WO2013039032A1 - X-ray examination device, x-ray examination device control method, program for controlling x-ray examination device, and storage medium for storing program - Google Patents

X-ray examination device, x-ray examination device control method, program for controlling x-ray examination device, and storage medium for storing program Download PDF

Info

Publication number
WO2013039032A1
WO2013039032A1 PCT/JP2012/073056 JP2012073056W WO2013039032A1 WO 2013039032 A1 WO2013039032 A1 WO 2013039032A1 JP 2012073056 W JP2012073056 W JP 2012073056W WO 2013039032 A1 WO2013039032 A1 WO 2013039032A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
ray detector
detector
moving
trajectory
Prior art date
Application number
PCT/JP2012/073056
Other languages
French (fr)
Japanese (ja)
Inventor
信治 杉田
真之 益田
訓之 加藤
清 村上
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2013039032A1 publication Critical patent/WO2013039032A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Definitions

  • the present invention relates to an X-ray inspection apparatus, and more particularly to an X-ray inspection apparatus for acquiring an X-ray image early.
  • Patent Document 1 describes an inspection object and a two-dimensional X-ray detector using XY axes that move on parallel planes.
  • projection images A technique for acquiring X-ray images (hereinafter referred to as “projection images”) from a plurality of different directions by moving them is disclosed.
  • an inclined CT automatic inspection apparatus having a mechanism capable of imaging the same part from a plurality of angles using a two-dimensional X-ray detector, the mechanism for changing the imaging angle is moved and stopped, and imaging (X-ray irradiation and X-rays) is performed. Detector exposure) is performed in series in time (so-called STOP & GO method). As a result, there is a problem in that the inspection time cannot be further shortened because the movement time of the mechanism that does not contribute to imaging results in a loss of the inspection time.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an X-ray inspection apparatus capable of speeding up the acquisition of X-ray images.
  • Another object of the present invention is to provide an X-ray inspection method that speeds up X-ray image acquisition.
  • Another object of the present invention is to provide a program for controlling an X-ray inspection apparatus so that acquisition of an X-ray image is accelerated.
  • Still another object of the present invention is to provide a computer-readable recording medium storing the program.
  • an X-ray inspection apparatus for performing an image reconstruction process on an inspection target region by receiving X-rays transmitted through the inspection target region of an object with a plurality of detection surfaces.
  • the X-ray inspection apparatus includes an object moving mechanism for moving an object, an X-ray source for irradiating the object with X-rays, and an X-ray for detecting X-rays that have passed through the inspection object region. X-rays that have passed through one point of the inspection target area under a predetermined trajectory condition in which the detector, the detector moving mechanism for moving the X-ray detector, and the object and the X-ray detector move are set in advance.
  • a position calculator configured to calculate a movement target position of the X-ray detector and a movement target position of the object so as to be projected onto the light receiving center of the X-ray detector, and a movement calculated by the X-ray detector;
  • a detector position control unit for controlling the driving of the detector moving mechanism so as to move along a first trajectory of the trajectory conditions where the target position is located, and a moving target position where the object is calculated The object moving mechanism is moved so as to move along the second trajectory of the trajectory conditions being positioned.
  • X-ray source for controlling the X-ray source to irradiate X-rays toward the object while the object position control unit for controlling movement, the X-ray detector and the object are moving
  • An X-ray image for acquiring a plurality of projection images by exposing the X-ray detector a plurality of times to X-rays transmitted through the object while the control unit, the X-ray detector and the object are moving.
  • An acquisition unit and a calculation unit for reconstructing a three-dimensional image from a plurality of projection images using a reconstruction algorithm are provided.
  • the first trajectory and the second trajectory are circular trajectories.
  • the detector moving mechanism is configured to move the X-ray detector so that the X-ray detector and the object move concentrically around the X-ray source, and the object moving mechanism moves the object. Is configured to move.
  • the X-ray detector is a rectangular X-ray detector for receiving and imaging X-rays on a plurality of detection surfaces with a rectangular field of view.
  • the detector position control unit is configured to perform control to translate the X-ray detector along the first trajectory so that each rectangular side of the X-ray detector at each movement target position faces the same direction. Has been.
  • the X-ray source control unit is configured to drive the X-ray source so as to continuously irradiate X-rays while the object and the X-ray detector are moving.
  • the X-ray source control unit is configured to control the X-ray source so that the object is irradiated with the X-rays a plurality of times.
  • the X-ray detector is configured to expose a plurality of times in accordance with the timing of X-ray irradiation.
  • X-rays that have passed through the inspection target region of the object are received by a plurality of detection surfaces using an X-ray detector, thereby executing an image reconstruction process for the inspection target region.
  • a method for controlling a line inspection apparatus is provided. In this control method, X-rays that have passed through one point of the inspection target region are projected onto the light receiving center of the X-ray detector under a predetermined trajectory condition in which the object and the X-ray detector move.
  • Moving the X-ray detector includes moving the X-ray detector such that the X-ray detector and the object move concentrically around the X-ray source, and moving the object Includes moving the object such that the X-ray detector and the object move concentrically about the X-ray source.
  • the X-ray detector is a rectangular X-ray detector for receiving and imaging X-rays on a plurality of detection surfaces with a rectangular field of view.
  • the step of moving the X-ray detector includes a step of translating the X-ray detector along the first trajectory so that each side of the rectangle of the X-ray detector at each movement target position faces the same direction. .
  • the step of irradiating the X-ray includes a step of continuously irradiating the X-ray while the object and the X-ray detector are moving.
  • the step of irradiating the X-ray includes a step of irradiating the object with the X-ray a plurality of times.
  • the step of acquiring a plurality of projection images includes a step of exposing a plurality of times according to the timing of irradiation with X-rays.
  • X-rays that have passed through the inspection target region of the object are received by a plurality of detection surfaces using an X-ray detector, thereby executing an image reconstruction process for the inspection target region.
  • a program for controlling the line inspection apparatus is provided. The program projects an X-ray that has passed through one point of the inspection target area onto the light receiving center of the X-ray detector under a predetermined orbital condition in which the object and the X-ray detector move.
  • a step of moving the X-ray detector, a step of moving the object along a second trajectory of the trajectory conditions where the calculated movement target position of the object is located, and the X-ray detector and the object A step of irradiating the object with X-rays while moving, and an X-ray detector that exposes the X-ray detector a plurality of times while the X-ray detector and the object move while the object is moving
  • the first trajectory and the second trajectory are circular trajectories.
  • the program executes the step of moving the X-ray detector so that the X-ray detector and the object move concentrically around the X-ray source as the step of moving the X-ray detector.
  • the step of moving the object is executed so that the X-ray detector and the object move concentrically around the X-ray source.
  • the X-ray detector is a rectangular X-ray detector for receiving and imaging X-rays on a plurality of detection surfaces with a rectangular field of view.
  • the program translates the X-ray detector along the first trajectory so that each side of the rectangle of the X-ray detector at each movement target position faces the same direction. Make the step execute.
  • the program executes a step of continuously irradiating the X-ray while the object and the X-ray detector are moving.
  • the program executes a step of irradiating the target object with X-rays a plurality of times as the step of irradiating X-rays, and according to a timing at which the X-rays are irradiated as a step of acquiring a plurality of projection images.
  • the step of performing multiple exposures is executed.
  • a computer-readable non-volatile data recording medium storing any of the programs described above is provided.
  • an X-ray image necessary for X-ray inspection is acquired at high speed.
  • FIG. 2 is a block diagram showing a hardware configuration of an X-ray inspection apparatus 100.
  • FIG. 3 is a flowchart showing a part of a series of processes executed by X-ray inspection apparatus 100. It is a figure showing the state to which the X-ray detector 23 and the imaging visual field 310 move from upper direction.
  • 2 is a block diagram showing a hardware configuration of an X-ray inspection apparatus 400.
  • FIG. It is the figure which looked at the X-ray inspection apparatus 400 from the top centering on the X-ray generator.
  • FIG. 3 is a diagram showing the relative positions of an X-ray detector 23 and an X-ray generator 10 with an inspection object 20 as a reference.
  • FIG. 7 is a flowchart showing a part of a series of processes executed by a calculation unit 410 included in the X-ray inspection apparatus 400.
  • 3 is a timing chart showing an operation pattern of each component of the X-ray inspection apparatus 100. It is a timing chart showing the pattern of operation
  • It is a figure showing a part of structure of the X-ray inspection apparatus 1000. It is a figure showing transition of the image obtained in the state where X-ray detector 23 and inspection subject 20 rotated, respectively.
  • 2 is a block diagram illustrating a hardware configuration of a computer system 1200.
  • FIG. 1 is a block diagram illustrating a hardware configuration of the X-ray inspection apparatus 100.
  • the X-ray inspection apparatus 100 includes an X-ray generator 10, a stage 18, an X-ray detector driving unit 22, an X-ray detector 23, an image acquisition control mechanism 30, an input unit 40, and an output unit 50. , An X-ray source control mechanism 60, a calculation unit 70, and a memory 90.
  • the X-ray generator 10 includes an X-ray focal point 17.
  • the X-ray detector driving unit 22 includes an orthogonal type biaxial robot arm 22.1 and a detector support unit 22.2.
  • the image acquisition control mechanism 30 includes a detector drive control unit 32 and an image data acquisition unit 34.
  • the calculation unit 70 includes an inspection target position control unit 80.
  • An inspection object 20 is mounted on the stage 18.
  • the X-ray generator 10 outputs X-rays with the axis passing through the X-ray focal point 17 as the central axis.
  • the X-ray generator 10 is controlled by the X-ray source control mechanism 60.
  • the X-ray source control mechanism 60 controls the output of the electron beam. Specifically, the X-ray source control mechanism 60 receives designation of X-ray energy (tube voltage, tube current) from the calculation unit 70.
  • the X-ray energy varies depending on the configuration of the inspection object 20.
  • the inspection object 20 is carried into the stage 18.
  • the stage 18 is configured as an XYZ stage, for example, and can be moved to an arbitrary position.
  • the stage 18 moves, for example, according to a circular or linear trajectory.
  • the stage 18 may be configured to place the inspection object 20 at a position for inspection by moving in one direction like a belt conveyor.
  • the X-ray detector driving unit 22 moves the X-ray detector 23 to a designated position through a detector drive control unit 32 according to a command from the calculation unit 70. Further, the detector drive control unit 32 sends the position information of the X-ray detector 23 at that time to the calculation unit 70.
  • the robot arm 22.1 and the detector support unit 22.2 move the X-ray detector 23 to a designated position.
  • the X-ray detector driving unit 22 is configured as an XY ⁇ operation mechanism capable of driving the X-ray detector 23 with XY ⁇ degrees of freedom.
  • the X-ray detector driving unit 22 is not limited to the above-described configuration, and is configured to be capable of moving in the XY direction or rotating in the XY plane. Any device having the same function may be used.
  • the X-ray detector 23 is a two-dimensional X-ray detector that detects and images X-rays output from the X-ray generator 10 and transmitted through the inspection object 20.
  • the X-ray detector 23 is a CCD (Charge Coupled Device) camera, I.D. I (Image Intensifier) tube, space efficient FPD (Flat Panel Detector).
  • the X-ray detector 23 is desirably highly sensitive so that it can be used for in-line inspection, and may be a direct conversion type FPD using CdTe.
  • the image acquisition control mechanism 30 controls driving of the X-ray detector 23 by the X-ray detector driving unit 22 and acquisition of image data from the X-ray detector 23.
  • the detector drive control unit 32 controls the X-ray detector drive unit 22 so as to move the X-ray detector 23 to the position specified by the calculation unit 70.
  • the image data acquisition unit 34 acquires image data of the X-ray detector 23. When a plurality of X-ray detectors 23 are used, the image data acquisition unit 34 can acquire the image data of the X-ray detector 23 specified by the calculation unit 70.
  • the input unit 40 receives an instruction input from the user of the X-ray inspection apparatus 100.
  • the input unit 40 is realized by, for example, a keyboard, a mouse, a touch panel, a wireless communication interface, or the like used in a known computer system.
  • the output unit 50 outputs measurement results and the like to the outside.
  • the output unit 50 is realized, for example, as a monitor device that displays an X-ray image or the like configured by the calculation unit 70.
  • the output unit 50 is realized as an interface that outputs an image signal.
  • the X-ray source control mechanism 60 controls the X-ray irradiation timing, irradiation time, and intensity by the X-ray generator 10.
  • the calculation unit 70 executes a program (not shown) stored in the memory 90 to control each unit, and executes predetermined calculation processing.
  • the inspection target position control unit 80 performs positioning necessary for X-ray imaging by controlling the movement of the stage 18.
  • the memory 90 stores a program for controlling the operation of the X-ray inspection apparatus 100, acquired X-ray image data, and the like.
  • FIG. 2 is a flowchart showing a part of a series of processes executed by the X-ray inspection apparatus 100.
  • step S102 the calculation unit 70 moves the visual field by driving the stage 18 on which the inspection object 20 is placed.
  • step S104 the X-ray inspection apparatus 100 captures a fluoroscopic image.
  • the image data acquisition unit 34 receives X-ray image data irradiated from the X-ray generator 10 and transmitted through the inspection object 20 from the X-ray detector 23. Image data is stored in the memory 90.
  • step S106 the calculation unit 70 inspects the fluoroscopic image obtained by imaging.
  • step S108 the arithmetic unit 70 determines whether or not the reconstructed image needs to be inspected based on the inspection result. If calculation unit 70 determines that inspection of the reconstructed image is necessary (YES in step S108), control unit 70 switches control to step S110. When that is not right (it is NO at step S108), the calculating part 70 complete
  • step S110 the calculation unit 70 executes a CT (Computed Tomography) imaging process for one field of view.
  • CT Computer Tomography
  • step S112 the calculation unit 70 reconstructs an image of the inspection object 20 using the image obtained by the CT imaging process.
  • step S112 the arithmetic unit 70 inspects the reconstructed image.
  • step S116 operation unit 70 determines whether or not the inspection of the entire visual field has been completed. When calculating unit 70 determines that the inspection of the entire visual field has been completed (YES in step S116), it ends the inspection. If not (NO in step S116), operation unit 70 returns control to step S102.
  • FIG. 3 is a diagram illustrating a state in which the X-ray detector 23 and the imaging visual field 310 move from above.
  • the X-ray detector 23 and the imaging visual field 310 rotate counterclockwise about the X-ray generator 10 as a rotation center.
  • the X-ray detector 23 moves on the trajectory of the X-ray detector trajectory 320, and the imaging visual field 310 included in the inspection target 20 moves on the trajectory of the imaging visual field trajectory 330.
  • the X-ray detector 23 is arranged at the target position D1 at the time when the inspection is started.
  • the imaging visual field 310 included in the inspection target 20 is positioned at the target position V1.
  • a projection image P1 of the imaging field of view 310 is acquired.
  • the X-ray detector 23 is driven to move from the target position D1 to the target position D2.
  • the stage 18 on which the inspection object 20 is placed also rotates by the same angle and moves to the target position V2.
  • the X-ray generator 10 emits X-rays in this state, a projection image P2 is acquired.
  • the projection image P3 is acquired at the target positions D3 and V3
  • the projection image P4 is acquired at the target positions D4 and V4.
  • FIG. 4 is a block diagram showing a hardware configuration of the X-ray inspection apparatus 400.
  • the X-ray inspection apparatus 400 includes an X-ray generator 10, a stage 18, an orthogonal type biaxial robot arm 22.1, a detector support unit 22.2, an X-ray detector 23, and a calculation unit 410.
  • a main storage unit 420, an auxiliary storage unit 425, an input unit 40, an output unit 50, an X-ray detector position control mechanism 440, an X-ray image acquisition mechanism 445, an optical camera position control mechanism 450, A camera 460, an optical image acquisition mechanism 455, a stage position control mechanism 465, and an X-ray source control mechanism 60 are provided.
  • An inspection object 20 is mounted on the stage 18.
  • the inspection object 20 includes an imaging visual field 310.
  • the X-ray detector 23 is driven by the robot arm 22.1 and the detector support 22.2 so as to move on the X-ray detector trajectory 320.
  • the position of the inspection object 20 is positioned by the stage position control mechanism 465 so that the imaging visual field 310 moves on the imaging visual field trajectory 330 and is moved to the target position by the stage 18.
  • the X-ray detector 23 and the stage 18 are respectively connected to the X-ray detector so that X-rays emitted from the X-ray generator 10 toward the imaging visual field 310 are always detected by the X-ray detector 23. It moves on the trajectory 320 and the imaging visual field trajectory 330.
  • the calculation unit 410 controls the operation of the X-ray inspection apparatus 400.
  • the calculation unit 410 sets conditions for outputting X-rays from the X-ray generator 10 according to the inspection object 20 and stores the conditions in the main storage unit 420.
  • the conditions include, for example, an applied voltage to the X-ray generator 10 and an imaging time.
  • the X-ray source control mechanism 60 controls X-ray irradiation by the X-ray generator 10 based on the conditions.
  • the X-ray image acquisition mechanism 445 controls the X-ray exposure time by the X-ray detector 23 according to the set imaging time.
  • the calculation unit 410 executes processing for reconstructing a three-dimensional image of the inspection target 20 from the acquired projection image.
  • the calculation unit 410 determines the quality of the inspection target 20. For example, the calculation unit 410 determines pass / fail of the inspection target 20 using the reconstructed three-dimensional image data or fluoroscopic data. In this case, the calculation unit 410 recognizes the shape of the solder ball and determines whether the inspection object 20 is good or not by determining whether the shape is within a predetermined allowable range. Note that an algorithm for determining pass / fail and input information for the algorithm differ depending on the inspection object 20. Therefore, an algorithm and input information corresponding to the type of the inspection object 20 are input from the input unit 40 as imaging condition information and stored in the main storage unit 420.
