth turning motion, the nth turning motion is performed at a constant velocity, and the nth turning motion is performed. After (360 degrees) is completed, a deceleration motion is performed to temporarily stop. Then, after that, the locomotion is performed along a predetermined trajectory. This is because during the turning motion of the X-ray source 10 or the X-ray camera 20, a high-speed, high-quality X-ray image is taken, so that it is necessary to perform a constant-velocity circular motion at high speed.
そして、同様に、X線源10またはX線カメラ20が、移動運動が終了して停止後に、再度加速運動が行われ、X線源10またはX線カメラ20は旋回運動の開始点に到達する前に所定の速度まで加速され、その後n+1回目の旋回運動(360度)が開始される。換言すると、X線源10またはX線カメラ20は、X線画像の撮影のための旋回運動の前後に、停止区間において一旦停止していた。そして、その停止前後の加減速のための旋回運動を追加して行っている。このように、従来の制御においては、X線源10またはX線カメラ20の停止及び、停止前後の加減速のための旋回運動が必要である為に、検査時間が長くなってしまう不都合があった。
Similarly, after the X-ray source 10 or the X-ray camera 20 has finished moving and stopped, the acceleration motion is performed again, and the X-ray source 10 or the X-ray camera 20 reaches the start point of the turning motion. It is accelerated to a predetermined speed before, and then the n + 1th turning motion (360 degrees) is started. In other words, the X-ray source 10 or the X-ray camera 20 was temporarily stopped in the stop section before and after the turning motion for capturing the X-ray image. Then, a turning motion for acceleration / deceleration before and after the stop is added. As described above, in the conventional control, there is an inconvenience that the inspection time becomes long because the X-ray source 10 or the X-ray camera 20 needs to be stopped and a turning motion for acceleration / deceleration before and after the stop is required. rice field.
それに対し、本実施例においては、図2(b)に示すように、n回目の旋回運動からn+1回目の旋回運動への移動運動中において停止区間を無くし、X線画像の撮影のための旋回運動の他に、停止前後の加減速のための旋回運動を行わないこととした。
On the other hand, in this embodiment, as shown in FIG. 2B, the stop section is eliminated during the movement from the nth turning motion to the n + 1th turning motion, and the turning for taking an X-ray image is performed. In addition to the exercise, it was decided not to perform a turning exercise for acceleration / deceleration before and after the stop.
そして、本実施例では、移動運動の軌跡を、n回目の旋回運動の旋回円とn+1回目の旋回運動の旋回円とを、旋回終了点と旋回開始点において滑らかに繋ぐ軌跡のうち、最短の軌跡とすることにした。ここで、n回目の旋回運動の旋回円とn+1回目の旋回運動の旋回円を滑らかに繋ぐ軌跡とは、旋回終了点および/または旋回開始点においてX線源10またはX線カメラ20の線速度が連続となる軌跡であってもよい。または、旋回終了点および/または旋回開始点においてX線源10またはX線カメラ20の線速度及び加速度が連続となる軌跡であることが望ましい。または、旋回終了点および/または旋回開始点においてX線源10またはX線カメラ20の線速度、加速度及び躍度が連続であることが理想である。また、加速度が連続の場合には、加速度が0であることが理想である。
Then, in this embodiment, the shortest of the loci that smoothly connects the locomotion trajectory of the nth turning motion and the turning circle of the n + 1th turning motion at the turning end point and the turning start point. I decided to make it a trajectory. Here, the locus that smoothly connects the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion is the linear velocity of the X-ray source 10 or the X-ray camera 20 at the turning end point and / or the turning start point. May be a continuous locus. Alternatively, it is desirable that the locus is such that the linear velocity and acceleration of the X-ray source 10 or the X-ray camera 20 are continuous at the turning end point and / or the turning start point. Alternatively, it is ideal that the linear velocity, acceleration and jerk of the X-ray source 10 or the X-ray camera 20 are continuous at the turning end point and / or the turning start point. Further, when the acceleration is continuous, it is ideal that the acceleration is 0.
図3には、その場合の移動運動の軌跡の例を示す。図中の矢印と丸1~丸3の番号は、各々n回目の旋回運動、移動運動、n+1回目の旋回運動に相当する。図3(a)は、X線カメラ20の移動運動の軌跡の例を示す。図3(a)に示すように、X線カメラ20の移動運動の軌跡123aは、n回目の旋回運動の旋回円122aと、n+1回目の旋回運動の旋回円122bとを、両者の最上の点(以下、この点を0度位置または360度位置ともいう)において滑らかに繋ぐ曲線のうち最短の曲線となっている。
FIG. 3 shows an example of the locomotion trajectory in that case. The arrows and the numbers of circles 1 to 3 in the figure correspond to the nth turning motion, the moving motion, and the n + 1th turning motion, respectively. FIG. 3A shows an example of the locomotion trajectory of the X-ray camera 20. As shown in FIG. 3A, the locomotion locomotion 123a of the X-ray camera 20 has the swivel circle 122a of the nth swivel motion and the swivel circle 122b of the n + 1th swivel motion as the highest points of both. It is the shortest curve among the curves that smoothly connect at (hereinafter, this point is also referred to as a 0 degree position or a 360 degree position).
図3(b)には、同様に、X線源10の移動運動の軌跡の例を示す。図3(b)に示すように、X線源10の移動運動の軌跡123bは、n回目の旋回運動の旋回円121aと、n+1回目の旋回運動の旋回円121bとを、両者の最下の点(以下、この点を180度位置ともいう)において滑らかに繋ぐ曲線のうち最短の曲線となっている。ここで、図3(a)と図3(b)とで、移動運動の軌跡と各旋回運動の旋回円とが繋がる場所が180度異なっているのは、X線源10とX線カメラ20は、被検査物Sの検査箇所を挟んで点対称となる位置に配置される必要があり、X線カメラ20が0度位置または360度位置に配置された場合には、X線源10は180度位置に配置される必要があるからである。
FIG. 3B also shows an example of the locomotion trajectory of the X-ray source 10. As shown in FIG. 3B, the locomotion locomotion 123b of the X-ray source 10 has the swivel circle 121a of the nth swivel motion and the swivel circle 121b of the n + 1th swivel motion at the bottom of both. It is the shortest curve among the curves that smoothly connect at a point (hereinafter, this point is also referred to as a 180 degree position). Here, it is the X-ray source 10 and the X-ray camera 20 that the place where the locus of the moving motion and the turning circle of each turning motion are connected differs by 180 degrees between FIGS. 3 (a) and 3 (b). Is required to be arranged at a position symmetrical with respect to the inspection point of the object S to be inspected, and when the X-ray camera 20 is arranged at the 0 degree position or the 360 degree position, the X-ray source 10 is arranged. This is because it needs to be arranged at a 180 degree position.
なお、図3に示すような、n回目の旋回運動の旋回円と、n+1回目の旋回運動の旋回円とを、所定の点において滑らかに繋ぐ曲線は、公知の数学的な手法によって多項式として導出可能であるので、ここでは曲線の導出方法については特に説明しない。また、n回目の旋回運動の旋回円と、n+1回目の旋回運動の旋回円を所定の点において滑らかに繋ぐ曲線のうち、最短の曲線を導出する方法については、公知の方法で求まった多項式の曲線の各項の係数等の数学的パラメータを振り、繰り返し演算により長さが最短のものを選択しても良い。
A curve that smoothly connects the swirling circle of the nth swirling motion and the swirling circle of the n + 1th swirling motion at a predetermined point as shown in FIG. 3 is derived as a polynomial by a known mathematical method. Since it is possible, the method of deriving the curve will not be described in particular here. Further, regarding the method of deriving the shortest curve among the curves that smoothly connect the swirling circle of the nth swirling motion and the swirling circle of the n + 1th swirling motion at a predetermined point, a polynomial obtained by a known method is used. Mathematical parameters such as coefficients of each term of the curve may be assigned, and the one having the shortest length may be selected by iterative calculation.
なお、図3においては、X線カメラ20が図3(a)に示す軌跡123aに沿って移動運動した場合の移動時間と、X線源10が図3(b)に示す軌跡123bに沿って移動運動した場合の移動時間が一致するように、両者のうち移動時間が長い方の移動運動における速度を高めて両者が同時に移動完了するようにしても構わない。そうすることで、両者が同時に移動運動を完了し、次の旋回運動に移行することが可能となる。
In FIG. 3, the moving time when the X-ray camera 20 moves along the locomotion 123a shown in FIG. 3A and the X-ray source 10 along the locomotion 123b shown in FIG. 3B. In order to match the movement times in the case of the movement movement, the speed in the movement movement of the one having the longer movement time may be increased so that both movements are completed at the same time. By doing so, both can complete the locomotion at the same time and move to the next turning motion.
