JP2000126169A - Tomographic x-ray apparatus - Google Patents

Tomographic x-ray apparatus

Info

Publication number
JP2000126169A
JP2000126169A JP10308234A JP30823498A JP2000126169A JP 2000126169 A JP2000126169 A JP 2000126169A JP 10308234 A JP10308234 A JP 10308234A JP 30823498 A JP30823498 A JP 30823498A JP 2000126169 A JP2000126169 A JP 2000126169A
Authority
JP
Japan
Prior art keywords
imaging
ray
tomographic plane
ray tube
image receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10308234A
Other languages
Japanese (ja)
Other versions
JP4211098B2 (en
Inventor
Katsuhiro Masuo
克裕 増尾
Mitsuru Umeda
充 梅田
Hirotaka Isono
浩孝 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP30823498A priority Critical patent/JP4211098B2/en
Publication of JP2000126169A publication Critical patent/JP2000126169A/en
Application granted granted Critical
Publication of JP4211098B2 publication Critical patent/JP4211098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily obtain an X-ray tomographic image of a sectional plane to be photographed at various depth positions. SOLUTION: A control section 10 controls the driving of photographing drive systems 11-14 according to a drive data stored in a nonvolatile memory 30 to take a tomographic image of a sectional plane Ma to be photographed in a subject M. The memory 30 previously stores a plurality of drive data corresponding to the sectional plane Ma to be photographed at various depth positions. When the depth position of the sectional plane Ma to be photographed for shooting is set by an operator from a setting panel 31, the control section 10 reads the drive data out of the memory 30 corresponding to the set depth position of the sectional plane Ma to be photographed and controls the driving of the photographing drive systems 11, 14 according to the drive data to take a tomographic image for the section plane Ma to be photographed at the set depth position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、被検体内の撮影
対象断層面のX線断層撮影画像を得る非CT式(非コン
ピュータトモグラフィ式)のX線断層撮影装置に係り、
特には、種々の深さ位置の撮影対象断層面のX線断層撮
影画像を得るための改良技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-CT type (non-computer tomography type) X-ray tomography apparatus for obtaining an X-ray tomographic image of a tomographic plane to be imaged in a subject,
In particular, the present invention relates to an improved technique for obtaining X-ray tomographic images of a tomographic plane to be imaged at various depth positions.

【0002】[0002]

【従来の技術】病院などにの医療機関に設置されている
非CT式のX線断層撮像装置は、図9に示すように、天
板1に載置支持させた被検体M内の撮影対象断層面Ma
に対するX線管2からのX線の入射方向を順次変更しな
がら被検体Mに向けてX線を照射させるとともに、被検
体M内の撮像対象断層面Maの透過X線像が常に、イメ
ージインテンシファイアなどのX線検出器やフィルムな
どの撮影材などの撮像部3の受像面3aの同じ位置に投
影されるように撮影対象断層面Maに対するX線の入射
方向の変更(X線管2側の動作)と連動して撮像部3の
受像面3aの位置を変更させて、撮影対象断層面Maの
X線断層撮影画像を得るように構成されている。
2. Description of the Related Art A non-CT type X-ray tomographic imaging apparatus installed in a medical institution such as a hospital, as shown in FIG. Fault plane Ma
X-rays are emitted toward the subject M while sequentially changing the incident direction of X-rays from the X-ray tube 2 to the X-ray tube 2, and the transmitted X-ray image of the tomographic plane Ma to be imaged inside the subject M is always image-in. Changing the direction of incidence of X-rays on the tomographic plane Ma to be imaged so that the X-rays are projected on the same position on the image receiving surface 3a of the imaging unit 3 such as an X-ray detector such as a tensifier or an imaging material such as a film (X-ray tube 2). The position of the image receiving surface 3a of the image capturing unit 3 is changed in conjunction with the operation of the imaging unit 3 to obtain an X-ray tomographic image of the imaging target tomographic surface Ma.

【0003】このX線断層撮像装置によるX線断層撮影
の原理を今少し詳しく説明する。すなわち、図9に示す
ように、例えば、X線管2の位置やX線管2から照射さ
れるX線の照射角度を変更させるなどして、被検体M内
の撮影対象断層面Maに対するX線管2からのX線の入
射方向を変更しても、その撮影対象断層面Maの中に位
置する点A、Bが常に撮像部3の受像面3aの同じ点
a、bに投影されるように、撮影対象断層面Maに対す
るX線の入射方向の変更と連動させて受像部3の受像面
3aの位置を変更させる。そうすると、撮影対象断層面
Maの外に位置する点Cは、撮影対象断層面Maに対す
るX線の入射方向が変化するにつれて受像面3aでの投
影位置がどんどん変化する。例えば、X線管1が位置P
1のときの撮影対象断層面Maに対するX線の入射方向
に対しては、点Cが受像面3aの点c1に投影される
が、位置P1と異なる位置P2にX線管1が移ったとき
の撮影対象断層面Maに対するX線の入射方向に対して
は、点Cが受像面3aの点c2に投影されることにな
る。
[0003] The principle of X-ray tomography by this X-ray tomography apparatus will now be described in more detail. That is, as shown in FIG. 9, for example, by changing the position of the X-ray tube 2 or the irradiation angle of the X-ray radiated from the X-ray tube 2, the X-ray with respect to the imaging target tomographic plane Ma in the subject M is changed. Even if the incident direction of the X-ray from the ray tube 2 is changed, the points A and B located in the tomographic plane Ma to be imaged are always projected on the same points a and b on the image receiving surface 3a of the imaging unit 3. In this way, the position of the image receiving surface 3a of the image receiving unit 3 is changed in conjunction with the change of the incident direction of the X-rays on the imaging target tomographic surface Ma. Then, as for the point C located outside the imaging target tomographic plane Ma, the projection position on the image receiving surface 3a changes rapidly as the incident direction of the X-rays on the imaging target tomographic plane Ma changes. For example, if the X-ray tube 1 is at the position P
When the X-ray tube 1 is moved to a position P2 different from the position P1 while the point C is projected on the point c1 on the image receiving surface 3a with respect to the incident direction of the X-ray to the imaging target tomographic plane Ma at 1 In the direction of incidence of X-rays on the imaging target tomographic plane Ma, the point C is projected on the point c2 on the image receiving surface 3a.

【0004】このように撮影対象断層面Maに対するX
線の入射方向を変えた状態で撮像部3の受像面3aで受
像された各透過X線像を重ね合わせると、重ね合わせ後
の画像内では、点Cの透過X線像は画像全体にばらまか
れる(分配される)ことになって点Cは不明瞭なボケ状
態の点として現れる。点Cのボケ度合いは撮影対象断層
面Maから離れるに従って大きくなる。一方、点A、B
の透過X線像は画像の一点に留められる(集中される)
ことになって点A、Bは重ね合わせ後の画像内に明瞭な
点として現れる。従って、撮影対象断層面Maに対する
X線の入射方向を種々に変更して撮像部3の受像面3a
で受像された多数の透過X線像を重ね合わせることによ
って、撮像対象断層面Maだけが明瞭に映っている画
像、すなわち、被検体M内の撮影対象断層面Maを抽出
したようなX線断層撮影画像を得ることができる。
As described above, the X with respect to the tomographic plane Ma to be photographed is
When the transmission X-ray images received on the image receiving surface 3a of the imaging unit 3 are superimposed while changing the incident direction of the line, the transmission X-ray image of the point C is scattered throughout the image in the superimposed image. As a result, the point C appears as a point in an unclear blur state. The degree of blur at the point C increases as the point C moves away from the imaging target tomographic plane Ma. On the other hand, points A and B
Transmission X-ray image of the image is kept at one point of the image (concentrated)
As a result, points A and B appear as clear points in the superimposed image. Therefore, the direction of incidence of X-rays on the tomographic plane Ma to be imaged is changed in various ways, and
By superimposing a large number of transmitted X-ray images received at step S1 on the X-ray tomographic image, only the tomographic plane Ma to be imaged is clearly shown, that is, an X-ray tomographic plane obtained by extracting the tomographic plane Ma to be imaged within the subject M A photographed image can be obtained.

【0005】なお、撮像部3がイメージインテンシファ
イアなどのX線検出器で構成される場合には、上記X線
管2や撮像部3の撮影動作中にサンプリングされた撮影
対象断層面Maに対するX線の入射方向が相違する多数
の透過X線画像を各々デジタル画像に変換し、デジタル
画像処理によって各画像を画像積分することでX線断層
撮影画像を得ている。また、撮像部3がフィルムなどの
撮影材などで構成される場合は、上記X線管2や撮像部
3の撮影動作中に撮影対象断層面Maに対するX線の入
射方向が相違する多数の透過X線画像を撮影材3に多重
露光させてX線断層撮影画像を得ている。
[0005] When the imaging section 3 is formed of an X-ray detector such as an image intensifier, the imaging target tomographic plane Ma sampled during the imaging operation of the X-ray tube 2 and the imaging section 3 is performed. A number of transmitted X-ray images having different X-ray incident directions are converted into digital images, and the images are integrated by digital image processing to obtain an X-ray tomographic image. In the case where the imaging unit 3 is formed of an imaging material such as a film, a large number of transmissions having different X-ray incidence directions with respect to the imaging target tomographic plane Ma during the imaging operation of the X-ray tube 2 and the imaging unit 3. The X-ray image is subjected to multiple exposure on the imaging material 3 to obtain an X-ray tomographic image.

【0006】上記原理に基づいて撮影対象断層面Maの
X線断層撮影画像を得るX線断層撮影装置の駆動制御系
は、従来、以下のように構成されている。
A drive control system of an X-ray tomography apparatus for obtaining an X-ray tomographic image of a to-be-photographed tomographic plane Ma based on the above principle is conventionally configured as follows.

【0007】〔第1従来例〕図10を参照する。この第
1従来例は、モーターなどのX線管駆動機構11によっ
て、例えば、天井に敷設されたレール21に沿って水平
移動されるX線管保持部材22にX線管2が保持され、
X線管2が水平移動されるようになっている。X線管2
には高電圧発生器などを含むX線照射駆動部12が接続
され、このX線照射駆動部12によってX線管2からの
X線の照射駆動が行われる。また、モーターなどの照射
角度駆動機構13によって、例えば、X線管保持部材2
2に対してX線管2が回転されてX線管2から照射され
るX線の照射角度が変更されるように構成されている。
[First Conventional Example] Referring to FIG. In the first conventional example, an X-ray tube driving mechanism 11 such as a motor holds an X-ray tube 2 on an X-ray tube holding member 22 that moves horizontally along a rail 21 laid on a ceiling, for example.
The X-ray tube 2 is moved horizontally. X-ray tube 2
Is connected to an X-ray irradiation drive unit 12 including a high-voltage generator and the like, and the X-ray irradiation drive unit 12 drives X-ray irradiation from the X-ray tube 2. The irradiation angle driving mechanism 13 such as a motor causes the X-ray tube holding
The X-ray tube 2 is rotated with respect to the X-ray tube 2 to change the irradiation angle of the X-ray emitted from the X-ray tube 2.

【0008】X線管駆動機構11やX線照射駆動部1
2、照射角度駆動機構13などの撮影駆動系の駆動制御
は制御部10P1によって行われる。制御部10P1
は、これら撮影駆動系11、12、13を駆動制御し
て、X線管2の水平移動に伴って以下のようにX線の照
射角度を変更しつつ、X線管2からX線を照射させるよ
うに動作させる。X線の照射角度は、X線管2の水平移
動中の各位置において、X線管2から照射されるX線束
の中心軸XJが常に、被検体M内の撮影対象断層面Ma
中の撮影中心GCを通過するように変更される。これに
より、天板1に載置支持された被検体M内の撮影対象断
層面Ma(中の撮影中心GC)に対するX線の入射方向
を種々の方向に変更させている。
The X-ray tube driving mechanism 11 and the X-ray irradiation driving unit 1
2. The drive control of the photographing drive system such as the irradiation angle drive mechanism 13 is performed by the control unit 10P1. Control unit 10P1
Controls the driving of the imaging drive systems 11, 12, and 13 to irradiate X-rays from the X-ray tube 2 while changing the irradiation angle of X-rays in accordance with the horizontal movement of the X-ray tube 2 as follows. To work. The X-ray irradiation angle is such that, at each position of the X-ray tube 2 during horizontal movement, the central axis XJ of the X-ray flux irradiated from the X-ray tube 2 is always the imaging target tomographic plane Ma within the subject M.
It is changed to pass through the middle shooting center GC. Thereby, the incident direction of the X-rays on the tomographic plane Ma (the middle imaging center GC) in the subject M mounted on and supported by the table 1 is changed in various directions.

【0009】被検体Mを載置支持する天板1を挟んでX
線管2と反対側に配置された撮像部3は、伸縮自在の連
結部材100によってX線管2と一体的に水平移動可能
にX線管2に連結されている。連結部材100には支点
101が設けられている。これにより、X線管2を水平
移動させると、連結部材100が支点101周りに揺動
され、これに伴って、被検体M内の撮像対象断層面Ma
の透過X線像が常に、撮像部3の受像面3aの同じ位置
に投影されるようにX線管2側の動作と連動して撮像部
3の受像面3aの位置を変更させている。支点101の
位置は変更できるようになっている。
[0009] X across the top plate 1 for mounting and supporting the subject M
The imaging unit 3 disposed on the opposite side of the X-ray tube 2 is connected to the X-ray tube 2 by a telescopic connecting member 100 so as to be horizontally movable integrally with the X-ray tube 2. A supporting point 101 is provided on the connecting member 100. Accordingly, when the X-ray tube 2 is moved horizontally, the connecting member 100 is swung around the fulcrum 101, and accordingly, the tomographic plane Ma to be imaged in the subject M
The position of the image receiving surface 3a of the imaging unit 3 is changed in conjunction with the operation of the X-ray tube 2 so that the transmitted X-ray image of the image capturing unit 3 is always projected at the same position on the image receiving surface 3a of the image capturing unit 3. The position of the fulcrum 101 can be changed.

【0010】以上の構成により、図10に示す撮影対象
断層面Maのうち、撮影中心GCを中心とした所定の撮
影範囲GHのX線断層撮影画像を得ることができる。
With the above configuration, an X-ray tomographic image of a predetermined imaging range GH centered on the imaging center GC can be obtained from the imaging target tomographic plane Ma shown in FIG.