  • the main storage unit 420 is realized by an EEPROM (Electrically Erasable and Programmable Read-Only Memory), an HDD (Hard Disc Drive), or other storage device that can hold data in a nonvolatile manner.
  • the main storage unit 420 executes an X-ray focal position and imaging conditions and other data, an operating system for controlling the operation of the X-ray inspection apparatus 400, an algorithm for determining pass / fail, and the above-described processes.
  • the program is stored.
  • the auxiliary storage unit 425 is realized by a RAM (Random Access Memory) or other volatile memory.
  • the auxiliary storage unit 425 holds the data generated by the arithmetic unit 410, the image data acquired by the X-ray image acquisition mechanism 445, the data input via the input unit 40, and the like in a volatile manner.
  • the X-ray detector position control mechanism 440 drives the robot arm 22.1 and the detector support unit 22.2 so as to move the X-ray detector 23 to the position specified by the calculation unit 410.
  • the X-ray image acquisition mechanism 445 receives, from the X-ray detector 23, X-ray image data irradiated from the X-ray generator 10 and transmitted through the inspection object 20.
  • the image data is stored in the main storage unit 420.
  • the optical camera position control mechanism 450 controls the position of the camera 460 based on a command from the calculation unit 410.
  • the camera 460 includes a CCD (Charge Coupled Device), a CMOS (Complementary Metal-Oxide Semiconductor), and other elements. Specifically, the optical camera position control mechanism 450 moves the position of the camera 460 in order to specify the inspection position of the inspection object 20, and images the inspection object 20 mounted on the stage 18.
  • the optical image acquisition mechanism 455 receives image data obtained by photographing with the camera 460 and stores the image data in the auxiliary storage unit 425.
  • the calculation unit 410 causes the output unit 50 to output the image data.
  • the output unit 50 is realized as a monitor device, an image of the inspection target 20 is displayed.
  • the stage position control mechanism 465 performs positioning of the stage 18 necessary for X-ray imaging by moving the stage 18 based on the control of the calculation unit 410.
  • the X-ray detector position control mechanism 440 sets the X-ray detector 23 in advance while maintaining a state in which one point in the inspection target 20 is projected onto the light receiving center of the X-ray detector 23.
  • the drive of the detector moving mechanism (for example, the robot arm 22.1 and the detector support unit 22.2) is controlled so as to move along the first track (for example, the X-ray detector track 320).
  • the stage position control mechanism 465 maintains a state in which one point in the inspection object 20 is projected onto the light receiving center of the X-ray detector 23, while the inspection object 20 is set in a second trajectory (for example, imaging).
  • the drive of the stage 18 is controlled so as to move along the visual field trajectory 330).
  • the X-ray source control mechanism 60 controls the X-ray generator 10 to irradiate X-rays toward the inspection target 20 while the X-ray detector 23 and the inspection target 20 are moving. While the X-ray detector 23 and the inspection object 20 are moving, the X-ray image acquisition mechanism 445 exposes the X-ray detector 23 to the X-rays transmitted through the inspection object 20 a plurality of times, thereby Obtain a projection image.
  • the calculation unit 410 reconstructs a three-dimensional image from the plurality of projection images obtained in this manner using a reconstruction algorithm.
  • first trajectory and the second trajectory are circular trajectories.
  • the X-ray detector position control mechanism 440 moves the X-ray detector 23 so that the X-ray detector 23 and the inspection object 20 move concentrically around the X-ray generator 10, and stage position control is performed.
  • the mechanism moves the inspection object 20.
  • the X-ray source control mechanism 60 drives the X-ray generator 10 so as to continuously irradiate X-rays while the inspection object 20 and the X-ray detector 23 are moving.
  • the X-ray source control mechanism 60 controls the X-ray generator 10 to irradiate the inspection target 20 with X-rays a plurality of times.
  • the X-ray detector 23 exposes a plurality of times in accordance with the timing of X-ray irradiation.
  • the technical idea of the X-ray inspection apparatus 400 is organized as follows. (1) The X-ray detector 23 and the imaging visual field 310 are continuously on a predetermined moving trajectory in a state in which the point of interest in the inspection object 20 is always projected onto the light receiving center of the X-ray detector 23. Move to. (2) During the movement of (1), the X-ray generator 10 emits X-rays continuously or during a period in which the X-ray detector 23 is in the exposure state. (3) During the movement of (1), the X-ray detector 23 exposes the X-rays a plurality of times, and stores the X-ray images acquired by the plurality of exposures as a projection image. (4) The plurality of projection images stored in (3) are converted into a three-dimensional image using a CT reconstruction algorithm.
  • the time required for imaging is shortened.
  • the case where the X-ray detector trajectory 320 and the imaging visual field trajectory 330 are circular trajectories is described, but the X-ray detector trajectory 320 and the imaging visual field trajectory 330 are not limited to circular trajectories. Polygonal and rectangular shapes may be used.
  • FIG. 5 is a view of the X-ray inspection apparatus 400 as viewed from above with the X-ray generator 10 as the center.
  • the X-ray detector 23 moves on the X-ray detector trajectory 320 counterclockwise. Specifically, the X-ray detector 23 detects X-rays at least at the target positions D1, D2, D3, and D4 as exposure points for X-ray imaging. In the example shown in FIG. 5, the X-ray detector 23 does not rotate. However, in another aspect, the X-ray detector 23 may rotate.
  • the imaging field of view 310 included in the inspection target 20 is X-rayed at the target positions V1, V2, V3, V4,... Vn as the positions for imaging, and the projection images P1 ′ and P2 ′. , P3 ′, P4 ′,... Pn ′ are acquired. Similar to the X-ray detector 23, in the example shown in FIG. 5, the imaging visual field 310 does not rotate, but in other aspects, the imaging visual field 310 may rotate.
  • the target of the X-ray detector 23 is on the line connecting the X-ray generator 10 and the target position Vn of the imaging visual field 310.
  • the movement of the X-ray detector 23 and the imaging visual field 310 is controlled so that the position Dn exists. That is, the X-ray detector 23 and the imaging visual field 310 move with the same angular velocity with respect to the X-ray generator 10.
  • the X-ray detector 23 continuously moves to the target positions D1 to Dn on the X-ray detector trajectory 320 while keeping the point of interest in the imaging field 310 at the center of the light receiving surface.
  • the X-ray detector 23 While the imaging visual field 310 and the X-ray detector 23 are moving, the X-ray detector 23 exposes X-rays transmitted through the imaging visual field 310. Since the X-ray detector 23 moves while capturing the point of interest, the X-ray detector position control mechanism 440 and the stage position control mechanism 465 use the result of position measurement like a servo motor or linear motor. It is desirable to use a drive device capable of feedback control.
  • FIG. 6 is a diagram showing the relative positions of the X-ray detector 23 and the X-ray generator 10 with respect to the inspection object 20. That is, in the X-ray inspection apparatus 400 according to the present embodiment, the X-ray detector 23 and the X-ray generation viewed from the inspection object 20 with the inspection object 20 fixed in order to understand the point of interest. The relative position of the vessel 10 is shown.
  • the point of interest refers to one point in the inspection object 20 that is always captured by the center of the X-ray detector 23 in the projection image.
  • the XY plane in the inspection object 20 where the point of interest exists is referred to as a surface of interest.
  • the inspection object 20 has a focused surface 610 as a surface to be inspected by the X-ray inspection apparatus 400.
  • the focused surface 610 includes a focused point 620.
  • the X-ray detector 23 synchronizes with the movement of the imaging visual field 310 so as to always capture the point of interest 620.
  • FIG. 7 is a flowchart showing a part of a series of processes executed by the calculation unit 410 included in the X-ray inspection apparatus 400.
  • step S710 the calculation unit 410 moves the X-ray detector 23 and the imaging field 310 in a state where the point of interest 620 in the inspection target 20 is always projected on the light receiving center of the X-ray detector 23. For this purpose, it is continuously moved on the predetermined trajectories (X-ray detector trajectory 320 and imaging visual field trajectory 330). In addition, the calculation unit 410 initializes a counter for calculating the number of exposures.
  • step S720 calculation unit 410, while moving, at target position V1 (or D1), V2 (or D2), V3 (or D3), V4 (or D4),... Vn (or Dn).
  • the X-ray generator 10 is driven so as to continuously irradiate X-rays, or the X-ray generator 10 is irradiated with X-rays while the X-ray detector 23 is in an exposure state.
  • step S730 the X-ray detector 23 exposes the X-rays, outputs a projection image (projection image), and transmits the projection image to the X-ray image acquisition mechanism 445.
  • the projection image data is stored in the main storage unit 420.
  • the calculation unit 410 inputs the acquired projection image to the three-dimensional image reconstruction calculation and starts the image reconstruction process.
  • a configuration in which the image reconstruction process is started after a necessary number of projection images are acquired can be used.
  • step S740 the calculation unit 410 increments the number of exposures by the X-ray detector 23 by one.
  • step S750 calculation unit 410 determines whether or not a preset number of projection images have been acquired. For example, the calculation unit 410 determines whether or not the number of exposures is the same as the preset number n. If calculation unit 410 determines that the number of exposures is the same as preset number n (YES in step S750), control unit 410 switches control to step S760. If not (NO in step S750), operation unit 410 switches control to step S730. The X-ray detector 23 exposes X-rays again.
  • step S760 the acquisition of n projection images P1 'to Pn is completed.
  • the calculation unit 410 configures a three-dimensional image of the inspection object 20 from the n projection images stored in the main storage unit 420 using a CT reconstruction algorithm. As described in step S730, it is desirable to input the projection image to the three-dimensional image reconstruction calculation at the imaging location every time one projection image is captured in order to speed up the X-ray examination. . For example, the calculation unit 410 performs a reconstruction calculation using the first projection image while acquiring the second projection image.
  • FIG. 8 is a timing chart showing an operation pattern of each component of the X-ray inspection apparatus 100.
  • FIG. 9 is a timing chart showing an operation pattern of the X-ray inspection apparatus 400 according to the present embodiment.
  • X-ray inspection apparatus 100 has an operation pattern of an X-ray detector position control mechanism (for example, robot arm 22.1 and detector support unit 22.2). , Repeat stop and move.
  • an X-ray detector position control mechanism for example, robot arm 22.1 and detector support unit 22.2.
  • the stage position control mechanism for example, the stage 18
  • the X-ray detector 23 move asynchronously and reach their target positions at different timings. Stop.
  • the X-ray detector 23 and the inspection object 20 are positioned, imaging is performed. Specifically, as shown in a graph 840, the X-ray generator 10 repeats stopping and X-ray irradiation. At this time, as indicated by a graph 830, the X-ray detector 23 repeats stop and exposure in synchronization with the operation of the X-ray generator 10. As shown in FIG. 8, in the X-ray inspection apparatus 100, the X-ray imaging operation time is taken in addition to the projection images P1, P2, P3, P4,. Including the period when is not conducted. That is, since the X-ray imaging can be performed only when the X-ray detector 23 is at the target position, the imaging time is limited.
  • the X-ray detector 23 always moves while capturing a point of interest that is one point of the inspection object 20.
  • the X-ray detector 23 is always in a state where X-rays can be detected. That is, X-ray imaging can be performed even while the X-ray detector 23 and the stage 18 are moving toward the target position.
  • the X-ray detector position control mechanism 440 starts moving from the stopped state, the X-ray detector 23 is continuously moved along the X-ray detector trajectory 320. Moving. As apparent from the graph 920, the stage 18 on which the inspection object 20 is mounted starts moving on the imaging visual field trajectory 330 in synchronization with the movement of the X-ray detector 23.
  • the X-ray generator 10 starts X-ray irradiation as shown in the graph 940.
  • the X-ray detector 23 since the X-ray detector 23 always captures the point of interest, the X-ray detector 23 can always detect the X-ray transmitted through the inspection object 20. Accordingly, as shown in the graph 930, the X-ray detector 23 obtains the number of projection images necessary for reconstructing the three-dimensional image of the inspection target 20, according to the imaging conditions set in advance. The exposure is stopped according to the number. In this way, since exposure only needs to be stopped in order to obtain a plurality of projection images, it is not necessary to stop exposure until the positioning of the mechanism is completed. Therefore, the time for acquiring the required number of projection images is shorter than the time for the conventional imaging pattern.
  • the movement of the X-ray detector 23 and the stage 18 (so-called “mechanical movement”) and imaging are performed in parallel.
  • the total time of the movement time and the imaging time for acquiring the same exposure time and the same number of projection images is shorter than the total time when the conventional X-ray inspection apparatus is used.
  • the line imaging inspection can be speeded up.
  • the X-ray inspection apparatus 1000 has a configuration in which the X-ray detector 23 and the inspection object 20 each rotate about a rotation axis, and thus the X-ray inspection apparatus according to the first embodiment. Different from 400.
  • FIG. 10 is a diagram showing a part of the configuration of the X-ray inspection apparatus 1000. Note that the mechanism for controlling the operation of the X-ray inspection apparatus 1000 is realized by using the same hardware configuration as that of the X-ray inspection apparatus 400 according to the first embodiment. Therefore, those descriptions are not repeated.
  • the X-ray inspection apparatus 1000 further includes an X-ray detector rotation mechanism 1010 and an inspection object rotation mechanism 1020 in addition to the configuration of the X-ray inspection apparatus 400.
  • the X-ray detector rotation mechanism 1010 rotates the X-ray detector 23 about the rotation axis 1011. That is, the X-ray detector 23 rotates.
  • the inspection object rotation mechanism 1020 rotates the inspection object 20 around the rotation shaft 1021. That is, the position of the stage 18 is controlled so that the inspection object 20 rotates. At this time, the rotation angle around the rotation axis 1011 and the rotation angle around the rotation axis 1021 are maintained at the same angle. Thereby, when a three-dimensional image is reconstructed using an image obtained by imaging at each rotation angle, the image of the target tomogram is not blurred.
  • FIG. 11 is a diagram illustrating the transition of images obtained in a state where the X-ray detector 23 and the inspection object 20 are rotated.
  • the inspection object 1120 included in the inspection object 20 is imaged as the first imaging. Specifically, an X-ray image of the inspection object 1120 is acquired as an image 1101.
  • the X-ray detector 23 and the inspection object 20 move on the X-ray detector trajectory 320 and the imaging visual field trajectory 330, respectively, and rotate. , Transition to state 1112.
  • state 1112 the X-ray detector 23 is exposed again.
  • An X-ray image of the inspection object 1120 is acquired as an image 1102.
  • the X-ray detector 23 and the inspection object 20 further move and rotate, and the state transitions to the state 1113.
  • an image 1103 is acquired. Thereafter, the X-ray detector 23 and the inspection object 20 move and rotate, and transition to the state 1114. Further, when exposure is performed in the state 1114, an image 1104 is acquired. In this way, a projection image necessary for reconstructing the image to be inspected is acquired.
  • each of the images 1101, 1102, 1103, and 1104 is acquired as an image rotated around the rotation axis centered on the point of interest, each image has already been positioned. Therefore, the image 1130 obtained by reconstructing these images is derived as a clear image without blurring.
  • the X-ray inspection apparatus 1000 According to the X-ray inspection apparatus 1000 according to the present embodiment, it is not necessary to stop rotation during imaging, so that X-ray imaging can be performed at high speed.
  • control mechanism of the X-ray inspection apparatuses 400 and 1000 can be realized by using a computer system having a known configuration.
  • FIG. 12 is a block diagram showing a hardware configuration of computer system 1200.
  • the computer system 1200 includes, as main components, a CPU 1 that executes a program, a mouse 2 and a keyboard 3 that receive input of instructions from a user of the computer system 1200, data generated by execution of a program by the CPU 1, or a mouse 2 Alternatively, a RAM 4 that stores data input via the keyboard 3 in a volatile manner, a hard disk 5 that stores data in a nonvolatile manner, an optical disk drive device 6, a monitor 8, and a communication IF (Interface) 9 are provided. Each component is connected to each other by a bus. A CD-ROM 9 and other optical disks are mounted on the optical disk drive 6.
  • Processing in the computer system 1200 is realized by software executed by each hardware and the CPU 1.
  • Such software may be stored in the hard disk 5 in advance.
  • the software is stored in a CD-ROM 9 or other computer-readable data recording medium and distributed as a program product.
  • the software may be provided as a program product that can be downloaded by an information provider connected to the Internet or other networks.
  • Such software is read from the data recording medium by the optical disk drive 6 or other data reading device, or downloaded via the communication IF 7 and then temporarily stored in the hard disk 5.
  • the software is read from the hard disk 5 by the CPU 1 and stored in the RAM 4 in the form of an executable program.
  • the CPU 1 executes the program.
  • Each component constituting the computer system 1200 shown in FIG. 12 is a general one. Accordingly, it can be said that the essential part of the present invention is software stored in the RAM 4, the hard disk 5, the CD-ROM 9, or other data recording medium, or software that can be downloaded via a network. Since the operation of each hardware of computer system 1200 is well known, detailed description will not be repeated.
  • Data recording and recording media are not limited to CD-ROM, FD (Flexible Disk), and hard disk, but are magnetic tape, cassette tape, optical disk (MO (Magnetic Optical Disc) / MD (Mini Disc) / DVD (Digital Versatile Disc). )), IC (Integrated Circuit) card (including memory card), optical card, mask ROM, EPROM (Electronically Programmable Read-Only Memory), EEPROM (Electronically Erasable Programmable Read-Only Memory), semiconductor memory such as flash ROM, etc. It may be a medium that carries a fixed program.
  • the program may include not only a program that can be directly executed by the CPU, but also a program in a source program format, a compressed program, an encrypted program, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Provided is an x-ray examination device in which image pick-up time becomes shorter. The processing executed by the x-ray examination device includes the following steps: a step (S710) in which, in a state where the focus point in an examination object is continually projected to the light receiving center of an x-ray detector, the x-ray detector and an image pick-up visual field are caused to move continuously on a trajectory established beforehand for the movement of the x-ray detector and the image pick-up visual field; a step (S720) in which during such movement, in target positions, an x-ray generator is driven so as to continuously project x-rays, and in a period in which the x-ray detector is in an exposed state, x-rays are projected; a step (S730) in which x-rays are exposed and a projection image is output; and a step (S760) in which if n pre-established exposures are performed ("YES" in step S750) 3D images are reconfigured from n projection images.