以上のように、本実施例においては、X線源10とX線カメラ20が、n回目の旋回運動から移動運動に移行し、移動運動からn+1回目の旋回運動に移行する際の停止区間を無くし、X線源10とX線カメラ20が停止しないこととした。これにより、X線画像の撮影のための旋回運動において、停止区間の前後に加減速のための旋回運動を付加する必要がなくなり、旋回運動の終了後、直ちに次の旋回運動への移動運動に移行することができ、移動運動の終了後、直ちに次の旋回運動に移行することができる。その結果、X線検査装置1における検査時間を短縮することが可能となる。
As described above, in the present embodiment, the stop section when the X-ray source 10 and the X-ray camera 20 shift from the nth turning motion to the moving motion and shift from the moving motion to the n + 1th turning motion is set. It was decided that the X-ray source 10 and the X-ray camera 20 would not stop. As a result, in the turning motion for taking an X-ray image, it is not necessary to add a turning motion for acceleration / deceleration before and after the stop section, and immediately after the end of the turning motion, the moving motion to the next turning motion is started. It is possible to make a transition, and immediately after the end of the locomotion, it is possible to shift to the next turning movement. As a result, the inspection time in the X-ray inspection apparatus 1 can be shortened.
また、本実施例においては、n回目の旋回運動からn+1回目の旋回運動に移行する際の移動運動の軌跡を、n回目の旋回運動の旋回円とn+1回目の旋回運動の旋回円とを、旋回終了点と旋回開始点(図3ではともに0度位置)において滑らかに結ぶ曲線のうち最短の曲線とした。これにより、X線源10とX線カメラ20を、旋回運動から移動運動に、または移動運動から旋回運動に、より円滑に(過度な加速度や衝撃がX線源10やX線カメラ20に作用することなく)移行することができ、旋回運動における速度が高い場合でも、より確実に、移動運動の途中で加減速運動を行うことが可能となる。また、X線源10とX線カメラ20を、旋回運動から移動運動に、または移動運動から旋回運動に、より迅速に移行することが可能となる。
Further, in the present embodiment, the locomotion locomotion at the time of transition from the nth turning motion to the n + 1th turning motion is defined as the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion. The shortest curve among the curves smoothly connected at the turning end point and the turning start point (both at the 0 degree position in FIG. 3) was used. As a result, the X-ray source 10 and the X-ray camera 20 are moved more smoothly from the turning motion to the moving motion or from the moving motion to the turning motion (excessive acceleration or impact acts on the X-ray source 10 or the X-ray camera 20). It is possible to make a transition (without doing so), and even when the speed in the turning motion is high, it is possible to more reliably perform the acceleration / deceleration motion in the middle of the moving motion. Further, the X-ray source 10 and the X-ray camera 20 can be moved more quickly from the turning motion to the moving motion or from the moving motion to the turning motion.
表1には、X線検査装置におけるn回目の旋回運動と、移動運動と、n+1回目の旋回運動に要する時間を、本発明を適用しない場合と、本発明を適用した場合で比較した結果を示す。
Table 1 shows the results of comparing the time required for the nth turning motion, the moving motion, and the n + 1th turning motion in the X-ray inspection apparatus between the case where the present invention is not applied and the case where the present invention is applied. show.
本発明をX線検査装置に適用することで、経過時間が13%程度改善されていることが分かる。ここで、図3におけるX線カメラ20の移動運動の軌跡123a及びX線源10の移動運動の軌跡123bは、本実施例において特定移動軌道に相当する。この点は以下の変形例、実施例についても同じである。また、本実施例においては、X線カメラ20の移動運動の軌跡123a及びX線源10の移動運動の軌跡123bは、旋回円どうしを滑らかに結ぶ曲線のうち最短の曲線としたが、必ずしも最短である必要はなく、旋回円どうしを滑らかに結ぶ曲線のうち充分に検査時間を短縮できる長さのものであれば良い。
It can be seen that the elapsed time is improved by about 13% by applying the present invention to the X-ray inspection apparatus. Here, the
<変形例>
次に、本実施例における変形例について示す。この変形例においては、n回目の旋回運動における旋回終了点とn+1回目の旋回運動における旋回開始点とを最適化する例について説明する。この例では、n回目の旋回運動における旋回終了点とn+1回目の旋回運動における旋回開始点とを、0度位置や180度位置に固定するのではなく、n回目の旋回運動からn+1回目の旋回運動に移行する際の移動運動の軌跡がより短くなるように定める。 <Modification example>
Next, a modified example in this embodiment will be described. In this modification, an example of optimizing the turning end point in the nth turning motion and the turning start point in the n + 1th turning motion will be described. In this example, the turning end point in the nth turning motion and the turning start point in the n + 1th turning motion are not fixed at the 0 degree position or the 180 degree position, but the n + 1th turning from the nth turning motion. The locomotion trajectory when transitioning to exercise is defined to be shorter.
次に、本実施例における変形例について示す。この変形例においては、n回目の旋回運動における旋回終了点とn+1回目の旋回運動における旋回開始点とを最適化する例について説明する。この例では、n回目の旋回運動における旋回終了点とn+1回目の旋回運動における旋回開始点とを、0度位置や180度位置に固定するのではなく、n回目の旋回運動からn+1回目の旋回運動に移行する際の移動運動の軌跡がより短くなるように定める。 <Modification example>
Next, a modified example in this embodiment will be described. In this modification, an example of optimizing the turning end point in the nth turning motion and the turning start point in the n + 1th turning motion will be described. In this example, the turning end point in the nth turning motion and the turning start point in the n + 1th turning motion are not fixed at the 0 degree position or the 180 degree position, but the n + 1th turning from the nth turning motion. The locomotion trajectory when transitioning to exercise is defined to be shorter.
図4に示すように、本変形例では、例えば、n回目の旋回運動の旋回円122nの旋回終了点を算出する際には、旋回円122nにおいて、一つ前のn-1回目の旋回運動の旋回円122n-1と旋回円122nの中心を結んだ直線と旋回円122nとの交点を求める。また、旋回円122nと一つ後の旋回円122n+1の中心を結んだ直線と旋回円122nとの交点を求める。そして、それらの2つの交点で挟まれる円弧のうちの短い方の円弧の中央の点Pnを、n回目の旋回運動の旋回円122nの旋回終了点とする。
As shown in FIG. 4, in this modification, for example, when calculating the turning end point of the turning circle 122n of the nth turning motion, the previous n-1th turning motion in the turning circle 122n. The intersection of the straight line connecting the centers of the turning circle 122n-1 and the turning circle 122n and the turning circle 122n is obtained. Further, the intersection of the straight line connecting the center of the swirling circle 122n and the center of the swirling circle 122n + 1 after it and the swirling circle 122n is obtained. Then, the central point Pn of the shorter arc of the arcs sandwiched between the two intersections is set as the turning end point of the turning circle 122n of the nth turning motion.
また、n+1回目の旋回運動の旋回円122n+1の旋回開始点を算出する際には、旋回円122n+1において、一つ前のn回目の旋回運動の旋回円122nと旋回円122n+1の中心を結んだ直線と旋回円122n+1との交点を求める。また、旋回円122n+1と一つ後の旋回円122n+2の中心を結んだ直線と旋回円122n+1との交点を求める。そして、それらの2つの交点で挟まれる円弧のうち短い方の円弧の中央の点Pn+1を、n+1回目の旋回運動の旋回円122n+1の旋回開始点とする。そして、PnとPn+1とを滑らかに結ぶ曲線123nで結ぶ。これによれば、n回目の旋回運動の旋回円と、n+1回目の旋回運動の旋回円とを、より短い曲線で滑らかに結ぶことが可能となる。
Further, when calculating the turning start point of the turning circle 122n + 1 of the n + 1th turning motion, the straight line connecting the turning circle 122n of the previous nth turning motion and the center of the turning circle 122n + 1 in the turning circle 122n + 1. Find the intersection of and the turning circle 122n + 1. Further, the intersection of the straight line connecting the center of the swirling circle 122n + 1 and the center of the swirling circle 122n + 2 one after it and the swirling circle 122n + 1 is obtained. Then, the central point Pn + 1 of the shorter arc among the arcs sandwiched between the two intersections is set as the turning start point of the turning circle 122n + 1 of the n + 1th turning motion. Then, Pn and Pn + 1 are smoothly connected by a curve 123n. According to this, it is possible to smoothly connect the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion with a shorter curve.
図5には、この手法に沿って決定した移動運動の軌跡の例を示す。図5(b)に示すのは、X線源10のn回目の旋回運動の旋回円121aとn+1回目の旋回運動の旋回円121bとの間の移動運動の軌跡123bである。図5(a)に示すのは、X線カメラ20のn回目の旋回運動の旋回円122aとn+1回目の旋回運動の旋回円122bとの間の移動運動の軌跡123aである。
FIG. 5 shows an example of the locomotion trajectory determined according to this method. FIG. 5B shows the locomotion locomotion 123b between the swirling circle 121a of the nth swivel motion of the X-ray source 10 and the swirling circle 121b of the n + 1th swirling motion. FIG. 5A shows the locomotion locomotion 123a between the swivel circle 122a of the nth swivel motion of the X-ray camera 20 and the swivel circle 122b of the n + 1th swivel motion.