【0011】ところで、この第1従来例では、制御部1
0P1は、撮影駆動系を駆動するための駆動データとし
て、予め決められた深さ位置の1つの撮影対象断層面M
aに対応した1種類の駆動データだけを持っている。そ
して、撮影対象断層面Maの深さ位置を変更して撮影す
るときには、支点101の位置を、撮影しようとする撮
影対象断層面Maの深さ位置に応じた位置に変更するこ
とによって、X線管2側と撮像部3側との連動動作を、
撮影しようとする撮影対象断層面Maの深さ位置に応じ
た動作が行えるように変更させている。
In the first conventional example, the control unit 1
0P1 is one imaging target tomographic plane M at a predetermined depth position as drive data for driving the imaging drive system.
It has only one type of drive data corresponding to a. When the depth position of the imaging target tomographic plane Ma is changed and imaging is performed, the position of the fulcrum 101 is changed to a position corresponding to the depth position of the imaging target tomographic plane Ma to be imaged, so that X-rays can be obtained. The interlocking operation between the tube 2 and the imaging unit 3
The operation is changed so that the operation according to the depth position of the tomographic plane Ma to be photographed can be performed.

【0012】〔第2従来例〕図11を参照する。上記第
1従来例では、撮影対象断層面MaのX線断層撮影画像
を得るのに必要なX線管2側と撮像部3側との連動動作
を、X線管2と撮像部3とを連結部材100で連結させ
て実現しているが、第2従来例は、X線管2と撮像部3
とを連結させずに、X線管2を水平移動させるX線管駆
動機構11とは別に、撮像部3を水平移動させるモータ
ーなどの撮像部駆動機構14を備えてX線管2と撮像部
3とを独立させて水平移動可能に構成している。そし
て、制御部10P2が、撮影対象断層面MaのX線断層
撮影画像を得るのに必要なX線管2側と撮像部3側との
連動動作を行うように、X線管駆動機構11と撮像部駆
動機構14を駆動制御している。その他のX線の照射角
度の変更制御やX線管2からのX線照射の駆動制御は、
上記第1実施例と同様である。
[Second Conventional Example] Referring to FIG. In the first conventional example, an interlocking operation between the X-ray tube 2 and the imaging unit 3 necessary for obtaining an X-ray tomographic image of the imaging target tomographic plane Ma is performed by the X-ray tube 2 and the imaging unit 3. The connection is realized by a connecting member 100, but the second conventional example is an X-ray tube 2 and an imaging unit 3
An X-ray tube driving mechanism 11 for moving the X-ray tube 2 horizontally is provided with an imaging unit driving mechanism 14 such as a motor for moving the imaging unit 3 horizontally, without connecting the X-ray tube 2 and the imaging unit. 3 is configured to be horizontally movable independently of each other. The X-ray tube driving mechanism 11 and the X-ray tube driving mechanism 11 perform an interlocking operation between the X-ray tube 2 and the imaging unit 3 necessary for obtaining an X-ray tomographic image of the imaging target tomographic plane Ma. The drive of the imaging unit drive mechanism 14 is controlled. Other X-ray irradiation angle change control and X-ray irradiation drive control from the X-ray tube 2
This is the same as the first embodiment.

【0013】この第2従来例でも、制御部10P2は、
撮影駆動系を駆動するための駆動データとして、予め決
められた深さ位置の1つの撮影対象断層面Maに対応し
た1種類の駆動データだけを持っている。そして、撮影
対象断層面Maの深さ位置を変更して撮影するときに
は、天板1の昇降移動などを行う天板駆動機構15によ
って天板1を昇降移動させて被検体MをX線管2に対し
て遠近(撮影部3の受像面3aに対して近遠)させ、こ
れにより、被検体M内における上記1つの撮影対象断層
面Maの位置関係を深さ方向に変更させている。
In the second conventional example, the control unit 10P2 also includes:
As drive data for driving the imaging drive system, only one type of drive data corresponding to one imaging target tomographic plane Ma at a predetermined depth position is provided. Then, when changing the depth position of the tomographic plane Ma to be imaged and performing imaging, the top 1 is moved up and down by the top driving mechanism 15 that moves up and down the top 1 to move the subject M to the X-ray tube 2. (In the near and far directions with respect to the image receiving surface 3a of the imaging unit 3), thereby changing the positional relationship of the one tomographic plane Ma in the subject M in the depth direction.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、このよ
うな構成を有する従来例の場合には、次のような問題が
ある。通常、一連の断層撮影検査では、病変部の位置を
特定するために、撮影対象断層面Maの深さ位置を数点
変えた撮影を行うが、上記第1従来例の場合には、撮影
対象断層面Maの深さ位置を変えた撮影を行うごとに、
連結部材100の支点101の位置を変更させる必要が
ある。この連結部材100の支点101の変更作業に
は、術者の手作業が含まれるので、連結部材100の支
点101の変更作業は手間で、術者への負担も大きいと
いう問題がある。
However, the prior art having such a structure has the following problems. Usually, in a series of tomographic examinations, imaging is performed by changing the depth position of the imaging target tomographic plane Ma by several points in order to specify the position of the lesioned part. Each time imaging is performed with the depth position of the tomographic plane Ma changed,
It is necessary to change the position of the fulcrum 101 of the connecting member 100. Since the operation of changing the fulcrum 101 of the connecting member 100 includes the manual operation of the operator, there is a problem that the operation of changing the fulcrum 101 of the connecting member 100 is troublesome and burdens the operator.

【0015】第2従来例では、天板1を昇降させるだけ
で撮影対象断層面Maの深さ位置を変えた撮影を行うこ
とができ、また、天板1の昇降は通常、ボタン操作など
で行えるので、上記第1従来例の問題は解消される。し
かしながら、天板1を昇降させることに伴って、天板1
上で被検体Mの体動が起き易く、その結果、所望の深さ
位置の撮影対象断層面Maに対するX線断層撮影画像を
正確に得ることができないことがある。特に、病変部の
位置を特定するためには、撮影対象断層面Maの深さ位
置を(mm)単位で変更することもあり、被検体Mの体動に
よる撮影対象断層面Maの深さ位置のズレによって、(m
m)単位で変更した各深さ位置の撮影対象断層面Maに対
する各X線断層撮影画像が正確に得られずに、一連の断
層撮影検査に支障を来すこともある。また、断層撮影検
査中に天板1を頻繁に細かく昇降させると、被検体Mに
心理的な不安を与えるという問題もある。
In the second conventional example, it is possible to perform imaging while changing the depth position of the to-be-photographed tomographic plane Ma only by moving the top 1 up and down, and the elevation of the top 1 is usually performed by button operation or the like. Therefore, the problem of the first conventional example is solved. However, as the top 1 is moved up and down,
Above, body movement of the subject M is likely to occur, and as a result, an X-ray tomographic image of the imaging target tomographic plane Ma at a desired depth position may not be accurately obtained. In particular, in order to identify the position of the lesion, the depth position of the imaging target tomographic plane Ma may be changed in (mm) units, and the depth position of the imaging target tomographic plane Ma due to the body movement of the subject M may be changed. (M
m) Each X-ray tomographic image for the imaging target tomographic plane Ma at each depth position changed in units of m) may not be accurately obtained, which may hinder a series of tomographic inspections. In addition, if the table 1 is frequently moved up and down finely during the tomography inspection, there is a problem that the subject M may be psychologically anxious.

【0016】この発明は、このような事情に鑑みてなさ
れたものであって、上記従来技術の欠点を解消して種々
の深さ位置の撮影対象断層面のX線断層撮影画像を容易
に得ることができるX線断層撮影装置を提供することを
目的とする。
The present invention has been made in view of such circumstances, and solves the above-mentioned disadvantages of the prior art to easily obtain X-ray tomographic images of tomographic planes to be imaged at various depth positions. It is an object of the present invention to provide an X-ray tomography apparatus capable of performing the above.

【0017】[0017]

【課題を解決するための手段】この発明は、このような
目的を達成するために、次のような構成をとる。すなわ
ち、この発明は、被検体内の撮影対象断層面のX線断層
撮影画像を得るX線断層撮影装置であって、(a)被検
体を支持する支持手段と、(b)前記支持手段に支持さ
せた被検体にX線を照射するX線照射手段と、(c)前
記支持手段に支持させた被検体を挟んで前記X線照射手
段と反対側に配置され、被検体を透過したX線透過像を
受像面で受像して撮像する撮像手段と、(d)前記支持
手段に支持させた被検体内の撮影対象断層面に対する前
記X線照射手段からのX線の入射方向を変更駆動するX
線入射方向変更駆動手段と、前記X線照射手段からのX
線の照射駆動を行うX線照射駆動手段と、前記撮像手段
の受像面の位置を変更駆動する受像位置変更駆動手段と
を含む撮影駆動手段と、(e)前記支持手段に支持させ
た被検体内の撮影対象断層面に対する前記X線照射手段
からのX線の入射方向を順次変更しながら被検体に向け
てX線を照射させるとともに、前記撮像対象断層面の透
過X線像が常に前記撮像手段の受像面の同じ位置に投影
されるように撮影対象断層面に対するX線の入射方向の
変更と連動して前記撮像手段の受像面の位置を変更させ
るように前記撮影駆動手段を駆動データに従って駆動制
御する制御手段とを備え、撮影対象断層面の深さ位置を
変更して撮影するときには、前記制御手段は、撮影しよ
うとする撮影対象断層面の深さ位置に応じて、その深さ
位置の撮影対象断層面と前記X線照射手段との位置関係
及びその深さ位置の撮影対象断層面と前記撮像手段の受
像面との位置関係によって決まるその撮影対象断層面の
深さ位置に応じた前記撮影駆動手段の駆動データに従っ
て前記撮影駆動手段を駆動制御することを特徴とするも
のである。
The present invention has the following configuration to achieve the above object. That is, the present invention relates to an X-ray tomography apparatus for obtaining an X-ray tomographic image of a tomographic plane to be imaged in a subject, wherein (a) a supporting means for supporting the subject; (C) X-ray irradiating means for irradiating the supported object with X-rays, and (c) X-ray irradiating means arranged on the opposite side of the X-ray irradiating means with the object supported by the supporting means interposed therebetween. Imaging means for receiving a line transmission image on an image receiving surface and imaging the image; and (d) driving for changing the incident direction of X-rays from the X-ray irradiating means on a tomographic plane to be imaged in the subject supported by the supporting means. X to do
X-ray incident direction changing driving means, and X-rays from the X-ray irradiating means.
X-ray irradiation driving means for driving irradiation of X-rays, imaging driving means including image receiving position changing driving means for changing the position of the image receiving surface of the imaging means, and (e) an object supported by the supporting means X-rays are radiated toward the subject while sequentially changing the incident direction of the X-rays from the X-ray irradiating means on the tomographic plane in the inside, and the transmitted X-ray image of the tomographic plane to be imaged is always obtained by the imaging. The photographing driving means is operated in accordance with drive data to change the position of the image receiving surface of the image pickup means in conjunction with a change in the direction of incidence of X-rays on the tomographic plane to be imaged so as to be projected at the same position on the image receiving surface of the means. Control means for controlling the driving, when performing imaging while changing the depth position of the imaging target tomographic plane, the control means, according to the depth position of the imaging target tomographic plane to be imaged, the depth position Shooting target The imaging driving means according to the positional relationship between the surface and the X-ray irradiating means and the depth position of the imaging target tomographic plane determined by the positional relationship between the imaging target tomographic plane at the depth position and the image receiving surface of the imaging means The driving of the photographing driving means is controlled according to the driving data.

【0018】〔作用〕この発明の作用は次のとおりであ
る。被検体を支持手段に支持させて、X線照射手段と撮
像手段との間の所定の撮影位置に被検体が位置される
と、制御手段は、支持手段に支持させた被検体内の撮影
対象断層面に対するX線照射手段からのX線の入射方向
を順次変更しながらX線を照射させるとともに、その撮
像対象断層面の透過X線像が常に撮像手段の受像面の同
じ位置に投影されるように撮影対象断層面に対するX線
の入射方向の変更と連動して撮像手段の受像面の位置を
変更させるように、X線入射方向変更駆動手段、X線照
射駆動手段、受像位置変更駆動手段を含む撮影駆動手段
を駆動データに従って駆動制御してその撮影対象断層面
のX線断層撮影画像を得る。
[Operation] The operation of the present invention is as follows. When the subject is supported by the supporting means and the subject is positioned at a predetermined imaging position between the X-ray irradiating means and the imaging means, the control means controls the imaging target in the subject supported by the supporting means. X-rays are emitted while sequentially changing the direction of incidence of X-rays from the X-ray irradiator on the tomographic plane, and a transmitted X-ray image of the tomographic plane to be imaged is always projected on the same position on the image receiving surface of the imaging means. X-ray incident direction changing driving means, X-ray irradiation driving means, image receiving position changing driving means so as to change the position of the image receiving surface of the imaging means in conjunction with the change of the X-ray incident direction on the tomographic plane to be imaged. Is driven in accordance with the drive data to obtain an X-ray tomographic image of the tomographic plane to be imaged.

【0019】そして、撮影対象断層面の深さ位置を変更
して撮影するときには、制御手段は、撮影しようとする
撮影対象断層面の深さ位置に応じて、その深さ位置の撮
影対象断層面とX線照射手段との位置関係及びその深さ
位置の撮影対象断層面と撮像手段の受像面との位置関係
によって決まるその撮影対象断層面の深さ位置に応じた
撮影駆動手段の駆動データに従って撮影駆動手段を駆動
制御してその深さ位置の撮影対象断層面に対するX線断
層撮影画像を得る。
When changing the depth position of the tomographic plane to be photographed, the control means controls the depth of the tomographic plane to be photographed in accordance with the depth position of the tomographic plane to be photographed. And the X-ray irradiating means, and the driving data of the imaging driving means corresponding to the depth position of the imaging target tomographic plane determined by the positional relation between the imaging target tomographic plane at the depth position and the image receiving surface of the imaging means. The driving of the imaging driving means is controlled to obtain an X-ray tomographic image for the imaging target tomographic plane at the depth position.

【0020】撮影対象断層面とX線照射手段との位置関
係や、撮影対象断層面と撮像手段の受像面との位置関係
は、幾何学的な位置関係に置き換えることができる。
The positional relationship between the tomographic plane to be imaged and the X-ray irradiating means and the positional relation between the tomographic plane to be imaged and the image receiving surface of the imaging means can be replaced by a geometrical positional relation.

【0021】また、撮影対象断層面の深さ位置を変更す
ることは、撮影対象断層面をX線照射手段に対して遠近
(撮像手段の受像面に対して近遠)させることである。
To change the depth position of the tomographic plane to be photographed means to make the tomographic plane to be photographed farther from the X-ray irradiating means (closer to the image receiving surface of the imaging means).