Description

X線検査装置、X線検査装置の制御方法、X線検査装置を制御するためのプログラム、および、当該プログラムを格納した記録媒体X-ray inspection apparatus, control method for X-ray inspection apparatus, program for controlling X-ray inspection apparatus, and recording medium storing the program
 本発明は、X線検査装置に関し、より特定的には、X線画像を早く取得するためのX線検査装置に関する。 The present invention relates to an X-ray inspection apparatus, and more particularly to an X-ray inspection apparatus for acquiring an X-ray image early.
 X線を用いたCT(Computed Tomography)自動検査装置では、インラインで検査をするために高速化が求められている。高速化のための撮像系構成例として、たとえば、特開2009-156788号公報(特許文献1)は、平行な面上を移動するXY軸を用いて検査対象物および2次元X線検出器を移動させることで、複数の異なる方向からX線画像(以下「プロジェクション画像」という。)を取得する技術を開示している。 In CT (Computed Tomography) automatic inspection equipment using X-rays, high speed is required for in-line inspection. As an example of an imaging system configuration for speeding up, for example, Japanese Patent Laying-Open No. 2009-156788 (Patent Document 1) describes an inspection object and a two-dimensional X-ray detector using XY axes that move on parallel planes. A technique for acquiring X-ray images (hereinafter referred to as “projection images”) from a plurality of different directions by moving them is disclosed.
特開2009-156788号公報JP 2009-156788 A
 2次元X線検出器を用いて同一箇所を複数角度から撮像できる機構を持った傾斜CT自動検査装置では、撮像角度を変更するための機構の移動および停止と、撮像(X線照射およびX線検出器の露光)とが時間的に直列に実行される(いわゆる、ストップ・アンド・ゴー(STOP&GO)方式)。その結果、撮像に寄与しない機構の移動の時間が検査時間の損失となるため、検査時間をさらに短くすることができないという問題がある。 In an inclined CT automatic inspection apparatus having a mechanism capable of imaging the same part from a plurality of angles using a two-dimensional X-ray detector, the mechanism for changing the imaging angle is moved and stopped, and imaging (X-ray irradiation and X-rays) is performed. Detector exposure) is performed in series in time (so-called STOP & GO method). As a result, there is a problem in that the inspection time cannot be further shortened because the movement time of the mechanism that does not contribute to imaging results in a loss of the inspection time.
 本発明は、上述のような問題点を解決するためになされたものであって、その目的は、X線画像の取得を高速化できるX線検査装置を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an X-ray inspection apparatus capable of speeding up the acquisition of X-ray images.
 他の局面の目的は、X線画像の取得が高速化されるX線検査方法を提供することである。他の局面の目的は、X線画像の取得が高速化されるようにX線検査装置を制御するためのプログラムを提供することである。さらに他の局面の目的は、当該プログラムを格納したコンピュータ読み取り可能な記録媒体を提供することである。 Another object of the present invention is to provide an X-ray inspection method that speeds up X-ray image acquisition. Another object of the present invention is to provide a program for controlling an X-ray inspection apparatus so that acquisition of an X-ray image is accelerated. Still another object of the present invention is to provide a computer-readable recording medium storing the program.
 一実施の形態に従うと、対象物の検査対象領域を透過したX線を複数の検出面で受光することにより、検査対象領域の像の再構成処理を実行するためのX線検査装置が提供される。このX線検査装置は、対象物を移動するための対象物移動機構と、対象物にX線を照射するためのX線源と、検査対象領域を透過したX線を検出するためのX線検出器と、X線検出器を移動するための検出器移動機構と、対象物とX線検出器が移動する予め設定された軌道条件の下で、検査対象領域の一点を透過したX線がX線検出器の受光中心に投影されるようにX線検出器の移動目標位置と対象物の移動目標位置を算出するように構成された位置算出部と、X線検出器が算出された移動目標位置が位置する軌道条件の内の第1の軌道に沿って移動するように、検出器移動機構の駆動を制御するための検出器位置制御部と、対象物が算出された移動目標位置が位置する軌道条件の内の第2の軌道に沿って移動するように、対象物移動機構の駆動を制御するための対象物位置制御部と、X線検出器および対象物が移動している間、対象物に向けてX線を照射するようにX線源を制御するためのX線源制御部と、X線検出器および対象物が移動している間、対象物を透過したX線にX線検出器を複数回露光させることにより、複数の投影画像を取得するためのX線画像取得部と、再構成アルゴリズムを用いて複数の投影画像から3次元の画像を再構成するための演算部とを備える。 According to an embodiment, an X-ray inspection apparatus is provided for performing an image reconstruction process on an inspection target region by receiving X-rays transmitted through the inspection target region of an object with a plurality of detection surfaces. The The X-ray inspection apparatus includes an object moving mechanism for moving an object, an X-ray source for irradiating the object with X-rays, and an X-ray for detecting X-rays that have passed through the inspection object region. X-rays that have passed through one point of the inspection target area under a predetermined trajectory condition in which the detector, the detector moving mechanism for moving the X-ray detector, and the object and the X-ray detector move are set in advance. A position calculator configured to calculate a movement target position of the X-ray detector and a movement target position of the object so as to be projected onto the light receiving center of the X-ray detector, and a movement calculated by the X-ray detector; A detector position control unit for controlling the driving of the detector moving mechanism so as to move along a first trajectory of the trajectory conditions where the target position is located, and a moving target position where the object is calculated The object moving mechanism is moved so as to move along the second trajectory of the trajectory conditions being positioned. X-ray source for controlling the X-ray source to irradiate X-rays toward the object while the object position control unit for controlling movement, the X-ray detector and the object are moving An X-ray image for acquiring a plurality of projection images by exposing the X-ray detector a plurality of times to X-rays transmitted through the object while the control unit, the X-ray detector and the object are moving. An acquisition unit and a calculation unit for reconstructing a three-dimensional image from a plurality of projection images using a reconstruction algorithm are provided.
 好ましくは、第1の軌道および第2の軌道は、円軌道である。X線検出器および対象物がX線源を中心とする同心円状に移動するように、検出器移動機構はX線検出器を移動するように構成されており、対象物移動機構は対象物を移動するように構成されている。 Preferably, the first trajectory and the second trajectory are circular trajectories. The detector moving mechanism is configured to move the X-ray detector so that the X-ray detector and the object move concentrically around the X-ray source, and the object moving mechanism moves the object. Is configured to move.
 好ましくは、X線検出器は、矩形の視野により、複数の検出面でX線を受光して撮像するための矩形のX線検出器である。検出器位置制御部は、各移動目標位置におけるX線検出器の矩形の各辺が同一の方向を向くようにX線検出器を第1の軌道に沿って平行移動させる制御を行なうように構成されている。 Preferably, the X-ray detector is a rectangular X-ray detector for receiving and imaging X-rays on a plurality of detection surfaces with a rectangular field of view. The detector position control unit is configured to perform control to translate the X-ray detector along the first trajectory so that each rectangular side of the X-ray detector at each movement target position faces the same direction. Has been.
 好ましくは、X線源制御部は、対象物およびX線検出器が移動している間、X線を連続的に照射するようにX線源を駆動するように構成されている。 Preferably, the X-ray source control unit is configured to drive the X-ray source so as to continuously irradiate X-rays while the object and the X-ray detector are moving.
 好ましくは、X線源制御部は、対象物に対してX線を複数回照射するようにX線源を制御するように構成されている。X線検出器は、X線が照射されるタイミングに応じて複数回露光するように構成されている。 Preferably, the X-ray source control unit is configured to control the X-ray source so that the object is irradiated with the X-rays a plurality of times. The X-ray detector is configured to expose a plurality of times in accordance with the timing of X-ray irradiation.
 他の実施の形態に従うと、対象物の検査対象領域を透過したX線を複数の検出面でX線検出器を用いて受光することにより、検査対象領域の像の再構成処理を実行するX線検査装置の制御方法が提供される。この制御方法は、対象物とX線検出器が移動する予め設定された軌道条件の下で、検査対象領域の一点を透過したX線がX線検出器の受光中心に投影されるようにX線検出器の移動目標位置と対象物の移動目標位置を算出するステップと、算出されたX線検出器の移動目標位置が位置する軌道条件の内の第1の軌道に沿ってX線検出器を移動するステップと、算出された対象物の移動目標位置が位置する軌道条件の内の第2の軌道に沿って対象物を移動するステップと、X線検出器および対象物が移動している間、対象物に向けてX線を照射するステップと、X線検出器および対象物が移動している間、対象物を透過したX線にX線検出器を複数回露光させることにより、複数の投影画像を取得するステップと、再構成アルゴリズムを用いて複数の投影画像から3次元の画像を再構成するステップとを含む。 According to another embodiment, X-rays that have passed through the inspection target region of the object are received by a plurality of detection surfaces using an X-ray detector, thereby executing an image reconstruction process for the inspection target region. A method for controlling a line inspection apparatus is provided. In this control method, X-rays that have passed through one point of the inspection target region are projected onto the light receiving center of the X-ray detector under a predetermined trajectory condition in which the object and the X-ray detector move. A step of calculating a movement target position of the line detector and a movement target position of the object, and an X-ray detector along a first orbit among the orbital conditions in which the calculated movement target position of the X-ray detector is located; , A step of moving the object along a second trajectory of trajectory conditions where the calculated movement target position of the object is located, and the X-ray detector and the object are moving A step of irradiating the X-ray toward the object, and by exposing the X-ray detector to the X-rays transmitted through the object a plurality of times while the X-ray detector and the object are moving, Using the reconstruction algorithm And a step of reconstructing a 3-dimensional image from the number of the projected image.
 好ましくは、第1の軌道および第2の軌道は、円軌道である。X線検出器を移動するステップは、X線検出器および対象物がX線源を中心とする同心円状に移動するように、X線検出器を移動するステップを含み、対象物を移動するステップは、X線検出器および対象物がX線源を中心とする同心円状に移動するように、対象物を移動するステップを含む。 Preferably, the first trajectory and the second trajectory are circular trajectories. Moving the X-ray detector includes moving the X-ray detector such that the X-ray detector and the object move concentrically around the X-ray source, and moving the object Includes moving the object such that the X-ray detector and the object move concentrically about the X-ray source.
 好ましくは、X線検出器は、矩形の視野により、複数の検出面でX線を受光して撮像するための矩形のX線検出器である。X線検出器を移動するステップは、各移動目標位置におけるX線検出器の矩形の各辺が同一の方向を向くようにX線検出器を第1の軌道に沿って平行移動するステップを含む。 Preferably, the X-ray detector is a rectangular X-ray detector for receiving and imaging X-rays on a plurality of detection surfaces with a rectangular field of view. The step of moving the X-ray detector includes a step of translating the X-ray detector along the first trajectory so that each side of the rectangle of the X-ray detector at each movement target position faces the same direction. .
 好ましくは、X線を照射するステップは、対象物およびX線検出器が移動している間、X線を連続的に照射するステップを含む。 Preferably, the step of irradiating the X-ray includes a step of continuously irradiating the X-ray while the object and the X-ray detector are moving.
 好ましくは、X線を照射するステップは、対象物に対してX線を複数回照射するステップを含む。複数の投影画像を取得するステップは、X線が照射されるタイミングに応じて複数回露光するステップを含む。 Preferably, the step of irradiating the X-ray includes a step of irradiating the object with the X-ray a plurality of times. The step of acquiring a plurality of projection images includes a step of exposing a plurality of times according to the timing of irradiation with X-rays.
 他の実施の形態に従うと、対象物の検査対象領域を透過したX線を複数の検出面でX線検出器を用いて受光することにより、検査対象領域の像の再構成処理を実行するX線検査装置を制御するためのプログラムが提供される。プログラムは、X線検査装置に、対象物とX線検出器が移動する予め設定された軌道条件の下で、検査対象領域の一点を透過したX線がX線検出器の受光中心に投影されるようにX線検出器の移動目標位置と対象物の移動目標位置を算出するステップと、算出されたX線検出器の移動目標位置が位置する軌道条件の内の第1の軌道に沿ってX線検出器を移動するステップと、算出された対象物の移動目標位置が位置する軌道条件の内の第2の軌道に沿って対象物を移動するステップと、X線検出器および対象物が移動している間、対象物に向けてX線を照射するステップと、X線検出器および対象物が移動している間、対象物を透過したX線にX線検出器を複数回露光させることにより、複数の投影画像を取得するステップと、再構成アルゴリズムを用いて複数の投影画像から3次元の画像を再構成するステップとを実行させる。 According to another embodiment, X-rays that have passed through the inspection target region of the object are received by a plurality of detection surfaces using an X-ray detector, thereby executing an image reconstruction process for the inspection target region. A program for controlling the line inspection apparatus is provided. The program projects an X-ray that has passed through one point of the inspection target area onto the light receiving center of the X-ray detector under a predetermined orbital condition in which the object and the X-ray detector move. A step of calculating the movement target position of the X-ray detector and the movement target position of the target object, and a first trajectory of the trajectory conditions where the calculated movement target position of the X-ray detector is located. A step of moving the X-ray detector, a step of moving the object along a second trajectory of the trajectory conditions where the calculated movement target position of the object is located, and the X-ray detector and the object A step of irradiating the object with X-rays while moving, and an X-ray detector that exposes the X-ray detector a plurality of times while the X-ray detector and the object move while the object is moving A step of acquiring a plurality of projection images and a reconstruction algorithm Using prism and a step of reconstructing a 3-dimensional image from a plurality of projection images.
 好ましくは、第1の軌道および第2の軌道は、円軌道である。プログラムは、X線検出器を移動するステップとして、X線検出器および対象物がX線源を中心とする同心円状に移動するように、X線検出器を移動するステップを実行させ、対象物を移動するステップとして、X線検出器および対象物がX線源を中心とする同心円状に移動するように、対象物を移動するステップを実行させる。 Preferably, the first trajectory and the second trajectory are circular trajectories. The program executes the step of moving the X-ray detector so that the X-ray detector and the object move concentrically around the X-ray source as the step of moving the X-ray detector. The step of moving the object is executed so that the X-ray detector and the object move concentrically around the X-ray source.
 好ましくは、X線検出器は、矩形の視野により、複数の検出面でX線を受光して撮像するための矩形のX線検出器である。プログラムは、X線検出器を移動するステップとして、各移動目標位置におけるX線検出器の矩形の各辺が同一の方向を向くようにX線検出器を第1の軌道に沿って平行移動するステップを実行させる。 Preferably, the X-ray detector is a rectangular X-ray detector for receiving and imaging X-rays on a plurality of detection surfaces with a rectangular field of view. As a step of moving the X-ray detector, the program translates the X-ray detector along the first trajectory so that each side of the rectangle of the X-ray detector at each movement target position faces the same direction. Make the step execute.
 好ましくは、プログラムは、X線を照射するステップとして、対象物およびX線検出器が移動している間、X線を連続的に照射するステップを実行させる。 Preferably, as a step of irradiating the X-ray, the program executes a step of continuously irradiating the X-ray while the object and the X-ray detector are moving.
 好ましくは、プログラムは、X線を照射するステップとして、対象物に対してX線を複数回照射するステップを実行させ、複数の投影画像を取得するステップとして、X線が照射されるタイミングに応じて複数回露光するステップを実行させる。 Preferably, the program executes a step of irradiating the target object with X-rays a plurality of times as the step of irradiating X-rays, and according to a timing at which the X-rays are irradiated as a step of acquiring a plurality of projection images. The step of performing multiple exposures is executed.
 他の実施の形態に従うと、上記のいずれかに記載のプログラムを格納した、コンピュータ読み取り可能な不揮発性のデータ記録媒体が提供される。 According to another embodiment, a computer-readable non-volatile data recording medium storing any of the programs described above is provided.
 ある局面において、X線検査に必要なX線画像が高速に取得される。
 この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。
In one aspect, an X-ray image necessary for X-ray inspection is acquired at high speed.
The above and other objects, features, aspects and advantages of the present invention will become apparent from the following detailed description of the present invention taken in conjunction with the accompanying drawings.
X線検査装置100のハードウェア構成を表わすブロック図である。2 is a block diagram showing a hardware configuration of an X-ray inspection apparatus 100. FIG. X線検査装置100が実行する一連の処理の一部を表わすフローチャートである。3 is a flowchart showing a part of a series of processes executed by X-ray inspection apparatus 100. X線検出器23と撮像視野310が移動する状態を上方から表わす図である。It is a figure showing the state to which the X-ray detector 23 and the imaging visual field 310 move from upper direction. X線検査装置400のハードウェア構成を表わすブロック図である。2 is a block diagram showing a hardware configuration of an X-ray inspection apparatus 400. FIG. X線発生器10を中心にX線検査装置400を上から見た図である。It is the figure which looked at the X-ray inspection apparatus 400 from the top centering on the X-ray generator. 検査対象物20を基準にX線検出器23とX線発生器10の相対的な位置を表わす図である。FIG. 3 is a diagram showing the relative positions of an X-ray detector 23 and an X-ray generator 10 with an inspection object 20 as a reference. X線検査装置400が備える演算部410が実行する一連の処理の一部を表わすフローチャートである。7 is a flowchart showing a part of a series of processes executed by a calculation unit 410 included in the X-ray inspection apparatus 400. X線検査装置100の各構成要素の動作のパターンを表わすタイミングチャートである。3 is a timing chart showing an operation pattern of each component of the X-ray inspection apparatus 100. 本実施の形態に係るX線検査装置400の動作のパターンを表わすタイミングチャートである。It is a timing chart showing the pattern of operation | movement of the X-ray inspection apparatus 400 which concerns on this Embodiment. X線検査装置1000の構成の一部を表わす図である。It is a figure showing a part of structure of the X-ray inspection apparatus 1000. X線検出器23および検査対象物20がそれぞれ回転した状態において得られる画像の推移を表わす図である。It is a figure showing transition of the image obtained in the state where X-ray detector 23 and inspection subject 20 rotated, respectively. コンピュータシステム1200のハードウェア構成を表わすブロック図である。2 is a block diagram illustrating a hardware configuration of a computer system 1200. FIG.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 <第1の実施の形態>
  [ハードウェア構成]
 図1を参照して、ある局面に従うX線検査装置100の構成について説明する。図1は、X線検査装置100のハードウェア構成を表わすブロック図である。
<First Embodiment>
[Hardware configuration]