図5では、図5(b)に示す軌跡123bが最短となるように、旋回円121aにおける旋回終了点と、旋回円121bにおける旋回開始点とを図4に示す手法で決定し、さらに、その旋回終了点と旋回開始点において旋回円121aと旋回円121bとを滑らかに結ぶ曲線のうち最短の曲線を求めている。そして、図5(a)においては、X線カメラ20のn回目の旋回運動の旋回円122aとn+1回目の旋回運動の旋回円122bとを、旋回終了点と旋回開始点において滑らかに結ぶ曲線のうち最短の曲線として軌跡123aを求めている。図5(a)における旋回終了点と旋回開始点は、各々図5(b)における旋回終了点と旋回開始点と180度位相の異なる点として求まる点である。
In FIG. 5, the turning end point in the turning circle 121a and the turning start point in the turning circle 121b are determined by the method shown in FIG. 4 so that the locus 123b shown in FIG. 5B is the shortest. The shortest curve among the curves that smoothly connect the turning circle 121a and the turning circle 121b at the turning end point and the turning start point is obtained. Then, in FIG. 5A, the curve that smoothly connects the turning circle 122a of the nth turning motion of the X-ray camera 20 and the turning circle 122b of the n + 1th turning motion at the turning end point and the turning start point. The locus 123a is obtained as the shortest curve. The turning end point and turning start point in FIG. 5A are points obtained as points having 180-degree phases different from the turning end point and turning start point in FIG. 5B, respectively.
表2には、X線検査装置におけるn回目の旋回運動と、移動運動と、n+1回目の旋回運動に要する時間を、変形例に係る本発明を適用しない場合と、本発明を適用した場合で比較した結果を示す。
Table 2 shows the time required for the nth turning motion, the moving motion, and the n + 1th turning motion in the X-ray inspection apparatus when the present invention according to the modified example is not applied and when the present invention is applied. The result of comparison is shown.
本発明をX線検査装置に適用することで、経過時間が16%程度改善されていることが分かる。なお、例えば旋回円が横一列に並ぶような場合のように、図4に示す手法によって、2つの交点で挟まれる円弧のうちの短い方の円弧が特定できない場合がある。本実施例においては、このような場合には、旋回運動における旋回終了点と旋回開始点とを、所定の角度位置に設定するようにしてもよい。この場合、0度位置や180度位置に固定してもよいし、旋回円毎に変えるようにしてもよい。こうすれば、旋回運動における旋回終了点と旋回開始点が算出できないという事態を回避することができる。
It can be seen that the elapsed time is improved by about 16% by applying the present invention to the X-ray inspection apparatus. It should be noted that, for example, when the swirling circles are lined up in a horizontal row, the shorter arc of the arcs sandwiched between the two intersections may not be specified by the method shown in FIG. In this embodiment, in such a case, the turning end point and the turning start point in the turning motion may be set at predetermined angular positions. In this case, it may be fixed at the 0 degree position or the 180 degree position, or may be changed for each turning circle. In this way, it is possible to avoid a situation in which the turning end point and the turning start point in the turning motion cannot be calculated.
次に、図6には、n回目の旋回運動の旋回円とn+1回目の旋回運動の旋回円の距離が比較的長い場合(例えば、旋回円の中心同士の距離が旋回円の直径の3倍以上)の移動運動の軌跡の例123a、123bを示す。図6(a)では、X線カメラ20のn回目の旋回運動の旋回円122aにおける旋回終了点とn+1回目の旋回運動の旋回円122bにおける旋回開始点を0度位置に固定し、n回目の旋回運動の旋回円122aとn+1回目の旋回運動の旋回円122bとを、0度位置において滑らかに結ぶ曲線のうち最短の曲線を軌跡123aとして求めている。
Next, in FIG. 6, when the distance between the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion is relatively long (for example, the distance between the centers of the turning circles is three times the diameter of the turning circles). Examples 123a and 123b of the locomotion trajectory of the above) are shown. In FIG. 6A, the turning end point in the turning circle 122a of the nth turning motion of the X-ray camera 20 and the turning start point in the turning circle 122b of the n + 1th turning motion are fixed at the 0 degree position, and the nth turning motion is performed. The shortest curve among the curves smoothly connecting the turning circle 122a of the turning motion and the turning circle 122b of the n + 1th turning motion at the 0 degree position is obtained as the locus 123a.
また、図6(b)では、X線源10のn回目の旋回運動の旋回円121aにおける旋回終了点とn+1回目の旋回運動の旋回円121bにおける旋回開始点を180度位置に固定し、n回目の旋回運動の旋回円121aとn+1回目の旋回運動の旋回円121bとを、180度位置において滑らかに結ぶ曲線のうち最短の曲線を軌跡123bとして求めている。
Further, in FIG. 6B, the turning end point in the turning circle 121a of the nth turning motion of the X-ray source 10 and the turning start point in the turning circle 121b of the n + 1th turning motion are fixed at 180 degree positions, and n The shortest curve among the curves smoothly connecting the turning circle 121a of the first turning motion and the turning circle 121b of the n + 1th turning motion at the 180-degree position is obtained as the locus 123b.
また、図7には、一回目の旋回運動の旋回円と二回目の旋回運動の旋回円の距離が比較的長い場合(例えば、旋回円の中心同士の距離が旋回円の直径の3倍以上)の移動運動の軌跡の例123a、123bを示す。図7(b)には、X線源10のn回目の旋回運動の旋回円121aにおける旋回終了点とn+1回目の旋回運動の旋回円121bにおける旋回開始点を図4の手法によって最適化し、さらに、n回目の旋回運動の旋回円121aとn+1回目の旋回運動の旋回円121bとを、最適化された旋回終了点と旋回開始点において滑らかに結ぶ曲線のうち最短の曲線を軌跡123bとして求めている。
Further, in FIG. 7, when the distance between the turning circle of the first turning motion and the turning circle of the second turning motion is relatively long (for example, the distance between the centers of the turning circles is three times or more the diameter of the turning circles). ), Examples 123a and 123b of the locomotion locomotion are shown. In FIG. 7B, the turning end point in the turning circle 121a of the nth turning motion of the X-ray source 10 and the turning start point in the turning circle 121b of the n + 1th turning motion are optimized by the method of FIG. , The shortest curve among the curves smoothly connecting the turning circle 121a of the nth turning motion and the turning circle 121b of the n + 1th turning motion at the optimized turning end point and the turning start point is obtained as the locus 123b. There is.
図7(a)には、X線カメラ20のn回目の旋回運動の旋回円122aにおける旋回終了点とn+1回目の旋回運動の旋回円122bにおける旋回開始点を、図7(b)における旋回終了点と旋回開始点に対して180度移動を変化させた位置として決定している。そして、n回目の旋回運動の旋回円122aとn+1回目の旋回運動の旋回円122bとを、決定された旋回終了点と旋回開始点おいて滑らかに結ぶ曲線のうち最短の曲線を軌跡123aとして求めている。表3に、図7に示した場合における検査時間の短縮効果について示す。
7 (a) shows the turning end point in the turning circle 122a of the nth turning motion of the X-ray camera 20 and the turning start point in the turning circle 122b of the n + 1th turning motion, and FIG. 7 (b) shows the turning end point in FIG. 7 (b). It is determined as a position where the movement is changed by 180 degrees with respect to the point and the turning start point. Then, the shortest curve among the curves smoothly connecting the turning circle 122a of the nth turning motion and the turning circle 122b of the n + 1th turning motion at the determined turning end point and the turning start point is obtained as the locus 123a. ing. Table 3 shows the effect of shortening the inspection time in the case shown in FIG.
表3に示すように、X線カメラ20のn回目の旋回運動の旋回円122aにおける旋回終了点とn+1回目の旋回運動の旋回円122bにおける旋回開始点を0度位置に固定し、X線源10のn回目の旋回運動の旋回円121aにおける旋回終了点とn+1回目の旋回運動の旋回円121bにおける旋回開始点を180度位置に固定した場合には、12%程度の改善効果が見られた。
As shown in Table 3, the turning end point in the turning circle 122a of the nth turning motion of the X-ray camera 20 and the turning start point in the turning circle 122b of the n + 1th turning motion are fixed at the 0 degree position, and the X-ray source is used. When the turning end point in the turning circle 121a of the 10th nth turning motion and the turning start point in the turning circle 121b of the n + 1th turning motion were fixed at the 180-degree position, an improvement effect of about 12% was observed. ..
また、X線カメラ20及びX線源10のn回目の旋回運動の旋回円122a、121aにおける旋回終了点とn+1回目の旋回運動の旋回円121a、121bにおける旋回開始点を最適化した場合には、18%程度の改善効果が見られた。
Further, when the turning end point in the turning circles 122a and 121a of the nth turning motion of the X-ray camera 20 and the X-ray source 10 and the turning start point in the turning circles 121a and 121b of the n + 1th turning motion are optimized. , An improvement effect of about 18% was observed.
次に、図8にはn回目の旋回運動の旋回円とn+1回目の旋回運動の旋回円の距離が比較的長い場合の移動運動の軌跡の例であって、X線カメラ20及びX線源10のn回目の旋回運動の旋回円における旋回終了点とn+1回目の旋回運動の旋回円における旋回開始点を最適化した場合について示す。
Next, FIG. 8 shows an example of the locomotion trajectory when the distance between the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion is relatively long, and is an example of the locomotion trajectory of the X-ray camera 20 and the X-ray source. The case where the turning end point in the turning circle of the nth turning motion and the turning start point in the turning circle of the n + 1th turning motion is optimized is shown.