【0022】従って、撮影しようとする深さ位置の撮影
対象断層面とX線照射手段との位置関係や、その深さ位
置の撮影対象断層面と撮像手段の受像面との位置関係
は、幾何学的に把握することができる。
Accordingly, the positional relationship between the tomographic plane to be imaged at the depth position to be imaged and the X-ray irradiating means and the positional relation between the tomographic plane to be imaged at that depth position and the image receiving surface of the imaging means are geometrical. Can be grasped biologically.

【0023】これに基づき、その深さ位置の撮影対象断
層面に対するX線断層撮影画像を得るためには、その撮
影対象断層面に対するX線の入射方向を変更するための
X線照射手段側の動作範囲や動作速度などのX線入射方
向変更駆動手段に対する駆動データ、それに連動して撮
像手段の受像面の位置を変更させる動作範囲や動作速度
などの受像位置変更駆動手段に対する駆動データを幾何
学的な演算などによって求めることができる。また、X
線照射手段側の動作範囲や動作速度、撮像手段の受像面
の位置を変更させる動作範囲や動作速度などが決まれ
ば、どのタイミングでX線を照射すればよいかなども決
まり、X線照射駆動手段の駆動データも決められる。こ
のようにして深さ位置の撮影対象断層面ごとに決まる駆
動データに従って撮影駆動手段を駆動制御すれば、種々
の深さ位置の撮影対象断層面に対するX線断層撮影画像
を自動的に得ることができる。
Based on this, in order to obtain an X-ray tomographic image on the tomographic plane to be photographed at the depth position, the X-ray irradiating means for changing the incident direction of X-rays on the tomographic plane to be photographed is changed. The drive data for the X-ray incident direction changing drive means such as the operation range and the operation speed, and the drive data for the image receiving position change drive means such as the operation range and the operation speed for changing the position of the image receiving surface of the imaging means in conjunction with the drive data. It can be obtained by a typical operation. Also, X
Once the operating range and operating speed of the X-ray irradiating unit and the operating range and operating speed for changing the position of the image receiving surface of the imaging unit are determined, the timing of X-ray irradiation and the like are also determined. The drive data of the means is also determined. By controlling the driving of the imaging drive means in accordance with the drive data determined for each imaging target tomographic plane at a depth position in this manner, X-ray tomographic images for the imaging target tomographic planes at various depth positions can be automatically obtained. it can.

【0024】[0024]

【発明の実施の形態】以下、図面を参照してこの発明の
実施の形態を説明する。図1はこの発明の一実施例に係
るX線断層撮影装置の概略構成図である。なお、以下の
実施例では説明を簡単にするために、X線管2を水平移
動させるとともに、X線管2からのX線の照射角度を変
更して、被検体M内の撮影対象断層面Maに対するX線
管2からのX線の入射方向を変更させ、それに追従させ
て、撮像部3の受像面3aを水平移動させて撮影対象断
層面MaのX線断層撮影画像を得る装置を例に採り説明
する。また、実施例において、従来技術の説明に用いた
符号と同一の符号を付した部分は従来技術と基本的に同
一であるので、不要な重複説明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of an X-ray tomography apparatus according to one embodiment of the present invention. In the following embodiment, to simplify the description, the X-ray tube 2 is moved horizontally, and the irradiation angle of the X-ray from the X-ray tube 2 is changed, so that the tomographic plane to be imaged in the subject M is changed. An example of an apparatus that changes the incident direction of X-rays from the X-ray tube 2 to Ma and follows the direction to horizontally move the image receiving surface 3a of the imaging unit 3 to obtain an X-ray tomographic image of the tomographic surface Ma to be imaged It will be explained. In addition, in the embodiments, portions denoted by the same reference numerals as those used in the description of the related art are basically the same as those in the related art, and thus unnecessary duplicate description will be omitted.

【0025】この実施例に係るX線断層撮影装置の撮影
駆動系は、基本的に、第2従来例のものと同じである。
すなわち、X線管駆動機構11によって、例えば、天井
に敷設されたレール21に沿って水平移動されるX線管
保持部材22にX線管2が保持され、X線管2が水平移
動されるようになっている。X線管2には高電圧発生器
などを含むX線照射駆動部12が接続され、このX線照
射駆動部12によってX線管2からのX線の照射駆動が
行われる。また、モーターなどの照射角度駆動機構13
によって、例えば、X線管保持部材22に対してX線管
2が回転されてX線管2から照射されるX線の照射角度
が変更されるように構成されている。
The imaging drive system of the X-ray tomography apparatus according to this embodiment is basically the same as that of the second conventional example.
That is, the X-ray tube driving mechanism 11 holds the X-ray tube 2 on the X-ray tube holding member 22 that is horizontally moved along the rail 21 laid on the ceiling, for example, and the X-ray tube 2 is horizontally moved. It has become. An X-ray irradiation drive unit 12 including a high voltage generator and the like is connected to the X-ray tube 2, and the X-ray irradiation drive unit 12 drives X-ray irradiation from the X-ray tube 2. Further, an irradiation angle driving mechanism 13 such as a motor
Thus, for example, the X-ray tube 2 is rotated with respect to the X-ray tube holding member 22 so that the irradiation angle of the X-ray emitted from the X-ray tube 2 is changed.

【0026】一方、被検体Mを載置支持する天板1を挟
んでX線管2と反対側に配置された撮像部3の受像面3
aは、撮像部駆動機構14によって水平移動されるよう
になっている。
On the other hand, an image receiving surface 3 of an image pickup unit 3 arranged on the opposite side of the X-ray tube 2 with respect to the top plate 1 on which the subject M is placed and supported.
“a” is horizontally moved by the imaging unit driving mechanism 14.

【0027】なお、この実施例では、天板1が支持手段
に、X線管2がX線照射手段に、撮像部3が撮像手段
に、X線管駆動機構11と照射角度駆動機構13がX線
入射方向変更駆動手段に、X線照射駆動部12がX線照
射駆動手段に、撮像部駆動機構14が受像位置変更駆動
手段に、X線管駆動機構11やX線照射駆動部12、照
射角度駆動機構13、撮像部駆動機構14を含む撮影駆
動系が撮影駆動手段にそれぞれ相当する。
In this embodiment, the top 1 is used as the support means, the X-ray tube 2 is used as the X-ray irradiating means, the imaging section 3 is used as the imaging means, and the X-ray tube driving mechanism 11 and the irradiation angle driving mechanism 13 are used. The X-ray incident direction changing drive unit, the X-ray irradiation drive unit 12 as the X-ray irradiation drive unit, the imaging unit drive mechanism 14 as the image receiving position changing drive unit, the X-ray tube drive mechanism 11 and the X-ray irradiation drive unit 12, A photographing drive system including the irradiation angle drive mechanism 13 and the imaging unit drive mechanism 14 corresponds to a photographing drive unit.

【0028】X線管駆動機構11やX線照射駆動部1
2、照射角度駆動機構13、撮像部駆動機構14を含む
撮影駆動系の駆動制御は、制御手段に相当する制御部1
0によって行われる。制御部10は、不揮発性のメモリ
30に記憶されている駆動データに従って撮影駆動系1
1、12、13、14を駆動制御して被検体M内の撮影
対象断層面MaのX線断層撮影画像の撮影を行う。
X-ray tube driving mechanism 11 and X-ray irradiation driving unit 1
2. The drive control of the photographing drive system including the irradiation angle drive mechanism 13 and the imaging unit drive mechanism 14 is performed by the control unit 1 corresponding to a control unit.
Performed by 0. The control unit 10 controls the photographing drive system 1 according to the drive data stored in the nonvolatile memory 30.
Drive control of 1, 12, 13, and 14 is performed to capture an X-ray tomographic image of the tomographic plane Ma to be imaged in the subject M.

【0029】メモリ30には、後述するような決定方法
によって決められた種々の深さ位置の撮影対象断層面M
aに応じた複数の駆動データが予め記憶されている。術
者によって設定盤31から、これから撮影しようとする
撮影対象断層面Maの深さ位置が設定されると、制御部
10は、設定された撮影対象断層面Maの深さ位置に応
じた駆動データをメモリ30から読み出し、その駆動デ
ータに従って、撮影駆動系11〜14を駆動制御して設
定された深さ位置の撮影対象断層面Maに対するX線断
層撮影画像の撮影を行う。
The memory 30 stores a tomographic plane M to be imaged at various depth positions determined by a determination method described later.
A plurality of drive data corresponding to a is stored in advance. When the operator sets the depth position of the to-be-photographed tomographic plane Ma to be photographed from the setting panel 31, the control unit 10 drives the drive data according to the set depth position of the to-be-photographed tomographic plane Ma. Is read out from the memory 30, and the imaging drive systems 11 to 14 are drive-controlled in accordance with the drive data to capture an X-ray tomographic image on the tomographic plane Ma to be imaged at the set depth position.

【0030】従って、この実施例の構成によれば、第1
従来例のようにX線管2と撮像部3とを連結した連結部
材100の支点101を変更したり、あるいは、第2従
来例のように天板1を昇降させたりすることなく、撮影
駆動系11〜14の駆動を変更させるだけで、撮影対象
断層面Maの深さ位置を変更したX線断層撮影画像の撮
影を行うことができる。よって、手間や術者への負担を
かけず、また、撮影中の被検体Mの体動を低減して、種
々の深さ位置の撮影対象断層面に対する各X線断層撮影
画像を正確に得られるとともに、撮影中の被検体Mへの
心理的な不安を軽減することができるなど、第1、第2
従来例の欠点を解消することができる。
Therefore, according to the configuration of this embodiment, the first
The photographing drive is performed without changing the fulcrum 101 of the connecting member 100 connecting the X-ray tube 2 and the imaging unit 3 as in the conventional example, or without moving the top plate 1 up and down as in the second conventional example. Only by changing the driving of the systems 11 to 14, an X-ray tomographic image in which the depth position of the imaging target tomographic plane Ma is changed can be captured. Therefore, each X-ray tomographic image can be accurately obtained with respect to the tomographic plane to be imaged at various depth positions without burdening the operator and burden on the operator and reducing the body movement of the subject M during imaging. The first and the second, such as being able to reduce psychological anxiety about the subject M during imaging,
The disadvantages of the conventional example can be eliminated.

【0031】また、装置の撮影駆動系は、第2従来例と
基本的に同じであり、その撮影駆動系の駆動制御の内容
を変更しているだけであるので、制御部10を構成する
マイクロコンピューターのプログラムやデータを記憶す
るPROMの内容を、種々の深さ位置の撮影対象断層面
Maに応じた駆動データを含めるとともに、その駆動デ
ータを使い分けて撮影駆動系を駆動制御するように書き
換えるだけで、大幅な改造を行わずに第2従来例の装置
資産を利用することができる。従って、医療機関などに
既に第2従来例の装置が設置されている場合には、その
資産を無駄にすることなく有効利用することができる。
The photographing drive system of the apparatus is basically the same as that of the second conventional example, and only the contents of the drive control of the photographing drive system are changed. The contents of the PROM storing computer programs and data are simply rewritten so as to include drive data according to the tomographic plane Ma to be photographed at various depths and to selectively use the drive data to drive and control the photographing drive system. Thus, it is possible to use the device resources of the second conventional example without performing significant remodeling. Therefore, when the device of the second conventional example is already installed in a medical institution or the like, the resources can be effectively used without wasting.

【0032】なお、上記実施例に、天板1を前後や左右
などの水平方向への移動と、昇降移動などを行う天板駆
動機構を備えて、撮影対象断層面Maの深さ位置を変更
して撮影する以外の目的、例えば、被検体Mを天板1に
乗降させる位置と、X線管2と撮像部3との間の撮影位
置との間で天板1(被検体M)を移動させるなどのため
に、天板1を移動可能に構成してもよい。
The above embodiment is provided with a top driving mechanism for moving the top 1 in the horizontal direction such as front and rear, left and right, and elevating, so as to change the depth position of the tomographic plane Ma to be photographed. For example, the top 1 (subject M) is moved between a position where the subject M gets on and off the top 1 and an imaging position between the X-ray tube 2 and the imaging unit 3. The top board 1 may be configured to be movable, for example, for movement.

【0033】また、後述する駆動データの決定方法でも
詳述するが、ある1つの深さ位置の撮影対象断層面Ma
を基準の撮影対象断層面MaSとし、その基準の撮影対
象断層面MaSに応じた撮影駆動系11〜14の駆動デ
ータを基準の駆動データとすれば、基準の撮影対象断層
面MaSの深さ位置と異なる深さ位置の撮影対象断層面
MaNに応じた駆動データは、その深さ位置の撮影対象
断層面MaNに応じた係数を基準の駆動データに掛け合
わせるだけでよい場合がある。そのような場合には、各
々の深さ位置の撮影対象断層面Maに応じた駆動データ
を全てメモリ30に記憶しておかずに、基準の駆動デー
タと、各深さ位置の撮影対象断層面MaNに応じた係数
とをメモリ30に記憶し、各深さ位置の撮影対象断層面
MaNのX線断層撮影画像の撮影を行うときに、基準の
駆動データにその深さ位置の撮影対象断層面MaNに応
じた係数を掛け合わせてその深さ位置の撮影対象断層面
MaNに応じた駆動データを得るようにしてもよい。こ
のように構成すれば、メモリ30への記憶量を低減させ
ることができる。
As will be described in detail later in a method of determining drive data, a tomographic plane Ma to be photographed at a certain depth position will be described.
Is the reference imaging target tomographic plane MaS, and the driving data of the imaging drive systems 11 to 14 corresponding to the reference imaging target tomographic plane MaS is the reference driving data, the depth position of the reference imaging target tomographic plane MaS In some cases, the drive data according to the imaging target tomographic plane MaN at a different depth position need only be multiplied by the reference drive data by a coefficient corresponding to the imaging target tomographic plane MaN at that depth position. In such a case, all the drive data corresponding to the imaging target tomographic plane Ma at each depth position is not stored in the memory 30, and the reference driving data and the imaging target tomographic plane MaN at each depth position are not stored. Is stored in the memory 30, and when an X-ray tomographic image of the imaging target tomographic plane MaN at each depth position is taken, the reference driving data contains the imaging target tomographic plane MaN at that depth position. May be multiplied by a coefficient corresponding to the driving data corresponding to the imaging target tomographic plane MaN at the depth position. With this configuration, the amount of storage in the memory 30 can be reduced.