With reference to FIG. 1, the structure of the X-ray inspection apparatus 100 according to a certain situation is demonstrated. FIG. 1 is a block diagram illustrating a hardware configuration of the X-ray inspection apparatus 100.
 X線検査装置100は、X線発生器10と、ステージ18と、X線検出器駆動部22と、X線検出器23と、画像取得制御機構30と、入力部40と、出力部50と、X線源制御機構60と、演算部70と、メモリ90とを備える。 The X-ray inspection apparatus 100 includes an X-ray generator 10, a stage 18, an X-ray detector driving unit 22, an X-ray detector 23, an image acquisition control mechanism 30, an input unit 40, and an output unit 50. , An X-ray source control mechanism 60, a calculation unit 70, and a memory 90.
 X線発生器10は、X線焦点17を含む。X線検出器駆動部22は、直交タイプの2軸のロボットアーム22.1と、検出器支持部22.2とを含む。画像取得制御機構30は、検出器駆動制御部32と、画像データ取得部34とを含む。演算部70は、検査対象位置制御部80を含む。ステージ18には、検査対象物20が搭載される。 The X-ray generator 10 includes an X-ray focal point 17. The X-ray detector driving unit 22 includes an orthogonal type biaxial robot arm 22.1 and a detector support unit 22.2. The image acquisition control mechanism 30 includes a detector drive control unit 32 and an image data acquisition unit 34. The calculation unit 70 includes an inspection target position control unit 80. An inspection object 20 is mounted on the stage 18.
 X線発生器10は、X線焦点17を通る軸を中心軸としてX線を出力する。X線発生器10は、X線源制御機構60によって制御される。X線源制御機構60は、電子ビームの出力を制御する。具体的には、X線源制御機構60は、演算部70から、X線エネルギー(管電圧、管電流)の指定を受ける。X線エネルギーは、検査対象物20の構成によって異なる。 The X-ray generator 10 outputs X-rays with the axis passing through the X-ray focal point 17 as the central axis. The X-ray generator 10 is controlled by the X-ray source control mechanism 60. The X-ray source control mechanism 60 controls the output of the electron beam. Specifically, the X-ray source control mechanism 60 receives designation of X-ray energy (tube voltage, tube current) from the calculation unit 70. The X-ray energy varies depending on the configuration of the inspection object 20.
 ステージ18には、検査対象物20が搬入される。ステージ18は、たとえば、X-Y-Zステージとして構成され、任意の位置に移動することができる。ステージ18の移動は、たとえば、円軌道や線形軌道に従って移動する。他の局面において、ステージ18は、ベルトコンベアのように一方向に移動することにより検査のための位置に検査対象物20を配置するように構成され得る。 The inspection object 20 is carried into the stage 18. The stage 18 is configured as an XYZ stage, for example, and can be moved to an arbitrary position. The stage 18 moves, for example, according to a circular or linear trajectory. In another aspect, the stage 18 may be configured to place the inspection object 20 at a position for inspection by moving in one direction like a belt conveyor.
 X線検出器駆動部22は、検出器駆動制御部32を通して、演算部70からの命令によってX線検出器23を指定された位置に移動させる。また、検出器駆動制御部32は、その時点でのX線検出器23の位置情報を演算部70に送る。 The X-ray detector driving unit 22 moves the X-ray detector 23 to a designated position through a detector drive control unit 32 according to a command from the calculation unit 70. Further, the detector drive control unit 32 sends the position information of the X-ray detector 23 at that time to the calculation unit 70.
 より詳しくは、X線検出器駆動部22において、ロボットアーム22.1と検出器支持部22.2とは、X線検出器23を指定された位置に移動する。たとえば、X線検出器駆動部22は、XYθの自由度でX線検出器23を駆動可能できるXYθ動作機構として構成される。 More specifically, in the X-ray detector driving unit 22, the robot arm 22.1 and the detector support unit 22.2 move the X-ray detector 23 to a designated position. For example, the X-ray detector driving unit 22 is configured as an XYθ operation mechanism capable of driving the X-ray detector 23 with XYθ degrees of freedom.
 なお、X線検出器駆動部22は、上記の構成に限られず、X-Y方向の移動またはX-Y平面内でのθ回転を可能とする構成であり、X線検出器23の移動に対して同様の機能を持つものであればよい。 The X-ray detector driving unit 22 is not limited to the above-described configuration, and is configured to be capable of moving in the XY direction or rotating in the XY plane. Any device having the same function may be used.
 X線検出器23は、X線発生器10によって出力されて検査対象物20を透過したX線を検出して画像化する2次元X線検出器である。たとえば、X線検出器23は、CCD(Charge Coupled Device)カメラ、I.I(Image Intensifier)管、スペース効率のよいFPD(Flat Panel Detector)である。また、X線検出器23は、インライン検査で使うことができるように高感度であることが望ましく、CdTeを使った直接変換方式のFPDであってもよい。 The X-ray detector 23 is a two-dimensional X-ray detector that detects and images X-rays output from the X-ray generator 10 and transmitted through the inspection object 20. For example, the X-ray detector 23 is a CCD (Charge Coupled Device) camera, I.D. I (Image Intensifier) tube, space efficient FPD (Flat Panel Detector). The X-ray detector 23 is desirably highly sensitive so that it can be used for in-line inspection, and may be a direct conversion type FPD using CdTe.
 画像取得制御機構30は、X線検出器駆動部22によるX線検出器23の駆動、およびX線検出器23からの画像データの取得を制御する。具体的には、検出器駆動制御部32は、演算部70によって指定された位置にX線検出器23を移動するように、X線検出器駆動部22を制御する。画像データ取得部34は、X線検出器23の画像データを取得する。複数のX線検出器23が用いられる場合には、画像データ取得部34は、演算部70から指定されたX線検出器23の画像データを取得し得る。 The image acquisition control mechanism 30 controls driving of the X-ray detector 23 by the X-ray detector driving unit 22 and acquisition of image data from the X-ray detector 23. Specifically, the detector drive control unit 32 controls the X-ray detector drive unit 22 so as to move the X-ray detector 23 to the position specified by the calculation unit 70. The image data acquisition unit 34 acquires image data of the X-ray detector 23. When a plurality of X-ray detectors 23 are used, the image data acquisition unit 34 can acquire the image data of the X-ray detector 23 specified by the calculation unit 70.
 入力部40は、X線検査装置100のユーザからの指示入力等を受け付ける。入力部40は、たとえば、周知のコンピュータシステムに用いられるキーボード、マウス、タッチパネル、無線通信インターフェイス等によって実現される。 The input unit 40 receives an instruction input from the user of the X-ray inspection apparatus 100. The input unit 40 is realized by, for example, a keyboard, a mouse, a touch panel, a wireless communication interface, or the like used in a known computer system.
 出力部50は、測定結果等を外部に出力する。出力部50は、たとえば、演算部70で構成されたX線画像等を表示するモニタ装置として実現される。他の局面において、出力部50は、画像信号を出力するインターフェイスとして実現される。 The output unit 50 outputs measurement results and the like to the outside. The output unit 50 is realized, for example, as a monitor device that displays an X-ray image or the like configured by the calculation unit 70. In another aspect, the output unit 50 is realized as an interface that outputs an image signal.
 X線源制御機構60は、X線発生器10によるX線の照射タイミング、照射時間、および強度を制御する。 The X-ray source control mechanism 60 controls the X-ray irradiation timing, irradiation time, and intensity by the X-ray generator 10.
 演算部70は、メモリ90に格納されたプログラム(図示しない)を実行して各部を制御し、また、所定の演算処理を実行する。 The calculation unit 70 executes a program (not shown) stored in the memory 90 to control each unit, and executes predetermined calculation processing.
 検査対象位置制御部80は、ステージ18の移動を制御することにより、X線撮像のために必要な位置決めを実行する。 The inspection target position control unit 80 performs positioning necessary for X-ray imaging by controlling the movement of the stage 18.
 メモリ90は、X線検査装置100の動作を制御するためのプログラム、取得されたX線画像データ等を格納する。 The memory 90 stores a program for controlling the operation of the X-ray inspection apparatus 100, acquired X-ray image data, and the like.
  [制御構造]
 図2を参照して、ある局面におけるX線検査装置100の制御構造について説明する。図2は、X線検査装置100が実行する一連の処理の一部を表わすフローチャートである。
[Control structure]
A control structure of the X-ray inspection apparatus 100 in a certain aspect will be described with reference to FIG. FIG. 2 is a flowchart showing a part of a series of processes executed by the X-ray inspection apparatus 100.
 ステップS102にて、演算部70は、検査対象物20が置かれたステージ18を駆動することにより、視野を移動する。 In step S102, the calculation unit 70 moves the visual field by driving the stage 18 on which the inspection object 20 is placed.
 ステップS104にて、X線検査装置100は、透視画像を撮像する。具体的には、画像データ取得部34は、X線発生器10から照射されて検査対象物20を透過したX線の画像データをX線検出器23から受信する。画像データは、メモリ90に格納される。 In step S104, the X-ray inspection apparatus 100 captures a fluoroscopic image. Specifically, the image data acquisition unit 34 receives X-ray image data irradiated from the X-ray generator 10 and transmitted through the inspection object 20 from the X-ray detector 23. Image data is stored in the memory 90.
 ステップS106にて、演算部70は、撮像によって得られた透視画像を検査する。
 ステップS108にて、演算部70は、その検査の結果に基づいて、再構成画像の検査が必要であるか否かを判断する。演算部70は、再構成画像の検査が必要であると判断すると(ステップS108にてYES)、制御をステップS110に切り換える。そうでない場合には(ステップS108にてNO)、演算部70は、制御を終了する。
In step S106, the calculation unit 70 inspects the fluoroscopic image obtained by imaging.
In step S108, the arithmetic unit 70 determines whether or not the reconstructed image needs to be inspected based on the inspection result. If calculation unit 70 determines that inspection of the reconstructed image is necessary (YES in step S108), control unit 70 switches control to step S110. When that is not right (it is NO at step S108), the calculating part 70 complete | finishes control.
 ステップS110にて、演算部70は、一視野のCT(Computed Tomography)撮像処理を実行する。 In step S110, the calculation unit 70 executes a CT (Computed Tomography) imaging process for one field of view.
 ステップS112にて、演算部70は、CT撮像処理によって得られた画像を用いて検査対象物20の画像を再構成する。 In step S112, the calculation unit 70 reconstructs an image of the inspection object 20 using the image obtained by the CT imaging process.
 ステップS112にて、演算部70は、再構成画像を検査する。
 ステップS116にて、演算部70は、全視野の検査を終了したか否かを判断する。演算部70は、全視野の検査を終了したと判断すると(ステップS116にてYES)、検査を終了する。そうでない場合には(ステップS116にてNO)、演算部70は、制御をステップS102に戻す。
In step S112, the arithmetic unit 70 inspects the reconstructed image.
In step S116, operation unit 70 determines whether or not the inspection of the entire visual field has been completed. When calculating unit 70 determines that the inspection of the entire visual field has been completed (YES in step S116), it ends the inspection. If not (NO in step S116), operation unit 70 returns control to step S102.
  [視野の移動]
 図3を参照して、X線検査装置100におけるX線検出器23および撮像視野310の移動について説明する。図3は、X線検出器23と撮像視野310が移動する状態を上方から表わす図である。
[Moving the field of view]
With reference to FIG. 3, the movement of the X-ray detector 23 and the imaging visual field 310 in the X-ray inspection apparatus 100 will be described. FIG. 3 is a diagram illustrating a state in which the X-ray detector 23 and the imaging visual field 310 move from above.
 ある局面において、X線検出器23および撮像視野310は、X線発生器10を回転中心として反時計回りに回転する。X線検出器23は、X線検出器軌道320の軌道上を移動し、検査対象物20に含まれる撮像視野310は、撮像視野軌道330の軌道上を移動する。 In one aspect, the X-ray detector 23 and the imaging visual field 310 rotate counterclockwise about the X-ray generator 10 as a rotation center. The X-ray detector 23 moves on the trajectory of the X-ray detector trajectory 320, and the imaging visual field 310 included in the inspection target 20 moves on the trajectory of the imaging visual field trajectory 330.
 たとえば、図3に示される例では、検査が開始される時点では、X線検出器23は、目標位置D1に配置される。このとき、検査対象物20に含まれる撮像視野310は、目標位置V1に位置決めされる。この状態でX線発生器10がX線を照射すると、撮像視野310のプロジェクション画像P1が取得される。 For example, in the example shown in FIG. 3, the X-ray detector 23 is arranged at the target position D1 at the time when the inspection is started. At this time, the imaging visual field 310 included in the inspection target 20 is positioned at the target position V1. When the X-ray generator 10 emits X-rays in this state, a projection image P1 of the imaging field of view 310 is acquired.
 その後、X線検出器23が駆動されて、目標位置D1から目標位置D2に移動する。このとき、検査対象物20を載せたステージ18も同じ角度だけ回転し、目標位置V2まで移動する。この状態でX線発生器10がX線を照射すると、プロジェクション画像P2が取得される。 Thereafter, the X-ray detector 23 is driven to move from the target position D1 to the target position D2. At this time, the stage 18 on which the inspection object 20 is placed also rotates by the same angle and moves to the target position V2. When the X-ray generator 10 emits X-rays in this state, a projection image P2 is acquired.
 以降も同様に、目標位置D3,V3においてプロジェクション画像P3が取得され、目標位置D4,V4においてプロジェクション画像P4が取得される。n枚のプロジェクション画像が再構成のために必要とされる場合には、目標位置Dn,Vnまで移動と撮像とが交互に行なわれる。 Thereafter, similarly, the projection image P3 is acquired at the target positions D3 and V3, and the projection image P4 is acquired at the target positions D4 and V4. When n projection images are required for reconstruction, movement to the target positions Dn and Vn and imaging are alternately performed.
  [ハードウェア構成]
 図4を参照して、ある局面の実施の形態に係るX線検査装置400の構成について説明する。図4は、X線検査装置400のハードウェア構成を表わすブロック図である。
[Hardware configuration]
With reference to FIG. 4, the structure of the X-ray inspection apparatus 400 which concerns on embodiment of a certain situation is demonstrated. FIG. 4 is a block diagram showing a hardware configuration of the X-ray inspection apparatus 400.
 X線検査装置400は、X線発生器10と、ステージ18と、直交タイプの2軸のロボットアーム22.1と、検出器支持部22.2と、X線検出器23と、演算部410と、主記憶部420と、補助記憶部425と、入力部40と、出力部50と、X線検出器位置制御機構440と、X線画像取得機構445と、光学カメラ位置制御機構450と、カメラ460と、光学画像取得機構455と、ステージ位置制御機構465と、X線源制御機構60とを備える。ステージ18には、検査対象物20が搭載されている。検査対象物20は、撮像視野310を含む。 The X-ray inspection apparatus 400 includes an X-ray generator 10, a stage 18, an orthogonal type biaxial robot arm 22.1, a detector support unit 22.2, an X-ray detector 23, and a calculation unit 410. A main storage unit 420, an auxiliary storage unit 425, an input unit 40, an output unit 50, an X-ray detector position control mechanism 440, an X-ray image acquisition mechanism 445, an optical camera position control mechanism 450, A camera 460, an optical image acquisition mechanism 455, a stage position control mechanism 465, and an X-ray source control mechanism 60 are provided. An inspection object 20 is mounted on the stage 18. The inspection object 20 includes an imaging visual field 310.
 X線検出器23は、X線検出器軌道320上を移動するように、ロボットアーム22.1と、検出器支持部22.2とによって駆動される。 The X-ray detector 23 is driven by the robot arm 22.1 and the detector support 22.2 so as to move on the X-ray detector trajectory 320.
 検査対象物20の位置は、撮像視野310が撮像視野軌道330上を移動するように、ステージ位置制御機構465によって位置決めされて、ステージ18によって目標位置まで移動される。このとき、X線発生器10から撮像視野310に向けて照射されるX線が常にX線検出器23によって検出されるように、X線検出器23およびステージ18は、それぞれ、X線検出器軌道320および撮像視野軌道330上を移動する。 The position of the inspection object 20 is positioned by the stage position control mechanism 465 so that the imaging visual field 310 moves on the imaging visual field trajectory 330 and is moved to the target position by the stage 18. At this time, the X-ray detector 23 and the stage 18 are respectively connected to the X-ray detector so that X-rays emitted from the X-ray generator 10 toward the imaging visual field 310 are always detected by the X-ray detector 23. It moves on the trajectory 320 and the imaging visual field trajectory 330.
 演算部410は、X線検査装置400の動作を制御する。たとえば、ある局面において、演算部410は、検査対象物20に応じて、X線発生器10からX線を出力する際の条件を設定し、主記憶部420に格納する。当該条件は、たとえば、X線発生器10に対する印加電圧、撮像時間等を含む。X線源制御機構60は、その条件に基づいてX線発生器10によるX線の照射を制御する。X線画像取得機構445は、設定された撮像時間に従って、X線検出器23によるX線の露光時間を制御する。 The calculation unit 410 controls the operation of the X-ray inspection apparatus 400. For example, in a certain aspect, the calculation unit 410 sets conditions for outputting X-rays from the X-ray generator 10 according to the inspection object 20 and stores the conditions in the main storage unit 420. The conditions include, for example, an applied voltage to the X-ray generator 10 and an imaging time. The X-ray source control mechanism 60 controls X-ray irradiation by the X-ray generator 10 based on the conditions. The X-ray image acquisition mechanism 445 controls the X-ray exposure time by the X-ray detector 23 according to the set imaging time.
 ある局面において演算部410は、取得されたプロジェクション画像から検査対象物20の3次元画像を再構成するための処理を実行する。他の局面において、演算部410は、検査対象物20の良否を判定する。たとえば、演算部410は、再構成された3次元の画像データ又は透視データを用いて、検査対象物20の良否を判定する。この場合、演算部410は、半田ボールの形状を認識し、当該形状が予め定められた許容範囲内であるか否かを判定する等により、検査対象物20の良否を判定する。なお、良否を判定するためのアルゴリズムおよび当該アルゴリズムに対する入力情報は、検査対象物20によって異なる。したがって、検査対象物20の種類に応じたアルゴリズムや入力情報は、撮像条件情報として入力部40から入力されて主記憶部420に格納される。 In a certain aspect, the calculation unit 410 executes processing for reconstructing a three-dimensional image of the inspection target 20 from the acquired projection image. In another aspect, the calculation unit 410 determines the quality of the inspection target 20. For example, the calculation unit 410 determines pass / fail of the inspection target 20 using the reconstructed three-dimensional image data or fluoroscopic data. In this case, the calculation unit 410 recognizes the shape of the solder ball and determines whether the inspection object 20 is good or not by determining whether the shape is within a predetermined allowable range. Note that an algorithm for determining pass / fail and input information for the algorithm differ depending on the inspection object 20. Therefore, an algorithm and input information corresponding to the type of the inspection object 20 are input from the input unit 40 as imaging condition information and stored in the main storage unit 420.
 主記憶部420は、EEPROM(Electrically Erasable and Programmable Read-Only Memory)やHDD(Hard Disc Drive)その他の不揮発的にデータを保持できる記憶装置によって実現される。主記憶部420は、X線焦点位置および撮像条件その他のデータ、ならびに、X線検査装置400の動作を制御するためのオペレーティングシステム、良否を判定するためのアルゴリズム、上記の各処理を実行するためのプログラムを格納している。 The main storage unit 420 is realized by an EEPROM (Electrically Erasable and Programmable Read-Only Memory), an HDD (Hard Disc Drive), or other storage device that can hold data in a nonvolatile manner. The main storage unit 420 executes an X-ray focal position and imaging conditions and other data, an operating system for controlling the operation of the X-ray inspection apparatus 400, an algorithm for determining pass / fail, and the above-described processes. The program is stored.