図8(a)には、X線源10のn回目の旋回運動の旋回円における旋回終了点とn+1回目の旋回運動の旋回円における旋回開始点を図4の手法で最適化し、X線カメラ20のn回目の旋回運動の旋回円における旋回終了点とn+1回目の旋回運動の旋回円における旋回開始点はX線源10の旋回終了点と旋回開始点に対し、各々180度位相を変化させた場合についての移動運動の軌跡123a、123bを示す。この場合、X線カメラ20がn+1回目の旋回運動の旋回円122bにおける旋回開始点に到達するのと同時に、X線源10がn+1回目の旋回運動の旋回円121bにおける旋回開始点に到達するように、X線源10の移動運動時の速度が調整される。
In FIG. 8A, the turning end point in the turning circle of the nth turning motion of the X-ray source 10 and the turning start point in the turning circle of the n + 1th turning motion are optimized by the method of FIG. The turning end point in the turning circle of the 20th nth turning motion and the turning start point in the turning circle of the n + 1th turning motion change their phases by 180 degrees with respect to the turning end point and the turning start point of the X-ray source 10. The loci of the moving motion 123a and 123b in the case of the above are shown. In this case, the X-ray camera 20 reaches the turning start point in the turning circle 122b of the n + 1th turning motion, and at the same time, the X-ray source 10 reaches the turning start point in the turning circle 121b of the n + 1th turning motion. In addition, the speed of the X-ray source 10 during the locomotion is adjusted.
図8(b)には、X線カメラ20のn回目の旋回運動の旋回円122aにおける旋回終了点とn+1回目の旋回運動の旋回円122bにおける旋回開始点を図4の手法で最適化し、X線源10のn回目の旋回運動の旋回円121aにおける旋回終了点とn+1回目の旋回運動の旋回円121bにおける旋回開始点はX線カメラ20の旋回終了点と旋回開始点に対し、各々180度位相を変化させた場合について示す。図8を見て分かるように、この場合の移動時間は、図8(a)の場合には1.674s、図9(b)の場合には、1.552sであった。
In FIG. 8B, the turning end point in the turning circle 122a of the nth turning motion of the X-ray camera 20 and the turning start point in the turning circle 122b of the n + 1th turning motion are optimized by the method of FIG. The turning end point in the turning circle 121a of the nth turning motion of the source 10 and the turning start point in the turning circle 121b of the n + 1th turning motion are 180 degrees with respect to the turning end point and the turning start point of the X-ray camera 20, respectively. The case where the phase is changed is shown. As can be seen from FIG. 8, the travel time in this case was 1.674 s in the case of FIG. 8 (a) and 1.552 s in the case of FIG. 9 (b).
このように、発明者らの鋭意研究によれば、n回目の旋回運動の旋回円とn+1回目の旋回運動の旋回円の距離が比較的長い場合(例えば、旋回円の中心同士の距離が旋回円の直径の3倍以上)の移動運動の軌跡の例であって、X線カメラ20及びX線源10のn回目の旋回運動における旋回終了点とn+1回目の旋回運動における旋回開始点を最適化した場合には、X線カメラ20とX線源10のうち、旋回半径が大きい方に対して、n回目の旋回運動における旋回終了点とn+1回目の旋回運動における旋回開始点を最適化した方が、移動運動における時間短縮効果が大きいことが分かってきた。
Thus, according to the diligent research of the inventors, when the distance between the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion is relatively long (for example, the distance between the centers of the turning circles is swirling). This is an example of the locomotion trajectory of (more than 3 times the diameter of the circle), and the turning end point in the nth turning motion of the X-ray camera 20 and the X-ray source 10 and the turning start point in the n + 1th turning motion are optimal. In this case, the turning end point in the nth turning motion and the turning start point in the n + 1th turning motion are optimized for the X-ray camera 20 and the X-ray source 10 having a larger turning radius. It has been found that the effect of shortening the time in locomotion is greater.
よって、n回目の旋回運動の旋回円とn+1回目の旋回運動の旋回円の距離が比較的長い場合には、X線カメラ20とX線源10のうち、旋回半径が大きい方に対して、n回目の旋回運動における旋回終了点とn+1回目の旋回運動における旋回開始点を最適化するとよい。
Therefore, when the distance between the turning circle of the nth turning motion and the turning circle of the n + 1th turning motion is relatively long, the X-ray camera 20 and the X-ray source 10 have a larger turning radius. It is advisable to optimize the turning end point in the nth turning motion and the turning start point in the n + 1th turning motion.
次に、本実施例における演算部111及び制御部100による制御のフローについて説明する。図9には、本実施例におけるX線源10及びX線カメラ20の移動制御ルーチンのフローチャートを示す。本ルーチンは、主記憶部112に記憶されたプログラムであり、演算部111及び制御部100により実行される。
Next, the flow of control by the calculation unit 111 and the control unit 100 in this embodiment will be described. FIG. 9 shows a flowchart of the movement control routine of the X-ray source 10 and the X-ray camera 20 in this embodiment. This routine is a program stored in the main storage unit 112, and is executed by the calculation unit 111 and the control unit 100.
本ルーチンが実行されると、先ずステップS01において、X線源10が描く旋回円とX線カメラ20が描く旋回円のうち、半径の大きい方の旋回円について、旋回終了点と旋回開始点を最適化する。より詳細には、図4に示した演算方法によって両者の距離がより短くなる旋回終了点と旋回開始点が算出される。ここでは、X線カメラ20が描く旋回円の方が、X線源10が描く旋回円より大きいことを前提として説明を続ける。ステップS01の処理が終了するとステップS02に進む。
When this routine is executed, first, in step S01, the turning end point and the turning start point are set for the turning circle having the larger radius among the turning circle drawn by the X-ray source 10 and the turning circle drawn by the X-ray camera 20. Optimize. More specifically, the turning end point and the turning start point where the distance between the two becomes shorter are calculated by the calculation method shown in FIG. Here, the description will be continued on the assumption that the swirling circle drawn by the X-ray camera 20 is larger than the swirling circle drawn by the X-ray source 10. When the process of step S01 is completed, the process proceeds to step S02.
ステップS02においては、上記の2つの旋回円をステップS01において算出された旋回終了点と旋回開始点とにおいて滑らかに結ぶ軌跡を算出する。これは多項式を算出する数学的に公知の手法で実行されるので、ここでは詳細な説明は省略する。ステップS02の処理が終了するとステップS03に進む。
In step S02, a locus that smoothly connects the above two turning circles at the turning end point and the turning start point calculated in step S01 is calculated. Since this is performed by a mathematically known method for calculating a polynomial expression, detailed description thereof will be omitted here. When the process of step S02 is completed, the process proceeds to step S03.
ステップS03においては、ステップS02で算出された移動運動の軌跡と、X線カメラ20の移動速度から、移動時間を算出する。ステップS03の処理が終了するとステップS04に進む。ステップS04においては、ステップS03において算出された移動時間で移動した場合に、X線カメラ20の線速度及び軸速度のいずれかが許容速度を超えるか否かと、X線カメラ20に作用する加速度が許容加速度を超えるか否かと、X線カメラ20の旋回運動と移動運動における運動範囲が許容移動範囲を超えるか否かが判定される。
In step S03, the movement time is calculated from the locomotion trajectory calculated in step S02 and the movement speed of the X-ray camera 20. When the process of step S03 is completed, the process proceeds to step S04. In step S04, whether or not either the linear speed or the axial speed of the X-ray camera 20 exceeds the permissible speed and the acceleration acting on the X-ray camera 20 when moving within the movement time calculated in step S03. It is determined whether or not the permissible acceleration is exceeded and whether or not the motion range in the turning motion and the moving motion of the X-ray camera 20 exceeds the permissible movement range.
ここで、X線カメラ20の線速度及び軸速度のいずれかが許容速度を超えるか、X線カメラ20に作用する加速度が許容加速度を超えるか、または、X線カメラ20の運動範囲が許容移動範囲を超えると判定された場合には、モータやボールねじの許容回転数を超えるか、X線カメラ20が加速度に耐えられず劣化するか、X線カメラ20がX線検査装置1内の部材に衝突する虞があると判断されるので、X線カメラ20に作用する加速度が低くなり、または、X線カメラ20の運動範囲が狭くなるように曲線の数学パラメータを変更の後、再度ステップS02の処理に戻る。そして、ステップS02~ステップS05のルーチンを、ステップS04において、X線カメラ20の線速度及び軸速度のいずれかが許容速度を超えず、且つX線カメラ20に作用する加速度が許容加速度を超えず、且つX線カメラ20の運動範囲が許容移動範囲を超えないと判定されるまで繰り返し実行する。
Here, either the linear velocity or the axial velocity of the X-ray camera 20 exceeds the permissible speed, the acceleration acting on the X-ray camera 20 exceeds the permissible acceleration, or the motion range of the X-ray camera 20 exceeds the permissible movement. If it is determined that the range is exceeded, the permissible rotation speed of the motor or ball screw is exceeded, the X-ray camera 20 cannot withstand the acceleration and deteriorates, or the X-ray camera 20 is a member in the X-ray inspection device 1. Since it is determined that there is a risk of collision with the X-ray camera 20, the acceleration acting on the X-ray camera 20 becomes low, or the mathematical parameters of the curve are changed so that the motion range of the X-ray camera 20 becomes narrow, and then step S02 is performed again. Return to the processing of. Then, in the routines of steps S02 to S05, in step S04, either the linear velocity or the axial velocity of the X-ray camera 20 does not exceed the permissible speed, and the acceleration acting on the X-ray camera 20 does not exceed the permissible acceleration. And, it is repeatedly executed until it is determined that the motion range of the X-ray camera 20 does not exceed the allowable movement range.