【0034】また、各々の深さ位置の撮影対象断層面M
aに応じた駆動データや、基準の駆動データと、各深さ
位置の撮影対象断層面MaNに応じた係数となどをメモ
リ30に記憶しておくのではなく、後述する駆動データ
の決定方法をプログラム化しておき、設定盤31から、
これから撮影しようとする撮影対象断層面Maの深さ位
置が設定されるごとに、制御部10は、設定された撮影
対象断層面Maの深さ位置に応じた駆動データを撮影前
に算出し、その演算の結果得られた駆動データに従っ
て、撮影駆動系11〜14を駆動制御して設定された深
さ位置の撮影対象断層面Maに対するX線断層撮影画像
の撮影を行うように構成してもよい。
The tomographic plane M to be photographed at each depth position
The drive data according to a, the reference drive data, and the coefficient corresponding to the imaging target tomographic plane MaN at each depth position are not stored in the memory 30. Program it, and from the setting panel 31,
Each time the depth position of the imaging target tomographic plane Ma to be imaged is set, the control unit 10 calculates drive data according to the set depth position of the imaging target tomographic plane Ma before imaging, In accordance with the driving data obtained as a result of the calculation, the driving of the imaging drive systems 11 to 14 is controlled to perform X-ray tomographic imaging on the imaging target tomographic plane Ma at the set depth position. Good.

【0035】次に、異なる深さ位置の撮影対象断層面M
aに応じた駆動データを決定する方法を説明する。
Next, the tomographic plane M to be photographed at different depth positions
A method of determining drive data according to a will be described.

【0036】<第1の決定方法>図2を参照する。図2
に示すように、撮影対象断層面MaS、MaNとX線管
2との位置関係や、撮影対象断層面MaS、MaNと撮
像部3の受像面3aとの位置関係は、幾何学的な位置関
係に置き換えることができる。
<First Determination Method> Referring to FIG. FIG.
As shown in the figure, the positional relationship between the imaging target tomographic planes MaS and MaN and the X-ray tube 2 and the positional relation between the imaging target tomographic planes MaS and MaN and the image receiving surface 3a of the imaging unit 3 are geometrically related. Can be replaced by

【0037】図2では、予め決めておいた1つの撮影対
象断層面を基準の撮影対象断層面MaSとし、撮影対象
断層面MaNは、その基準の撮影対象断層面MaSの深
さ位置と異なる深さ位置の撮影対象断層面を示してい
る。図2中の点GCSは基準の撮影対象断層面MaSの
中のX線断層撮影画像を撮影する際の撮影中心、GCN
は撮影対象断層面MaNの中のX線断層撮影画像を撮影
する際の撮影中心と示す。
In FIG. 2, one predetermined tomographic plane to be photographed is defined as a reference tomographic plane MaS to be photographed, and the tomographic plane MaN to be photographed has a depth different from the depth position of the reference tomographic plane MaS to be photographed. 3 shows the tomographic plane to be imaged at the position. A point GCS in FIG. 2 is a photographing center when photographing an X-ray tomographic image in the reference photographing target tomographic plane MaS, GCN
Denotes a photographing center when photographing an X-ray tomographic image in the photographing target tomographic plane MaN.

【0038】ここで、撮影対象断層面の深さ位置を変更
した撮影とは、基本的に、ある撮影対象断層面MaSの
中の点GCSを撮影中心としてX線断層撮影画像を撮影
したとき、別の深さ位置の撮影対象断層面MaNの中に
おいて、水平方向(図2の左右方向および図2の紙面に
垂直な方向)の位置を変更せずに、撮影対象断層面Ma
Sの撮影中心GCSを深さ方向(図2の上下方向)にず
らせた点GCNを撮影中心としてX線断層撮影画像を撮
影することを意味する。すなわち、図2において、各撮
影中心GNS、GCNは、深さ方向に延ばした撮影中心
軸CJ上にプロットされる。
Here, the imaging in which the depth position of the tomographic plane to be imaged is changed basically means that when an X-ray tomographic image is photographed with a point GCS in a certain tomographic plane MaS as the imaging center. In the tomographic plane MaN at another depth position, the tomographic plane Ma to be photographed is changed without changing the position in the horizontal direction (the left-right direction in FIG. 2 and the direction perpendicular to the plane of FIG. 2).
This means that an X-ray tomographic image is taken with the point GCN obtained by shifting the imaging center GCS of S in the depth direction (the vertical direction in FIG. 2) as the imaging center. That is, in FIG. 2, the respective photographing centers GNS and GCN are plotted on the photographing central axis CJ extending in the depth direction.

【0039】また、図2において、点XFはX線管2の
焦点の位置を示し、点IFは撮像部3の受像面3aの中
心位置を示す。点XCはX線管2の焦点XFの基準位置
であり、一方、点ICは受像面3aの基準位置である。
上述した撮影中心軸CJは、これら基準位置XC、IC
を結んだ軸線とする。
In FIG. 2, a point XF indicates the position of the focal point of the X-ray tube 2, and a point IF indicates the center position of the image receiving surface 3a of the imaging unit 3. The point XC is a reference position of the focal point XF of the X-ray tube 2, while the point IC is a reference position of the image receiving surface 3a.
The photographing center axis CJ described above corresponds to the reference position XC, IC
Is the axis connecting.

【0040】すなわち、点GCSやGCNを撮影中心と
して撮影対象断層面MaS、MaNのX線断層撮影画像
を撮影する場合には、各撮影中心GCS、GCNが、撮
影中心軸CJ上に一致するように天板1及び被検体Mを
位置させる。
That is, when an X-ray tomographic image of the tomographic planes MaS and MaN to be photographed is taken with the points GCS and GCN as the photographing centers, the photographing centers GCS and GCN are aligned on the photographing central axis CJ. The top plate 1 and the subject M are positioned at the position.

【0041】また、基準の撮影対象断層面MaSの深さ
位置は、例えば、X線管2の焦点XFの基準位置XCか
らの距離XHSで決められる。すなわち、点GCS、G
CNを撮影中心として撮影対象断層面MaS、MaNの
X線断層撮影画像を撮影する場合の撮影位置は、基準の
撮影対象断層面MaSが、X線管2の焦点XFの基準位
置XCから距離XHSだけ離れた位置に位置されるとと
もに、各撮影中心CGS、CGNが、撮影中心軸CJ上
に一致する位置であり、そのような撮影位置に天板1及
び被検体Mを位置させた状態で撮影断層面の深さ位置を
変更した撮影が行われる。
The depth position of the reference tomographic plane MaS to be photographed is determined, for example, by the distance XHS of the focal point XF of the X-ray tube 2 from the reference position XC. That is, the points GCS, G
When the X-ray tomographic image of the imaging target tomographic planes MaS and MaN is taken with the CN as the imaging center, the imaging position is such that the reference imaging target tomographic plane MaS is a distance XHS from the reference position XC of the focal point XF of the X-ray tube 2. And the imaging centers CGS and CGN coincide with each other on the imaging center axis CJ, and imaging is performed with the top plate 1 and the subject M positioned at such imaging positions. Imaging is performed with the depth position of the tomographic plane changed.

【0042】さて、従来例2の制御部10P2が持って
いた撮影駆動系11〜14の駆動データによって撮影さ
れる1つの撮影対象断層面Maを基準の撮影対象断層面
MaSとし、その駆動データを用いて、基準の撮影対象
断層面MaSの撮影を行うものとする。
Now, one tomographic plane MaS to be photographed by the driving data of the photographing drive systems 11 to 14 held by the control unit 10P2 of the conventional example 2 is set as a reference tomographic plane MaS to be photographed, and the driving data is used as the reference. It is assumed that the imaging of the reference imaging target tomographic plane MaS is performed.

【0043】この撮影データでは、X線管2の焦点XF
の基準位置XCを撮影の際のX線管2の焦点XFの移動
範囲の中心としている。すなわち、基準の撮影対象断層
面MaSの撮影は、基準位置XCから、図2の左方向に
所定の距離XWS離れた位置をX線管2の焦点XFの移
動開始位置XSSとし、基準位置XCから、図2の右方
向に同じ距離XWS離れた位置をX線管2の焦点XFの
移動終了位置XESとして、この移動開始位置XSSと
移動終了位置XESとの間の移動範囲(2×XWS)
を、X線管2の焦点XFが図2の左から右に水平移動す
るようにX線管2を水平移動させている。
In the photographing data, the focal point XF of the X-ray tube 2
Is set as the center of the movement range of the focal point XF of the X-ray tube 2 during imaging. That is, the imaging of the reference imaging target tomographic plane MaS is performed by setting a position away from the reference position XC by a predetermined distance XWS in the leftward direction in FIG. 2 as the movement start position XSS of the focal point XF of the X-ray tube 2, and from the reference position XC. 2 is defined as a movement end position XES of the focal point XF of the X-ray tube 2 at the same distance XWS in the right direction in FIG. 2, and a movement range (2 × XWS) between the movement start position XSS and the movement end position XES.
The X-ray tube 2 is horizontally moved so that the focal point XF of the X-ray tube 2 horizontally moves from left to right in FIG.

【0044】上記移動範囲内のX線管2の移動中のX線
管2からのX線の照射角度は、X線管2の水平移動中の
各位置において、X線管2から照射されるX線束の中心
軸XJが常に、基準の撮影対象断層面MaS中の撮影中
心GCSを通過するように変更させる。すなわち、深さ
方向に対して右方向に角度をθS傾けた状態から、深さ
方向に対して左方向に角度をθS傾けた状態までの回転
範囲内を、X線管2の水平移動に合わせて、X線管保持
部材22に対してX線管2を水平方向の軸芯周りで時計
周りに回転させる。
The irradiation angle of X-rays from the X-ray tube 2 during the movement of the X-ray tube 2 within the above-mentioned movement range is irradiated from the X-ray tube 2 at each position during the horizontal movement of the X-ray tube 2. The center axis XJ of the X-ray flux is changed so as to always pass through the imaging center GCS in the reference imaging target tomographic plane MaS. That is, the rotation range from the state in which the angle is inclined θS to the right with respect to the depth direction to the state in which the angle is inclined θS to the left with respect to the depth direction is adjusted to the horizontal movement of the X-ray tube 2. Then, the X-ray tube 2 is rotated clockwise around the horizontal axis with respect to the X-ray tube holding member 22.

【0045】以上のようにX線管2の水平移動及びX線
の照射角度の変更を行うことで、天板1に載置支持され
た被検体M内の基準の撮影対象断層面MaS(中の撮影
中心GCS)に対するX線の入射方向を種々の方向に変
更させている。
As described above, the horizontal movement of the X-ray tube 2 and the change of the X-ray irradiation angle change the reference tomographic plane MaS (middle) in the subject M mounted and supported on the top 1. The incident direction of X-rays with respect to the imaging center GCS is changed in various directions.

【0046】一方、撮像部3の受像面3aは、X線管2
の水平移動中の各位置において、X線管2から照射され
るX線束の中心軸XJが常に、受像面3aの中心IFに
入射するようにX線管2と反対方向(図2の右から左
に)に水平移動させる。これにより、基準の撮像対象断
層面MaSの透過X線像が常に、撮像部3の受像面3a
の同じ位置に投影されるように基準の撮影対象断層面M
aS(中の撮影中心GCS)に対するX線の入射方向の
変更(X線管2側の動作)と連動して撮像部3の受像面
3aの位置を変更させることができる。
On the other hand, the image receiving surface 3a of the imaging unit 3 is
At each position during the horizontal movement of the X-ray tube 2, the center axis XJ of the X-ray flux emitted from the X-ray tube 2 is always opposite to the X-ray tube 2 so as to be incident on the center IF of the image receiving surface 3 a (from the right in FIG. 2). Move horizontally to the left). Thereby, the transmission X-ray image of the reference imaging target tomographic plane MaS is always displayed on the image receiving surface 3a of the imaging unit 3.
To be projected at the same position of
The position of the image receiving surface 3a of the imaging unit 3 can be changed in conjunction with the change in the direction of incidence of X-rays on the aS (the middle imaging center GCS) (operation on the X-ray tube 2 side).

【0047】なお、図2では、上記撮像部3の受像面3
aの水平移動の移動開始位置をISS、移動終了位置を
IES、受像面3aの基準位置ICと移動開始位置IS
Sとの間の距離及び受像面3aの基準位置ICと移動終
了位置IESとの間の距離をIWSで示している。ま
た、X線管2の焦点XFの基準位置XCと受像面3aの
基準位置ICとの間の距離XIHは、X線管2と撮像部
3を設置したときに決まるので、X線管2の焦点XFの
基準位置XCと基準の撮影対象断層面MaSとの間の距
離XHSが決まれば、受像面3aの基準位置ICと基準
の撮影対象断層面MaSとの間の距離IHSは決まる。
In FIG. 2, the image receiving surface 3 of the image pickup unit 3 is shown.
The movement start position of the horizontal movement a is ISS, the movement end position is IES, the reference position IC of the image receiving surface 3a and the movement start position IS.
The distance between S and the distance between the reference position IC on the image receiving surface 3a and the movement end position IES is indicated by IWS. The distance XIH between the reference position XC of the focal point XF of the X-ray tube 2 and the reference position IC of the image receiving surface 3a is determined when the X-ray tube 2 and the imaging unit 3 are installed. If the distance XHS between the reference position XC of the focal point XF and the reference imaging target tomographic plane MaS is determined, the distance IHS between the reference position IC of the image receiving surface 3a and the reference imaging target tomographic plane MaS is determined.

【0048】X線管2を水平移動させるX線管駆動機構
11の駆動データには、X線管2の移動範囲の他にX線
管2の移動速度が含まれる。また、X線の照射角度を変
更駆動する照射角度駆動機構13の駆動データには、上
述したX線管2の回転範囲の他にX線管2を回転させる
際の回転速度が含まれる。さらに、撮像部3の受像面3
aを水平移動させる撮像部駆動機構14の駆動データに
は、撮像部3の受像面3aの移動範囲の他に撮像部3の
受像面3aの移動速度が含まれる。
The driving data of the X-ray tube driving mechanism 11 for horizontally moving the X-ray tube 2 includes the moving speed of the X-ray tube 2 in addition to the moving range of the X-ray tube 2. In addition, the drive data of the irradiation angle drive mechanism 13 that changes and drives the X-ray irradiation angle includes the rotation speed when rotating the X-ray tube 2 in addition to the rotation range of the X-ray tube 2 described above. Further, the image receiving surface 3 of the imaging unit 3
The drive data of the imaging unit driving mechanism 14 that horizontally moves the a includes the moving range of the imaging surface 3a of the imaging unit 3 in addition to the movement range of the imaging surface 3a of the imaging unit 3.