 補助記憶部425は、RAM(Random Access Memory)その他の揮発性メモリによって実現される。補助記憶部425は、演算部410によって生成されたデータ、X線画像取得機構445によって取得された画像データ、入力部40を介して入力されたデータ等を揮発的に保持する。 The auxiliary storage unit 425 is realized by a RAM (Random Access Memory) or other volatile memory. The auxiliary storage unit 425 holds the data generated by the arithmetic unit 410, the image data acquired by the X-ray image acquisition mechanism 445, the data input via the input unit 40, and the like in a volatile manner.
 X線検出器位置制御機構440は、演算部410によって指定された位置にX線検出器23を移動するように、ロボットアーム22.1と検出器支持部22.2とを駆動する。 The X-ray detector position control mechanism 440 drives the robot arm 22.1 and the detector support unit 22.2 so as to move the X-ray detector 23 to the position specified by the calculation unit 410.
 X線画像取得機構445は、X線発生器10から照射されて検査対象物20を透過したX線の画像データをX線検出器23から受信する。画像データは、主記憶部420に格納される。 The X-ray image acquisition mechanism 445 receives, from the X-ray detector 23, X-ray image data irradiated from the X-ray generator 10 and transmitted through the inspection object 20. The image data is stored in the main storage unit 420.
 光学カメラ位置制御機構450は、演算部410からの命令に基づいて、カメラ460の位置を制御する。カメラ460は、CCD(Charge Coupled Device)、CMOS(Complementary Metal-Oxide Semiconductor)その他の素子を含む。具体的には、光学カメラ位置制御機構450は、検査対象物20の検査位置の特定のためにカメラ460の位置を移動し、ステージ18に搭載された検査対象物20を撮影する。 The optical camera position control mechanism 450 controls the position of the camera 460 based on a command from the calculation unit 410. The camera 460 includes a CCD (Charge Coupled Device), a CMOS (Complementary Metal-Oxide Semiconductor), and other elements. Specifically, the optical camera position control mechanism 450 moves the position of the camera 460 in order to specify the inspection position of the inspection object 20, and images the inspection object 20 mounted on the stage 18.
 光学画像取得機構455は、カメラ460の撮影によって得られた画像データを受信し、補助記憶部425にその画像データを格納する。演算部410は、その画像データを出力部50に出力させる。出力部50がモニタ装置として実現される場合には、検査対象物20の画像が表示される。 The optical image acquisition mechanism 455 receives image data obtained by photographing with the camera 460 and stores the image data in the auxiliary storage unit 425. The calculation unit 410 causes the output unit 50 to output the image data. When the output unit 50 is realized as a monitor device, an image of the inspection target 20 is displayed.
 ステージ位置制御機構465は、演算部410の制御に基づいて、ステージ18を移動することにより、X線撮像のために必要なステージ18の位置決めを実行する。 The stage position control mechanism 465 performs positioning of the stage 18 necessary for X-ray imaging by moving the stage 18 based on the control of the calculation unit 410.
 ある局面において、X線検出器位置制御機構440は、検査対象物20中の一点がX線検出器23の受光中心に投影される状態が維持されながら、X線検出器23が予め設定された第1の軌道(たとえば、X線検出器軌道320)に沿って移動するように、検出器移動機構(たとえば、ロボットアーム22.1と検出器支持部22.2)の駆動を制御する。ステージ位置制御機構465は、検査対象物20中の一点がX線検出器23の受光中心に投影される状態が維持されながら、検査対象物20が予め設定された第2の軌道(たとえば、撮像視野軌道330)に沿って移動するように、ステージ18の駆動を制御する。X線源制御機構60は、X線検出器23および検査対象物20が移動している間、検査対象物20に向けてX線を照射するようにX線発生器10を制御する。X線画像取得機構445は、X線検出器23および検査対象物20が移動している間、検査対象物20を透過したX線にX線検出器23を複数回露光させることにより、複数のプロジェクション画像を取得する。演算部410は、このようにして得られた複数のプロジェクション画像から、再構成アルゴリズムを用いて3次元の画像を再構成する。 In one aspect, the X-ray detector position control mechanism 440 sets the X-ray detector 23 in advance while maintaining a state in which one point in the inspection target 20 is projected onto the light receiving center of the X-ray detector 23. The drive of the detector moving mechanism (for example, the robot arm 22.1 and the detector support unit 22.2) is controlled so as to move along the first track (for example, the X-ray detector track 320). The stage position control mechanism 465 maintains a state in which one point in the inspection object 20 is projected onto the light receiving center of the X-ray detector 23, while the inspection object 20 is set in a second trajectory (for example, imaging). The drive of the stage 18 is controlled so as to move along the visual field trajectory 330). The X-ray source control mechanism 60 controls the X-ray generator 10 to irradiate X-rays toward the inspection target 20 while the X-ray detector 23 and the inspection target 20 are moving. While the X-ray detector 23 and the inspection object 20 are moving, the X-ray image acquisition mechanism 445 exposes the X-ray detector 23 to the X-rays transmitted through the inspection object 20 a plurality of times, thereby Obtain a projection image. The calculation unit 410 reconstructs a three-dimensional image from the plurality of projection images obtained in this manner using a reconstruction algorithm.
 他の局面において、第1の軌道および第2の軌道は、円軌道である。X線検出器23および検査対象物20がX線発生器10を中心とする同心円状に移動するように、X線検出器位置制御機構440は、X線検出器23を移動し、ステージ位置制御機構は、検査対象物20を移動する。 In another aspect, the first trajectory and the second trajectory are circular trajectories. The X-ray detector position control mechanism 440 moves the X-ray detector 23 so that the X-ray detector 23 and the inspection object 20 move concentrically around the X-ray generator 10, and stage position control is performed. The mechanism moves the inspection object 20.
 好ましくは、X線源制御機構60は、検査対象物20およびX線検出器23が移動している間、X線を連続的に照射するようにX線発生器10を駆動する。 Preferably, the X-ray source control mechanism 60 drives the X-ray generator 10 so as to continuously irradiate X-rays while the inspection object 20 and the X-ray detector 23 are moving.
 好ましくは、X線源制御機構60は、検査対象物20に対してX線を複数回照射するようにX線発生器10を制御する。X線検出器23は、X線が照射されるタイミングに応じて複数回露光する。 Preferably, the X-ray source control mechanism 60 controls the X-ray generator 10 to irradiate the inspection target 20 with X-rays a plurality of times. The X-ray detector 23 exposes a plurality of times in accordance with the timing of X-ray irradiation.
    <技術思想>
 ここで、図4をさらに参照して、X線検査装置400の技術思想を整理すると、以下のとおりである。
(1) 検査対象物20中の着目点をX線検出器23の受光中心に常に投影した状態で、X線検出器23および撮像視野310が、それぞれ、予め設定された移動軌道上を連続的に移動する。
(2) (1)の移動中に、X線発生器10は、連続的に、または、X線検出器23が露光状態にある期間、X線を照射する。
(3) (1)の移動中に、X線検出器23は複数回X線を露光し、複数回の露光によって取得されたX線画像を、プロジェクション画像として保存する。
(4) (3)にて保存された複数のプロジェクション画像を、CT再構成アルゴリズムを用いて3次元画像化する。
<Technology>
Here, with reference to FIG. 4 further, the technical idea of the X-ray inspection apparatus 400 is organized as follows.
(1) The X-ray detector 23 and the imaging visual field 310 are continuously on a predetermined moving trajectory in a state in which the point of interest in the inspection object 20 is always projected onto the light receiving center of the X-ray detector 23. Move to.
(2) During the movement of (1), the X-ray generator 10 emits X-rays continuously or during a period in which the X-ray detector 23 is in the exposure state.
(3) During the movement of (1), the X-ray detector 23 exposes the X-rays a plurality of times, and stores the X-ray images acquired by the plurality of exposures as a projection image.
(4) The plurality of projection images stored in (3) are converted into a three-dimensional image using a CT reconstruction algorithm.
 係る技術思想によれば、
(a)1つの撮像視野内の検査対象物20について、検査対象物20を透過してX線検出器23の中心に照射される位置が連続動作中で変わらない。
(b)X線検出器23の露光(シャッター)のタイミングを制御することにより複数のプロジェクション画像が得られるので、それらの画像を用いて、再構成が行われる。
According to this technical idea,
(A) With respect to the inspection object 20 in one imaging field of view, the position irradiated through the inspection object 20 and irradiated to the center of the X-ray detector 23 does not change during continuous operation.
(B) Since a plurality of projection images are obtained by controlling the exposure (shutter) timing of the X-ray detector 23, reconstruction is performed using these images.
 その結果、撮像に要する時間が短くなる。
 なお、本実施の形態においては、X線検出器軌道320および撮像視野軌道330が円軌道である場合が説明されているが、X線検出器軌道320および撮像視野軌道330は円軌道に限られず、多角形、矩形の形状であってもよい。
As a result, the time required for imaging is shortened.
In the present embodiment, the case where the X-ray detector trajectory 320 and the imaging visual field trajectory 330 are circular trajectories is described, but the X-ray detector trajectory 320 and the imaging visual field trajectory 330 are not limited to circular trajectories. Polygonal and rectangular shapes may be used.
  [視野の移動]
 図5を参照して、本実施の形態に係るX線検査装置400におけるX線検出器23と撮像視野310の移動について説明する。図5は、X線発生器10を中心にX線検査装置400を上から見た図である。
[Moving the field of view]
With reference to FIG. 5, the movement of the X-ray detector 23 and the imaging visual field 310 in the X-ray inspection apparatus 400 according to the present embodiment will be described. FIG. 5 is a view of the X-ray inspection apparatus 400 as viewed from above with the X-ray generator 10 as the center.
 図5に示されるように、X線検出器23は、X線検出器軌道320の上を反時計回りに移動する。具体的には、X線検出器23は、X線撮影のための露光地点として、少なくとも目標位置D1,D2,D3,D4においてX線を検出する。なお、図5に示される例では、X線検出器23は自転していないが、他の局面において、X線検出器23は自転してもよい。 As shown in FIG. 5, the X-ray detector 23 moves on the X-ray detector trajectory 320 counterclockwise. Specifically, the X-ray detector 23 detects X-rays at least at the target positions D1, D2, D3, and D4 as exposure points for X-ray imaging. In the example shown in FIG. 5, the X-ray detector 23 does not rotate. However, in another aspect, the X-ray detector 23 may rotate.
 また、検査対象物20に含まれる撮像視野310については、撮像のための位置として、目標位置V1,V2,V3,V4,・・・Vnにおいて、X線撮影され、プロジェクション画像P1’,P2’,P3’,P4’,・・・Pn’が取得される。X線検出器23と同様に、図5に示される例では、撮像視野310は自転していないが、他の局面において、撮像視野310は自転してもよい。 Further, the imaging field of view 310 included in the inspection target 20 is X-rayed at the target positions V1, V2, V3, V4,... Vn as the positions for imaging, and the projection images P1 ′ and P2 ′. , P3 ′, P4 ′,... Pn ′ are acquired. Similar to the X-ray detector 23, in the example shown in FIG. 5, the imaging visual field 310 does not rotate, but in other aspects, the imaging visual field 310 may rotate.
 なお、X線検出器23の目標位置と、撮像視野310の目標位置との関係については、X線発生器10と撮像視野310の目標位置Vnとを結ぶ線上に、X線検出器23の目標位置Dnが存在するように、X線検出器23および撮像視野310の移動が制御される。すなわち、X線検出器23と撮像視野310とは、X線発生器10に対して同じ角速度で移動する。このとき、X線検出器23は、撮像視野310の着目点を受光面の中心に捉えた状態のまま、X線検出器軌道320上の目標位置D1~Dnに連続的に移動する。撮像視野310およびX線検出器23が移動している間に、X線検出器23は、撮像視野310を透過したX線を露光する。なお、X線検出器23は、着目点を捉えたまま移動するため、X線検出器位置制御機構440およびステージ位置制御機構465は、サーボモータやリニアモータのように、位置計測の結果を用いたフィードバック制御が可能な駆動装置を用いることが望ましい。 As for the relationship between the target position of the X-ray detector 23 and the target position of the imaging visual field 310, the target of the X-ray detector 23 is on the line connecting the X-ray generator 10 and the target position Vn of the imaging visual field 310. The movement of the X-ray detector 23 and the imaging visual field 310 is controlled so that the position Dn exists. That is, the X-ray detector 23 and the imaging visual field 310 move with the same angular velocity with respect to the X-ray generator 10. At this time, the X-ray detector 23 continuously moves to the target positions D1 to Dn on the X-ray detector trajectory 320 while keeping the point of interest in the imaging field 310 at the center of the light receiving surface. While the imaging visual field 310 and the X-ray detector 23 are moving, the X-ray detector 23 exposes X-rays transmitted through the imaging visual field 310. Since the X-ray detector 23 moves while capturing the point of interest, the X-ray detector position control mechanism 440 and the stage position control mechanism 465 use the result of position measurement like a servo motor or linear motor. It is desirable to use a drive device capable of feedback control.
  [着目点]
 図6を参照して、着目点について説明する。図6は、検査対象物20を基準にX線検出器23とX線発生器10の相対的な位置を表わす図である。すなわち、本実施の形態に係るX線検査装置400においては、着目点の理解のために、検査対象物20を固定した状態で、検査対象物20から見たX線検出器23およびX線発生器10の相対的な位置が示されている。
[Points of interest]
The point of interest will be described with reference to FIG. FIG. 6 is a diagram showing the relative positions of the X-ray detector 23 and the X-ray generator 10 with respect to the inspection object 20. That is, in the X-ray inspection apparatus 400 according to the present embodiment, the X-ray detector 23 and the X-ray generation viewed from the inspection object 20 with the inspection object 20 fixed in order to understand the point of interest. The relative position of the vessel 10 is shown.
 着目点とは、プロジェクション画像において、X線検出器23の中心が常に捉えている検査対象物20中の一点をいう。着目点が存在する検査対象物20中のXY平面を着目面という。 The point of interest refers to one point in the inspection object 20 that is always captured by the center of the X-ray detector 23 in the projection image. The XY plane in the inspection object 20 where the point of interest exists is referred to as a surface of interest.
 検査対象物20は、X線検査装置400による検査の対象となる面として着目面610を有する。着目面610は、着目点620を含む。X線検出器23は、着目点620を常に捉えるように、撮像視野310の移動に同期する。 The inspection object 20 has a focused surface 610 as a surface to be inspected by the X-ray inspection apparatus 400. The focused surface 610 includes a focused point 620. The X-ray detector 23 synchronizes with the movement of the imaging visual field 310 so as to always capture the point of interest 620.
 [制御構造]
 図7を参照して、本実施の形態に係るX線検査装置400の制御構造について説明する。図7は、X線検査装置400が備える演算部410が実行する一連の処理の一部を表わすフローチャートである。
[Control structure]
With reference to FIG. 7, a control structure of X-ray inspection apparatus 400 according to the present embodiment will be described. FIG. 7 is a flowchart showing a part of a series of processes executed by the calculation unit 410 included in the X-ray inspection apparatus 400.
 ステップS710にて、演算部410は、検査対象物20中の着目点620がX線検出器23の受光中心に常に投影された状態で、X線検出器23および撮像視野310を、それぞれの移動のために予め設定された軌道(X線検出器軌道320および撮像視野軌道330)上で連続的に移動させる。また、演算部410は、露光回数を計算するためのカウンタを初期化する。 In step S710, the calculation unit 410 moves the X-ray detector 23 and the imaging field 310 in a state where the point of interest 620 in the inspection target 20 is always projected on the light receiving center of the X-ray detector 23. For this purpose, it is continuously moved on the predetermined trajectories (X-ray detector trajectory 320 and imaging visual field trajectory 330). In addition, the calculation unit 410 initializes a counter for calculating the number of exposures.
 ステップS720にて、演算部410は、その移動中に、目標位置V1(またはD1),V2(またはD2),V3(またはD3),V4(またはD4),・・・Vn(またはDn)において、連続的にX線を照射するようにX線発生器10を駆動し、またはX線検出器23が露光状態にある期間、X線発生器10にX線を照射させる。 In step S720, calculation unit 410, while moving, at target position V1 (or D1), V2 (or D2), V3 (or D3), V4 (or D4),... Vn (or Dn). The X-ray generator 10 is driven so as to continuously irradiate X-rays, or the X-ray generator 10 is irradiated with X-rays while the X-ray detector 23 is in an exposure state.
 ステップS730にて、X線検出器23は、X線を露光し、プロジェクション画像(投影画像)を出力し、X線画像取得機構445に送信する。プロジェクション画像のデータは、主記憶部420に保存される。その後、ある局面において、演算部410は、画像再構成の処理を高速化するために、取得されたプロジェクション画像を、三次元画像再構成演算に入力して、画像再構成の処理を開始する。なお、他の局面の態様として、必要な枚数のプロジェクション画像が取得された後で画像再構成処理が開始される構成も用いられ得る。 In step S730, the X-ray detector 23 exposes the X-rays, outputs a projection image (projection image), and transmits the projection image to the X-ray image acquisition mechanism 445. The projection image data is stored in the main storage unit 420. Thereafter, in a certain aspect, in order to speed up the image reconstruction process, the calculation unit 410 inputs the acquired projection image to the three-dimensional image reconstruction calculation and starts the image reconstruction process. As another aspect, a configuration in which the image reconstruction process is started after a necessary number of projection images are acquired can be used.
 ステップS740にて、演算部410は、X線検出器23による露光回数を1カウントアップする。 In step S740, the calculation unit 410 increments the number of exposures by the X-ray detector 23 by one.
 ステップS750にて、演算部410は、予め設定された枚数のプロジェクション画像が取得されたか否かを判断する。たとえば、演算部410は、露光回数が予め設定された回数nと同じであるか否かを判断する。演算部410は、露光回数が予め設定された回数nと同じであると判断すると(ステップS750にてYES)、制御をステップS760に切り換える。そうでない場合には(ステップS750にてNO)、演算部410は、制御をステップS730に切り換える。X線検出器23は再びX線を露光する。 In step S750, calculation unit 410 determines whether or not a preset number of projection images have been acquired. For example, the calculation unit 410 determines whether or not the number of exposures is the same as the preset number n. If calculation unit 410 determines that the number of exposures is the same as preset number n (YES in step S750), control unit 410 switches control to step S760. If not (NO in step S750), operation unit 410 switches control to step S730. The X-ray detector 23 exposes X-rays again.
 ステップS760にて、n枚のプロジェクション画像P1’~Pnの取得が完了する。演算部410は、CT再構成アルゴリズムを用いて、主記憶部420に保存されたn枚のプロジェクション画像から検査対象物20の三次元の画像を構成する。なお、ステップS730において説明したように、X線検査の高速化のために、1枚のプロジェクション画像を撮像するごとに、撮像箇所の三次元画像再構成演算に当該プロジェクション画像を入力することが望ましい。たとえば、演算部410は、2枚目のプロジェクション画像を取得する間に、1枚目のプロジェクション画像を用いて再構成演算を実行する。 In step S760, the acquisition of n projection images P1 'to Pn is completed. The calculation unit 410 configures a three-dimensional image of the inspection object 20 from the n projection images stored in the main storage unit 420 using a CT reconstruction algorithm. As described in step S730, it is desirable to input the projection image to the three-dimensional image reconstruction calculation at the imaging location every time one projection image is captured in order to speed up the X-ray examination. . For example, the calculation unit 410 performs a reconstruction calculation using the first projection image while acquiring the second projection image.