ステップS04において、X線カメラ20の線速度及び軸速度のいずれかが許容速度を超えず、且つX線カメラ20に作用する加速度が許容加速度を超えず、且つ、X線カメラ20の運動範囲が許容移動範囲を超えないと判定された場合には、ステップS06に進む。ここで、許容速度とは、モータやボールねじの許容回転数を超えない閾値として予め定められた速度値である。許容加速度とは、X線カメラ20に作用してもX線カメラが劣化しない閾値として予め定められた加速度値である。許容移動範囲とは、X線カメラ20が装置内の他部材に衝突等しない運動範囲の閾値として予め定められた運動範囲である。
In step S04, either the linear velocity or the axial velocity of the X-ray camera 20 does not exceed the permissible speed, the acceleration acting on the X-ray camera 20 does not exceed the permissible acceleration, and the motion range of the X-ray camera 20 is increased. If it is determined that the allowable movement range is not exceeded, the process proceeds to step S06. Here, the permissible speed is a speed value predetermined as a threshold value that does not exceed the permissible rotation speed of the motor or the ball screw. The permissible acceleration is a predetermined acceleration value as a threshold value at which the X-ray camera does not deteriorate even if it acts on the X-ray camera 20. The permissible movement range is a motion range predetermined as a threshold value of the motion range in which the X-ray camera 20 does not collide with other members in the device.
ステップS06においては、移動時間の算出が完了する。ステップS06の処理が終了するとステップS07に進む。なお、ステップS01~ステップS06までの処理は演算部111において実行される。
In step S06, the calculation of the travel time is completed. When the process of step S06 is completed, the process proceeds to step S07. The processes from step S01 to step S06 are executed by the calculation unit 111.
次に、ステップS07においては、算出された移動時間を制御部100が受取る。また、ステップS08においては、移動する位置座標、旋回速度、旋回中心、旋回半径など、X線源10及びX線カメラ20の移動運動に必要な情報を受取る。ステップS07及びステップS08の処理が終了するとステップS09に進む。
Next, in step S07, the control unit 100 receives the calculated travel time. Further, in step S08, information necessary for the moving motion of the X-ray source 10 and the X-ray camera 20 such as the moving position coordinates, the turning speed, the turning center, and the turning radius is received. When the processing of step S07 and step S08 is completed, the process proceeds to step S09.
ステップS09においては、次の移動先である旋回開始点への移動の軌跡を算出する。ここでは、S07で受取った移動時間に対応する移動の軌跡を再度算出する。ステップS09の処理が終了するとステップS10に進む。ステップS10においては、X線源10及びX線カメラ20が、次の旋回開始点への軌跡に沿って移動するための出力を、X線源10及びX線カメラ20の運動を制御するが支持されたXYステージの駆動モータ(不図示)に出力する。なお、ステップS07~ステップS10までの処理は制御部100において実行される。
In step S09, the locus of movement to the turning start point, which is the next movement destination, is calculated. Here, the locus of movement corresponding to the movement time received in S07 is calculated again. When the process of step S09 is completed, the process proceeds to step S10. In step S10, the output for the X-ray source 10 and the X-ray camera 20 to move along the trajectory to the next turning start point is supported by controlling the movement of the X-ray source 10 and the X-ray camera 20. Output to the drive motor (not shown) of the XY stage. The processes from step S07 to step S10 are executed by the control unit 100.
本ルーチンにおいては、S04において、速度(線速度及び軸速度のいずれか)、加速度、移動位置の全てが許容値を超えないと判定されるまで、ステップS02とステップS03において、旋回終了点と旋回開始点とを滑らかに結ぶ軌跡と移動時間とが算出された。しかしながら、速度(線速度及び軸速度のいずれか)、加速度、移動位置のうちのいずれかが許容値を超えないと判定されるまで、旋回終了点と旋回開始点とを滑らかに結ぶ軌跡と移動時間とが算出されるようなフローとしても構わない。
<実施例2> In this routine, in step S02 and step S03, the turning end point and turning are performed until it is determined in S04 that the speed (either linear speed or axial speed), acceleration, and moving position do not exceed the permissible values. The locus that smoothly connects the starting point and the moving time were calculated. However, the trajectory and movement that smoothly connects the turning end point and the turning start point until it is determined that any of the speed (either linear speed or axial speed), acceleration, or moving position does not exceed the permissible value. The flow may be such that the time is calculated.
<Example 2>
<実施例2> In this routine, in step S02 and step S03, the turning end point and turning are performed until it is determined in S04 that the speed (either linear speed or axial speed), acceleration, and moving position do not exceed the permissible values. The locus that smoothly connects the starting point and the moving time were calculated. However, the trajectory and movement that smoothly connects the turning end point and the turning start point until it is determined that any of the speed (either linear speed or axial speed), acceleration, or moving position does not exceed the permissible value. The flow may be such that the time is calculated.
<Example 2>
次に、本発明の実施例2について説明する。実施例1においては、被検査物Sの位置を固定し、その上下においてX線カメラ20とX線源10とを旋回運動させる形式のX線検査装置1に対して、本発明を適用した例について説明した。実施例2においては、X線源10を固定し、被検査物S及び、X線カメラ20を旋回させる形式のX線検査装置11に対して、本発明を適用した例について説明する。
Next, Example 2 of the present invention will be described. In the first embodiment, the present invention is applied to an X-ray inspection apparatus 1 in which the position of the object S to be inspected is fixed and the X-ray camera 20 and the X-ray source 10 are swiveled above and below the position. Was explained. In the second embodiment, an example in which the present invention is applied to the X-ray inspection apparatus 11 in which the X-ray source 10 is fixed and the inspected object S and the X-ray camera 20 are swiveled will be described.
図10には、本実施例におけるX線検査装置11における、X線カメラ20、被被検査物S、X線源10の配置の例を示す。図9(a)に示すのは、X線カメラ20が被検査物Sの上側、X線源10が被検査物Sの下側に配置される例、図9(b)に示すのは、X線源10が被検査物Sの上側、X線カメラ20が被検査物Sの下側に配置される例である。いずれの場合においても、X線源10が固定され、X線カメラ20及び被検査物Sが旋回運動を行う。
FIG. 10 shows an example of arrangement of the X-ray camera 20, the object to be inspected S, and the X-ray source 10 in the X-ray inspection apparatus 11 in this embodiment. FIG. 9A shows an example in which the X-ray camera 20 is arranged above the object S to be inspected and the X-ray source 10 is arranged below the object S to be inspected. This is an example in which the X-ray source 10 is arranged above the object S to be inspected and the X-ray camera 20 is arranged below the object S to be inspected. In either case, the X-ray source 10 is fixed, and the X-ray camera 20 and the object S to be inspected perform a turning motion.
図11には、本発明を図10に示す配置を採用したX線検査装置11に適用した場合であって、X線カメラ20及び被検査物Sのn回目の旋回運動の旋回円における旋回終了点及び、n+1回目の旋回運動の旋回円における旋回開始点を0度位置とした場合の、X線カメラ20と被検査物Sの旋回運動及び移動運動の軌跡を示す。実施例1の場合と異なり、X線カメラ20と被検査物Sとで、n回目の旋回運動の旋回円における旋回終了点及び、n+1回目の旋回運動の旋回開始点がともに0度位置となっている。図11(a)はX線カメラ20の旋回運動及び移動運動の軌跡である。図11(b)は被検査物Sの旋回運動及び移動運動の軌跡である。
FIG. 11 shows a case where the present invention is applied to the X-ray inspection apparatus 11 adopting the arrangement shown in FIG. The locomotives of the turning motion and the moving motion of the X-ray camera 20 and the object S to be inspected are shown when the point and the turning start point in the turning circle of the n + 1th turning motion are set to the 0 degree position. Unlike the case of the first embodiment, in the X-ray camera 20 and the object S to be inspected, the turning end point in the turning circle of the nth turning motion and the turning start point of the n + 1th turning motion are both at the 0 degree position. ing. FIG. 11A shows a locomotive of the turning motion and the moving motion of the X-ray camera 20. FIG. 11B is a locomotion locomotion of the object S to be inspected.
図12には、本発明を図10(a)に示す配置を採用したX線検査装置11に適用した場合であって、X線カメラ20及び被検査物Sのn回目の旋回運動の旋回円における旋回終了点及び、n+1回目の旋回運動の旋回円における旋回開始点を最適化した場合の、X線カメラ20と被検査物Sの旋回運動及び移動運動の軌跡を示す。図12(a)はX線カメラ20の旋回運動及び移動運動の軌跡である。図12(b)は被検査物Sの旋回運動及び移動運動の軌跡である。表4には、本実施例における移動時間の短縮効果を示す。
FIG. 12 shows a case where the present invention is applied to the X-ray inspection apparatus 11 adopting the arrangement shown in FIG. 10A, and the turning circle of the nth turning motion of the X-ray camera 20 and the object S to be inspected. The locomotives of the turning motion and the moving motion of the X-ray camera 20 and the object S to be inspected when the turning end point in the above and the turning start point in the turning circle of the n + 1th turning motion are optimized are shown. FIG. 12 (a) shows the loci of the turning motion and the moving motion of the X-ray camera 20. FIG. 12B shows the locomotion locomotion and locomotion of the object S to be inspected. Table 4 shows the effect of shortening the travel time in this embodiment.