【0049】X線管2の移動速度VXS(t)及び回転
速度WXS(t)と、撮像部3の受像面3aの移動速度
VIS(t)の一例を図3(a)〜(c)に実線で示
す。この例では、X線管2の移動速度VXS(t)を、
撮影開始t0からt1までは加速させ、所定速度VX1
に達するとt1からt2まで一定速度VX1とし、t2
から減速させてt3でX線管2の移動を停止させて、t
Sの時間で撮影を行うようにしている。なお、t0〜t
1間の時間とt2〜t3間の時間は、例えば、同じに設
定される。X線管2の回転速度WXS(t)と撮像部3
の受像面3aの移動速度XIS(t)とは、X線管2の
移動速度VXS(t)に合わせて、撮影開始t0からt
1までは加速させ、t1からt2まで一定速度とし、t
2から減速させてt3でX線管2の回転及び撮像部3の
受像面3aの移動を停止させて、tSの時間で撮影が終
了するようにしている。
FIGS. 3A to 3C show examples of the moving speed VXS (t) and the rotational speed WXS (t) of the X-ray tube 2 and the moving speed VIS (t) of the image receiving surface 3a of the image pickup unit 3. Shown by solid lines. In this example, the moving speed VXS (t) of the X-ray tube 2 is
The camera is accelerated from the start of photographing t0 to t1 to a predetermined speed VX1.
Is reached, a constant speed VX1 is set from t1 to t2, and t2
, The movement of the X-ray tube 2 is stopped at t3, and t
Shooting is performed at the time S. Note that t0 to t
For example, the time between 1 and the time between t2 and t3 is set to be the same. Rotation speed WXS (t) of X-ray tube 2 and imaging unit 3
The moving speed XIS (t) of the image receiving surface 3a corresponds to the moving speed VXS (t) of the X-ray tube 2 from the start of imaging t0 to t.
Acceleration to 1 and constant speed from t1 to t2, t
The rotation of the X-ray tube 2 and the movement of the image receiving surface 3a of the imaging unit 3 are stopped at t3 at t3, and the imaging ends at time tS.

【0050】また、X線照射駆動部2は、例えば、図3
(d)や(e)に示すように、t0〜t3の間(必要に
応じてt1〜t2の間でもよい)X線管2からのX線を
常時照射させたり、一定周期ごとにパルス状に照射させ
るように駆動制御される。
The X-ray irradiation drive unit 2 is, for example, as shown in FIG.
As shown in (d) and (e), X-rays are constantly emitted from the X-ray tube 2 during t0 to t3 (or t1 to t2 if necessary), or pulsed at regular intervals. Is controlled to irradiate the laser beam.

【0051】次に、基準の撮影対象断層面MaSの深さ
位置と異なる深さ位置の撮影対象断層面MaNを撮影す
る場合を考える。
Next, a case will be considered in which a tomographic image plane MaN at a depth different from the depth position of the reference tomographic image plane MaS is photographed.

【0052】ここでは、X線の照射角度の変更範囲(撮
影対象断層面MaS、MaNに対するX線入射方向の変
更範囲)である、X線管2の回転範囲を基準の撮影対象
断層面MaSの撮影時と同じ(2×θS)にする場合に
ついて考える。
Here, the change range of the X-ray irradiation angle (the change range of the X-ray incidence direction with respect to the imaging target tomographic planes MaS and MaN), which is the rotation range of the X-ray tube 2, is used as a reference. Consider the case of making the same (2 × θS) as at the time of shooting.

【0053】X線管2の回転範囲を撮影対象断層面Ma
Sの撮影と同じ(2×θS)にして、撮影対象断層面M
aNを撮影するためには、図2に示すように、X線管2
の移動開始位置をXSN、移動終了位置をXENとする
(2×XWN)の範囲をX線管2の移動範囲とし、一方
で、撮像部3の受像面3aの移動開始位置をISN、移
動終了位置をIENとする(2×IWN)の範囲を撮像
部3の受像面3aの移動範囲としなければならないこと
が幾何学的に導ける。また、図2中の距離XHS、IH
S及びSNH(いずれも既知)により、X線管2の焦点
XFの基準位置XCと撮影対象断層面MaNの深さ位置
との間の距離XHNと、撮像部3の受像面3aの基準位
置ICと撮影対象断層面MaNの深さ位置との間の距離
IHNとが求められる。
The rotation range of the X-ray tube 2 is determined by the tomographic plane Ma to be photographed.
S (2 × θS) and the tomographic plane M to be imaged
In order to image aN, as shown in FIG.
The range of (2 × XWN) where XSN is the movement start position and XEN is the movement end position is the movement range of the X-ray tube 2, while the movement start position of the image receiving surface 3a of the imaging unit 3 is ISN and the movement end is It can be geometrically derived that the range of (2 × IWN) where the position is IEN must be set as the movement range of the image receiving surface 3a of the imaging unit 3. Further, the distances XHS, IH in FIG.
The distance XHN between the reference position XC of the focal point XF of the X-ray tube 2 and the depth position of the tomographic plane MaN to be imaged, and the reference position IC of the image receiving surface 3a of the imaging unit 3 by S and SNH (both are known). A distance IHN between the image and the depth position of the imaging target tomographic plane MaN is obtained.

【0054】X線管2の焦点XFが基準の撮影対象断層
面MaSの撮影時の移動開始位置XSSに位置した点
と、X線管2の焦点XFが基準位置XCに位置した点
と、基準の撮影対象断層面MaSの撮影中心GCSとの
3点を頂点とする三角形と、X線管2の焦点XFが撮影
対象断層面MaNの撮影時の移動開始位置XSNに位置
した点と、X線管2の焦点XFが基準位置XCに位置し
た点と、撮影対象断層面MaNの撮影中心GCNとの3
点を頂点とする三角形とは相似形である。また、撮像部
3の受像面3aが基準の撮影対象断層面MaSの撮影時
の移動開始位置ISSに位置した点と、撮像部3の受像
面3aが基準位置ICに位置した点と、基準の撮影対象
断層面MaSの撮影中心GCSNの3点を頂点とする三
角形と、撮像部3の受像面3aが撮影対象断層面MaN
の撮影時の移動開始位置ISNに位置した点と、撮像部
3の受像面3aが基準位置ICに位置した点と、撮影対
象断層面MaNの撮影中心GCNとの3点を頂点とする
三角形とは相似形である。
The point at which the focal point XF of the X-ray tube 2 is located at the movement start position XSS at the time of imaging of the reference tomographic plane MaS, the point at which the focal point XF of the X-ray tube 2 is located at the reference position XC, A triangle having three vertices with respect to the imaging center GCS of the imaging target tomographic plane MaS, a point where the focal point XF of the X-ray tube 2 is located at the movement start position XSN at the time of imaging the imaging target tomographic plane MaN, and an X-ray (3) the point where the focus XF of the tube 2 is located at the reference position XC and the imaging center GCN of the imaging target tomographic plane MaN
A triangle having a point as a vertex is a similar shape. In addition, a point where the image receiving surface 3a of the imaging unit 3 is located at the movement start position ISS at the time of imaging the reference imaging target tomographic surface MaS, a point where the image receiving surface 3a of the imaging unit 3 is located at the reference position IC, and A triangle having three vertexes at the photographing center GCSN of the photographing target tomographic surface MaS, and the image receiving surface 3a of the imaging unit 3 are represented by the photographing target tomographic surface MaN.
A point located at the movement start position ISN at the time of imaging, a point at which the image receiving surface 3a of the imaging unit 3 is located at the reference position IC, and a triangle having vertices of the three points of the imaging center GCN of the imaging target tomographic plane MaN. Is similar.

【0055】従って、撮影対象断層面MaNの撮影時の
X線管2の移動範囲を決める距離XWNと、撮影対象断
層面MaNの撮影時の受像面3aの移動範囲を決める距
離IWNとは、既知の値であるXWS、XHS、XHN
と、IWS、IHS、IHNを用いて、以下の式
(1)、(2)で求めることができる。
Therefore, the distance XWN that determines the moving range of the X-ray tube 2 when imaging the tomographic plane MaN to be imaged and the distance IWN that determines the moving range of the image receiving surface 3a when imaging the tomographic plane MaN to be imaged are known. XWS, XHS, XHN
And IWS, IHS, and IHN, and can be obtained by the following equations (1) and (2).

【0056】XWN=KXN×XWS … (1) 但し、KXN=XHN/XHS IWN=KIN×XIS … (2) 但し、KIN=IHN/IHSXWN = KXN × XWS (1) where KXN = XHN / XHS IWN = KIN × XIS (2) where KIN = IHN / IHS

【0057】また、相似の関係から、以下の式(3)、
(4)及び、図3(a)、(b)の二点鎖線で示すよう
に、撮影対象断層面MaNの撮影時のX線管2の移動速
度VXN(t)を、基準の撮影対象断層面MaSの撮影
時のX線管2の移動速度VXS(t)に、上記(1)式
の係数KXNを掛け合わせた速度とするとともに、撮影
対象断層面MaNの撮影時の撮像部3の受像面3aの移
動速度VIN(t)を、基準の撮影対象断層面MaSの
撮影時の撮像部3の受像面3aの移動速度VIS(t)
に、上記(2)式の係数KINを掛け合わせた速度とし
て駆動させると、撮影対象断層面MaNの撮影におい
て、基準の撮影対象断層面MaSの撮影中の同じ時間t
におけるX線の照射角度(撮影対象断層面MaS、Ma
Nに対するX線入射方向の角度)を常に同じにすること
ができる。従って、X線管2の回転速度を基準の撮影対
象断層面MaSの撮影時のX線管2の回転速度WXS
(t)(図3(c))と同じ駆動データで駆動すること
ができる。
Also, from a similar relationship, the following equation (3):
(4) and the moving speed VXN (t) of the X-ray tube 2 at the time of imaging of the imaging target tomographic plane MaN as shown by the two-dot chain line in FIGS. The moving speed VXS (t) of the X-ray tube 2 at the time of imaging of the surface MaS is multiplied by the coefficient KXN of the above equation (1), and the image receiving unit 3 receives an image of the imaging target tomographic surface MaN. The moving speed VIN (t) of the surface 3a is set to the moving speed VIS (t) of the image receiving surface 3a of the imaging unit 3 at the time of photographing the reference tomographic surface MaS.
When the driving speed is multiplied by the coefficient KIN of the above equation (2), the same time t during the imaging of the reference imaging target tomographic plane MaS in the imaging of the imaging target tomographic plane MaN is obtained.
Angle of X-rays at the time of imaging (tomography plane MaS, Ma
The angle of the X-ray incidence direction with respect to N) can always be the same. Therefore, the rotation speed WXS of the X-ray tube 2 at the time of imaging the imaging target tomographic plane MaS based on the rotation speed of the X-ray tube 2
(T) It can be driven by the same drive data as in FIG. 3 (c).

【0058】 VXN(t)=KXN×VXS(t) … (3) VIN(t)=KIN×VIS(t) … (4)VXN (t) = KXN × VXS (t) (3) VIN (t) = KIN × VIS (t) (4)

【0059】さらに、X線管2の水平移動やX線の照射
角度、撮像部3の受像面3aの水平移動を上述した駆動
データで駆動制御すると、撮影対象断層面MaNの撮影
は、tSの時間で完了することになる。従って、X線の
照射駆動は、基準の撮影対象断層面MaSの撮影時と同
じ駆動データ(図3(d)や(e))で行うことができ
る。
Further, when the horizontal movement of the X-ray tube 2, the irradiation angle of the X-ray, and the horizontal movement of the image receiving surface 3a of the imaging unit 3 are controlled by the above-described drive data, the imaging of the tomographic plane MaN to be imaged takes tS. It will be completed in time. Therefore, the X-ray irradiation drive can be performed using the same drive data (FIGS. 3D and 3E) as when the reference imaging target tomographic plane MaS is captured.

【0060】なお、上記係数KXN、KINは、撮影対
象断層面MaNが、図2に示すように、基準の撮影対象
断層面MaSよりもX線管2から遠ざかる(撮像部3の
受像面3aに近づく)とKXN>1、0<KIN<1と
なり、逆に、撮影対象断層面MaNが、基準の撮影対象
断層面MaSよりもX線管2に近づく(撮像部3の受像
面3aから遠ざかる)と0<KXN<1、KIN>1と
なる係数である。
The coefficients KXN and KIN indicate that the imaging target tomographic plane MaN is farther from the X-ray tube 2 than the reference imaging target tomographic plane MaS, as shown in FIG. 2 (on the image receiving surface 3a of the imaging unit 3). KXN> 1 and 0 <KIN <1 when they approach each other, and conversely, the imaging target tomographic plane MaN comes closer to the X-ray tube 2 than the reference imaging target tomographic plane MaS (away from the image receiving surface 3a of the imaging unit 3). And 0 <KXN <1, KIN> 1.

【0061】また、基準の撮影対象断層面MaSの撮影
時と撮影対象断層面MaNの撮影時とにおける受像面3
aの移動状態をわかり易くするために、図2では、基準
の撮影対象断層面MaSの撮影時の受像面3aと撮影対
象断層面MaNの撮影時の受像面3aとを上下に若干ず
らせて描いているが実際は同一軸上を移動する。また、
図4以下の図やグラフにおいても、同様に、実際は重な
る部分であっても基準の撮影対象断層面MaSの撮影時
のものと撮影対象断層面MaNの撮影時のものとを区分
するために若干ずらせて描いている場合もある。
The image receiving surface 3 at the time of photographing the tomographic plane MaS as the reference and at the time of photographing the tomographic plane MaN to be photographed.
In FIG. 2, the image receiving surface 3a of the reference imaging target tomographic surface MaS at the time of imaging and the image receiving surface 3a of the imaging target tomographic surface MaN at the time of imaging are slightly shifted up and down in FIG. Actually move on the same axis. Also,
Similarly, in the figures and graphs in FIG. 4 and subsequent figures, even in the case of the actual overlapping portion, a slight difference is required for distinguishing between the image of the reference imaging target tomographic plane MaS and the imaging target tomographic plane MaN. In some cases, they are shifted.

【0062】<第2の決定方法>まず、X線管2の移動
範囲と撮像部3の受像面3aの移動範囲は、上記第1の
決定方法と同じ決定方法で決定する(図2参照)。すな
わち、撮影対象断層面MaNの撮影時のX線管2の移動
範囲を、移動開始位置XSN〜移動終了位置XENの
(2×XWN)の範囲とし、撮像部3の受像面3aの移
動範囲を、移動開始位置ISN〜移動終了位置IENの
(2×IWN)の範囲とする。
<Second Determination Method> First, the movement range of the X-ray tube 2 and the movement range of the image receiving surface 3a of the imaging section 3 are determined by the same determination method as the first determination method (see FIG. 2). . In other words, the moving range of the X-ray tube 2 during imaging of the imaging target tomographic plane MaN is defined as a range of (2 × XWN) from the movement start position XSN to the movement end position XEN, and the movement range of the image receiving surface 3a of the imaging unit 3 is set. , From the movement start position ISN to the movement end position IEN (2 × IWN).