  [X線検査装置の動作パターン]
 図8および図9を参照して、X線検査装置の動作のパターンについて説明する。図8は、X線検査装置100の各構成要素の動作のパターンを表わすタイミングチャートである。図9は、本実施の形態に係るX線検査装置400の動作のパターンを表わすタイミングチャートである。
[Operation pattern of X-ray inspection equipment]
The operation pattern of the X-ray inspection apparatus will be described with reference to FIGS. FIG. 8 is a timing chart showing an operation pattern of each component of the X-ray inspection apparatus 100. FIG. 9 is a timing chart showing an operation pattern of the X-ray inspection apparatus 400 according to the present embodiment.
 図8を参照して、グラフ810に示されるように、X線検査装置100は、X線検出器位置制御機構(たとえば、ロボットアーム22.1と検出器支持部22.2)の動作パターンとして、停止と移動とを繰り返す。このとき、グラフ810,820から明らかなように、ある局面において、ステージ位置制御機構(たとえばステージ18)と、X線検出器23とは、非同期で移動し、異なるタイミングで、それぞれの目標位置に停止する。 Referring to FIG. 8, as shown in graph 810, X-ray inspection apparatus 100 has an operation pattern of an X-ray detector position control mechanism (for example, robot arm 22.1 and detector support unit 22.2). , Repeat stop and move. At this time, as is apparent from the graphs 810 and 820, in a certain situation, the stage position control mechanism (for example, the stage 18) and the X-ray detector 23 move asynchronously and reach their target positions at different timings. Stop.
 X線検出器23と検査対象物20とが位置決めされると、撮像が実行される。具体的には、グラフ840に示されるように、X線発生器10は、停止とX線の照射とを繰り返す。このとき、グラフ830に示されるように、X線検出器23は、X線発生器10の動作に同期して、停止と露光とを繰り返す。図8に示されるように、X線検査装置100においては、X線撮像の動作時間は、X線による撮像が行なわれてプロジェクション画像P1,P2,P3,P4,・・・Pn以外に、撮像が行なわれていない期間を含む。つまり、X線検出器23が目標位置にあるときだけX線撮像が可能になるため、撮像時間が限られる。 When the X-ray detector 23 and the inspection object 20 are positioned, imaging is performed. Specifically, as shown in a graph 840, the X-ray generator 10 repeats stopping and X-ray irradiation. At this time, as indicated by a graph 830, the X-ray detector 23 repeats stop and exposure in synchronization with the operation of the X-ray generator 10. As shown in FIG. 8, in the X-ray inspection apparatus 100, the X-ray imaging operation time is taken in addition to the projection images P1, P2, P3, P4,. Including the period when is not conducted. That is, since the X-ray imaging can be performed only when the X-ray detector 23 is at the target position, the imaging time is limited.
 これに対して、図9を参照して、本実施の形態に係るX線検査装置400においては、X線検出器23は、検査対象物20の一点である着目点を常に捉えて移動するため、X線検出器23は、常に、X線を検出可能な状態にある。すなわち、X線検出器23とステージ18が、それぞれ、目標位置に向かって移動している間でも、X線撮像が可能になる。 On the other hand, referring to FIG. 9, in the X-ray inspection apparatus 400 according to the present embodiment, the X-ray detector 23 always moves while capturing a point of interest that is one point of the inspection object 20. The X-ray detector 23 is always in a state where X-rays can be detected. That is, X-ray imaging can be performed even while the X-ray detector 23 and the stage 18 are moving toward the target position.
 具体的には、グラフ910に示されるように、X線検出器位置制御機構440は、停止状態から移動を開始すると、継続して、X線検出器軌道320に沿ってX線検出器23を移動する。グラフ920から明らかなように、検査対象物20が搭載されたステージ18は、X線検出器23の移動に同期して、撮像視野軌道330上での移動を開始する。 Specifically, as shown in the graph 910, when the X-ray detector position control mechanism 440 starts moving from the stopped state, the X-ray detector 23 is continuously moved along the X-ray detector trajectory 320. Moving. As apparent from the graph 920, the stage 18 on which the inspection object 20 is mounted starts moving on the imaging visual field trajectory 330 in synchronization with the movement of the X-ray detector 23.
 X線検出器23およびステージ18の移動の開始に同期して、グラフ940に示されるように、X線発生器10は、X線の照射を開始する。ここで、本実施の形態においては、X線検出器23が着目点を常に捉えているため、X線検出器23は、検査対象物20を透過したX線を常に検出することができる。そこで、グラフ930に示されるように、X線検出器23は、検査対象物20の3次元画像を再構成するために必要な枚数のプロジェクション画像を得るために、予め設定された撮像条件に従って、当該枚数に応じて露光の停止を実行する。このようにすると、複数のプロジェクション画像を得るために露光を停止すればよいので、機構の位置決めが完了するまで露光を停止する必要がない。したがって、必要な枚数のプロジェクション画像を取得するための時間が、従来の撮像パターンにおける時間よりも短くなる。 In synchronization with the start of movement of the X-ray detector 23 and the stage 18, the X-ray generator 10 starts X-ray irradiation as shown in the graph 940. Here, in the present embodiment, since the X-ray detector 23 always captures the point of interest, the X-ray detector 23 can always detect the X-ray transmitted through the inspection object 20. Accordingly, as shown in the graph 930, the X-ray detector 23 obtains the number of projection images necessary for reconstructing the three-dimensional image of the inspection target 20, according to the imaging conditions set in advance. The exposure is stopped according to the number. In this way, since exposure only needs to be stopped in order to obtain a plurality of projection images, it is not necessary to stop exposure until the positioning of the mechanism is completed. Therefore, the time for acquiring the required number of projection images is shorter than the time for the conventional imaging pattern.
 以上のようにして、本実施の形態に係るX線検査装置400によると、X線検出器23およびステージ18の移動(いわゆる「メカ移動」)と撮像とが並行して実行されるため、従来のX線検査装置において同じ露光時間および同じ枚数のプロジェクション画像を取得するための移動時間および撮像時間の合計時間が、従来のX線検査装置を用いた場合の合計時間よりも短くなるので、X線撮像検査を高速化することができる。 As described above, according to the X-ray inspection apparatus 400 according to the present embodiment, the movement of the X-ray detector 23 and the stage 18 (so-called “mechanical movement”) and imaging are performed in parallel. In the X-ray inspection apparatus, the total time of the movement time and the imaging time for acquiring the same exposure time and the same number of projection images is shorter than the total time when the conventional X-ray inspection apparatus is used. The line imaging inspection can be speeded up.
 <第2の実施の形態>
 以下、第2の実施の形態について説明する。本実施の形態に係るX線検査装置1000は、X線検出器23および検査対象物20がそれぞれ回転軸を中心に自転する構成を有する点で、第1の実施の形態に係るX線検査装置400と異なる。
<Second Embodiment>
Hereinafter, a second embodiment will be described. The X-ray inspection apparatus 1000 according to the present embodiment has a configuration in which the X-ray detector 23 and the inspection object 20 each rotate about a rotation axis, and thus the X-ray inspection apparatus according to the first embodiment. Different from 400.
 そこで、図10を参照して、本実施の形態に係るX線検査装置1000の構成について説明する。図10は、X線検査装置1000の構成の一部を表わす図である。なお、X線検査装置1000の動作を制御するための機構は、第1の実施の形態に係るX線検査装置400の構成と同様のハードウェア構成を用いて実現される。したがって、それらの説明は繰り返さない。 Therefore, the configuration of the X-ray inspection apparatus 1000 according to the present embodiment will be described with reference to FIG. FIG. 10 is a diagram showing a part of the configuration of the X-ray inspection apparatus 1000. Note that the mechanism for controlling the operation of the X-ray inspection apparatus 1000 is realized by using the same hardware configuration as that of the X-ray inspection apparatus 400 according to the first embodiment. Therefore, those descriptions are not repeated.
 図10に示されるように、X線検査装置1000は、X線検査装置400の構成に加えて、X線検出器回転機構1010と、検査対象回転機構1020とをさらに備える。X線検出器回転機構1010は、回転軸1011を中心にX線検出器23を回転する。すなわち、X線検出器23は自転する。検査対象回転機構1020は、回転軸1021を中心に、検査対象物20を回転させる。すなわち、検査対象物20が自転しているように、ステージ18の位置が制御される。このとき、回転軸1011を中心とする回転角と、回転軸1021を中心とする回転角とは、同じ角度に維持される。これにより、各回転角における撮像によって得られた画像を用いて三次元画像を再構成するとき、着目断層の画像がぶれなくなる。 As shown in FIG. 10, the X-ray inspection apparatus 1000 further includes an X-ray detector rotation mechanism 1010 and an inspection object rotation mechanism 1020 in addition to the configuration of the X-ray inspection apparatus 400. The X-ray detector rotation mechanism 1010 rotates the X-ray detector 23 about the rotation axis 1011. That is, the X-ray detector 23 rotates. The inspection object rotation mechanism 1020 rotates the inspection object 20 around the rotation shaft 1021. That is, the position of the stage 18 is controlled so that the inspection object 20 rotates. At this time, the rotation angle around the rotation axis 1011 and the rotation angle around the rotation axis 1021 are maintained at the same angle. Thereby, when a three-dimensional image is reconstructed using an image obtained by imaging at each rotation angle, the image of the target tomogram is not blurred.
 図11を参照して、第2の実施の形態に係るX線検査装置1000によって得られる画像について説明する。図11は、X線検出器23および検査対象物20がそれぞれ回転した状態において得られる画像の推移を表わす図である。 An image obtained by the X-ray inspection apparatus 1000 according to the second embodiment will be described with reference to FIG. FIG. 11 is a diagram illustrating the transition of images obtained in a state where the X-ray detector 23 and the inspection object 20 are rotated.
 状態1111において、最初の撮像として、検査対象物20に含まれる検査対象1120の撮影が行なわれる。具体的には、検査対象1120のX線画像は、画像1101として取得される。X線検出器23の露光が終了すると(撮像が完了すると)、X線検出器23および検査対象物20は、それぞれ、X線検出器軌道320および撮像視野軌道330上を移動するとともに、自転し、状態1112に遷移する。 In the state 1111, the inspection object 1120 included in the inspection object 20 is imaged as the first imaging. Specifically, an X-ray image of the inspection object 1120 is acquired as an image 1101. When the exposure of the X-ray detector 23 is completed (when imaging is completed), the X-ray detector 23 and the inspection object 20 move on the X-ray detector trajectory 320 and the imaging visual field trajectory 330, respectively, and rotate. , Transition to state 1112.
 状態1112において、X線検出器23が再び露光する。検査対象1120のX線画像は、画像1102として取得される。露光が終了すると、さらにX線検出器23と検査対象物20とは移動および自転し、状態1113に遷移する。 In state 1112, the X-ray detector 23 is exposed again. An X-ray image of the inspection object 1120 is acquired as an image 1102. When the exposure is completed, the X-ray detector 23 and the inspection object 20 further move and rotate, and the state transitions to the state 1113.
 状態1113において露光が行なわれると、画像1103が取得される。その後、X線検出器23と検査対象物20とは移動および自転し、状態1114に遷移する。さらに、状態1114において露光が行なわれると、画像1104が取得される。このようにして、検査対象の画像を再構成するために必要なプロジェクション画像が取得される。 When exposure is performed in the state 1113, an image 1103 is acquired. Thereafter, the X-ray detector 23 and the inspection object 20 move and rotate, and transition to the state 1114. Further, when exposure is performed in the state 1114, an image 1104 is acquired. In this way, a projection image necessary for reconstructing the image to be inspected is acquired.
 画像1101,1102,1103,1104は、それぞれ着目点を中心とした回転軸を中心に回転した画像として取得されるため、各画像は既に位置決めが完了している状態である。したがって、これらの画像を再構成して得られる画像1130は、ぶれることなく明瞭な画像として導出される。 Since each of the images 1101, 1102, 1103, and 1104 is acquired as an image rotated around the rotation axis centered on the point of interest, each image has already been positioned. Therefore, the image 1130 obtained by reconstructing these images is derived as a clear image without blurring.
 以上のようにして、本実施の形態に係るX線検査装置1000によると、撮像中における回転停止が不要になるため、X線撮像を高速化することができる。 As described above, according to the X-ray inspection apparatus 1000 according to the present embodiment, it is not necessary to stop rotation during imaging, so that X-ray imaging can be performed at high speed.
 なお、上述の実施の形態に係るX線検査装置400,1000の制御機構は、周知の構成を有するコンピュータシステムを用いて実現することができる。 Note that the control mechanism of the X-ray inspection apparatuses 400 and 1000 according to the above-described embodiments can be realized by using a computer system having a known configuration.
 そこで、図12を参照して、X線検査装置400,1000の制御機構を実現するコンピュータシステム1200について説明する。図12は、コンピュータシステム1200のハードウェア構成を表わすブロック図である。 Therefore, a computer system 1200 that realizes a control mechanism of the X-ray inspection apparatuses 400 and 1000 will be described with reference to FIG. FIG. 12 is a block diagram showing a hardware configuration of computer system 1200.
 コンピュータシステム1200は、主たる構成要素として、プログラムを実行するCPU1と、コンピュータシステム1200の使用者による指示の入力を受けるマウス2およびキーボード3と、CPU1によるプログラムの実行により生成されたデータ、又はマウス2若しくはキーボード3を介して入力されたデータを揮発的に格納するRAM4と、データを不揮発的に格納するハードディスク5と、光ディスク駆動装置6と、モニタ8と、通信IF(Interface)9とを備える。各構成要素は、相互にバスによって接続されている。光ディスク駆動装置6には、CD-ROM9その他の光ディスクが装着される。 The computer system 1200 includes, as main components, a CPU 1 that executes a program, a mouse 2 and a keyboard 3 that receive input of instructions from a user of the computer system 1200, data generated by execution of a program by the CPU 1, or a mouse 2 Alternatively, a RAM 4 that stores data input via the keyboard 3 in a volatile manner, a hard disk 5 that stores data in a nonvolatile manner, an optical disk drive device 6, a monitor 8, and a communication IF (Interface) 9 are provided. Each component is connected to each other by a bus. A CD-ROM 9 and other optical disks are mounted on the optical disk drive 6.
 コンピュータシステム1200における処理は、各ハードウェアおよびCPU1により実行されるソフトウェアによって実現される。このようなソフトウェアは、ハードディスク5に予め格納されている場合がある。また、ソフトウェアは、CD-ROM9その他のコンピュータ読み取り可能なデータ記録媒体に格納されて、プログラム製品として流通している場合もある。あるいは、当該ソフトウェアは、インターネットその他のネットワークに接続されている情報提供事業者によってダウンロード可能なプログラム製品として提供される場合もある。このようなソフトウェアは、光ディスク駆動装置6その他のデータ読取装置によってデータ記録媒体から読み取られて、あるいは、通信IF7を介してダウンロードされた後、ハードディスク5に一旦格納される。そのソフトウェアは、CPU1によってハードディスク5から読み出され、RAM4に実行可能なプログラムの形式で格納される。CPU1は、そのプログラムを実行する。 Processing in the computer system 1200 is realized by software executed by each hardware and the CPU 1. Such software may be stored in the hard disk 5 in advance. In some cases, the software is stored in a CD-ROM 9 or other computer-readable data recording medium and distributed as a program product. Alternatively, the software may be provided as a program product that can be downloaded by an information provider connected to the Internet or other networks. Such software is read from the data recording medium by the optical disk drive 6 or other data reading device, or downloaded via the communication IF 7 and then temporarily stored in the hard disk 5. The software is read from the hard disk 5 by the CPU 1 and stored in the RAM 4 in the form of an executable program. The CPU 1 executes the program.
 図12に示されるコンピュータシステム1200を構成する各構成要素は、一般的なものである。したがって、本発明の本質的な部分は、RAM4、ハードディスク5、CD-ROM9その他のデータ記録媒体に格納されたソフトウェア、あるいはネットワークを介してダウンロード可能なソフトウェアであるともいえる。なお、コンピュータシステム1200の各ハードウェアの動作は周知であるので、詳細な説明は繰り返さない。 Each component constituting the computer system 1200 shown in FIG. 12 is a general one. Accordingly, it can be said that the essential part of the present invention is software stored in the RAM 4, the hard disk 5, the CD-ROM 9, or other data recording medium, or software that can be downloaded via a network. Since the operation of each hardware of computer system 1200 is well known, detailed description will not be repeated.
 なお、データ記録記録媒体としては、CD-ROM、FD(Flexible Disk)、ハードディスクに限られず、磁気テープ、カセットテープ、光ディスク(MO(Magnetic Optical Disc)/MD(Mini Disc)/DVD(Digital Versatile Disc))、IC(Integrated Circuit)カード(メモリカードを含む)、光カード、マスクROM、EPROM(Electronically Programmable Read-Only Memory)、EEPROM(Electronically Erasable Programmable Read-Only Memory)、フラッシュROMなどの半導体メモリ等の固定的にプログラムを担持する媒体でもよい。 Data recording and recording media are not limited to CD-ROM, FD (Flexible Disk), and hard disk, but are magnetic tape, cassette tape, optical disk (MO (Magnetic Optical Disc) / MD (Mini Disc) / DVD (Digital Versatile Disc). )), IC (Integrated Circuit) card (including memory card), optical card, mask ROM, EPROM (Electronically Programmable Read-Only Memory), EEPROM (Electronically Erasable Programmable Read-Only Memory), semiconductor memory such as flash ROM, etc. It may be a medium that carries a fixed program.
 ここでいうプログラムとは、CPUにより直接実行可能なプログラムだけでなく、ソースプログラム形式のプログラム、圧縮処理されたプログラム、暗号化されたプログラム等を含み得る。 Here, the program may include not only a program that can be directly executed by the CPU, but also a program in a source program format, a compressed program, an encrypted program, and the like.
 この発明を詳細に説明し示してきたが、これは例示のためのみであって、限定ととってはならず、発明の範囲は添付の請求の範囲によって解釈されることが明らかに理解されるであろう。 Although the invention has been described and shown in detail, it is clearly understood that this is by way of example only and should not be taken as a limitation, the scope of the invention being construed by the appended claims Will.
 1 CPU、2 マウス、3 キーボード、4 RAM、5 ハードディスク、6 光ディスク駆動装置、8 モニタ、9 CD-ROM、10 X線発生器、17 X線焦点、18 ステージ、20 検査対象物、22 X線検出器駆動部、22.1 ロボットアーム、22.2 検出器支持部、23 X線検出器、30 画像取得制御機構、32 検出器駆動制御部、34 画像データ取得部、40 入力部、50 出力部、60 X線源制御機構、70,410 演算部、80 検査対象位置制御部、90 メモリ、100,400,1000 X線検査装置、310 撮像視野、320 X線検出器軌道、330 撮像視野軌道、420 主記憶部、425 補助記憶部、440 X線検出器位置制御機構、445 X線画像取得機構、450 光学カメラ位置制御機構、455 光学画像取得機構、460 カメラ、465 ステージ位置制御機構、610 着目面、620 着目点、1010 線検出器回転機構、1011,1021 回転軸、1020 検査対象回転機構。 1 CPU, 2 mouse, 3 keyboard, 4 RAM, 5 hard disk, 6 optical disk drive, 8 monitor, 9 CD-ROM, 10 X-ray generator, 17 X-ray focal point, 18 stage, 20 inspection object, 22 X-ray Detector drive unit, 22.1 robot arm, 22.2 detector support unit, 23 X-ray detector, 30 image acquisition control mechanism, 32 detector drive control unit, 34 image data acquisition unit, 40 input unit, 50 output Unit, 60 X-ray source control mechanism, 70, 410 calculation unit, 80 inspection target position control unit, 90 memory, 100, 400, 1000 X-ray inspection device, 310 imaging field, 320 X-ray detector trajectory, 330 imaging field trajectory , 420 Main storage unit, 425 Auxiliary storage unit, 440 X-ray detector position control mechanism, 445 X-ray image acquisition Structure, 450 optical camera position control mechanism, 455 optical image acquisition mechanism, 460 camera, 465 stage position control mechanism, 610 focus surface, 620 focus point, 1010 line detector rotation mechanism, 1011, 1021 rotation axis, 1020 inspection object rotation mechanism .