本実施例の配置に係るX線検査装置11に本発明を適用した場合においても、図11に示した場合で19%、図12に示した場合で23%の移動時間の短縮効果があることがわかる。
Even when the present invention is applied to the
なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の構成要件を図面の符号付きで記載しておく。
<発明1>
検査対象に照射するX線を発生するX線源(10)と、
前記X線源(10)から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラ(20)と、
前記検査対象を保持する保持部(40)と、を備え、
前記X線源(10)と、前記X線カメラ(20)と、前記保持部(40)のうちのいずれかが、旋回部(10、20、40)として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象(S)の3次元画像を取得して検査するX線検査装置(1、11)であって、
前記旋回部(10、20、40)は、複数の場所において順次旋回運動するとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部が、前記旋回運動及び前記移動運動の途中で停止する停止区間が無いことを特徴とする、X線検査装置。
<発明13>
検査対象に照射するX線を発生するX線源(10)と、
前記X線源から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラ(20)と、
前記検査対象を保持する保持部(40)と、を備え、
前記X線源(10)と、前記X線カメラ(20)と、前記保持部(40)のうちのいずれかが、旋回部(10、20、40)として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置(1、11)を用いたX線検査方法であって、
前記旋回部を、複数の場所において順次旋回運動させるとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部である前記X線源(10)と、前記X線カメラ(20)と、前記保持部(40)のうちのいずれかを、前記旋回運動から前記移動運動に停止させずに移行させることを特徴とする、X線検査方法。 In addition, in order to make it possible to compare the constituent requirements of the present invention with the configurations of the examples, the constituent requirements of the present invention are described below with reference numerals in the drawings.
<Invention 1>
An X-ray source (10) that generates X-rays to irradiate the inspection target, and
An X-ray camera (20) that captures an X-ray image of the X-ray emitted from the X-ray source (10) to the inspection target, and an X-ray camera (20).
A holding unit (40) for holding the inspection target is provided.
Any one of the X-ray source (10), the X-ray camera (20), and the holding portion (40) swivels as a swivel portion (10, 20, 40) to change the shooting direction. It is an X-ray inspection apparatus (1, 11) which takes an X-ray image while changing and acquires and inspects a three-dimensional image of the inspection target (S).
The turning portions (10, 20, 40) sequentially turn at a plurality of places, and also perform a moving motion for moving from the turning end point of one turning motion to the turning start point of the next turning motion.
An X-ray inspection apparatus, wherein the swivel portion does not have a stop section in which the swivel portion stops in the middle of the swivel motion and the locomotion motion.
<Invention 13>
An X-ray source (10) that generates X-rays to irradiate the inspection target, and
An X-ray camera (20) that captures an X-ray image of the X-ray emitted from the X-ray source to the inspection target, and an X-ray camera (20).
A holding unit (40) for holding the inspection target is provided.
Any one of the X-ray source (10), the X-ray camera (20), and the holding portion (40) swivels as a swivel portion (10, 20, 40) to change the shooting direction. It is an X-ray inspection method using an X-ray inspection apparatus (1, 11) that takes an X-ray image while changing and acquires and inspects a three-dimensional image of the inspection target.
The swivel portion is sequentially swiveled at a plurality of places, and a locomotion is performed to move from the swivel end point of one swivel motion to the swivel start point of the next swivel motion.
Any one of the X-ray source (10), the X-ray camera (20), and the holding portion (40), which is the swivel portion, is shifted from the swivel motion to the locomotion motion without stopping. An X-ray inspection method characterized by this.
<発明1>
検査対象に照射するX線を発生するX線源(10)と、
前記X線源(10)から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラ(20)と、
前記検査対象を保持する保持部(40)と、を備え、
前記X線源(10)と、前記X線カメラ(20)と、前記保持部(40)のうちのいずれかが、旋回部(10、20、40)として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象(S)の3次元画像を取得して検査するX線検査装置(1、11)であって、
前記旋回部(10、20、40)は、複数の場所において順次旋回運動するとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部が、前記旋回運動及び前記移動運動の途中で停止する停止区間が無いことを特徴とする、X線検査装置。
<発明13>
検査対象に照射するX線を発生するX線源(10)と、
前記X線源から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラ(20)と、
前記検査対象を保持する保持部(40)と、を備え、
前記X線源(10)と、前記X線カメラ(20)と、前記保持部(40)のうちのいずれかが、旋回部(10、20、40)として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置(1、11)を用いたX線検査方法であって、
前記旋回部を、複数の場所において順次旋回運動させるとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部である前記X線源(10)と、前記X線カメラ(20)と、前記保持部(40)のうちのいずれかを、前記旋回運動から前記移動運動に停止させずに移行させることを特徴とする、X線検査方法。 In addition, in order to make it possible to compare the constituent requirements of the present invention with the configurations of the examples, the constituent requirements of the present invention are described below with reference numerals in the drawings.
<
An X-ray source (10) that generates X-rays to irradiate the inspection target, and
An X-ray camera (20) that captures an X-ray image of the X-ray emitted from the X-ray source (10) to the inspection target, and an X-ray camera (20).
A holding unit (40) for holding the inspection target is provided.
Any one of the X-ray source (10), the X-ray camera (20), and the holding portion (40) swivels as a swivel portion (10, 20, 40) to change the shooting direction. It is an X-ray inspection apparatus (1, 11) which takes an X-ray image while changing and acquires and inspects a three-dimensional image of the inspection target (S).
The turning portions (10, 20, 40) sequentially turn at a plurality of places, and also perform a moving motion for moving from the turning end point of one turning motion to the turning start point of the next turning motion.
An X-ray inspection apparatus, wherein the swivel portion does not have a stop section in which the swivel portion stops in the middle of the swivel motion and the locomotion motion.
<Invention 13>
An X-ray source (10) that generates X-rays to irradiate the inspection target, and
An X-ray camera (20) that captures an X-ray image of the X-ray emitted from the X-ray source to the inspection target, and an X-ray camera (20).
A holding unit (40) for holding the inspection target is provided.
Any one of the X-ray source (10), the X-ray camera (20), and the holding portion (40) swivels as a swivel portion (10, 20, 40) to change the shooting direction. It is an X-ray inspection method using an X-ray inspection apparatus (1, 11) that takes an X-ray image while changing and acquires and inspects a three-dimensional image of the inspection target.
The swivel portion is sequentially swiveled at a plurality of places, and a locomotion is performed to move from the swivel end point of one swivel motion to the swivel start point of the next swivel motion.
Any one of the X-ray source (10), the X-ray camera (20), and the holding portion (40), which is the swivel portion, is shifted from the swivel motion to the locomotion motion without stopping. An X-ray inspection method characterized by this.
1、11・・・X線検査装置
10・・・X線源
20・・・X線カメラ
40・・・保持部
121・・・X線源旋回運動旋回円
122・・・X線カメラ旋回運動旋回円
123・・・移動運動軌跡
S・・・被検査物(基板)
1, 11 ...X-ray inspection device 10 ... X-ray source 20 ... X-ray camera 40 ... Holding unit 121 ... X-ray source swivel motion swivel circle 122 ... X-ray camera swivel motion Swirling circle 123 ・ ・ ・ Moving motion locus S ・ ・ ・ Object to be inspected (board)
10・・・X線源
20・・・X線カメラ
40・・・保持部
121・・・X線源旋回運動旋回円
122・・・X線カメラ旋回運動旋回円
123・・・移動運動軌跡
S・・・被検査物(基板)
1, 11 ...
Claims (21)
- 検査対象に照射するX線を発生するX線源と、
前記X線源から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラと、
前記検査対象を保持する保持部と、を備え、
前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、旋回部として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置であって、
前記旋回部は、複数の場所において順次旋回運動するとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部が、前記旋回運動及び前記移動運動の途中で停止する停止区間が無いことを特徴とする、X線検査装置。 An X-ray source that emits X-rays that irradiate the inspection target,
An X-ray camera that captures an X-ray image of the X-rays emitted from the X-ray source to the inspection target, and an X-ray camera.
A holding unit for holding the inspection target is provided.
The X-ray source, the X-ray camera, and any of the holding portions rotate as a swivel portion to capture the X-ray image while changing the imaging direction, and the inspection target. An X-ray inspection device that acquires and inspects three-dimensional images.
The turning portion sequentially makes a turning motion at a plurality of places, and also performs a moving motion for moving from the turning end point of one turning motion to the turning start point of the next turning motion.
An X-ray inspection apparatus, wherein the swivel portion does not have a stop section in which the swivel portion stops in the middle of the swivel motion and the locomotion motion. - 前記旋回部が、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点に移動する際に、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかは、前記一の旋回運動の旋回円と前記次の旋回運動の旋回円とを、前記旋回終了点と前記旋回開始点において滑らかに結ぶ軌道である特定移動軌道に沿って移動し、
前記特定移動軌道は、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度が連続となる軌道であることを特徴とする、請求項1に記載のX線検査装置。 Of the X-ray source, the X-ray camera, and the holding portion, which are the swivel portions, when the swivel portion moves from the swivel end point of one swivel motion to the swivel start point of the next swivel motion. Either of the above moves along a specific moving trajectory which is a trajectory that smoothly connects the turning circle of the one turning motion and the turning circle of the next turning motion at the turning end point and the turning start point.
The X-ray inspection apparatus according to claim 1, wherein the specific moving trajectory is a trajectory in which the linear velocity of the turning portion is continuous at the turning end point and / or the turning start point. - 前記特定移動軌道は、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度及び加速度が連続、または、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度、加速度及び躍度が連続となる軌道であることを特徴とする、請求項2に記載のX線検査装置。 In the specific moving trajectory, the linear velocity and acceleration of the turning portion are continuous at the turning end point and / or the turning start point, or the linear velocity of the turning portion at the turning end point and / or the turning start point. The X-ray inspection apparatus according to claim 2, wherein the orbit has continuous acceleration and jerk.
- 前記旋回終了点および/または前記旋回開始点において前記旋回部の加速度が0であることを特徴とする、請求項3に記載のX線検査装置。 The X-ray inspection apparatus according to claim 3, wherein the acceleration of the turning portion is 0 at the turning end point and / or the turning start point.
- 前記特定移動軌道は、多項式によって定義されることを特徴とする、請求項2から4のいずれか一項に記載のX線検査装置。 The X-ray inspection apparatus according to any one of claims 2 to 4, wherein the specific moving orbit is defined by a polynomial expression.
- 前記一の旋回運動の旋回円における旋回開始点および/または旋回終了点は、前の旋回運動及び前記次の旋回運動の旋回円の中心と前記一の旋回運動の旋回円の中心を結んだ直線と前記一の旋回運動の旋回円との2つ交点の、前記一の旋回運動の旋回円上における短い方の円弧の中点であることを特徴とする、請求項2から5のいずれか一項に記載のX線検査装置。 The turning start point and / or turning end point in the turning circle of the one turning motion is a straight line connecting the center of the turning circle of the previous turning motion and the next turning motion and the center of the turning circle of the one turning motion. Any one of claims 2 to 5, characterized in that it is the midpoint of the shorter arc on the turning circle of the one turning motion at the two intersections of the turning circle of the one turning motion and the turning circle of the one turning motion. The X-ray inspection apparatus according to the section.
- 前記一の旋回運動の旋回円上における短い方の円弧が特定できない場合には、前記一の旋回運動の旋回終了点と、前記次の旋回運動の旋回開始点とは、各旋回運動の旋回円において所定の角度位置に配置されることを特徴とする、請求項6に記載のX線検査装置。 When the shorter arc on the turning circle of the one turning motion cannot be specified, the turning end point of the one turning motion and the turning start point of the next turning motion are the turning circles of each turning motion. The X-ray inspection apparatus according to claim 6, wherein the X-ray inspection apparatus is arranged at a predetermined angle position.
- 前記一の旋回運動の旋回終了点と、前記次の旋回運動の旋回開始点とは、各旋回運動の旋回円において同一の角度位置に配置されることを特徴とする、請求項2から5のいずれか一項に記載のX線検査装置。 Claims 2 to 5, wherein the turning end point of the one turning motion and the turning start point of the next turning motion are arranged at the same angle position in the turning circle of each turning motion. The X-ray inspection apparatus according to any one of the following items.
- 前記旋回部は、前記X線源と、前記X線カメラと、前記保持部のうちのいずれか2つであり、前記特定移動軌道は、前記X線源と、前記X線カメラと、前記保持部のうちのいずれか2つのうち、より大きな半径の旋回運動を行う方の、前記一の旋回運動の旋回円と前記次の旋回運動の旋回円とを、前記旋回終了点と前記旋回開始点において滑らかに結ぶ軌道であることを特徴とする、請求項2から6のいずれか一項に記載のX線検査装置。 The swivel portion is any two of the X-ray source, the X-ray camera, and the holding portion, and the specific moving trajectory is the X-ray source, the X-ray camera, and the holding portion. The turning circle of the one turning motion and the turning circle of the next turning motion of the one that performs the turning motion with a larger radius among any two of the portions are the turning end point and the turning start point. The X-ray inspection apparatus according to any one of claims 2 to 6, wherein the orbits are smoothly connected in the above.
- 前記X線源と、前記X線カメラと、前記保持部のうちのいずれか2つのうち、より小さな半径の旋回運動を行う方は、前記X線源と、前記X線カメラと、前記保持部のうちのいずれか2つのうち、より大きな半径の旋回運動を行う方と同時に、次の旋回運動の旋回円における前記旋回開始点に到達することを特徴とする、請求項9に記載のX線検査装置。 Of the X-ray source, the X-ray camera, and any two of the holding portions, the one that performs a turning motion with a smaller radius is the X-ray source, the X-ray camera, and the holding portion. The X-ray according to claim 9, wherein the X-ray of any two of the above-mentioned ones reaches the turning start point in the turning circle of the next turning motion at the same time as the one performing the turning motion with a larger radius. Inspection device.
- 前記特定移動軌道は、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかの、線速度及び軸速度のいずれかが所定の許容速度を超えない範囲で決定されることを特徴とする、請求項2から10のいずれか一項に記載のX線検査装置。 The specific moving trajectory is a range in which either the linear velocity or the axial velocity of any of the X-ray source, the X-ray camera, and the holding portion, which is the turning portion, does not exceed a predetermined allowable speed. The X-ray inspection apparatus according to any one of claims 2 to 10, wherein the X-ray inspection apparatus is determined by.
- 前記特定移動軌道は、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかに作用する加速度が所定の許容加速度を超えない範囲で決定されることを特徴とする、請求項2から11のいずれか一項に記載のX線検査装置。 The specific moving trajectory is determined within a range in which the acceleration acting on any of the X-ray source, the X-ray camera, and the holding portion, which is the turning portion, does not exceed a predetermined allowable acceleration. The X-ray inspection apparatus according to any one of claims 2 to 11, wherein the X-ray inspection apparatus is characterized.
- 前記特定移動軌道は、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかの移動範囲が、所定の許容移動範囲を超えないように決定されることを特徴とする、請求項2から12のいずれか一項に記載のX線検査装置。 The specific movement trajectory is determined so that the movement range of any one of the X-ray source, the X-ray camera, and the holding portion, which is the turning portion, does not exceed a predetermined allowable movement range. The X-ray inspection apparatus according to any one of claims 2 to 12, wherein the X-ray inspection apparatus is characterized.
- 前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかの移動範囲が、所定の許容移動範囲を超えないように、前記特定移動軌道における前記旋回部の移動時間が決定されることを特徴とする、請求項2から12のいずれか一項に記載のX線検査装置。 The swivel portion in the specific movement trajectory so that the movement range of any of the swivel portion, the X-ray source, the X-ray camera, and the holding portion does not exceed a predetermined allowable movement range. The X-ray inspection apparatus according to any one of claims 2 to 12, wherein the travel time is determined.
- 前記旋回部は、前記X線源と前記X線カメラであり、前記保持部はX線検査装置内の所定位置に保持されることを特徴とする、請求項1から14のいずれか一項に記載のX線検査装置。 The swivel part is the X-ray source and the X-ray camera, and the holding part is held at a predetermined position in the X-ray inspection apparatus, according to any one of claims 1 to 14. The X-ray inspection apparatus described.
- 検査対象に照射するX線を発生するX線源と、
前記X線源から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラと、
前記検査対象を保持する保持部と、を備え、
前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、旋回部として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置を用いたX線検査方法であって、
前記旋回部を、複数の場所において順次旋回運動させるとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかを、前記旋回運動から前記移動運動に停止させずに移行させることを特徴とする、X線検査方法。 An X-ray source that emits X-rays that irradiate the inspection target,
An X-ray camera that captures an X-ray image of the X-rays emitted from the X-ray source to the inspection target, and an X-ray camera.
A holding unit for holding the inspection target is provided.
The X-ray source, the X-ray camera, and any of the holding portions rotate as a swivel portion to capture the X-ray image while changing the imaging direction, and the inspection target. It is an X-ray inspection method using an X-ray inspection device that acquires and inspects a three-dimensional image.
The swivel portion is sequentially swiveled at a plurality of places, and a locomotion is performed to move from the swivel end point of one swivel motion to the swivel start point of the next swivel motion.
An X-ray inspection characterized in that any one of the X-ray source, the X-ray camera, and the holding portion, which is the swivel portion, is transferred from the swivel motion to the moving motion without stopping. Method. - 前記旋回部が、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点に移動する際に、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかに、前記一の旋回運動の旋回円と前記次の旋回運動の旋回円とを、前記旋回終了点と前記旋回開始点において滑らかに結ぶ軌道である特定移動軌道に沿って移動させ、
前記特定移動軌道は、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度が連続となる軌道であることを特徴とする、請求項16に記載のX線検査方法。 Of the X-ray source, the X-ray camera, and the holding portion, which are the swivel portions, when the swivel portion moves from the swivel end point of one swivel motion to the swivel start point of the next swivel motion. In any of the above, the turning circle of the one turning motion and the turning circle of the next turning motion are moved along a specific moving trajectory which is a trajectory smoothly connecting the turning end point and the turning start point.
The X-ray inspection method according to claim 16, wherein the specific moving trajectory is a trajectory in which the linear velocity of the turning portion is continuous at the turning end point and / or the turning start point. - 前記特定移動軌道は、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度及び加速度が連続、または、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度、加速度及び躍度が連続となる軌道であることを特徴とする、請求項17に記載のX線検査方法。 In the specific moving trajectory, the linear velocity and acceleration of the turning portion are continuous at the turning end point and / or the turning start point, or the linear velocity of the turning portion at the turning end point and / or the turning start point. The X-ray inspection method according to claim 17, wherein the orbit has continuous acceleration and jerk.
- 前記旋回終了点および/または前記旋回開始点において前記旋回部の加速度が0であることを特徴とする、請求項18に記載のX線検査方法。 The X-ray inspection method according to claim 18, wherein the acceleration of the turning portion is 0 at the turning end point and / or the turning start point.
- 前記特定移動軌道は、多項式によって定義されることを特徴とする、請求項17から19のいずれか一項に記載のX線検査方法。 The X-ray inspection method according to any one of claims 17 to 19, wherein the specific moving orbit is defined by a polynomial expression.
- 前記一の旋回運動の旋回円における旋回開始点および旋回終了点は、前の旋回運動及び前記次の旋回運動の旋回円の中心と前記一の旋回運動の旋回円の中心を結んだ直線と前記一の旋回運動の旋回円との2つ交点の、前記一の旋回運動の旋回円上における短い方の円弧の中点であることを特徴とする、請求項16から20のいずれか一項に記載のX線検査方法。
The turning start point and turning end point in the turning circle of the one turning motion are the straight line connecting the center of the turning circle of the previous turning motion and the next turning motion and the center of the turning circle of the one turning motion and the said. The item according to any one of claims 16 to 20, wherein the two intersections with the turning circle of one turning motion are the midpoints of the shorter arc on the turning circle of the one turning motion. The described X-ray inspection method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112020002880.1T DE112020002880T5 (en) | 2020-03-11 | 2020-12-15 | X-RAY INSPECTION DEVICE AND X-RAY INSPECTION PROCEDURE |
CN202080045901.6A CN114026411B (en) | 2020-03-11 | 2020-12-15 | X-ray inspection apparatus and X-ray inspection method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020042088A JP6973536B2 (en) | 2020-03-11 | 2020-03-11 | X-ray inspection equipment and X-ray inspection method |
JP2020-042088 | 2020-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021181783A1 true WO2021181783A1 (en) | 2021-09-16 |
Family
ID=77671525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/046688 WO2021181783A1 (en) | 2020-03-11 | 2020-12-15 | X-ray inspection device and x-ray inspection method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6973536B2 (en) |
CN (1) | CN114026411B (en) |
DE (1) | DE112020002880T5 (en) |
WO (1) | WO2021181783A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008298762A (en) * | 2007-05-31 | 2008-12-11 | Test Research Inc | Laminography inspection system and its method |
JP2009515152A (en) * | 2005-11-07 | 2009-04-09 | コメット・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Equipment for X-ray tomographic synthesis |
JP2009156788A (en) * | 2007-12-27 | 2009-07-16 | Omron Corp | X-ray inspection device and method |
WO2010029862A1 (en) * | 2008-09-10 | 2010-03-18 | オムロン株式会社 | X-ray inspection device and method for x-ray inspection |
JP2011089974A (en) * | 2009-10-20 | 2011-05-06 | Toshiba It & Control Systems Corp | Tomographic apparatus |
JP2011209054A (en) * | 2010-03-29 | 2011-10-20 | Saki Corp:Kk | Radiation inspection device of inspection object, radiation inspection method and program |
JP2013061257A (en) * | 2011-09-14 | 2013-04-04 | Omron Corp | X-ray inspection device, x-ray inspection device control method, program for controlling x-ray inspection device, and recording medium storing program therein |
US20170168171A1 (en) * | 2015-12-09 | 2017-06-15 | Integrated-X, Inc. | Systems and methods for inspection using electromagnetic radiation |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11226004A (en) * | 1997-12-04 | 1999-08-24 | Hitachi Medical Corp | X-ray inspection device and image pickup method for x-ray image |
WO1999027857A1 (en) * | 1997-12-04 | 1999-06-10 | Hitachi Medical Corporation | X-ray examination apparatus and imaging method of x-ray image |
KR101207613B1 (en) * | 2007-12-27 | 2012-12-04 | 오므론 가부시키가이샤 | X-ray examining apparatus and x-ray examining method |
JP5384612B2 (en) * | 2008-03-31 | 2014-01-08 | コーニンクレッカ フィリップス エヌ ヴェ | Fast tomosynthesis scanner apparatus and CT-based method for use in cone beam volume CT mammography imaging based on rotating step-and-shoot image acquisition without moving the focus while the tube is moving continuously |
JP5707067B2 (en) * | 2010-08-10 | 2015-04-22 | 株式会社東芝 | Imaging condition processing method for X-ray CT apparatus and X-ray CT apparatus |
US20160151024A1 (en) * | 2013-08-14 | 2016-06-02 | Hitachi Medical Corporation | Radiation tomographic apparatus |
JP6708857B2 (en) * | 2017-10-17 | 2020-06-10 | 日本装置開発株式会社 | X-ray inspection device |
-
2020
- 2020-03-11 JP JP2020042088A patent/JP6973536B2/en active Active
- 2020-12-15 WO PCT/JP2020/046688 patent/WO2021181783A1/en active Application Filing
- 2020-12-15 CN CN202080045901.6A patent/CN114026411B/en active Active
- 2020-12-15 DE DE112020002880.1T patent/DE112020002880T5/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009515152A (en) * | 2005-11-07 | 2009-04-09 | コメット・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Equipment for X-ray tomographic synthesis |
JP2008298762A (en) * | 2007-05-31 | 2008-12-11 | Test Research Inc | Laminography inspection system and its method |
JP2009156788A (en) * | 2007-12-27 | 2009-07-16 | Omron Corp | X-ray inspection device and method |
WO2010029862A1 (en) * | 2008-09-10 | 2010-03-18 | オムロン株式会社 | X-ray inspection device and method for x-ray inspection |
JP2011089974A (en) * | 2009-10-20 | 2011-05-06 | Toshiba It & Control Systems Corp | Tomographic apparatus |
JP2011209054A (en) * | 2010-03-29 | 2011-10-20 | Saki Corp:Kk | Radiation inspection device of inspection object, radiation inspection method and program |
JP2013061257A (en) * | 2011-09-14 | 2013-04-04 | Omron Corp | X-ray inspection device, x-ray inspection device control method, program for controlling x-ray inspection device, and recording medium storing program therein |
US20170168171A1 (en) * | 2015-12-09 | 2017-06-15 | Integrated-X, Inc. | Systems and methods for inspection using electromagnetic radiation |
Also Published As
Publication number | Publication date |
---|---|
JP2021143912A (en) | 2021-09-24 |
CN114026411B (en) | 2022-12-09 |
JP6973536B2 (en) | 2021-12-01 |
CN114026411A (en) | 2022-02-08 |
DE112020002880T5 (en) | 2022-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5104956B2 (en) | X-ray inspection apparatus and X-ray inspection method | |
JP6131606B2 (en) | Radiation imaging apparatus and image processing method therefor | |
WO2009084581A1 (en) | X-ray examining apparatus and x-ray examining method | |
JP5582841B2 (en) | Radiation inspection apparatus, radiation inspection method and program for inspection object | |
JP5104962B2 (en) | X-ray inspection method and X-ray inspection apparatus | |
JP2008224448A (en) | X-ray inspection method and x-ray inspection device | |
US9606072B2 (en) | Radiation inspecting apparatus | |
US11109827B2 (en) | X-ray imaging apparatus | |
WO2021181783A1 (en) | X-ray inspection device and x-ray inspection method | |
CN115078417A (en) | X-ray inspection apparatus and X-ray inspection method | |
JP5167810B2 (en) | X-ray inspection equipment | |
JP5569061B2 (en) | X-ray inspection method, X-ray inspection apparatus and X-ray inspection program | |
US20230175985A1 (en) | Inspection device | |
JP5263204B2 (en) | X-ray inspection apparatus and X-ray inspection method | |
JP2022140949A (en) | X-ray inspection device and X-ray inspection method | |
JP6930932B2 (en) | Inclined CT imaging device | |
WO2024185620A1 (en) | X-ray inspection device and x-ray inspection method | |
WO2013039032A1 (en) | X-ray examination device, x-ray examination device control method, program for controlling x-ray examination device, and storage medium for storing program | |
JP2000126169A (en) | Tomographic x-ray apparatus | |
KR102679092B1 (en) | Ct device with improved precision for semiconductor inspection | |
JP5999516B2 (en) | Radiography equipment | |
TWI825680B (en) | Control systems, control methods and procedures | |
JP5115574B2 (en) | X-ray inspection apparatus and X-ray inspection method | |
JP5097382B2 (en) | Radiation inspection apparatus, radiation inspection method, and radiation inspection program | |
JP5167882B2 (en) | X-ray inspection apparatus and X-ray inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20924017 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20924017 Country of ref document: EP Kind code of ref document: A1 |