【0063】次に、X線管2の移動速度VXN(t)
を、一定速度で移動させる際の速度が基準の撮影対象断
層面MaSの撮影時と同じVX1になるように決定す
る。すなわち、図4(a)の二点鎖線に示すように、撮
影開始t0からt1までは加速させ、所定速度VX1に
達するとt1からt4まで一定速度VX1とし、t4か
ら減速させてt5でX線管2の移動を停止させて、tN
の時間で撮影を行うようにする。なお、t4〜t5間の
時間は、例えば、t2〜t3間の時間と同じとする。基
準の撮影対象断層面MaSの撮影時のX線管2の移動速
度VXS(t)を図4(a)に実線で示す。
Next, the moving speed VXN (t) of the X-ray tube 2
Is determined so that the speed at the time of moving at a constant speed becomes VX1 which is the same as that at the time of imaging the reference imaging target tomographic plane MaS. That is, as shown by the two-dot chain line in FIG. 4A, the imaging is accelerated from t0 to t1, and when the predetermined speed VX1 is reached, the speed is set to a constant speed VX1 from t1 to t4, and then reduced from t4 to X-ray at t5. The movement of the tube 2 is stopped and tN
Shoot at the time. The time between t4 and t5 is, for example, the same as the time between t2 and t3. The moving speed VXS (t) of the X-ray tube 2 at the time of imaging the reference imaging target tomographic plane MaS is shown by a solid line in FIG.

【0064】上記X線管2の移動速度VXN(t)に合
わせるためには、撮像部3の受像面3aの移動速度VI
N(t)は、図4(b)の二点鎖線に示すようになる。
基準の撮影対象断層面MaSの撮影時の撮像部3の受像
面3aの移動速度VIS(t)を図4(b)に実線で示
す。
In order to match the moving speed VXN (t) of the X-ray tube 2, the moving speed VI of the image receiving surface 3a of the image pickup unit 3 is required.
N (t) is as shown by the two-dot chain line in FIG.
The solid line in FIG. 4B shows the moving speed VIS (t) of the image receiving surface 3a of the imaging unit 3 when the reference imaging target tomographic plane MaS is imaged.

【0065】図4(a)、(b)に示すように、この場
合には、撮影対象断層面MaNの撮影に要する時間tN
は、基準の撮影対象断層面MaSの撮影に要する時間t
Sより長くなる。なお、図2と逆に、撮影対象断層面M
aNが、基準の撮影対象断層面MaSよりもX線管2に
近づく(撮像部3の受像面3aから遠ざかる)場合に
は、撮影対象断層面MaNの撮影に要する時間tNは、
基準の撮影対象断層面MaSの撮影に要する時間tSよ
り短くなる。
As shown in FIGS. 4A and 4B, in this case, the time tN required for photographing the tomographic plane MaN to be photographed.
Is the time t required for imaging the reference imaging target tomographic plane MaS
It is longer than S. Note that, contrary to FIG.
When aN is closer to the X-ray tube 2 than the reference imaging target tomographic plane MaS (away from the image receiving surface 3a of the imaging unit 3), the time tN required for imaging of the imaging target tomographic plane MaN is:
The time is shorter than the time tS required for imaging the reference imaging target tomographic plane MaS.

【0066】いずれにしても、撮影時間が変動すること
により、それに応じて、X線の照射角度の変更速度(X
線管2の回転速度)を新たに決める必要がある。すなわ
ち、X線管2の移動速度に合わせるためには、X線管2
の回転速度WXN(t)は、図4(c)の二点鎖線に示
すようになる。基準の撮影対象断層面MaSの撮影時の
X線管2の回転速度WXS(t)を図4(c)に実線で
示す。
In any case, when the imaging time fluctuates, the change rate of the X-ray irradiation angle (X
It is necessary to newly determine the rotation speed of the wire tube 2). That is, in order to match the moving speed of the X-ray tube 2,
Of the rotation speed WXN (t) is as shown by a two-dot chain line in FIG. The solid line in FIG. 4C shows the rotation speed WXS (t) of the X-ray tube 2 at the time of imaging the reference imaging target tomographic plane MaS.

【0067】ここで、図4(c)の一定時の速度WX2
は未知数であるが、この速度WX2は、例えば、以下の
ようにして決定することができる。まず、図5に示すよ
うに、X線管2の焦点XFが基準位置XCから所定時間
(例えば、1秒)後に到達する位置をXC1とすると、
基準位置XCからその位置XC1までの距離(移動量)
WC1は、X線管2の移動速度VXN(t)(VX1)
によって求めることができる。この位置XC1をX線管
2の焦点XFの移動軌跡上にプロットする。このとき、
上記一定時の速度WX2におけるX線の照射角度の単位
時間当たりの変更角は図5中のθ1となる。図5におい
て、X線管2の焦点XFが基準位置XCに位置した点と
X線管2の焦点XFが上記位置XC1に位置した点と撮
影対象断層面MaNの撮影中心GCNとの3点を頂点と
する三角形に注目すると、θ1は既知の距離XHNとX
C1から三角関数によって求めることができる。従っ
て、上記一定時の速度WX2におけるX線の照射角度の
単位時間当たりの変更角θ1が求められれば、上記一定
時の速度WX2が求められる。
Here, the speed WX2 at a constant time shown in FIG.
Is an unknown, but the speed WX2 can be determined, for example, as follows. First, as shown in FIG. 5, when a position at which the focal point XF of the X-ray tube 2 reaches the reference position XC after a predetermined time (for example, one second) is defined as XC1,
Distance from reference position XC to position XC1 (movement amount)
WC1 is the moving speed VXN (t) of the X-ray tube 2 (VX1)
Can be determined by: This position XC1 is plotted on the movement locus of the focal point XF of the X-ray tube 2. At this time,
The change angle of the X-ray irradiation angle per unit time at the constant speed WX2 is θ1 in FIG. In FIG. 5, three points of a point where the focal point XF of the X-ray tube 2 is located at the reference position XC, a point where the focal point XF of the X-ray tube 2 is located at the position XC1, and the photographing center GCN of the photographed tomographic plane MaN are shown. Focusing on the triangle as the vertex, θ1 is the known distance XHN and X
It can be obtained from C1 by a trigonometric function. Therefore, if the change angle θ1 per unit time of the X-ray irradiation angle at the constant speed VX2 is determined, the constant speed WX2 is determined.

【0068】また、上記一定時の速度WX2が求まれ
ば、t0〜t1間の時間(既知)で速度を「0」〜WX
2にするように加速すればよいので、WXN(t)のt
0〜t1の加速時の速度の傾きが決まり、同様に、t4
〜t5の減速時の速度の傾きも決まる。
If the speed WX2 at the constant time is obtained, the speed is changed from "0" to WX in the time (known) between t0 and t1.
It is sufficient to accelerate to 2 so that t of WXN (t)
The gradient of the speed at the time of acceleration from 0 to t1 is determined.
The gradient of the speed at the time of deceleration from t5 to t5 is also determined.

【0069】以上により、撮影対象断層面MaNの撮影
時のX線管2の回転速度WXN(t)が決定できる。な
お、X線管2の回転範囲は、第1の決定方法の場合と同
じ(2×θS)である。従って、照射角度駆動機構13
の駆動データも決定できる。
As described above, the rotation speed WXN (t) of the X-ray tube 2 at the time of photographing the tomographic plane MaN to be photographed can be determined. Note that the rotation range of the X-ray tube 2 is the same (2 × θS) as in the first determination method. Therefore, the irradiation angle driving mechanism 13
Can be determined.

【0070】また、撮影時間の変動に伴って、X線の照
射は、図3(d)や(e)と同様の照射を上記t0〜t
5の間(必要に応じてt1〜t4の間)行えばよい。
With the change of the imaging time, the X-ray irradiation is performed in the same manner as that shown in FIGS.
5 (or t1 to t4 as necessary).

【0071】<第3の決定方法>ここでは、図6に示す
ように、X線管2の移動範囲を各撮影対象断層面Ma
S、MaNの撮影時で同じにする場合について考える。
<Third Determining Method> Here, as shown in FIG. 6, the moving range of the X-ray tube 2 is determined for each tomographic plane Ma to be imaged.
Consider the case where the same is set when shooting S and MaN.

【0072】このとき、X線管2の移動速度も、各撮影
対象断層面MaS、MaNの撮影時で同じにすることが
できる。すなわち、X線管駆動機構11の駆動データは
各撮影対象断層面MaS、MaNの撮影時で同じにする
ことができる。また、この結果、各撮影対象断層面Ma
S、MaNの撮影に要する時間が全て同じであるからX
線照射駆動部12の駆動データも各撮影対象断層面Ma
S、MaNの撮影時で同じにすることができる。
At this time, the moving speed of the X-ray tube 2 can be the same at the time of photographing each of the tomographic planes MaS and MaN to be photographed. That is, the drive data of the X-ray tube drive mechanism 11 can be the same at the time of imaging each of the imaging target tomographic planes MaS and MaN. As a result, each imaging tomographic plane Ma
Since the time required for shooting S and MaN is the same, X
The driving data of the X-ray irradiation drive unit 12 is also used for each imaging target tomographic plane Ma.
The same can be applied when shooting S and MaN.

【0073】しかしながら、図6に示すように、この駆
動制御では、X線の照射角度の変更範囲(撮影対象断層
面MaS、MaNに対するX線入射方向の変更範囲)で
ある、X線管2の回転範囲が、撮影対象断層面MaSの
撮影時(2×θS)と、撮影対象断層面MaNの撮影時
(2×θN)とで相違することになる。
However, as shown in FIG. 6, in this drive control, the change range of the X-ray irradiation angle (the change range of the X-ray incidence direction with respect to the tomographic planes MaS and MaN to be imaged) of the X-ray tube 2 is determined. The rotation range differs between when the tomographic plane MaS is photographed (2 × θS) and when the tomographic plane MaN is photographed (2 × θN).

【0074】このθNは、X線管2の焦点XFが各撮影
対象断層面MaS、MaNの撮影時の移動開始位置XS
Sに位置した点と、X線管2の焦点XFが基準位置XC
に位置した点と、撮影対象断層面MaNの撮影中心GC
Nとの3点を頂点とする三角形に注目すれば、既知の距
離XWS、XHNから三角関数によって求めることがで
きる。
The θN is the movement start position XS when the focal point XF of the X-ray tube 2 is at the time of photographing each of the tomographic planes MaS and MaN to be photographed.
S and the focal point XF of the X-ray tube 2 are at the reference position XC
And the imaging center GC of the imaging target tomographic plane MaN
If attention is paid to a triangle having three points N as vertices, it can be obtained from the known distances XWS and XHN by a trigonometric function.

【0075】また、各撮影対象断層面MaS、MaNの
撮影において、撮影時間が同じ(tS)であって、X線
管2の回転範囲が変更されたことに伴って、X線の照射
角度の変更速度(X線管2の回転速度)を新たに決める
必要がある。X線管2の移動に合わせるためには、X線
管2の回転速度WXN(t)は、図7(a)の二点鎖線
に示すようになる。基準の撮影対象断層面MaSの撮影
時のX線管2の回転速度WXS(t)を図7(a)に実
線で示す。
In the photographing of the tomographic planes MaS and MaN to be photographed, the photographing time is the same (tS) and the rotation range of the X-ray tube 2 is changed. It is necessary to newly determine the change speed (the rotation speed of the X-ray tube 2). In order to adjust to the movement of the X-ray tube 2, the rotation speed WXN (t) of the X-ray tube 2 becomes as shown by a two-dot chain line in FIG. The solid line in FIG. 7A shows the rotation speed WXS (t) of the X-ray tube 2 at the time of imaging the reference imaging target tomographic plane MaS.

【0076】図7(a)中の一定時の速度WX3は、上
述した第2の決定方法で説明したWX2の決定方法と同
様の決定方法で求めることができる。従って、照射角度
駆動機構13の駆動データを決定することができる。
The speed WX3 at a constant time in FIG. 7A can be obtained by the same determination method as that of WX2 described in the second determination method described above. Therefore, drive data of the irradiation angle drive mechanism 13 can be determined.

【0077】また、図6に示すように、X線管2の移動
範囲を各撮影対象断層面MaS、MaNの撮影時で同じ
(X線管2の回転角度が変更された)ことに伴って、撮
像部3の受像面3aの移動範囲が変更される。この撮影
対象断層面MaNの撮影時の撮像部3の受像面3aの移
動範囲を決める距離IWN2は次のように求めることが
できる。すなわち、図6において、撮像部3の受像面3
aが撮影対象断層面MaNの撮影時の移動開始位置IS
Nに位置した点と、撮像部3の受像面3aが基準位置I
Cに位置した点と、撮影対象断層面MaNの撮影中心G
CNとの3点を頂点とする三角形に注目すると、既知の
値である距離IHNと角度θNとから三角関数によって
距離IWN2が求められる。
Further, as shown in FIG. 6, the moving range of the X-ray tube 2 is the same at the time of photographing each of the tomographic planes MaS and MaN to be photographed (the rotation angle of the X-ray tube 2 has been changed). The moving range of the image receiving surface 3a of the imaging unit 3 is changed. The distance IWN2 that determines the moving range of the image receiving surface 3a of the imaging unit 3 when capturing the to-be-photographed surface MaN can be obtained as follows. That is, in FIG.
a is the movement start position IS at the time of imaging of the imaging target tomographic plane MaN.
N and the image receiving surface 3a of the imaging unit 3 are positioned at the reference position I.
C and the imaging center G of the imaging target tomographic plane MaN
Focusing on a triangle having three vertices with CN, a distance IWN2 is obtained by a trigonometric function from the known values of the distance IHN and the angle θN.

【0078】また、各撮影対象断層面MaS、MaNの
撮影において、撮影時間が同じ(tS)であって、撮像
部3の受像面3aの移動範囲が変更されたことに伴っ
て、撮像部3の受像面3aの移動速度も新たに決める必
要がある。X線管2の移動に合わせるためには、撮像部
3の受像面3aの移動速度VIN(t)は、図7(b)
の二点鎖線に示すようになる。基準の撮影対象断層面M
aSの撮影時の撮像部3の受像面3aの移動速度VIS
(t)を図7(b)に実線で示す。
In photographing the tomographic planes MaS and MaN to be photographed, the photographing time is the same (tS), and the moving range of the image receiving surface 3a of the photographing unit 3 is changed. It is also necessary to newly determine the moving speed of the image receiving surface 3a. In order to match the movement of the X-ray tube 2, the moving speed VIN (t) of the image receiving surface 3 a of the imaging unit 3 is set as shown in FIG.
As indicated by the two-dot chain line. Reference imaging target tomographic plane M
The moving speed VIS of the image receiving surface 3a of the imaging unit 3 during the photographing of aS
(T) is shown by a solid line in FIG.