Claims (16)

  1.  対象物の検査対象領域を透過したX線を複数の検出面で受光することにより、前記検査対象領域の像の再構成処理を実行するためのX線検査装置であって、
     前記対象物を移動するための対象物移動機構と、
     前記対象物にX線を照射するためのX線源と、
     前記検査対象領域を透過したX線を検出するためのX線検出器と、
     前記X線検出器を移動するための検出器移動機構と、
     前記対象物と前記X線検出器が移動する予め設定された軌道条件の下で、前記検査対象領域の一点を透過したX線が前記X線検出器の受光中心に投影されるように前記X線検出器の移動目標位置と前記対象物の移動目標位置を算出するように構成された位置算出部と、
     前記X線検出器が前記算出された移動目標位置が位置する前記軌道条件の内の第1の軌道に沿って移動するように、前記検出器移動機構の駆動を制御するための検出器位置制御部と、
     前記対象物が前記算出された移動目標位置が位置する前記軌道条件の内の第2の軌道に沿って移動するように、前記対象物移動機構の駆動を制御するための対象物位置制御部と、
     前記X線検出器および前記対象物が移動している間、前記対象物に向けてX線を照射するように前記X線源を制御するためのX線源制御部と、
     前記X線検出器および前記対象物が移動している間、前記対象物を透過したX線に前記X線検出器を複数回露光させることにより、複数の投影画像を取得するためのX線画像取得部と、
     再構成アルゴリズムを用いて前記複数の投影画像から3次元の画像を再構成するための演算部とを備える、X線検査装置。
    An X-ray inspection apparatus for performing a reconstruction process of an image of the inspection target area by receiving X-rays transmitted through the inspection target area of the object with a plurality of detection surfaces,
    An object moving mechanism for moving the object;
    An X-ray source for irradiating the object with X-rays;
    An X-ray detector for detecting X-rays transmitted through the inspection object region;
    A detector moving mechanism for moving the X-ray detector;
    The X-ray is transmitted to the light receiving center of the X-ray detector under a predetermined orbital condition in which the object and the X-ray detector move. A position calculation unit configured to calculate a movement target position of the line detector and a movement target position of the object;
    Detector position control for controlling the driving of the detector moving mechanism so that the X-ray detector moves along a first trajectory of the trajectory conditions where the calculated movement target position is located. And
    An object position control unit for controlling driving of the object moving mechanism so that the object moves along a second trajectory of the trajectory conditions where the calculated movement target position is located; ,
    An X-ray source control unit for controlling the X-ray source so as to irradiate X-rays toward the object while the X-ray detector and the object are moving;
    An X-ray image for acquiring a plurality of projection images by exposing the X-ray detector a plurality of times to X-rays transmitted through the object while the X-ray detector and the object are moving. An acquisition unit;
    An X-ray inspection apparatus comprising: an arithmetic unit configured to reconstruct a three-dimensional image from the plurality of projection images using a reconstruction algorithm.
  2.  前記第1の軌道および前記第2の軌道は、円軌道であり、
     前記X線検出器および前記対象物が前記X線源を中心とする同心円状に移動するように、前記検出器移動機構は前記X線検出器を移動するように構成されており、前記対象物移動機構は前記対象物を移動するように構成されている、請求項1に記載のX線検査装置。
    The first trajectory and the second trajectory are circular trajectories;
    The detector moving mechanism is configured to move the X-ray detector so that the X-ray detector and the object move concentrically around the X-ray source, and the object The X-ray inspection apparatus according to claim 1, wherein the moving mechanism is configured to move the object.
  3.  前記X線検出器は、矩形の視野により、前記複数の検出面でX線を受光して撮像するための矩形のX線検出器であり、
     前記検出器位置制御部は、各前記移動目標位置における前記X線検出器の矩形の各辺が同一の方向を向くように前記X線検出器を前記第1の軌道に沿って平行移動させる制御を行なうように構成されている、請求項1または2に記載のX線検査装置。
    The X-ray detector is a rectangular X-ray detector for receiving and imaging X-rays on the plurality of detection surfaces with a rectangular field of view,
    The detector position controller controls the X-ray detector to translate along the first trajectory so that the rectangular sides of the X-ray detector at the movement target positions face the same direction. The X-ray inspection apparatus according to claim 1, wherein the X-ray inspection apparatus is configured to perform the following.
  4.  前記X線源制御部は、前記対象物および前記X線検出器が移動している間、X線を連続的に照射するように前記X線源を駆動するように構成されている、請求項1または2に記載のX線検査装置。 The X-ray source control unit is configured to drive the X-ray source so as to continuously irradiate X-rays while the object and the X-ray detector are moving. The X-ray inspection apparatus according to 1 or 2.
  5.  前記X線源制御部は、前記対象物に対してX線を複数回照射するように前記X線源を制御するように構成されており、
     前記X線検出器は、前記X線が照射されるタイミングに応じて前記複数回露光するように構成されている、請求項1または2に記載のX線検査装置。
    The X-ray source control unit is configured to control the X-ray source so as to irradiate the object multiple times with X-rays,
    The X-ray inspection apparatus according to claim 1, wherein the X-ray detector is configured to perform the exposure a plurality of times according to a timing at which the X-ray is irradiated.
  6.  対象物の検査対象領域を透過したX線を複数の検出面でX線検出器を用いて受光することにより、前記検査対象領域の像の再構成処理を実行するX線検査装置の制御方法であって、
     前記対象物と前記X線検出器が移動する予め設定された軌道条件の下で、前記検査対象領域の一点を透過したX線が前記X線検出器の受光中心に投影されるように前記X線検出器の移動目標位置と前記対象物の移動目標位置を算出するステップと、
     前記算出されたX線検出器の移動目標位置が位置する前記軌道条件の内の第1の軌道に沿って前記X線検出器を移動するステップと、
     前記算出された対象物の移動目標位置が位置する前記軌道条件の内の第2の軌道に沿って前記対象物を移動するステップと、
     前記X線検出器および前記対象物が移動している間、前記対象物に向けてX線を照射するステップと、
     前記X線検出器および前記対象物が移動している間、前記対象物を透過したX線に前記X線検出器を複数回露光させることにより、複数の投影画像を取得するステップと、
     再構成アルゴリズムを用いて前記複数の投影画像から3次元の画像を再構成するステップとを含む、X線検査装置の制御方法。
    A control method for an X-ray inspection apparatus that performs an image reconstruction process on an inspection target region by receiving X-rays transmitted through the inspection target region of an object using an X-ray detector on a plurality of detection surfaces. There,
    The X-ray is transmitted to the light receiving center of the X-ray detector under a predetermined orbital condition in which the object and the X-ray detector move. Calculating a movement target position of the line detector and a movement target position of the object;
    Moving the X-ray detector along a first trajectory of the trajectory conditions where the calculated movement target position of the X-ray detector is located;
    Moving the object along a second trajectory of the trajectory conditions where the calculated movement target position of the object is located;
    Irradiating X-rays toward the object while the X-ray detector and the object are moving;
    Obtaining a plurality of projection images by exposing the X-ray detector a plurality of times to X-rays transmitted through the object while the X-ray detector and the object are moving;
    Reconstructing a three-dimensional image from the plurality of projection images using a reconstruction algorithm.
  7.  前記第1の軌道および前記第2の軌道は、円軌道であり、
     前記X線検出器を移動するステップは、前記X線検出器および前記対象物が前記X線源を中心とする同心円状に移動するように、前記X線検出器を移動するステップを含み、
     前記対象物を移動するステップは、前記X線検出器および前記対象物が前記X線源を中心とする同心円状に移動するように、前記対象物を移動するステップを含む、請求項6に記載のX線検査装置の制御方法。
    The first trajectory and the second trajectory are circular trajectories;
    Moving the X-ray detector includes moving the X-ray detector such that the X-ray detector and the object move concentrically around the X-ray source;
    The step of moving the object includes the step of moving the object so that the X-ray detector and the object move concentrically around the X-ray source. Control method for X-ray inspection apparatus.
  8.  前記X線検出器は、矩形の視野により、前記複数の検出面でX線を受光して撮像するための矩形のX線検出器であり、
     前記X線検出器を移動するステップは、各前記移動目標位置における前記X線検出器の矩形の各辺が同一の方向を向くように前記X線検出器を前記第1の軌道に沿って平行移動するステップを含む、請求項6または7に記載のX線検査装置の制御方法。
    The X-ray detector is a rectangular X-ray detector for receiving and imaging X-rays on the plurality of detection surfaces with a rectangular field of view,
    The step of moving the X-ray detector includes paralleling the X-ray detector along the first trajectory so that each side of the rectangle of the X-ray detector at each movement target position faces the same direction. The method for controlling an X-ray inspection apparatus according to claim 6, comprising a moving step.
  9.  前記X線を照射するステップは、前記対象物および前記X線検出器が移動している間、X線を連続的に照射するステップを含む、請求項6または7に記載のX線検査装置の制御方法。 8. The X-ray inspection apparatus according to claim 6 or 7, wherein the step of irradiating the X-ray includes a step of continuously irradiating the X-ray while the object and the X-ray detector are moving. Control method.
  10.  前記X線を照射するステップは、前記対象物に対してX線を複数回照射するステップを含み、
     前記複数の投影画像を取得するステップは、前記X線が照射されるタイミングに応じて複数回露光するステップを含む、請求項6または7に記載のX線検査装置の制御方法。
    The step of irradiating the X-ray includes a step of irradiating the object with X-rays a plurality of times,
    The method for controlling the X-ray inspection apparatus according to claim 6 or 7, wherein the step of acquiring the plurality of projection images includes a step of performing exposure a plurality of times in accordance with a timing at which the X-ray is irradiated.
  11.  対象物の検査対象領域を透過したX線を複数の検出面でX線検出器を用いて受光することにより、前記検査対象領域の像の再構成処理を実行するX線検査装置を制御するためのプログラムであって、前記プログラムは、前記X線検査装置に、
     前記対象物と前記X線検出器が移動する予め設定された軌道条件の下で、前記検査対象領域の一点を透過したX線が前記X線検出器の受光中心に投影されるように前記X線検出器の移動目標位置と前記対象物の移動目標位置を算出するステップと、
     前記算出されたX線検出器の移動目標位置が位置する前記軌道条件の内の第1の軌道に沿って前記X線検出器を移動するステップと、
     前記算出された対象物の移動目標位置が位置する前記軌道条件の内の第2の軌道に沿って前記対象物を移動するステップと、
     前記X線検出器および前記対象物が移動している間、前記対象物に向けてX線を照射するステップと、
     前記X線検出器および前記対象物が移動している間、前記対象物を透過したX線に前記X線検出器を複数回露光させることにより、複数の投影画像を取得するステップと、
     再構成アルゴリズムを用いて前記複数の投影画像から3次元の画像を再構成するステップとを実行させる、X線検査装置を制御するためのプログラム。
    In order to control an X-ray inspection apparatus that performs an image reconstruction process on the inspection target region by receiving X-rays transmitted through the inspection target region of the target object on a plurality of detection surfaces using an X-ray detector. And the program is stored in the X-ray inspection apparatus.
    The X-ray is transmitted to the light receiving center of the X-ray detector under a predetermined orbital condition in which the object and the X-ray detector move. Calculating a movement target position of the line detector and a movement target position of the object;
    Moving the X-ray detector along a first trajectory of the trajectory conditions where the calculated movement target position of the X-ray detector is located;
    Moving the object along a second trajectory of the trajectory conditions where the calculated movement target position of the object is located;
    Irradiating X-rays toward the object while the X-ray detector and the object are moving;
    Obtaining a plurality of projection images by exposing the X-ray detector a plurality of times to X-rays transmitted through the object while the X-ray detector and the object are moving;
    A program for controlling an X-ray inspection apparatus that executes a step of reconstructing a three-dimensional image from the plurality of projection images using a reconstruction algorithm.
  12.  前記第1の軌道および前記第2の軌道は、円軌道であり、
     前記プログラムは、
     前記X線検出器を移動するステップとして、前記X線検出器および前記対象物が前記X線源を中心とする同心円状に移動するように、前記X線検出器を移動するステップを実行させ、
     前記対象物を移動するステップとして、前記X線検出器および前記対象物が前記X線源を中心とする同心円状に移動するように、前記対象物を移動するステップを実行させる、請求項11に記載のX線検査装置を制御するためのプログラム。
    The first trajectory and the second trajectory are circular trajectories;
    The program is
    As the step of moving the X-ray detector, the step of moving the X-ray detector so that the X-ray detector and the object move concentrically around the X-ray source,
    The step of moving the object is executed as the step of moving the object so that the X-ray detector and the object move concentrically around the X-ray source. A program for controlling the described X-ray inspection apparatus.
  13.  前記X線検出器は矩形の視野により、前記複数の検出面でX線を受光して撮像するための矩形のX線検出器であり、
     前記プログラムは、
     前記X線検出器を移動するステップとして、各前記移動目標位置における前記X線検出器の矩形の各辺が同一の方向を向くように前記X線検出器を前記第1の軌道に沿って平行移動するステップを実行させる、請求項11または12に記載のX線検査装置を制御するためのプログラム。
    The X-ray detector is a rectangular X-ray detector for receiving and imaging X-rays at the plurality of detection surfaces with a rectangular field of view,
    The program is
    As the step of moving the X-ray detector, the X-ray detector is paralleled along the first trajectory so that the sides of the rectangle of the X-ray detector at each movement target position face the same direction. The program for controlling the X-ray inspection apparatus of Claim 11 or 12 which performs the step to move.
  14.  前記プログラムは、
     前記X線を照射するステップとして、前記対象物および前記X線検出器が移動している間、X線を連続的に照射するステップを実行させる、請求項11または12に記載のX線検査装置を制御するためのプログラム。
    The program is
    The X-ray inspection apparatus according to claim 11, wherein, as the X-ray irradiation step, a step of continuously irradiating X-rays while the object and the X-ray detector are moving is executed. Program to control.
  15.  前記プログラムは、
     前記X線を照射するステップとして、前記対象物に対してX線を複数回照射するステップを実行させ、
     前記複数の投影画像を取得するステップとして、前記X線が照射されるタイミングに応じて複数回露光するステップを実行させる、請求項11または12に記載のX線検査装置を制御するためのプログラム。
    The program is
    As the step of irradiating the X-ray, the step of irradiating the object with X-rays a plurality of times is performed,
    The program for controlling the X-ray inspection apparatus according to claim 11 or 12, wherein, as the step of acquiring the plurality of projection images, a step of performing a plurality of exposures according to a timing at which the X-ray is irradiated is executed.
  16.  請求項11~15のいずれかに記載のプログラムを格納した、コンピュータ読み取り可能な不揮発性のデータ記録媒体。 A computer-readable non-volatile data recording medium storing the program according to any one of claims 11 to 15.
PCT/JP2012/073056 2011-09-14 2012-09-10 X-ray examination device, x-ray examination device control method, program for controlling x-ray examination device, and storage medium for storing program WO2013039032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-200134 2011-09-14
JP2011200134A JP2013061257A (en) 2011-09-14 2011-09-14 X-ray inspection device, x-ray inspection device control method, program for controlling x-ray inspection device, and recording medium storing program therein

Publications (1)

Publication Number Publication Date
WO2013039032A1 true WO2013039032A1 (en) 2013-03-21

Family

ID=47883262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073056 WO2013039032A1 (en) 2011-09-14 2012-09-10 X-ray examination device, x-ray examination device control method, program for controlling x-ray examination device, and storage medium for storing program

Country Status (3)

Country Link
JP (1) JP2013061257A (en)
TW (1) TW201312102A (en)
WO (1) WO2013039032A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764086A1 (en) 2019-07-12 2021-01-13 Excillum AB Method for x-ray imaging a sample, corresponding x-ray source and x-ray imaging system
JP6973536B2 (en) * 2020-03-11 2021-12-01 オムロン株式会社 X-ray inspection equipment and X-ray inspection method
JP7437222B2 (en) * 2020-04-22 2024-02-22 株式会社サキコーポレーション Inspection equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172698A (en) * 1986-01-24 1987-07-29 Hitachi Medical Corp X-ray computer tomography device
JP2005121633A (en) * 2003-08-27 2005-05-12 Matsushita Electric Ind Co Ltd X-ray inspection system and x-ray inspection method
WO2009078415A1 (en) * 2007-12-17 2009-06-25 Uni-Hite System Corporation X-ray examining apparatus and method
JP2010160070A (en) * 2009-01-08 2010-07-22 Omron Corp Examination method, examination apparatus and examination program
JP2011149738A (en) * 2010-01-19 2011-08-04 Saki Corp:Kk Method of correcting inspection device using tool for correction and inspection device mounted with tool for correction
JP2011232057A (en) * 2010-04-23 2011-11-17 Toshiba It & Control Systems Corp Ct device and imaging method for ct device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172698A (en) * 1986-01-24 1987-07-29 Hitachi Medical Corp X-ray computer tomography device
JP2005121633A (en) * 2003-08-27 2005-05-12 Matsushita Electric Ind Co Ltd X-ray inspection system and x-ray inspection method
WO2009078415A1 (en) * 2007-12-17 2009-06-25 Uni-Hite System Corporation X-ray examining apparatus and method
JP2010160070A (en) * 2009-01-08 2010-07-22 Omron Corp Examination method, examination apparatus and examination program
JP2011149738A (en) * 2010-01-19 2011-08-04 Saki Corp:Kk Method of correcting inspection device using tool for correction and inspection device mounted with tool for correction
JP2011232057A (en) * 2010-04-23 2011-11-17 Toshiba It & Control Systems Corp Ct device and imaging method for ct device

Also Published As

Publication number Publication date
JP2013061257A (en) 2013-04-04
TW201312102A (en) 2013-03-16

Similar Documents

Publication Publication Date Title
EP3586750B1 (en) Imaging control device, imaging control method, and imaging control program
KR101632046B1 (en) High-resolution computed tomography
JP6636923B2 (en) X-ray imaging device
WO2010029862A1 (en) X-ray inspection device and method for x-ray inspection
JPH1151879A (en) Non-destructive inspection device
JP4959223B2 (en) Tomography equipment
JP2002125963A (en) Computer tomograph and method for operating the same
JP2010160070A (en) Examination method, examination apparatus and examination program
JP2003260049A (en) Inclined three-dimensional x-ray ct scanner
JPWO2009078415A1 (en) X-ray inspection apparatus and method
WO2021201211A1 (en) Inspection device
JP2020173175A (en) Projection image capturing method, control device, control program, processing device, and processing program
WO2013039032A1 (en) X-ray examination device, x-ray examination device control method, program for controlling x-ray examination device, and storage medium for storing program
WO2021215217A1 (en) Inspection apparatus
JP6676023B2 (en) Inspection position specifying method and inspection device
JP2009156788A5 (en) X-ray inspection device
JP5884351B2 (en) X-ray inspection apparatus, control method for X-ray inspection apparatus, program for controlling X-ray inspection apparatus, and computer-readable recording medium storing the program
JP4926645B2 (en) Radiation inspection apparatus, radiation inspection method, and radiation inspection program
JP2004037267A (en) Computed tomography
JP2006266754A (en) Method and system for x-ray tomographic imaging
JP2005134213A (en) X-ray tomographic method and device
JP2007101247A (en) X-ray tomographic imaging apparatus and x-ray tomographic imaging method
JP4926734B2 (en) Radiation inspection apparatus, radiation inspection method, and radiation inspection program
JP2004333310A (en) X-ray ct scanner
JP2004340630A (en) Computer tomography, and computer tomographic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831589

Country of ref document: EP

Kind code of ref document: A1