【0079】ここで、図7(b)の一定時の速度VI2
は未知数であるが、この速度VI2は、例えば、次のよ
うにして決定することができる。すなわち、上述した第
2の決定方法で説明したX線管2の回転速度中の一定時
の速度におけるX線の照射角度の単位時間当たりの変更
角を求める場合と同様の手法で、この第3の決定方法の
場合でのX線管2の回転速度中の一定時の速度WX3に
おけるX線の照射角度の単位時間当たりの変更角θ2
を、撮像部3の受像面3aを含めて作図すると図8に示
すようになる。なお、図8中の位置XC2は、この第3
の決定方法において、X線管2の焦点XFが基準位置X
Cから所定時間(例えば、1秒)後に到達する位置を示
し、距離WC2は、基準位置XCからその位置XC2ま
での移動量を示す。図8から明らかなように、撮像部3
の受像面3の移動速度VIN(t)中の一定時の速度V
I2における単位時間当たりの受像面3aの移動量WC
3は、既知の距離IHNと角度θ2とから三角関数で求
めることができ、撮像部3の受像面3の移動速度VIN
(t)中の一定時の速度VI2が求められる。従って、
撮像部3の受像面3の移動速度VIN(t)が決まり、
撮像部駆動機構14の駆動データが決まる。
Here, the speed VI2 at a constant time shown in FIG.
Is an unknown number, but this speed VI2 can be determined, for example, as follows. That is, the third method is used in the same manner as in the case where the change angle per unit time of the X-ray irradiation angle at a constant speed among the rotation speeds of the X-ray tube 2 described in the above-described second determination method is obtained. Of the X-ray irradiation angle per unit time at the constant speed WX3 during the rotation speed of the X-ray tube 2 in the method of determining
Is drawn including the image receiving surface 3a of the imaging unit 3 as shown in FIG. Note that the position XC2 in FIG.
Is determined, the focal point XF of the X-ray tube 2 is set at the reference position X.
The distance WC2 indicates a position reached after a predetermined time (for example, one second) from C, and the distance WC2 indicates a movement amount from the reference position XC to the position XC2. As is clear from FIG.
Of the image receiving surface 3 at a constant speed V in the moving speed VIN (t)
Movement amount WC of image receiving surface 3a per unit time at I2
3 can be obtained by a trigonometric function from the known distance IHN and the angle θ2, and the moving speed VIN of the image receiving surface 3 of the imaging unit 3 is obtained.
The speed VI2 at a certain time during (t) is obtained. Therefore,
The moving speed VIN (t) of the image receiving surface 3 of the imaging unit 3 is determined,
The driving data of the imaging unit driving mechanism 14 is determined.

【0080】その他、撮像部3の受像面3aの移動範囲
と移動速度とを各撮影対象断層面MaS、MaNの撮影
時で同じにするように撮影駆動系11〜14の駆動デー
タを決定することもできる。この場合には、撮影対象断
層面MaNの撮影時のX線管2の移動範囲や移動速度、
回転範囲、回転速度を新たに決めてやる必要があるが、
これら駆動データも、上述したように幾何学的に求める
ことができる。
In addition, the drive data of the photographing drive systems 11 to 14 is determined so that the moving range and the moving speed of the image receiving surface 3a of the image pickup unit 3 are the same at the time of photographing each of the tomographic planes MaS and MaN to be photographed. Can also. In this case, the moving range and moving speed of the X-ray tube 2 at the time of photographing the tomographic plane MaN to be photographed,
It is necessary to newly determine the rotation range and rotation speed,
These drive data can also be obtained geometrically as described above.

【0081】上記第1〜第3の決定方法では、撮影対象
断層面MaNの撮影時の撮影駆動系11〜14の駆動デ
ータの決定を例に採り説明したが、それ以外の深さ位置
の撮影対象断層面Maの撮影時の撮影駆動系11〜14
の駆動データも同様の方法で決定することができる。
In the above-described first to third determination methods, determination of drive data of the imaging drive systems 11 to 14 at the time of imaging of the imaging tomographic plane MaN has been described as an example, but imaging at other depth positions has been described. Imaging drive systems 11 to 14 at the time of imaging the target tomographic plane Ma
Can be determined in a similar manner.

【0082】なお、上記第1〜第3の決定方法では、予
め決められた1つの撮影対象断層面MaSを基準とし
て、その基準の撮影対象断層面MaSの撮影時の撮影駆
動系11〜14の駆動データを用いて、それ以外の深さ
位置の撮影対象断層面MaNの撮影時の撮影駆動系11
〜14の駆動データを決定したが、この発明はこれに限
らず、任意の深さ位置の撮影対象断層面Maの撮影時の
撮影駆動系11〜14の駆動データを個別に決定するこ
ともできる。
In the first to third determining methods, the photographing drive systems 11 to 14 at the time of photographing the reference photographing tomographic plane MaS with reference to one predetermined photographing tomographic plane MaS. Using the driving data, the imaging drive system 11 at the time of imaging the imaging target tomographic plane MaN at other depth positions
Although the drive data of No. to No. 14 are determined, the present invention is not limited to this, and the drive data of the imaging drive systems 11 to 14 at the time of imaging the imaging target tomographic plane Ma at an arbitrary depth position can also be individually determined. .

【0083】すなわち、これまでの説明から明らかなよ
うに、ある深さ位置の撮影対象断層面Maの撮影を行う
場合、X線管2の移動範囲、X線管2の回転範囲、撮像
部3の受像面3aの移動範囲のいずれか1つが決まれば
残りも決まる。また、X線管2の移動速度、X線管2の
回転速度、撮像部3の受像面3aの移動速度のいずれか
1つが決まれば残りも決まる。従って、X線管駆動機構
11、照射角度駆動機構13、撮像部駆動機構14の駆
動データを決めることができる。また、X線管駆動機構
11、照射角度駆動機構13、撮像部駆動機構14の駆
動データが決まると、撮影時間が決まるので、X線照射
をどのタイミングで行えばよいかも決まり、X線照射駆
動部12の駆動データも決まる。このような撮影駆動系
11〜14の駆動データの決定方法は、撮影対象断層面
Maの深さ位置が変わっても同様であるので、任意の深
さ位置の撮影対象断層面Maごとに、撮影時の撮影駆動
系11〜14の駆動データを個別に決定することもでき
る。
That is, as is apparent from the above description, when imaging the tomographic plane Ma to be imaged at a certain depth position, the moving range of the X-ray tube 2, the rotation range of the X-ray tube 2, the imaging unit 3 If any one of the moving ranges of the image receiving surface 3a is determined, the rest is also determined. In addition, if any one of the moving speed of the X-ray tube 2, the rotating speed of the X-ray tube 2, and the moving speed of the image receiving surface 3a of the imaging unit 3 is determined, the rest is also determined. Therefore, drive data of the X-ray tube driving mechanism 11, the irradiation angle driving mechanism 13, and the imaging unit driving mechanism 14 can be determined. When the driving data of the X-ray tube driving mechanism 11, the irradiation angle driving mechanism 13, and the imaging unit driving mechanism 14 are determined, the imaging time is determined. Therefore, it is also determined when to perform X-ray irradiation. The drive data of the unit 12 is also determined. Such a method of determining the drive data of the photographing drive systems 11 to 14 is the same even if the depth position of the photographing target tomographic plane Ma changes, so that the photographing is performed for each photographing target tomographic plane Ma at an arbitrary depth position. The drive data of the photographing drive systems 11 to 14 at the time can also be determined individually.

【0084】ところで、撮影中、X線を常時照射させた
り、常に同一周期でパルス状にX線を照射させる場合、
撮影対象断層面Maの撮影ごとに撮影時間が変動する
と、撮影対象断層面Maの撮影ごとに被検体MへのX線
の曝射量が変動などして好ましくない。従って、撮影対
象断層面Maの撮影ごとの撮影時間を常に同じにするよ
うに撮影駆動系11〜14の駆動データを決定すること
が好ましいが、撮影対象断層面Maの撮影ごとの撮影時
間が変動するように撮影駆動系11〜14の駆動データ
を決定する場合でも、例えば、X線をパルス状に照射さ
せるとともに、そのパルス周期を、撮影対象断層面Ma
の撮影ごとの撮影時間に応じて変化させるようにしても
よい。
By the way, when X-rays are always radiated during imaging or when X-rays are always radiated in the same cycle in a pulse form,
If the imaging time varies for each imaging of the imaging target tomographic plane Ma, the amount of X-ray exposure to the subject M varies for each imaging of the imaging target tomographic plane Ma, which is not preferable. Therefore, it is preferable to determine the drive data of the imaging drive systems 11 to 14 so that the imaging time for each imaging of the imaging target tomographic plane Ma is always the same, but the imaging time of each imaging of the imaging tomographic plane Ma varies. Even when the drive data of the imaging drive systems 11 to 14 is determined so as to perform, for example, X-rays are radiated in a pulse shape and the pulse cycle is set to the imaging target tomographic plane Ma.
May be changed according to the shooting time for each shooting.

【0085】また、同じ深さ位置の撮影対象断層面Ma
内において撮影中心(撮影範囲)を変更する場合には、
天板1上で被検体Mを水平方向に移動させたり、被検体
Mを載置支持した天板1を水平方向に移動させたりして
もよいが、次のように構成してもよい。
The tomographic plane Ma to be photographed at the same depth position
When changing the shooting center (shooting range) within
The subject M may be moved in the horizontal direction on the top 1, or the top 1 on which the subject M is placed and supported may be moved in the horizontal direction, but may be configured as follows.

【0086】X線管2と撮像部3の受像面3aとの各々
の水平移動の移動可能最大範囲を十分に長くし、X線管
2の焦点XFの基準位置XCと撮像部3の受像面3aの
基準位置IC(撮影中心軸CJ)を天板1の長手方向
(被検体Mの体軸方向)に移動させれば、同じ深さ位置
の撮影対象断層面Ma内において撮影中心(撮影範囲)
を天板1の長手方向(被検体Mの体軸方向)に変更させ
ることができる。また、レール21などを含むX線管2
の水平移動を行うためのユニット全体を天板1の短手方
向(被検体Mの体軸方向に直交する水平方向)に移動さ
せる駆動機構を設けるとともに、撮像部3の受像面3a
の水平移動を行うためのユニット全体も同じ水平方向に
移動させる駆動機構を設けて、各ユニット全体を天板1
の短手方向に水平移動させれば、同じ深さ位置の撮影対
象断層面Ma内において撮影中心(撮影範囲)を天板1
の短手方向(被検体Mの体軸方向に直交する水平方向)
に変更させることができる。このように構成すれば、天
板1や被検体Mを移動させることなく、同じ深さ位置の
撮影対象断層面Ma内において撮影中心(撮影範囲)を
変更したX線断層撮影画像を撮影することもできる。
The maximum movable range of the horizontal movement of each of the X-ray tube 2 and the image receiving surface 3a of the image pickup unit 3 is made sufficiently long, and the reference position XC of the focal point XF of the X-ray tube 2 and the image receiving surface of the image pickup unit 3 are set. When the reference position IC (imaging center axis CJ) of 3a is moved in the longitudinal direction of the top board 1 (the body axis direction of the subject M), the imaging center (imaging range) in the imaging target tomographic plane Ma at the same depth position )
Can be changed in the longitudinal direction of the top 1 (the body axis direction of the subject M). The X-ray tube 2 including the rail 21 and the like
A drive mechanism is provided for moving the entire unit for performing the horizontal movement in the lateral direction of the top board 1 (horizontal direction orthogonal to the body axis direction of the subject M), and the image receiving surface 3a of the imaging unit 3 is provided.
A drive mechanism for moving the entire unit for performing the horizontal movement in the same horizontal direction is provided.
Is horizontally moved in the lateral direction of the table 1, the photographing center (photographing range) in the photographing tomographic plane Ma at the same depth position is moved to the top 1
Lateral direction (horizontal direction perpendicular to the body axis direction of subject M)
Can be changed. With such a configuration, an X-ray tomographic image whose imaging center (imaging range) has been changed can be imaged within the imaging target tomographic plane Ma at the same depth position without moving the top 1 or the subject M. Can also.

【0087】上記実施例では、X線管2と撮像部3の受
像面3aとを水平1軸方向への移動だけを行わせて撮影
対象断層面Maの撮影を行う場合について説明したが、
X線管2と撮像部3の受像面3aとを、円弧状に移動さ
せたり、水平面内で円軌道や楕円軌道、放射状の軌道、
渦巻き状の軌道、ハイポサイクロ(登録商標)イド軌道
などに沿って移動させたりする周知の移動形態をとって
撮影対象断層面Maの撮影を行う構成のものであっても
この発明は同様に適用することができる。なお、例え
ば、X線管2や撮像部3の受像面3aを、水平面内で1
つの円軌道に沿って移動させて撮影対象断層面Maの撮
影を行う構成のものは、通常、X線の照射角度が固定さ
れるので、そのような構成のものは、X線管2を水平面
内で1つの円軌道に沿って移動させる駆動機構がこの発
明におけるX線入射方向変更駆動手段に相当することに
なる。
In the above-described embodiment, the case where the X-ray tube 2 and the image receiving surface 3a of the imaging section 3 are moved only in the horizontal one axis direction to perform imaging of the imaging tomographic plane Ma has been described.
The X-ray tube 2 and the image receiving surface 3a of the imaging unit 3 are moved in an arc shape, or circular or elliptical or radial orbits in a horizontal plane.
The present invention is similarly applicable to a configuration in which the imaging target tomographic plane Ma is imaged in a well-known movement mode such as moving along a spiral orbit, a hypocyclo (registered trademark) id orbit, or the like. can do. Note that, for example, the X-ray tube 2 and the image receiving surface 3a of the
In the configuration in which the imaging target tomographic plane Ma is imaged by moving along the two circular orbits, the irradiation angle of the X-ray is usually fixed. The driving mechanism for moving along one circular orbit corresponds to the X-ray incident direction changing driving means in the present invention.

【0088】また、被検体Mを寝かせた状態で撮影対象
断層面MaのX線断層撮影画像を撮影する場合に限ら
ず、被検体Mを斜め状態で支持したり、立たせて支持さ
せたりした状態で、その被検体Mを挟んでX線管2と撮
像部3の受像面3aを配置させて撮影対象断層面Maの
X線断層撮影画像を撮影する場合にもこの発明は同様に
適用することができる。
The present invention is not limited to the case where an X-ray tomographic image of the tomographic plane Ma to be imaged is taken in a state where the subject M is laid down, but also in a state where the subject M is supported in an oblique state or supported upright. The present invention can be similarly applied to a case where the X-ray tube 2 and the image receiving surface 3a of the imaging unit 3 are arranged with the subject M interposed therebetween to capture an X-ray tomographic image of the imaging target tomographic surface Ma. Can be.

【0089】[0089]

【発明の効果】以上の説明から明らかなように、この発
明によれば、撮影駆動手段を駆動する駆動データを変更
するだけで、種々の深さ位置の撮影対象断層面に対する
各X線断層撮影画像を撮影するように構成したので、手
間や術者への負担をかけることなく、撮影対象断層面の
深さ位置を変更した撮影を行うことができる。また、天
板などの支持手段(被検体)を昇降させて被検体をX線
照射手段に対して遠近(撮像手段の受像面に対して近
遠)させることなく、撮影対象断層面の深さ位置を変更
した撮影が行えるので、撮影中の被検体の体動を低減で
き、種々の深さ位置の撮影対象断層面に対する各X線断
層撮影画像を正確に得られるとともに、撮影中の被検体
への心理的な不安を軽減することができる。
As is apparent from the above description, according to the present invention, X-ray tomography for each of the tomographic planes to be imaged at various depths only by changing the driving data for driving the imaging driving means. Since the configuration is such that an image is taken, it is possible to take an image while changing the depth position of the tomographic plane to be taken, without burdening the operator or burden on the operator. Further, the depth of the tomographic plane to be imaged can be increased without raising and lowering the supporting means (object) such as a top plate so as to move the object near and far from the X-ray irradiating means (near and far from the image receiving surface of the imaging means). Since the imaging with the changed position can be performed, the body movement of the subject during the imaging can be reduced, and each X-ray tomographic image can be accurately obtained with respect to the imaging target tomographic plane at various depth positions. Psychological anxiety can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例に係るX線断層撮影装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of an X-ray tomography apparatus according to an embodiment of the present invention.

【図2】撮影対象断層面の深さ方向を変更して撮影する
際の撮影駆動系の駆動データを第1、第2の決定方法で
決定する場合の説明図である。
FIG. 2 is an explanatory diagram in a case where drive data of a photographing drive system when photographing while changing the depth direction of a photographing target tomographic plane is determined by first and second determination methods.

【図3】撮影対象断層面の深さ方向を変更して撮影する
際の撮影駆動系の駆動データを第1の決定方法で決定す
る場合のX線管の移動速度や撮像部の受像面の移動速
度、X線管の回転速度などを示す図である。
FIG. 3 shows a moving speed of an X-ray tube and a moving speed of an image receiving surface of an imaging unit when drive data of an imaging drive system is determined by a first determination method when imaging is performed by changing the depth direction of an imaging target tomographic plane. It is a figure which shows a moving speed, the rotation speed of an X-ray tube, etc.

【図4】撮影対象断層面の深さ方向を変更して撮影する
際の撮影駆動系の駆動データを第2の決定方法で決定す
る場合のX線管の移動速度と撮像部の受像面の移動速度
とX線管の回転速度を示す図である。
FIG. 4 is a diagram illustrating a moving speed of an X-ray tube and a moving speed of an image receiving surface of an imaging unit when drive data of an imaging drive system is determined by a second determination method when imaging is performed by changing the depth direction of an imaging target tomographic plane. It is a figure which shows a moving speed and the rotation speed of an X-ray tube.

【図5】撮影対象断層面の深さ方向を変更して撮影する
際の撮影駆動系の駆動データを第2の決定方法で決定す
る場合のX線管の回転速度の決定方法を説明するための
図である。
FIG. 5 is a view for explaining a method of determining a rotation speed of an X-ray tube when drive data of an imaging drive system is determined by a second determination method when imaging is performed by changing the depth direction of an imaging target tomographic plane. FIG.

【図6】撮影対象断層面の深さ方向を変更して撮影する
際の撮影駆動系の駆動データを第3の決定方法で決定す
る場合の説明図である。
FIG. 6 is an explanatory diagram of a case where drive data of a photographing drive system when photographing while changing the depth direction of the tomographic plane to be photographed is determined by a third determining method.

【図7】撮影対象断層面の深さ方向を変更して撮影する
際の撮影駆動系の駆動データを第3の決定方法で決定す
る場合のX線管の回転速度と撮像部の受像面の移動速度
を示す図である。
FIG. 7 shows the rotation speed of the X-ray tube and the rotation speed of the X-ray tube when the drive data of the imaging drive system is determined by the third determination method when imaging is performed by changing the depth direction of the imaging target tomographic plane. It is a figure showing a moving speed.

【図8】撮影対象断層面の深さ方向を変更して撮影する
際の撮影駆動系の駆動データを第3の決定方法で決定す
る場合の撮像部の受像面の移動速度の決定方法を説明す
るための図である。
FIG. 8 illustrates a method of determining a moving speed of an image receiving surface of an imaging unit when driving data of an imaging drive system is determined by a third determination method when imaging is performed by changing the depth direction of an imaging target tomographic plane. FIG.

【図9】撮影対象断層面のX線断層撮影画像の撮影原理
を説明するための図である。
FIG. 9 is a diagram for explaining the principle of imaging of an X-ray tomographic image of an imaging target tomographic plane.

【図10】第1従来例に係るX線断層撮影装置の駆動制
御系の概略構成図である。
FIG. 10 is a schematic configuration diagram of a drive control system of an X-ray tomography apparatus according to a first conventional example.

【図11】第2従来例に係るX線断層撮影装置の駆動制
御系の概略構成図である。
FIG. 11 is a schematic configuration diagram of a drive control system of an X-ray tomography apparatus according to a second conventional example.

【符号の説明】[Explanation of symbols]

1:天板 2:X線管 3:撮像部 3a:撮像部の受像面 10:制御部 11:X線管駆動機構 12:X線照射駆動部 13:照射角度駆動機構 14:撮像部駆動機構 M:被検体 Ma、MaS、MaN:撮影対象断層面 1: Top plate 2: X-ray tube 3: Imaging unit 3a: Image receiving surface of the imaging unit 10: Control unit 11: X-ray tube driving mechanism 12: X-ray irradiation driving unit 13: Irradiation angle driving mechanism 14: Imaging unit driving mechanism M: subject Ma, MaS, MaN: tomographic plane to be imaged

───────────────────────────────────────────────────── フロントページの続き (72)発明者 磯野 浩孝 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所三条工場内 Fターム(参考) 4C093 AA11 CA16 EA02 EB02 EC03 EC23 EC26 EC33 FA15 FA34 FA36 FA44 FA53  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hirotaka Isono 1 Shiwazu Works Sanjo Plant, Nakagyo-ku, Kyoto, Japan F-term (reference) 4C093 AA11 CA16 EA02 EB02 EC03 EC23 EC26 EC33 FA15 FA34 FA36 FA44 FA53

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検体内の撮影対象断層面のX線断層撮
影画像を得るX線断層撮影装置であって、(a)被検体
を支持する支持手段と、(b)前記支持手段に支持させ
た被検体にX線を照射するX線照射手段と、(c)前記
支持手段に支持させた被検体を挟んで前記X線照射手段
と反対側に配置され、被検体を透過したX線透過像を受
像面で受像して撮像する撮像手段と、(d)前記支持手
段に支持させた被検体内の撮影対象断層面に対する前記
X線照射手段からのX線の入射方向を変更駆動するX線
入射方向変更駆動手段と、前記X線照射手段からのX線
の照射駆動を行うX線照射駆動手段と、前記撮像手段の
受像面の位置を変更駆動する受像位置変更駆動手段とを
含む撮影駆動手段と、(e)前記支持手段に支持させた
被検体内の撮影対象断層面に対する前記X線照射手段か
らのX線の入射方向を順次変更しながら被検体に向けて
X線を照射させるとともに、前記撮像対象断層面の透過
X線像が常に前記撮像手段の受像面の同じ位置に投影さ
れるように撮影対象断層面に対するX線の入射方向の変
更と連動して前記撮像手段の受像面の位置を変更させる
ように前記撮影駆動手段を駆動データに従って駆動制御
する制御手段とを備え、撮影対象断層面の深さ位置を変
更して撮影するときには、前記制御手段は、撮影しよう
とする撮影対象断層面の深さ位置に応じて、その深さ位
置の撮影対象断層面と前記X線照射手段との位置関係及
びその深さ位置の撮影対象断層面と前記撮像手段の受像
面との位置関係によって決まるその撮影対象断層面の深
さ位置に応じた前記撮影駆動手段の駆動データに従って
前記撮影駆動手段を駆動制御することを特徴とするX線
断層撮影装置。
1. An X-ray tomography apparatus for obtaining an X-ray tomographic image of a tomographic plane to be imaged in a subject, comprising: (a) supporting means for supporting the subject; and (b) supporting means for supporting the subject. X-ray irradiating means for irradiating the irradiated subject with X-rays; and (c) X-rays arranged on the opposite side of the X-ray irradiating means with respect to the subject supported by the supporting means, and transmitted through the subject. Imaging means for receiving and transmitting a transmission image on an image receiving surface; and (d) changing and driving the incident direction of X-rays from the X-ray irradiating means on a tomographic plane to be imaged in the subject supported by the supporting means. X-ray incident direction changing driving means, X-ray irradiation driving means for driving X-ray irradiation from the X-ray irradiation means, and image receiving position changing driving means for changing and driving the position of the image receiving surface of the imaging means. Imaging drive means; and (e) an imaging object in the subject supported by the support means While sequentially changing the incident direction of the X-rays from the X-ray irradiating means on the tomographic plane, X-rays are radiated toward the subject, and the transmitted X-ray image of the tomographic plane to be imaged is always displayed on the image receiving surface of the imaging means. Control for driving and controlling the photographing drive means in accordance with drive data so as to change the position of the image receiving surface of the image pickup means in conjunction with the change in the direction of incidence of X-rays on the tomographic plane to be photographed so as to be projected at the same position Means for changing the depth position of the tomographic plane to be imaged, and the control means, in accordance with the depth position of the tomographic plane to be imaged, the tomographic plane at that depth position The imaging driving means according to the positional relationship between the surface and the X-ray irradiating means and the depth position of the imaging target tomographic plane determined by the positional relationship between the imaging target tomographic plane at the depth position and the image receiving surface of the imaging means No drive X-ray tomographic apparatus, characterized by driving and controlling the imaging drive unit according to the data.
JP30823498A 1998-10-29 1998-10-29 X-ray tomography equipment Expired - Fee Related JP4211098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30823498A JP4211098B2 (en) 1998-10-29 1998-10-29 X-ray tomography equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30823498A JP4211098B2 (en) 1998-10-29 1998-10-29 X-ray tomography equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008199911A Division JP4428457B2 (en) 2008-08-01 2008-08-01 X-ray tomography equipment

Publications (2)

Publication Number Publication Date
JP2000126169A true JP2000126169A (en) 2000-05-09
JP4211098B2 JP4211098B2 (en) 2009-01-21

Family

ID=17978558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30823498A Expired - Fee Related JP4211098B2 (en) 1998-10-29 1998-10-29 X-ray tomography equipment

Country Status (1)

Country Link
JP (1) JP4211098B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130105A (en) * 2002-10-07 2004-04-30 General Electric Co <Ge> Synthesis system and its methodology for contiguous scanning laminogram
JP2006087919A (en) * 2004-09-24 2006-04-06 General Electric Co <Ge> Apparatus for radiation projection type tomography
JP2008544833A (en) * 2005-06-29 2008-12-11 アキュレイ・インコーポレーテッド Imaging geometry
JP2012050523A (en) * 2010-08-31 2012-03-15 Fujifilm Corp Mobile radiation vehicle, radiography device, and radiography system
JP2019521725A (en) * 2016-05-11 2019-08-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Acquisition adapted to anatomy with fixed multi-source X-ray system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130105A (en) * 2002-10-07 2004-04-30 General Electric Co <Ge> Synthesis system and its methodology for contiguous scanning laminogram
JP4524085B2 (en) * 2002-10-07 2010-08-11 ゼネラル・エレクトリック・カンパニイ Continuous scanning tomography composition system and method
JP2006087919A (en) * 2004-09-24 2006-04-06 General Electric Co <Ge> Apparatus for radiation projection type tomography
JP2008544833A (en) * 2005-06-29 2008-12-11 アキュレイ・インコーポレーテッド Imaging geometry
JP2012050523A (en) * 2010-08-31 2012-03-15 Fujifilm Corp Mobile radiation vehicle, radiography device, and radiography system
JP2019521725A (en) * 2016-05-11 2019-08-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Acquisition adapted to anatomy with fixed multi-source X-ray system

Also Published As

Publication number Publication date
JP4211098B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP6057020B2 (en) Radiation tomography equipment
US8019041B2 (en) X-ray diagnosis apparatus
JP2005013768A (en) X-ray ct apparatus
EP3654022B1 (en) X-ray tomography device having additional scanner function
JP4378812B2 (en) Cone beam type radiation CT system
JP2008023241A (en) Digital x-ray photography device and method
JP2004337423A (en) Apparatus for radiotherapeutic plan
JP4428457B2 (en) X-ray tomography equipment
JP4044205B2 (en) X-ray fluoroscopic equipment
JP2000316845A (en) X-ray diagnostic apparatus
JP2000126169A (en) Tomographic x-ray apparatus
JP2011072404A (en) Radiographic system
JP4772355B2 (en) X-ray diagnostic equipment
JP2004236929A (en) X-ray imaging apparatus
JP3822463B2 (en) Dental X-ray equipment
JP2006116038A (en) X-ray diagnostic apparatus and x-ray radiographing method
WO2021215217A1 (en) Inspection apparatus
JPH06169907A (en) X-ray diagnostic system
JP2006025893A (en) X-ray image diagnostic device
JP2001212131A (en) Cone beam type x-ray ct device
JP4665358B2 (en) X-ray equipment
JP2003126074A (en) X-ray diagnostic apparatus and method of controlling x-ray diagnostic apparatus
JP2005000372A (en) Radiographic equipment
JPH0678919A (en) Dental tomographic device
JP2007020869A (en) Radiographic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees