WO2021181751A1 - 電力増幅回路、高周波回路、及び通信装置 - Google Patents
電力増幅回路、高周波回路、及び通信装置 Download PDFInfo
- Publication number
- WO2021181751A1 WO2021181751A1 PCT/JP2020/041757 JP2020041757W WO2021181751A1 WO 2021181751 A1 WO2021181751 A1 WO 2021181751A1 JP 2020041757 W JP2020041757 W JP 2020041757W WO 2021181751 A1 WO2021181751 A1 WO 2021181751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transistor
- circuit
- terminal
- power amplifier
- voltage
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 38
- 210000003127 knee Anatomy 0.000 claims description 6
- 239000003990 capacitor Substances 0.000 description 36
- 230000003321 amplification Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 15
- 238000003199 nucleic acid amplification method Methods 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 14
- 241001125929 Trisopterus luscus Species 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000010897 surface acoustic wave method Methods 0.000 description 8
- 230000005669 field effect Effects 0.000 description 5
- 238000002955 isolation Methods 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
- H03F1/0233—Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
- H03F1/0238—Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply using supply converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0261—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/195—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/408—Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising three power stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
Definitions
- the present invention generally relates to a power amplifier circuit, a high frequency circuit, and a communication device. More specifically, the present invention includes a power amplifier circuit that power-amplifies a high frequency signal, a high frequency circuit including the power amplifier circuit, and a communication device including the high frequency circuit. Regarding.
- an RF power amplifier including a driver stage amplifier, a first RF amplifier, a second RF amplifier, and a DC voltage converter is known (see, for example, Patent Document 1).
- the driver stage amplifier, the first RF amplifier, the second RF amplifier, and the DC voltage converter are driven by an external power supply voltage supplied from the outside of the RF power amplifier. It is said to be operational.
- the output signal generated from the output terminal of the driver stage amplifier can be supplied to the input terminal of the first RF amplifier and the input terminal of the second RF amplifier.
- the DC voltage converter can generate an operating power supply voltage lower than the external power supply voltage, and the operating power supply voltage is used as the output terminal of the second RF amplifier. It is said that it can be supplied to.
- An external power supply voltage supplied from the outside of the RF power amplifier can be supplied to the output terminal of the first RF amplifier without going through a DC voltage converter.
- Each of the driver stage amplifier, the first RF amplifier, and the second RF amplifier is composed of either a field effect transistor or a bipolar transistor.
- the RF power amplifier described in Patent Document 1 has a problem that the current flowing through the transistor (field effect transistor or bipolar transistor) of the second RF amplifier is large when operating at low output power (at low power). there were.
- An object of the present invention is to provide a power amplifier circuit, a high frequency circuit, and a communication device capable of suppressing a current flowing through a transistor of a final stage amplifier.
- the power amplification circuit power-amplifies a high-frequency signal.
- the power amplifier circuit includes a drive stage amplifier, a final stage amplifier, a power supply terminal, a first voltage control circuit, and a second voltage control circuit.
- the drive stage amplifier includes a first transistor.
- the first transistor has a first input terminal, a first output terminal, and a first ground terminal.
- the final stage amplifier includes a second transistor.
- the second transistor has a second input terminal, a second output terminal, and a second ground terminal.
- the second input terminal is connected to the first output terminal.
- the first voltage control circuit is connected between the power supply terminal and the first output terminal.
- the first voltage control circuit controls the first power supply voltage applied to the first transistor.
- the second voltage control circuit is a circuit different from the first voltage control circuit and is connected between the power supply terminal and the second output terminal.
- the second voltage control circuit controls the second power supply voltage applied to the second transistor.
- the high frequency circuit includes the power amplifier circuit and a filter.
- the filter passes the high frequency signal that is power amplified by the power amplifier circuit and output from the power amplifier circuit.
- the communication device includes the high frequency circuit and the signal processing circuit.
- the signal processing circuit outputs a high frequency signal to the power amplifier circuit.
- the power amplifier circuit, high frequency circuit, and communication device can suppress the current flowing through the second transistor of the final stage amplifier.
- FIG. 1 is a circuit diagram of a power amplifier circuit according to the first embodiment.
- FIG. 2 is a circuit diagram of a communication device including the same power amplifier circuit.
- FIG. 3 is a circuit diagram of the first voltage control circuit in the same power amplifier circuit.
- FIG. 4 is a circuit diagram of a second voltage control circuit in the same power amplifier circuit.
- FIG. 5 is a circuit diagram of a bias circuit in the same power amplifier circuit.
- FIG. 6 is a characteristic diagram showing the relationship between the control voltage and the idle current with respect to the power amplifier circuit of the same.
- FIG. 7 is a characteristic diagram showing the relationship between the control voltage, the output power, and the collector current with respect to the power amplifier circuit of the same.
- FIG. 1 is a circuit diagram of a power amplifier circuit according to the first embodiment.
- FIG. 2 is a circuit diagram of a communication device including the same power amplifier circuit.
- FIG. 3 is a circuit diagram of the first voltage control circuit in the same power amplifier circuit.
- FIG. 4 is
- FIG. 8 is a characteristic diagram showing the relationship between the control voltage and the idle current with respect to the power amplifier circuit according to the comparative example of the first embodiment.
- FIG. 9 is a characteristic diagram showing the relationship between the control voltage, the output power, and the collector current with respect to the power amplifier circuit of the same.
- FIG. 10 is a circuit diagram showing another configuration example of the second voltage control circuit of the power amplifier circuit according to the first embodiment.
- FIG. 11 is a circuit diagram showing another configuration example of the first voltage control circuit of the power amplifier circuit according to the first embodiment.
- FIG. 12 is a circuit diagram of the power amplifier circuit according to the second embodiment.
- FIG. 13 is a circuit diagram of the power amplifier circuit according to the third embodiment.
- FIG. 14 is a circuit diagram of the power amplifier circuit according to the fourth embodiment.
- the high frequency circuit 100 including the power amplifier circuit 10 is, for example, a communication device. Used for 300.
- the communication device 300 is, for example, a mobile phone (for example, a smartphone), but is not limited to this, and may be, for example, a wearable terminal (for example, a smart watch).
- the high frequency circuit 100 is, for example, a circuit capable of supporting 4G (4th generation mobile communication) standard and 5G (5th generation mobile communication) standard.
- the 4G standard is, for example, a 3GPP LTE (Long Term Evolution) standard.
- the 5G standard is, for example, 5G NR (New Radio).
- the high frequency circuit 100 may be a circuit capable of supporting carrier aggregation and dual connectivity.
- the high frequency circuit 100 is configured so that, for example, the high frequency signal (transmission signal) input from the signal processing circuit 301 can be amplified and output to the antenna 310.
- the signal processing circuit 301 is not a component of the high frequency circuit 100, but a component of the communication device 300 including the high frequency circuit 100.
- the high frequency circuit 100 is controlled by, for example, the signal processing circuit 301 included in the communication device 300.
- the high-frequency circuit 100 includes a power amplifier circuit 10, an output matching circuit 101, a first switch 102, a filter 103, a second switch 104, an antenna terminal 105, a high-frequency signal input terminal 106, and a power supply terminal 111. , Equipped with.
- the power amplifier circuit 10 amplifies and outputs an input signal from the signal processing circuit 301, for example.
- the input signal is a high frequency signal (transmission signal) in a predetermined frequency band.
- the predetermined frequency band includes, for example, a plurality of communication bands different from each other.
- the power amplifier circuit 10 includes a drive stage amplifier 1, a final stage amplifier 3, a power supply terminal T3, a first voltage control circuit 4, and a second voltage control circuit 5. .. Further, the power amplifier circuit 10 further includes an intermediate stage amplifier 2 connected between the drive stage amplifier 1 and the final stage amplifier 3. Further, the power amplifier circuit 10 further includes a third voltage control circuit 6.
- the drive stage amplifier 1 includes a first transistor Q1.
- the final stage amplifier 3 includes the second transistor Q3.
- the intermediate stage amplifier 2 includes a third transistor Q2.
- the first voltage control circuit 4 controls the first power supply voltage Vcc1 applied to the first transistor Q1.
- the second voltage control circuit 5 controls the second power supply voltage Vcc2 applied to the second transistor Q3.
- the third voltage control circuit 6 controls the third power supply voltage Vcc3 applied to the third transistor Q2.
- the power amplifier circuit 10 includes a first bias circuit 7, a second bias circuit 9, and a third bias circuit 8.
- the first bias circuit 7 is connected to the first transistor Q1 of the drive stage amplifier 1.
- the second bias circuit 9 is connected to the second transistor Q3 of the final stage amplifier 3.
- the third bias circuit 8 is connected to the third transistor Q2 of the intermediate stage amplifier 2.
- the output matching circuit 101 is provided in the signal path between the power amplifier circuit 10 and the first switch 102.
- the output matching circuit 101 is a circuit for impedance matching between the power amplifier circuit 10 and the filter 103.
- the output matching circuit 101 is composed of, for example, one inductor, but is not limited to this, and may include, for example, a plurality of inductors and a plurality of capacitors.
- the first switch 102 is provided between the output matching circuit 101 and the filter 103.
- the first switch 102 has a common terminal and a plurality of selection terminals.
- the common terminal of the first switch 102 is connected to the power amplifier circuit 10 via the output matching circuit 101.
- One of the plurality of selection terminals of the first switch 102 is connected to the filter 103.
- the first switch 102 is, for example, a switch capable of connecting at least one or more of a plurality of selection terminals to a common terminal.
- the first switch 102 is, for example, a switch capable of one-to-one and one-to-many connections.
- the first switch 102 is a switch capable of switching signal paths for a plurality of transmission signals having different communication bands from each other.
- the first switch 102 switches the connection state between the common terminal and the plurality of selection terminals according to, for example, a control signal input from the signal processing circuit 301.
- the first switch 102 is, for example, a switch IC (Integrated Circuit).
- the first switch 102 may be configured to switch the connection state between the common terminal and the plurality of selection terminals according to, for example, a digital control signal input from the signal processing circuit 301.
- the filter 103 is a filter whose pass band is the transmission band of one communication band (for example, Band 3) among the above-mentioned plurality of communication bands.
- the filter 103 is, for example, a one-chip elastic wave filter, and each of a plurality of series arm resonators and a plurality of parallel arm resonators is composed of elastic wave resonators.
- the surface acoustic wave filter is, for example, a surface acoustic wave filter that utilizes a surface acoustic wave.
- each of the plurality of series arm resonators and the plurality of parallel arm resonators is, for example, a SAW (Surface Acoustic Wave) resonator.
- the filter 103 is not limited to the one-chip elastic wave filter, and may have, for example, a package structure.
- the second switch 104 is provided between the filter 103 and the antenna terminal 105.
- the second switch 104 is a switch connected to the antenna terminal 105.
- the second switch 104 has a common terminal and a plurality of selection terminals. In the second switch 104, a common terminal is connected to the antenna terminal 105.
- the filter 103 is connected to one of the plurality of selection terminals of the second switch 104.
- the second switch 104 switches the connection state between the common terminal and the plurality of selection terminals according to, for example, a control signal input from the signal processing circuit 301.
- the second switch 104 is, for example, a switch IC.
- the second switch 104 may be configured to switch the connection state between the common terminal and the plurality of selection terminals according to, for example, a digital control signal input from the signal processing circuit 301.
- the antenna terminal 105 is connected to the antenna 310.
- the antenna 310 is not a component of the high frequency circuit 100, but a component of the communication device 300.
- the high-frequency signal (transmission signal) output from the power amplifier circuit 10 is transmitted from the antenna 310 through the output matching circuit 101, the first switch 102, the filter 103, the second switch 104, and the antenna terminal 105.
- the high-frequency signal (transmission signal) output from the power amplifier circuit 10 is transmitted from the antenna 310 through the output matching circuit 101, the first switch 102, the filter 103, the second switch 104, and the antenna terminal 105.
- the power supply terminal 111 is connected to the drive stage amplifier 1, the intermediate stage amplifier 2, and the final stage amplifier 3 via the power supply terminal T3.
- the power supply terminal T3 is connected to the first transistor Q1 of the drive stage amplifier 1 via the first voltage control circuit 4.
- the power supply terminal T3 is connected to the second transistor Q3 of the final stage amplifier 3 via the second voltage control circuit 5.
- the power supply terminal T3 is connected to the third transistor Q2 of the intermediate stage amplifier 2 via the third voltage control circuit 6.
- a power supply voltage Vbat is supplied from the battery to the power supply terminal T3 via the power supply terminal 111.
- the power supply voltage Vbat is, for example, 4V.
- the battery is, for example, a battery for power supply of the communication device 300.
- the power supply terminal 111 is connected to the battery terminal of the communication device 300.
- the battery is not a component of any of the power amplifier circuit 10, the high frequency circuit 100, and the communication device 300, but is not limited to this, and may be a component of the communication device 300.
- the communication device 300 includes a high frequency circuit 100 and a signal processing circuit 301.
- the communication device 300 further includes an antenna 310.
- the signal processing circuit 301 includes, for example, an RF signal processing circuit 302 and a baseband signal processing circuit 303.
- the RF signal processing circuit 302 is, for example, an RFIC (Radio Frequency Integrated Circuit), and performs signal processing on a high frequency signal.
- the RF signal processing circuit 302 performs signal processing such as up-conversion on the high-frequency signal (transmission signal) output from the baseband signal processing circuit 303, and outputs the high-frequency signal after the signal processing.
- the baseband signal processing circuit 303 is, for example, a BBIC (Baseband Integrated Circuit).
- the baseband signal processing circuit 303 generates an I-phase signal and a Q-phase signal from the baseband signal.
- the baseband signal is, for example, an audio signal, an image signal, or the like input from the outside.
- the baseband signal processing circuit 303 performs IQ modulation processing by synthesizing an I-phase signal and a Q-phase signal, and outputs a transmission signal. At this time, the transmission signal is generated as a modulated signal (IQ signal) in which a carrier signal having a predetermined frequency is amplitude-modulated with a period longer than the period of the carrier signal.
- the high frequency circuit 100 transmits a high frequency signal (transmission signal) between the antenna 310 and the RF signal processing circuit 302 of the signal processing circuit 301.
- the output power Pout increases as the control voltage voltage from the signal processing circuit 301 increases.
- the control voltage voltage is, for example, 0 V or more and 2 V or less.
- the power amplifier circuit 10 according to the first embodiment is a circuit different from the first voltage control circuit 4 connected between the power supply terminal T3 and the first transistor Q1 and the first voltage control circuit 4, and is a power source.
- a second voltage control circuit 5 connected between the terminal T3 and the second transistor Q3 is provided.
- the first voltage control circuit 4 controls the first power supply voltage Vcc1 applied to the first transistor Q1, and the second voltage control circuit 5 applies it to the second second transistor Q3.
- the second power supply voltage Vcc2 is controlled.
- the input power of the second transistor Q3 when the second power supply voltage Vcc2 of the second transistor Q3 is relatively low can be increased, and the efficiency of the second transistor Q3 can be increased. Therefore, it is possible to suppress the current flowing through the second transistor Q3 when operating at a relatively low output power Pout (at low power).
- the power amplifier circuit 10 includes a drive stage amplifier 1, a final stage amplifier 3, an intermediate stage amplifier 2, a power supply terminal T3, a first voltage control circuit 4, and a second.
- a voltage control circuit 5 and a third voltage control circuit 6 are provided.
- the power amplifier circuit 10 includes a signal input terminal T1, a signal output terminal T2, a first bias circuit 7, a second bias circuit 9, a third bias circuit 8, a first matching circuit MN1, and a second.
- a matching circuit MN3 and a third matching circuit MN2 are further provided.
- the drive stage amplifier 1, the final stage amplifier 3, and the intermediate stage amplifier 2 include the first transistor Q1, the second transistor Q3, and the third transistor Q2, respectively. There is.
- the first transistor Q1, the second transistor Q3, and the second transistor Q3 are amplification transistors that power-amplify high-frequency signals.
- Each of the first transistor Q1, the second transistor Q3, and the third transistor Q2 is, for example, a bipolar transistor.
- each of the first transistor Q1, the second transistor Q3, and the third transistor Q2 is an npn type bipolar transistor.
- the first transistor Q1 has a first input terminal 11, a first output terminal 12, and a first ground terminal 13.
- the first input terminal 11, the first output terminal 12, and the first ground terminal 13 are a first base terminal, a first collector terminal, and a first emitter terminal, respectively.
- the first input terminal 11 of the first transistor Q1 is connected to the signal input terminal T1.
- the first ground terminal 13 of the first transistor Q1 is connected to the ground.
- the first output terminal 12 of the first transistor Q1 is connected to the power supply terminal T3 via the first voltage control circuit 4.
- a first power supply voltage Vcc1 (see FIG. 3) is applied from the first voltage control circuit 4 to the first transistor Q1 (between the first output terminal 12 and the first ground terminal 13).
- the first transistor Q1 amplifies the high frequency signal input to the first input terminal 11 and outputs it from the first output terminal 12.
- the second transistor Q3 has a second input terminal 31, a second output terminal 32, and a second ground terminal 33.
- the second input terminal 31, the second output terminal 32, and the second ground terminal 33 are the second base terminal, the second collector terminal, and the second emitter terminal, respectively.
- the second input terminal 31 of the second transistor Q3 is connected to the first output terminal 12 of the first transistor Q1 of the drive stage amplifier 1. More specifically, the second input terminal 31 of the second transistor Q3 is connected to the first output terminal 12 of the first transistor Q1 of the drive stage amplifier 1 via the third transistor Q2 of the intermediate stage amplifier 2. ..
- the second output terminal 32 of the second transistor Q3 is connected to the power supply terminal T3 via the second voltage control circuit 5.
- a second power supply voltage Vcc2 (see FIG. 4) is applied from the second voltage control circuit 5 to the second transistor Q3 (between the second output terminal 32 and the second ground terminal 33).
- the second transistor Q3 amplifies the high frequency signal input to the second input terminal 31 and outputs it from the second output terminal 32
- the third transistor Q2 has a third input terminal 21, a third output terminal 22, and a third ground terminal 23.
- the third input terminal 21, the third output terminal 22, and the third ground terminal 23 are the third base terminal, the third collector terminal, and the third emitter terminal, respectively.
- the third input terminal 21 of the third transistor Q2 is connected to the first output terminal 12 of the first transistor Q1.
- the third output terminal 22 of the third transistor Q2 is connected to the second input terminal 31 of the second transistor Q3.
- the third ground terminal 23 of the third transistor Q2 is connected to the ground.
- the third output terminal 22 of the third transistor Q2 is connected to the power supply terminal T3 via the third voltage control circuit 6.
- a third power supply voltage Vcc3 is applied from the third voltage control circuit 6 to the third transistor Q2 (between the third output terminal 22 and the third ground terminal 23).
- the third transistor Q2 amplifies the high frequency signal input to the third input terminal 21 and outputs it from the third output terminal 22.
- the signal input terminal T1 is a terminal to which a high frequency signal is input. More specifically, the signal input terminal T1 is, for example, a terminal in which a high frequency signal from the signal processing circuit 301 is input through the high frequency signal input terminal 106 of the high frequency circuit 100. In the power amplifier circuit 10, the first input terminal 11 of the first transistor Q1 of the drive stage amplifier 1 is connected to the signal input terminal T1.
- the signal output terminal T2 is a terminal that outputs a high frequency signal amplified in the power amplifier circuit 10.
- the signal output terminal T2 is connected to the second output terminal 32 of the second transistor Q3 of the final stage amplifier 3.
- the first bias circuit 7 is connected to the first input terminal 11 of the first transistor Q1.
- the first bias circuit 7 supplies the first bias to the first transistor Q1. More specifically, the first bias circuit 7 supplies the first bias current I1 (see FIG. 5) to the first input terminal 11 of the first transistor Q1.
- the first bias circuit 7 has a transistor 70 as shown in FIG.
- the transistor 70 has a control terminal, a first main terminal, and a second main terminal.
- the transistor 70 is, for example, an npn type bipolar transistor.
- the control terminal, the first main terminal, and the second main terminal are a base, a collector, and an emitter, respectively.
- the collector is connected to the power supply terminal T3, and the emitter is connected to the first input terminal 11 of the first transistor Q1. More specifically, in the transistor 70, the emitter is connected to the first input terminal 11 of the first transistor Q1 via a resistor 77.
- the power supply voltage Vbat is supplied to the power supply terminal T3 from the battery.
- the first bias current I1 output from the first bias circuit 7 is supplied to the first input terminal 11 of the first transistor Q1 via the resistor 77.
- the first bias current I1 is a direct current that determines the operating point of the first transistor Q1.
- the transistor 70 is used as a transistor of an emitter follower.
- the transistor 70 is a current amplification transistor.
- the first bias circuit 7 includes two diodes 71 and 72, a capacitor 73, and a resistor 74 in addition to the above-mentioned transistor 70.
- Each of the two diodes 71 and 72 is configured by connecting the base and collector of an npn-type transistor.
- the first bias circuit 7 two diodes 71 and 72 are connected in series between the base and ground of the transistor 70. Further, in the first bias circuit 7, the first constant current source 117 included in the control circuit 110 included in the high frequency circuit 100 is connected to the base of the transistor 70 via the resistor 74. Further, in the first bias circuit 7, a capacitor 73 is connected between the base of the transistor 70 and the ground.
- the constant current output from the first constant current source 117 is input to the base of the transistor 70, the constant current is amplified to become the first bias current I1, and is output from the emitter of the transistor 70. ..
- the first bias current I1 output from the emitter of the transistor 70 is supplied to the first input terminal 11 of the first transistor Q1 via the resistor 77.
- the resistor 77 may be included in the first bias circuit 7.
- the second bias circuit 9 is connected to the second input terminal 31 of the second transistor Q3.
- the second bias circuit 9 supplies the second bias to the second transistor Q3. More specifically, the second bias circuit 9 supplies the second bias current I3 to the second input terminal 31 of the second transistor Q3.
- the second bias circuit 9 includes a transistor 90.
- the transistor 90 has a control terminal, a first main terminal, and a second main terminal.
- the transistor 90 is, for example, an npn type bipolar transistor.
- the control terminal, the first main terminal, and the second main terminal are a base, a collector, and an emitter, respectively.
- the collector is connected to the power supply terminal T3, and the emitter is connected to the second input terminal 31 of the second transistor Q3. More specifically, in the transistor 90, the emitter is connected to the second input terminal 31 of the second transistor Q3 via the resistor 97.
- the power supply voltage Vbat is supplied to the power supply terminal T3 from the battery.
- the second bias current I3 output from the second bias circuit 9 is supplied to the second input terminal 31 of the second transistor Q3 via the resistor 97.
- the second bias current I3 is a direct current that determines the operating point of the second transistor Q3.
- the transistor 90 is used as a transistor of the emitter follower.
- the transistor 90 is a current amplification transistor.
- the second bias circuit 9 includes two diodes 91 and 92, a capacitor 93, and a resistor 94 in addition to the above-mentioned transistor 90.
- Each of the two diodes 91 and 92 is configured by connecting the base and collector of an npn-type transistor.
- two diodes 91 and 92 are connected in series between the base and ground of the transistor 90. Further, in the second bias circuit 9, the second constant current source 119 included in the control circuit 110 is connected to the base of the transistor 90 via the resistor 94. Further, in the second bias circuit 9, a capacitor 93 is connected between the base of the transistor 90 and the ground.
- the constant current output from the second constant current source 119 is input to the base of the transistor 90, the constant current is amplified to become the second bias current I3, and is output from the emitter of the transistor 90. ..
- the second bias current I3 output from the emitter of the transistor 90 is supplied to the second input terminal 31 of the second transistor Q3 via the resistor 97.
- the resistor 97 may be included in the second bias circuit 9.
- the third bias circuit 8 is connected to the third input terminal 21 of the third transistor Q2.
- the third bias circuit 8 supplies the third bias to the third transistor Q2. More specifically, the third bias circuit 8 supplies the third bias current I2 to the third input terminal 21 of the third transistor Q2.
- the third bias circuit 8 includes a transistor 80.
- the transistor 80 has a control terminal, a first main terminal, and a second main terminal.
- the transistor 80 is, for example, an npn type bipolar transistor.
- the control terminal, the first main terminal, and the second main terminal are a base, a collector, and an emitter, respectively.
- the collector is connected to the power supply terminal T3, and the emitter is connected to the third input terminal 21 of the third transistor Q2. More specifically, in the transistor 80, the emitter is connected to the third input terminal 21 of the third transistor Q2 via the resistor 87.
- the power supply voltage Vbat is supplied to the power supply terminal T3 from the battery.
- the third bias current I2 output from the third bias circuit 8 is supplied to the third input terminal 21 of the third transistor Q2 via the resistor 87.
- the third bias current I2 is a direct current that determines the operating point of the third transistor Q2.
- the transistor 80 is used as a transistor of the emitter follower.
- the transistor 80 is a current amplification transistor.
- the third bias circuit 8 includes two diodes 81 and 82, a capacitor 83, and a resistor 84 in addition to the above-mentioned transistor 80.
- Each of the two diodes 81 and 82 is configured by connecting the base and collector of an npn-type transistor.
- the third bias circuit 8 two diodes 81 and 82 are connected in series between the base and ground of the transistor 80. Further, in the third bias circuit 8, the third constant current source 118 included in the control circuit 110 is connected to the base of the transistor 80 via the resistor 84. Further, in the third bias circuit 8, the capacitor 83 is connected between the base and the ground of the transistor 80.
- the constant current output from the third constant current source 118 is input to the base of the transistor 80, the constant current is amplified to become the third bias current I2, and is output from the emitter of the transistor 80. ..
- the third bias current I2 output from the emitter of the transistor 80 is supplied to the third input terminal 21 of the third transistor Q2 via the resistor 87.
- the resistor 87 may be included in the third bias circuit 8.
- the first matching circuit MN1 is provided between the signal input terminal T1 and the first input terminal 11 of the first transistor Q1.
- the first matching circuit MN1 is a circuit for impedance matching between the first transistor Q1 and the signal processing circuit 301.
- the first matching circuit MN1 includes, but is not limited to, for example, one resistor, one capacitor, and at least one of one inductor.
- the second matching circuit MN3 is provided between the second input terminal 31 of the second transistor Q3 and the third output terminal 22 of the third transistor Q2.
- the second matching circuit MN3 is a circuit (interstage matching circuit) for impedance matching between the second transistor Q3 and the third transistor Q2.
- the second matching circuit MN3 includes, but is not limited to, for example, one resistor, one capacitor, and at least one of one inductor.
- the third matching circuit MN2 is provided between the first output terminal 12 of the first transistor Q1 and the third input terminal 21 of the third transistor Q2.
- the third matching circuit MN2 is a circuit (interstage matching circuit) for impedance matching between the first transistor Q1 and the third transistor Q2.
- the third matching circuit MN2 includes, but is not limited to, for example, one resistor, one capacitor, and at least one of one inductor.
- the power amplifier circuit 10 further includes a first capacitor C1, a second capacitor C3, and a third capacitor C2.
- the first capacitor C1, the second capacitor C3, and the third capacitor C2 are capacitive elements for cutting direct current.
- the first capacitor C1 is provided between the first matching circuit MN1 and the first input terminal 11 of the first transistor Q1. One end of the first capacitor C1 is connected to the first matching circuit MN1 and the other end is connected to the first input terminal 11.
- the first bias circuit 7 described above is connected to the first node N1 of the path between the first capacitor C1 and the first input terminal 11 via a resistor 77.
- the first capacitor C1 may be included in the first matching circuit MN1.
- the second capacitor C3 is provided between the second matching circuit MN3 and the second input terminal 31 of the second transistor Q3. One end of the second capacitor C3 is connected to the second matching circuit MN3, and the other end is connected to the second input terminal 31.
- the second bias circuit 9 described above is connected to the second node N3 of the path between the second capacitor C3 and the second input terminal 31 via a resistor 97.
- the second capacitor C3 may be included in the second matching circuit MN3.
- the third capacitor C2 is provided between the third matching circuit MN2 and the third input terminal 21 of the third transistor Q2. One end of the third capacitor C2 is connected to the third matching circuit MN2, and the other end is connected to the third input terminal 21.
- the above-mentioned third bias circuit 8 is connected to the third node N2 of the path between the third capacitor C2 and the third input terminal 21 via a resistor 87.
- the third capacitor C2 may be included in the third matching circuit MN2.
- the first voltage control circuit 4 applies the first power supply voltage Vcc1 (see FIG. 3) to the first transistor Q1.
- the first voltage control circuit 4 is, for example, an LDO (Low Dropout) regulator as shown in FIG.
- the LDO regulator constituting the first voltage control circuit 4 includes a transistor 40 (hereinafter referred to as a first output transistor 40), two resistors 41 and 42, and an error amplifier EA1 (hereinafter referred to as a first error amplifier EA1). It includes a control terminal T4 (hereinafter, referred to as a first control terminal T4).
- the first output transistor 40 has a control terminal, a first main terminal, and a second main terminal.
- the first output transistor 40 is, for example, a p-channel MOSFET.
- the control terminal, the first main terminal, and the second main terminal are a gate, a drain, and a source, respectively.
- the source is connected to the power supply terminal T3 via the input terminal of the first voltage control circuit 4
- the drain is the first output of the first transistor Q1 via the output terminal of the first voltage control circuit 4. It is connected to the terminal 12.
- Ron on-resistance
- the first output transistor 40 is connected to the output terminal of the first error amplifier EA1.
- the first output transistor 40 is not limited to the p-channel MOSFET, and may be an n-channel MOSFET, a pnp-type bipolar transistor, an npn-type bipolar transistor, or the like.
- a resistance voltage divider circuit (hereinafter referred to as a first resistance voltage divider circuit) including a series circuit of the two resistors 41 and 42 is connected between the drain and the ground of the first output transistor 40.
- the inverting input terminal of the first error amplifier EA1 is connected to the first control terminal T4.
- the non-inverting input terminal of the first error amplifier EA1 is connected to the node between the two resistors 41 and 42 in the first resistance voltage divider circuit.
- the output terminal of the first error amplifier EA1 is connected to the gate of the first output transistor 40.
- the first error amplifier EA1 compares the potential input to the inverting input terminal with the potential input to the non-inverting input terminal, and amplifies the error signal which is the difference.
- the control voltage Vramp from the signal processing circuit 301 is input to the inverting input terminal via the first control terminal T4.
- the resistance value of the resistor 41 is R41 and the resistance value of the resistor 42 is R42
- the second voltage control circuit 5 applies the second power supply voltage Vcc2 (see FIG. 4) to the second transistor Q3.
- the second voltage control circuit 5 is, for example, an LDO regulator as shown in FIG.
- the LDO regulator constituting the second voltage control circuit 5 includes a transistor 50 (hereinafter referred to as a second output transistor 50), two resistors 51 and 52, and an error amplifier EA2 (hereinafter referred to as a second error amplifier EA2). It includes a control terminal T5 (hereinafter referred to as a second control terminal T5).
- the second output transistor 50 has a control terminal, a first main terminal, and a second main terminal.
- the second output transistor 50 has a control terminal, a first main terminal, and a second main terminal.
- the second output transistor 50 is, for example, a p-channel MOSFET.
- the control terminal, the first main terminal, and the second main terminal are a gate, a drain, and a source, respectively.
- the source is connected to the power supply terminal T3 via the input terminal of the second voltage control circuit 5, and the drain is connected to the second output of the second transistor Q3 via the output terminal of the second voltage control circuit 5. It is connected to the terminal 32.
- the on-resistance of the second output transistor 50 is preferably a lower value.
- the gate is connected to the output terminal of the second error amplifier EA2.
- the second output transistor 50 is not limited to the p-channel MOSFET, but may be an n-channel MOSFET, a pnp-type bipolar transistor, an npn-type bipolar transistor, or the like.
- a resistance voltage divider circuit (hereinafter referred to as a second resistance voltage divider circuit) including a series circuit of the two resistors 51 and 52 is connected between the drain and the ground of the second output transistor 50.
- the inverting input terminal of the second error amplifier EA2 is connected to the second control terminal T5.
- the non-inverting input terminal of the second error amplifier EA2 is connected to the node between the two resistors 51 and 52 in the second resistance voltage divider circuit.
- the output terminal of the second error amplifier EA2 is connected to the gate of the second output transistor 50.
- the second error amplifier EA2 compares the potential input to the inverting input terminal with the potential input to the non-inverting input terminal, and amplifies the error signal which is the difference.
- the control voltage Vramp from the signal processing circuit 301 is input to the inverting input terminal via the second control terminal T5.
- the resistance value of the resistor 51 is R51 and the resistance value of the resistor 52 is R52
- the third voltage control circuit 6 is, for example, an LDO regulator. Since the circuit configuration of the LDO regulator constituting the third voltage control circuit 6 is the same as the circuit configuration of the first voltage control circuit 4, illustration and description thereof will be omitted.
- the value of R51 / R52 with respect to the second voltage control circuit 5 is different from the value of R41 / R42 with respect to the first voltage control circuit 4.
- the first power supply voltage Vcc1 and the second power supply voltage Vcc2 can be controlled independently, and the first power supply voltage Vcc1 and the second power supply voltage Vcc2 can be mutually controlled. It is possible to have different values.
- the first voltage control circuit 4 starts applying the second power supply voltage Vcc2 to the second transistor Q3 at the timing when the first voltage control circuit 4 starts to apply the first power supply to the first transistor Q1. It is after the timing when the voltage Vcc1 is started to be applied.
- the first output transistor 40 sets the timing at which the second output transistor 50 shifts from the off state to the on state. It is possible to delay the timing of transition from the off state to the on state. Therefore, in the power amplifier circuit 10, the first voltage control circuit 4 sets the first power supply voltage Vcc1 to the first transistor Q1 at the timing when the second voltage control circuit 5 starts applying the second power supply voltage Vcc2 to the second transistor Q3. It is possible to delay (that is, delay) the timing at which the application is started.
- the value of R41 / R42 is 3 and the value of R51 / R52 is 1, but these numerical values are examples and are not particularly limited.
- the first power supply voltage Vcc1 applied to the first transistor Q1 by the first voltage control circuit 4 at the operation start point of the second transistor Q3 is the knee voltage of the first transistor Q1.
- the knee voltage of the first transistor Q1 which is a larger voltage, is a collector voltage at which the static characteristics of the first transistor Q1 shift from the linear region to the saturation region.
- the conductance in the saturation region is smaller than the conductance in the linear region.
- the conductance is the rate of change of the collector current with respect to the change of the collector voltage of the first transistor Q1.
- the conductance in the saturation region is preferably smaller.
- the knee voltage of the first transistor Q1 differs depending on the value of the first bias current I1.
- the operation of the second transistor Q3 starts at a control voltage Vram that is larger than the value of the control voltage Vram when the first power supply voltage Vcc1 of the first transistor Q1 becomes a knee voltage.
- the values of R51 / R52 are determined so as to be performed.
- the first voltage control circuit 4, the second voltage control circuit 5, and the third voltage control circuit 6 are connected to the first voltage control circuit 4, the second voltage control circuit 5, and the third voltage control circuit 6 from the battery via the power supply terminal T3.
- Power supply voltage Vbat is supplied. Further, in the power amplifier circuit 10, the power supply voltage Vbat is also supplied to the first bias circuit 7, the second bias circuit 9, and the third bias circuit 8.
- the power amplifier circuit 10 amplifies and outputs a high frequency signal (transmission signal) from the signal processing circuit 301, for example.
- the power amplifier circuit 10 amplifies the high frequency signal input from the signal input terminal T1 and outputs the amplified high frequency signal from the signal output terminal T2.
- the power amplifier circuit 10 amplifies and outputs high-frequency signals input in each of the first transistor Q1, the third transistor Q2, and the second transistor Q3.
- the power amplifier circuit 10 is controlled by the signal processing circuit 301 and the control circuit 110.
- the control circuit 110 is, for example, a control IC (Integrated Circuit) that controls the power amplifier circuit 10.
- the control circuit 110 controls the first bias circuit 7, the second bias circuit 9, and the third bias circuit 8.
- the control circuit 110 is not a component of the power amplifier circuit 10 but a component of the high frequency circuit 100.
- the control circuit 110 includes the first constant current source 117, the second constant current source 119, and the third constant current source 118 described above.
- the control circuit 110 controls the power amplifier circuit 10 based on the control signal acquired from the signal processing circuit 301.
- the control circuit 110 controls the power amplifier circuit 10 according to a control signal from the RF signal processing circuit 302 of the signal processing circuit 301.
- the relationship between the value of the output power (transmission power) of the power amplifier circuit 10 and the value of the control voltage Voltage may be stored in advance in a Lookup table or the like.
- the control circuit 110 refers to the Lookup table and controls according to the instructed transmission power value.
- the value of the voltage Vramp may be controlled.
- the control circuit 110 may be configured to control the power amplifier circuit 10 according to a digital control signal from the RF signal processing circuit 302 of the signal processing circuit 301, for example.
- the control circuit 110 When the control circuit 110 operates the power amplification circuit 10, for example, the first bias circuit 7, the second bias circuit 9, and the third bias circuit 8 are connected to the first constant current source 117 and the second constant current source 119, respectively. And a constant current is supplied from the third constant current source 118.
- the control voltage Vram from the signal processing circuit 301 is given to the first voltage control circuit 4, the second voltage control circuit 5, and the third voltage control circuit 6.
- the power amplifier circuit 10 amplifies and outputs high-frequency signals input in each of the first transistor Q1, the third transistor Q2, and the second transistor Q3.
- FIG. 6 shows the control voltage Vram, the first idle current Idle1, the second idle current Idle3, and the second idle current Idle3 of the first transistor Q1, the second transistor Q3, and the third transistor Q2, respectively, with respect to the power amplifier circuit 10. It is a characteristic figure which shows the relationship with the 3rd idle current Idle2.
- the horizontal axis is the control voltage Voltage.
- the vertical axis on the left side is the idle current Idle3 of the second transistor Q3.
- the idle current Idle3 of the second transistor Q3 is the collector-emitter current of the second transistor Q3 when the second bias current I3 is supplied to the second transistor Q3. Further, in FIG.
- the vertical axis on the right side is the idle current Idle1 of the first transistor Q1 and the idle current Idle2 of the third transistor Q2.
- the idle current Idle1 of the first transistor Q1 is the collector-emitter current of the first transistor Q1 when the first bias current I1 is supplied to the first transistor Q1.
- the idle current Idle2 of the third transistor Q2 is the collector-emitter current of the third transistor Q2 when the third bias current I2 is supplied to the third transistor Q2.
- the solid line with the notation “1st” corresponds to the idle current Idle1 of the first transistor Q1
- the solid line with the notation “2nd” corresponds to the idle current Idle2 of the third transistor Q2.
- the solid line with the notation "3rd” corresponds to the idle current Idle3 of the second transistor Q3.
- FIG. 7 is a characteristic diagram showing the relationship between the control voltage Vram, the output power Pout, and the collector current Idd of the second transistor Q3 with respect to the power amplifier circuit 10.
- the horizontal axis is the control voltage Voltage.
- the vertical axis on the left side is the output power Pout of the power amplifier circuit 10.
- the vertical axis on the right side is the collector current Idd of the second transistor Q3.
- the solid line with the notation “B1” corresponds to the output power Pout of the power amplifier circuit 10
- the solid line with the notation “B2” corresponds to the collector current Idd of the second transistor Q3.
- the output power Pout increases as the control voltage Vramp increases between 0.15V and 2V.
- the operation of the second transistor Q3 is started after the first transistor Q1 is saturated, so that the relationship between the control voltage Vram and the output power Pout is as shown in B1 of FIG.
- the output power Pout when the second transistor Q3 is not operating is the power leaked by the isolation of the second transistor Q3 that receives the output of the first transistor Q1 via the third transistor Q2.
- the output power Pout-collector current Idd characteristic is substantially linear.
- the characteristics of the power amplifier circuit of the comparative example of the power amplifier circuit 10 according to the first embodiment will be described with reference to FIGS. 8 and 9. Although the power amplifier circuit of the comparative example is not shown, the power amplifier circuit of the comparative example will be described with the same reference numerals to the same components as the power amplifier circuit 10 according to the first embodiment.
- the power control circuit of the comparative example includes one voltage control circuit instead of the first voltage control circuit 4, the second voltage control circuit 5, and the third voltage control circuit 6 of the power amplifier circuit 10 according to the first embodiment. This voltage control circuit is different from the power amplifier circuit 10 according to the first embodiment in that it is connected to the first transistor Q1, the second transistor Q3, and the third transistor Q2.
- the views of FIGS. 8 and 9 are the same as the views of FIGS. 6 and 7, respectively.
- the timing at which the idle current Idle1 of the first transistor Q1 starts to flow, the timing at which the idle current Idle3 of the second transistor Q3 starts to flow, and the idle current of the third transistor Q2 is substantially the same.
- the collector current Idd of the second transistor Q3 is the second transistor Q3 of the power amplifier circuit 10 according to the first embodiment. It can be seen that the collector current is larger than the Idd. This is because the operating region of the second transistor Q3 has not shifted to the saturation region.
- the power amplifier circuit 10 can reduce the collector current Idd of the second transistor Q3 as compared with the power amplifier circuit of the comparative example when the output power Pout is relatively low. I understand.
- the high-frequency module includes a mounting board, a plurality of electronic components mounted on the mounting board, and a plurality of external connection terminals arranged on the mounting board.
- the plurality of electronic components include a plurality of components constituting the power amplifier circuit 10, one or a plurality of components constituting the output matching circuit 101, a component constituting the first switch 102, a component constituting the filter 103, and a second component. Includes components that make up the switch 104.
- the plurality of external connection terminals include an antenna terminal 105, a high frequency signal input terminal 106, a power supply terminal 111, and a ground terminal.
- Examples of the plurality of components constituting the power amplifier circuit 10 include a first IC chip, a second IC chip, a third IC chip, a fourth IC chip, and a fifth IC chip.
- the first IC chip is, for example, a GaAs-based IC chip including the first transistor Q1, the second transistor Q3, and the third transistor Q2.
- the bipolar transistor constituting each of the first transistor Q1, the second transistor Q3, and the third transistor Q2 is, for example, an HBT (Heterojunction Bipolar Transistor).
- the first IC chip also includes a first bias circuit 7, a second bias circuit 9, and a third bias circuit 8.
- the first IC chip is not limited to the GaAs-based IC chip, and may be, for example, a Si-based IC chip, a SiGe-based IC chip, or a GaN-based IC chip.
- the second IC chip includes the first voltage control circuit 4.
- the third IC chip includes a second voltage control circuit 5.
- the fourth IC chip includes a third voltage control circuit 6.
- the component constituting the control circuit 110 is, for example, the fifth IC chip.
- the fifth IC chip includes a control circuit 110.
- the fifth IC chip is, for example, a Si-based IC chip.
- the control circuit 110 is, for example, a MOS IC (Metal Oxide Semiconductor Integrated Circuit) including a plurality of MOSFETs.
- the power amplification circuit 10 power-amplifies a high-frequency signal.
- the power amplifier circuit 10 includes a drive stage amplifier 1, a final stage amplifier 3, a power supply terminal T3, a first voltage control circuit 4, and a second voltage control circuit 5.
- the drive stage amplifier 1 includes a first transistor Q1.
- the first transistor Q1 has a first input terminal 11, a first output terminal 12, and a first ground terminal 13.
- the final stage amplifier 3 includes the second transistor Q3.
- the second transistor Q3 has a second input terminal 31, a second output terminal 32, and a second ground terminal 33.
- the second input terminal 31 is connected to the first output terminal 12.
- the first voltage control circuit 4 is connected between the power supply terminal T3 and the first output terminal 12.
- the first voltage control circuit 4 controls the first power supply voltage Vcc1 applied to the first transistor Q1.
- the second voltage control circuit 5 is a circuit different from the first voltage control circuit 4 and is connected between the power supply terminal T3 and the second output terminal 32.
- the second voltage control circuit 5 controls the second power supply voltage Vcc2 applied to the second transistor Q3.
- the power amplifier circuit 10 according to the first embodiment can suppress the current (collector current Idd) flowing through the second transistor Q3 of the final stage amplifier 3.
- the power amplification circuit 10 according to the first embodiment can increase the input power of the second transistor Q3 when the second power supply voltage Vcc2 of the second transistor Q3 is relatively low, and can improve the efficiency of the second transistor Q3. Since it can be increased, it is possible to suppress the current (collector current Idd) flowing through the second transistor Q3 when operating at a relatively low output power Pout (at low power).
- the power amplifier circuit 10 according to the first embodiment includes a first voltage control circuit 4, a second voltage control circuit 5, and a third voltage control circuit 6, which are different from each other.
- the power supply terminal T3 is not directly connected to any of the first transistor Q1, the second transistor Q3, and the third transistor Q2, so that the isolation can be improved. ..
- the values of the first bias current I1, the second bias current I3, and the third bias current I2 are kept constant, so that the first transistor Q1, the second transistor Q3, and the second transistor Q3 The change in the load capacitance of the base of each of the third transistors Q2 can be suppressed. As a result, the power amplifier circuit 10 can obtain an open loop characteristic in terms of frequency characteristics.
- the high frequency circuit 100 includes a power amplifier circuit 10 and a filter 103.
- the filter 103 passes a high frequency signal that is power amplified by the power amplifier circuit 10 and output from the power amplifier circuit 10.
- the high-frequency circuit 100 includes the power amplifier circuit 10, it is possible to suppress the current flowing through the second transistor Q3 of the final stage amplifier 3 of the power amplifier circuit 10.
- the communication device 300 includes a high frequency circuit 100 and a signal processing circuit 301.
- the signal processing circuit 301 outputs a high frequency signal to the high frequency circuit 100.
- the communication device 300 includes the high frequency circuit 100 including the power amplifier circuit 10 described above, it is possible to suppress the current flowing through the second transistor Q3 of the final stage amplifier 3 of the power amplifier circuit 10. ..
- the second voltage control circuit 5 is not limited to the LDO regulator as shown in FIG. 4, and may be, for example, a DC-DC converter.
- the DC-DC converter is a switching regulator.
- FIG. 10 shows an example of a DC-DC converter constituting the second voltage control circuit 5.
- the DC-DC converter shown in FIG. 10 is a step-down DC-DC converter, which is a series circuit of two switching elements (field effect transistors) S1 and S2, a series circuit of the inductor L5 and the capacitor C5, and a driver 55. And.
- a series circuit of the inductor L5 and the capacitor C5 is connected in parallel to the switching element Q2.
- Each of the two switching elements S1 and S2 is, for example, an n-channel MOSFET and includes a parasitic diode.
- the driver 55 drives two switching elements S1 and S2.
- the driver 55 is controlled by the signal processing circuit 301 or the control circuit 110.
- the power amplifier circuit 10 can delay the timing at which the second power supply voltage Vcc2 is applied to the second transistor Q3 from the timing at which the first power supply voltage Vcc1 is applied to the first transistor Q1.
- the first voltage control circuit 4 may be a regulator, and is not limited to the LDO regulator as shown in FIG. 3, and may be, for example, a DC-DC converter having the same circuit configuration as in FIG.
- the first voltage control circuit 4 may be, for example, a circuit including a transistor Q6 cascode-connected to the first transistor Q1 as shown in FIG.
- the arrows in FIG. 11 are attached for the purpose of explaining the path through which the high frequency signal passes.
- the transistor Q6 has a base terminal 61, a collector terminal 62, and an emitter terminal 63.
- the emitter terminal 63 of the transistor Q6 is connected to the first output terminal 12 of the first transistor Q1.
- the base terminal 61 of the transistor Q6 is connected to the ground via the capacitor 46 and is connected to the bias terminal T41 via the resistor 45.
- the collector terminal 62 of the transistor Q6 is connected to the power supply terminal T3 and also connected to the first input terminal 11 of the first transistor Q1 via a series circuit of the capacitor 43 and the resistor R44.
- the bias terminal T41 is connected to the control circuit 110, and a bias is applied from the control circuit 110.
- the power amplifier circuit 10a according to the second embodiment will be described with reference to FIG.
- the same components as those of the power amplifier circuit 10 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
- the power amplification circuit 10a according to the second embodiment can be used in place of the power amplification circuit 10 in the high frequency circuit 100 (see FIG. 2) and the communication device 300 (see FIG. 2) according to the first embodiment.
- the high frequency circuit 100 and the communication device 300 may include the power amplifier circuit 10a according to the second embodiment instead of the power amplifier circuit 10 according to the first embodiment.
- the power amplifier circuit 10a according to the second embodiment does not include the third voltage control circuit 6 in the power amplifier circuit 10 according to the first embodiment. Further, in the power amplifier circuit 10a according to the second embodiment, the second voltage control circuit 5 is connected to the second transistor Q3 and the third transistor Q2. In the power amplifier circuit 10a according to the second embodiment, the second power supply voltage Vcc2 is applied to the second transistor Q3 and the third transistor Q2.
- the power amplifier circuit 10a according to the second embodiment has a first voltage control circuit 4 that applies a first power supply voltage Vcc1 to the first transistor Q1 and a second transistor Q3. 2.
- a second voltage control circuit 5 for applying a power supply voltage Vcc2 is provided.
- the power amplifier circuit 10a according to the second embodiment can suppress the current flowing through the second transistor Q3 of the final stage amplifier 3, similarly to the power amplifier circuit 10 according to the first embodiment.
- the power amplifier circuit 10b according to the third embodiment will be described with reference to FIG.
- the same components as those of the power amplifier circuit 10 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
- the power amplifier circuit 10b according to the third embodiment can be used in place of the power amplifier circuit 10 in the high frequency circuit 100 (see FIG. 2) and the communication device 300 (see FIG. 2) according to the first embodiment.
- the high frequency circuit 100 and the communication device 300 may include the power amplifier circuit 10b according to the third embodiment instead of the power amplifier circuit 10 according to the first embodiment.
- the power amplifier circuit 10b according to the third embodiment does not include the third voltage control circuit 6 in the power amplifier circuit 10 according to the first embodiment. Further, in the power amplifier circuit 10b according to the third embodiment, the first voltage control circuit 4 is connected to the first transistor Q1 and the third transistor Q2. In the power amplifier circuit 10b according to the third embodiment, the first power supply voltage Vcc1 is applied to the first transistor Q1 and the third transistor Q2.
- the power amplifier circuit 10b according to the third embodiment has a first voltage control circuit 4 that applies a first power supply voltage Vcc1 to the first transistor Q1 and a second transistor Q3. 2.
- a second voltage control circuit 5 for applying a power supply voltage Vcc2 is provided.
- the power amplifier circuit 10b according to the third embodiment can suppress the current flowing through the second transistor Q3 of the final stage amplifier 3, similarly to the power amplifier circuit 10 according to the first embodiment.
- the power amplifier circuit 10c according to the fourth embodiment will be described with reference to FIG. Regarding the power amplifier circuit 10c according to the fourth embodiment, the same components as those of the power amplifier circuit 10 according to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
- the power amplifier circuit 10c according to the fourth embodiment can be used in place of the power amplifier circuit 10 in the high frequency circuit 100 (see FIG. 2) and the communication device 300 (see FIG. 2) according to the first embodiment.
- the high frequency circuit 100 and the communication device 300 may include the power amplifier circuit 10c according to the fourth embodiment instead of the power amplifier circuit 10 according to the first embodiment.
- the power amplifier circuit 10c according to the fourth embodiment does not include the intermediate stage amplifier 2, the third matching circuit NM2, the third capacitor C2, and the third voltage control circuit 6 in the power amplifier circuit 10 according to the first embodiment.
- the second matching circuit MN3 is provided between the second input terminal 31 of the second transistor Q3 and the first output terminal 12 of the first transistor Q1.
- the second matching circuit MN3 is a circuit (interstage matching circuit) for impedance matching between the second transistor Q3 and the first transistor Q1.
- the power amplifier circuit 10c according to the fourth embodiment has a first voltage control circuit 4 that applies a first power supply voltage Vcc1 to the first transistor Q1 and a second transistor Q3. 2.
- a second voltage control circuit 5 for applying a power supply voltage Vcc2 is provided.
- the power amplifier circuit 10c according to the fourth embodiment can suppress the current flowing through the second transistor Q3 of the final stage amplifier 3, similarly to the power amplifier circuit 10 according to the first embodiment.
- the number of stages of the power amplifier circuits 10, 10a, and 10b is not limited to three, and may be four or more. That is, the power amplifier circuits 10, 10a, and 10b may include two or more intermediate stage amplifiers 2 between the drive stage amplifier 1 and the final stage amplifier 3.
- each of the first transistor Q1, the second transistor Q3, and the third transistor Q2 is a bipolar transistor, but the present invention is not limited to this, and for example, a FET (Field Effect Transistor) may be used.
- the FET is, for example, a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
- MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
- the second transistor Q3 When the second transistor Q3 is a MOSFET, the second input terminal 31, the second output terminal 32, and the second ground terminal 33 are, for example, a gate terminal, a drain terminal, and a source terminal.
- the second bias supplied from the second bias circuit 9 to the second input terminal 31 of the second transistor Q3 is the second bias voltage.
- the third transistor Q2 When the third transistor Q2 is a MOSFET, the third input terminal 21, the third output terminal 22, and the third ground terminal 23 are, for example, a gate terminal, a drain terminal, and a source terminal.
- the third bias supplied from the third bias circuit 8 to the third input terminal 21 of the third transistor Q2 is the third bias voltage.
- the power amplifier circuit 10 and the control circuit 110 are integrated on one chip. It may have been done.
- the filter 103 is an elastic wave filter that utilizes an elastic surface wave, but is not limited to this, and may be, for example, an elastic wave filter that utilizes an elastic boundary wave, a plate wave, or the like.
- each of the plurality of series arm resonators and the plurality of parallel arm resonators is not limited to the SAW resonator, and may be, for example, a BAW (Bulk Acoustic Wave) resonator.
- BAW Bulk Acoustic Wave
- the high frequency circuit 100 may include a reception circuit including a low noise amplifier that amplifies the reception signal input from the antenna terminal 105 and a filter connected to the low noise amplifier.
- the filter 103 is not limited to the transmission filter, and may be a duplexer.
- the first switch 102 and the second switch 104 may be switch ICs corresponding to GPIO (General Purpose Input / Output), for example.
- GPIO General Purpose Input / Output
- the power amplification circuit (10; 10a; 10b; 10c) according to the first aspect power-amplifies a high-frequency signal.
- the power amplifier circuit (10; 10a; 10b; 10c) includes a drive stage amplifier (1), a final stage amplifier (3), a power supply terminal (T3), a first voltage control circuit (4), and a second voltage. It includes a control circuit (5).
- the drive stage amplifier (1) includes a first transistor (Q1).
- the first transistor (Q1) has a first input terminal (11), a first output terminal (12), and a first ground terminal (13).
- the final stage amplifier (3) includes a second transistor (Q3).
- the second transistor (Q3) has a second input terminal (31), a second output terminal (32), and a second ground terminal (33).
- the second input terminal (31) is connected to the first output terminal (12).
- the first voltage control circuit (4) is connected between the power supply terminal (T3) and the first output terminal (12).
- the first voltage control circuit (4) controls the first power supply voltage (Vcc1) applied to the first transistor (Q1).
- the second voltage control circuit (5) is a circuit different from the first voltage control circuit (4) and is connected between the power supply terminal (T3) and the second output terminal (32).
- the second voltage control circuit (5) controls the second power supply voltage (Vcc2) applied to the second transistor (Q3).
- the power amplifier circuit (10; 10a; 10b; 10c) according to the first aspect can suppress the current (collector current Idd) flowing through the second transistor (Q3) of the final stage amplifier (3).
- the second voltage control circuit (5) connects the second transistor (Q3) to the second power supply voltage (Vcc2). ) Is started to be applied after the timing when the first voltage control circuit (4) starts to apply the first power supply voltage (Vcc1) to the first transistor (Q1).
- the current (collector current Idd) flowing through the second transistor (Q3) of the final stage amplifier (3) can be suppressed.
- the first voltage control circuit at the operation start point of the second transistor (Q3) in any one of the first to third aspects, is a voltage larger than the knee voltage of the first transistor (Q1).
- the power amplifier circuit (10; 10a; 10b; 10c) since the first transistor (Q1) is saturated at the operation start point of the second transistor (Q3), the final stage amplifier (3) ), The current (collector current Idd) flowing through the second transistor (Q3) can be suppressed.
- the first voltage control circuit (4) is a regulator.
- the power amplifier circuit (10; 10a; 10b; 10c) according to the fifth aspect stabilizes the first power supply voltage (Vcc1) applied from the first voltage control circuit (4) to the first transistor (Q1). Is possible.
- the second voltage control circuit (5) is an LDO regulator.
- the power amplifier circuit (10; 10a; 10b; 10c) according to the sixth aspect can suppress the generation of noise.
- the second voltage control circuit (5) is a DC-DC converter.
- the power amplifier circuit (10; 10a; 10b; 10c) according to the eighth aspect includes the first bias circuit (7) and the second bias circuit (9) in any one of the first to seventh aspects. , Are further provided.
- the first bias circuit (7) is connected to the first input terminal (11).
- the second bias circuit (9) is connected to the second input terminal (31).
- the bias of the first transistor (Q1) (first bias current I1) and the bias of the second transistor (Q3) (second bias current I3). ) And can be controlled independently.
- the high frequency circuit (100) includes a power amplifier circuit (10; 10a; 10b; 10c) of any one of the first to eighth aspects, and a filter (103).
- the filter (103) passes a high-frequency signal that is power-amplified by the power amplifier circuit (10; 10a; 10b; 10c) and output from the power amplification circuit (10; 10a; 10b; 10c).
- the high frequency circuit (100) it is possible to suppress the current flowing through the second transistor (Q3) of the final stage amplifier (3) of the power amplifier circuit (10; 10a; 10b; 10c). ..
- the communication device (300) includes the high frequency circuit (100) of the ninth aspect and the signal processing circuit (301).
- the signal processing circuit (301) outputs a high frequency signal to the high frequency circuit (100).
- the communication device (300) can suppress the current flowing through the second transistor (Q3) of the final stage amplifier (3) of the power amplifier circuit (10; 10a; 10b; 10c). ..
- Second bias circuit 10 First input terminal 12 First output terminal 13 First Ground terminal 21 3rd input terminal 22 3rd output terminal 23 3rd ground terminal 31 2nd input terminal 32 2nd output terminal 33 2nd ground terminal 61 Base terminal 62 Collector terminal 63 Emitter terminal 70 Transistor 71 Diode 72 Diode 73 Capacitor 74 Resistance 77 Resistance 80 Transistor 81 Diode 82 Diode 83 Transistor 84 Resistance 87 Resistance 90 Transistor 91 Diode 92 Diode 93 Controller 94 Resistance 97 Resistance 100 High frequency circuit 101 Output matching circuit 102 1st switch 103 Filter 104 2nd switch 105 Antenna terminal 110 Control circuit 111 Power supply terminal
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Amplifiers (AREA)
Abstract
最終段増幅器のトランジスタに流れる電流を抑制する。電力増幅回路(10)は、ドライブ段増幅器(1)と、最終段増幅器(3)と、電源端子(T3)と、第1電圧制御回路(4)と、第2電圧制御回路(5)と、を備える。ドライブ段増幅器(1)は、第1入力端子(11)、第1出力端子(12)及び第1接地端子(13)を有する第1トランジスタ(Q1)を含む。最終段増幅器(3)は、第2入力端子(31)、第2出力端子(32)及び第2接地端子(33)を有する第2トランジスタ(Q3)を含む。第1電圧制御回路(4)は、電源端子(T3)と第1出力端子(12)との間に接続されており、第1トランジスタ(Q1)に印加する第1電源電圧を制御する。第2電圧制御回路(5)は、電源端子(T3)と第2出力端子(32)との間に接続されており、第2トランジスタ(Q3)に印加する第2電源電圧を制御する。
Description
本発明は、一般に電力増幅回路、高周波回路、及び通信装置に関し、より詳細には、高周波信号を電力増幅する電力増幅回路、この電力増幅回路を備える高周波回路、及び、この高周波回路を備える通信装置に関する。
従来、ドライバ段増幅器と、第1のRF増幅器と、第2のRF増幅器と、DC電圧変換器と、を備えるRF電力増幅装置が知られている(例えば、特許文献1参照)。
特許文献1に記載されたRF電力増幅装置では、ドライバ段増幅器と第1のRF増幅器と第2のRF増幅器とDC電圧変換器とは、RF電力増幅装置の外部から供給される外部電源電圧によって動作可能とされている。
ドライバ段増幅器の出力端子から生成される出力信号は第1のRF増幅器の入力端子と第2のRF増幅器の入力端子とに供給可能とされている。DC電圧変換器に外部電源電圧が供給されることによって、DC電圧変換器は外部電源電圧よりも低電圧の動作電源電圧を生成可能とされ、当該動作電源電圧を第2のRF増幅器の出力端子に供給可能とされている。第1のRF増幅器の出力端子には、DC電圧変換器を介することなく、RF電力増幅装置の外部から供給される外部電源電圧が供給可能とされている。
ドライバ段増幅器と第1のRF増幅器と第2のRF増幅器との各々は、電界効果トランジスタとバイポーラトランジスタとのいずれかによって構成されている。
特許文献1に記載されたRF電力増幅装置は、低出力電力で動作するとき(低パワー時)に、第2のRF増幅器のトランジスタ(電界効果トランジスタ又はバイポーラトランジスタ)に流れる電流が大きいという問題があった。
本発明の目的は、最終段増幅器のトランジスタに流れる電流を抑制することが可能な電力増幅回路、高周波回路、及び通信装置を提供することにある。
本発明の一態様に係る電力増幅回路は、高周波信号を電力増幅する。前記電力増幅回路は、ドライブ段増幅器と、最終段増幅器と、電源端子と、第1電圧制御回路と、第2電圧制御回路と、を備える。前記ドライブ段増幅器は、第1トランジスタを含む。前記第1トランジスタは、第1入力端子、第1出力端子及び第1接地端子を有する。前記最終段増幅器は、第2トランジスタを含む。前記第2トランジスタは、第2入力端子、第2出力端子及び第2接地端子を有する。前記第2入力端子は、前記第1出力端子に接続されている。前記第1電圧制御回路は、前記電源端子と前記第1出力端子との間に接続されている。前記第1電圧制御回路は、前記第1トランジスタに印加する第1電源電圧を制御する。前記第2電圧制御回路は、前記第1電圧制御回路とは異なる回路であって前記電源端子と前記第2出力端子との間に接続されている。前記第2電圧制御回路は、前記第2トランジスタに印加する第2電源電圧を制御する。
本発明の一態様に係る高周波回路は、前記電力増幅回路と、フィルタと、を備える。前記フィルタは、前記電力増幅回路で電力増幅されて前記電力増幅回路から出力される前記高周波信号を通す。
本発明の一態様に係る通信装置は、前記高周波回路と、信号処理回路と、を備える。前記信号処理回路は、前記電力増幅回路に高周波信号を出力する。
本発明の上記態様に係る電力増幅回路、高周波回路、及び通信装置は、最終段増幅器の第2トランジスタに流れる電流を抑制することが可能となる。
(実施形態1)
以下、実施形態1に係る電力増幅回路10について、図1~5を参照して説明する。
以下、実施形態1に係る電力増幅回路10について、図1~5を参照して説明する。
(1)電力増幅回路、高周波回路、及び通信装置
(1.1)電力増幅回路を備える高周波回路の回路構成
図2に示すように、電力増幅回路10を備える高周波回路100は、例えば、通信装置300に用いられる。通信装置300は、例えば、携帯電話(例えば、スマートフォン)であるが、これに限らず、例えば、ウェアラブル端末(例えば、スマートウォッチ)であってもよい。高周波回路100は、例えば、4G(第4世代移動通信)規格、5G(第5世代移動通信)規格に対応可能な回路である。4G規格は、例えば、3GPP LTE(Long Term Evolution)規格である。5G規格は、例えば、5G NR(New Radio)である。高周波回路100は、キャリアアグリゲーション及びデュアルコネクティビティに対応可能な回路であってもよい。
(1.1)電力増幅回路を備える高周波回路の回路構成
図2に示すように、電力増幅回路10を備える高周波回路100は、例えば、通信装置300に用いられる。通信装置300は、例えば、携帯電話(例えば、スマートフォン)であるが、これに限らず、例えば、ウェアラブル端末(例えば、スマートウォッチ)であってもよい。高周波回路100は、例えば、4G(第4世代移動通信)規格、5G(第5世代移動通信)規格に対応可能な回路である。4G規格は、例えば、3GPP LTE(Long Term Evolution)規格である。5G規格は、例えば、5G NR(New Radio)である。高周波回路100は、キャリアアグリゲーション及びデュアルコネクティビティに対応可能な回路であってもよい。
高周波回路100は、例えば、信号処理回路301から入力された高周波信号(送信信号)を増幅してアンテナ310に出力できるように構成されている。信号処理回路301は、高周波回路100の構成要素ではなく、高周波回路100を備える通信装置300の構成要素である。高周波回路100は、例えば、通信装置300の備える信号処理回路301によって制御される。
高周波回路100は、電力増幅回路10と、出力整合回路101と、第1スイッチ102と、フィルタ103と、第2スイッチ104と、アンテナ端子105と、高周波信号入力端子106と、電源用端子111と、を備える。
電力増幅回路10は、例えば、信号処理回路301からの入力信号を増幅して出力する。入力信号は、所定周波数帯域の高周波信号(送信信号)である。ここにおいて、所定周波数帯域は、例えば、互いに異なる複数の通信バンドを含む。
電力増幅回路10は、図1及び2に示すように、ドライブ段増幅器1と、最終段増幅器3と、電源端子T3と、第1電圧制御回路4と、第2電圧制御回路5と、を備える。また、電力増幅回路10は、ドライブ段増幅器1と最終段増幅器3との間に接続された中間段増幅器2を更に備える。また、電力増幅回路10は、第3電圧制御回路6を更に備える。ドライブ段増幅器1は、第1トランジスタQ1を含む。最終段増幅器3は、第2トランジスタQ3を含む。中間段増幅器2は、第3トランジスタQ2を含む。第1電圧制御回路4は、第1トランジスタQ1に印加する第1電源電圧Vcc1を制御する。第2電圧制御回路5は、第2トランジスタQ3に印加する第2電源電圧Vcc2を制御する。第3電圧制御回路6は、第3トランジスタQ2に印加する第3電源電圧Vcc3を制御する。
また、電力増幅回路10は、第1バイアス回路7と、第2バイアス回路9と、第3バイアス回路8と、を備える。第1バイアス回路7は、ドライブ段増幅器1の第1トランジスタQ1に接続されている。第2バイアス回路9は、最終段増幅器3の第2トランジスタQ3に接続されている。第3バイアス回路8は、中間段増幅器2の第3トランジスタQ2に接続されている。
出力整合回路101は、電力増幅回路10と第1スイッチ102との間の信号経路に設けられている。出力整合回路101は、電力増幅回路10とフィルタ103とのインピーダンス整合をとるための回路である。出力整合回路101は、例えば、1つのインダクタで構成されるが、これに限らず、例えば、複数のインダクタ及び複数のキャパシタを含む場合もある。
第1スイッチ102は、出力整合回路101とフィルタ103との間に設けられている。第1スイッチ102は、共通端子と、複数の選択端子と、を有する。第1スイッチ102の共通端子は、出力整合回路101を介して電力増幅回路10に接続されている。第1スイッチ102の複数の選択端子のうち1つの選択端子は、フィルタ103に接続されている。第1スイッチ102は、例えば、共通端子に複数の選択端子のうち少なくとも1つ以上を接続可能なスイッチである。ここで、第1スイッチ102は、例えば、一対一及び一対多の接続が可能なスイッチである。第1スイッチ102は、互いに通信バンドの異なる複数の送信信号用の信号経路を切り替え可能なスイッチである。第1スイッチ102は、例えば、信号処理回路301から入力される制御信号にしたがって、共通端子と複数の選択端子との接続状態を切り替える。第1スイッチ102は、例えば、スイッチIC(Integrated Circuit)である。第1スイッチ102は、例えば、信号処理回路301から入力されるデジタルの制御信号にしたがって、共通端子と複数の選択端子との接続状態を切り替えるように構成されていればよい。
フィルタ103は、上述の複数の通信バンドのうち1つの通信バンド(例えば、Band3)の送信帯域を通過帯域とするフィルタである。フィルタ103は、例えば、1チップの弾性波フィルタであり、複数の直列腕共振子及び複数の並列腕共振子の各々が弾性波共振子により構成されている。弾性波フィルタは、例えば、弾性表面波を利用する表面弾性波フィルタである。表面弾性波フィルタでは、複数の直列腕共振子及び複数の並列腕共振子の各々は、例えば、SAW(Surface Acoustic Wave)共振子である。フィルタ103は、1チップの弾性波フィルタに限らず、例えば、パッケージ構造を有していてもよい。
第2スイッチ104は、フィルタ103とアンテナ端子105との間に設けられている。第2スイッチ104は、アンテナ端子105に接続されているスイッチである。第2スイッチ104は、共通端子と、複数の選択端子と、を有する。第2スイッチ104では、共通端子が、アンテナ端子105に接続されている。第2スイッチ104の複数の選択端子のうち1つの選択端子に、フィルタ103が接続されている。第2スイッチ104は、例えば、信号処理回路301から入力される制御信号にしたがって、共通端子と複数の選択端子との接続状態を切り替える。第2スイッチ104は、例えば、スイッチICである。第2スイッチ104は、例えば、信号処理回路301から入力されるデジタルの制御信号にしたがって、共通端子と複数の選択端子との接続状態を切り替えるように構成されていればよい。
アンテナ端子105は、アンテナ310と接続される。アンテナ310は、高周波回路100の構成要素ではなく、通信装置300の構成要素である。
高周波回路100では、電力増幅回路10から出力される高周波信号(送信信号)は、出力整合回路101、第1スイッチ102、フィルタ103、第2スイッチ104及びアンテナ端子105を通ってアンテナ310から送信される。
高周波回路100では、電源用端子111は、電源端子T3を介してドライブ段増幅器1と中間段増幅器2と最終段増幅器3とに接続されている。電力増幅回路10では、電源端子T3は、第1電圧制御回路4を介してドライブ段増幅器1の第1トランジスタQ1に接続されている。電源端子T3は、第2電圧制御回路5を介して最終段増幅器3の第2トランジスタQ3に接続されている。また、電源端子T3は、第3電圧制御回路6を介して中間段増幅器2の第3トランジスタQ2に接続されている。電源端子T3には、バッテリから電源用端子111を介して電源電圧Vbatが供給される。電源電圧Vbatは、例えば、4Vである。バッテリは、例えば、通信装置300の電源用バッテリである。電源用端子111は、通信装置300のバッテリ端子に接続される。バッテリは、電力増幅回路10、高周波回路100及び通信装置300のいずれの構成要素でもないが、これに限らず、通信装置300の構成要素であってもよい。
(1.2)高周波回路を備える通信装置の回路構成
通信装置300は、高周波回路100と、信号処理回路301と、を備える。通信装置300は、アンテナ310を更に備える。信号処理回路301は、例えば、RF信号処理回路302と、ベースバンド信号処理回路303と、を含む。RF信号処理回路302は、例えばRFIC(Radio Frequency Integrated Circuit)であり、高周波信号に対する信号処理を行う。RF信号処理回路302は、例えば、ベースバンド信号処理回路303から出力された高周波信号(送信信号)に対してアップコンバート等の信号処理を行い、信号処理が行われた高周波信号を出力する。ベースバンド信号処理回路303は、例えばBBIC(Baseband Integrated Circuit)である。ベースバンド信号処理回路303は、ベースバンド信号からI相信号及びQ相信号を生成する。ベースバンド信号は、例えば、外部から入力される音声信号、画像信号等である。ベースバンド信号処理回路303は、I相信号とQ相信号とを合成することでIQ変調処理を行って、送信信号を出力する。この際、送信信号は、所定周波数の搬送波信号を、当該搬送波信号の周期よりも長い周期で振幅変調した変調信号(IQ信号)として生成される。高周波回路100は、アンテナ310と信号処理回路301のRF信号処理回路302との間で高周波信号(送信信号)を伝達する。
通信装置300は、高周波回路100と、信号処理回路301と、を備える。通信装置300は、アンテナ310を更に備える。信号処理回路301は、例えば、RF信号処理回路302と、ベースバンド信号処理回路303と、を含む。RF信号処理回路302は、例えばRFIC(Radio Frequency Integrated Circuit)であり、高周波信号に対する信号処理を行う。RF信号処理回路302は、例えば、ベースバンド信号処理回路303から出力された高周波信号(送信信号)に対してアップコンバート等の信号処理を行い、信号処理が行われた高周波信号を出力する。ベースバンド信号処理回路303は、例えばBBIC(Baseband Integrated Circuit)である。ベースバンド信号処理回路303は、ベースバンド信号からI相信号及びQ相信号を生成する。ベースバンド信号は、例えば、外部から入力される音声信号、画像信号等である。ベースバンド信号処理回路303は、I相信号とQ相信号とを合成することでIQ変調処理を行って、送信信号を出力する。この際、送信信号は、所定周波数の搬送波信号を、当該搬送波信号の周期よりも長い周期で振幅変調した変調信号(IQ信号)として生成される。高周波回路100は、アンテナ310と信号処理回路301のRF信号処理回路302との間で高周波信号(送信信号)を伝達する。
電力増幅回路10は、例えば、信号処理回路301からの制御電圧Vrampが増加するにつれて出力電力Poutが増加する。制御電圧Vrampは、例えば、0V以上2V以下である。
実施形態1に係る電力増幅回路10は、電源端子T3と第1トランジスタQ1との間に接続されている第1電圧制御回路4と、第1電圧制御回路4とは異なる回路であって、電源端子T3と第2トランジスタQ3との間に接続されている第2電圧制御回路5と、を備える。ここにおいて、電力増幅回路10では、第1電圧制御回路4が、第1トランジスタQ1に印加する第1電源電圧Vcc1を制御し、第2電圧制御回路5が、第2第2トランジスタQ3に印加する第2電源電圧Vcc2を制御する。これにより、実施形態1に係る電力増幅回路10では、最終段増幅器3の第2トランジスタQ3に流れる電流を抑制することが可能となる。実施形態1に係る電力増幅回路10では、第2トランジスタQ3の第2電源電圧Vcc2が比較的低い場合の第2トランジスタQ3の入力電力を高めることができ、第2トランジスタQ3の効率を高めることができるから、比較的低い出力電力Poutで動作するとき(低パワー時)の第2トランジスタQ3に流れる電流を抑制することが可能となる。
(1.3)電力増幅回路の回路構成
電力増幅回路10は、ドライブ段増幅器1と、最終段増幅器3と、中間段増幅器2と、電源端子T3と、第1電圧制御回路4と、第2電圧制御回路5と、第3電圧制御回路6と、を備える。また、電力増幅回路10は、信号入力端子T1と、信号出力端子T2と、第1バイアス回路7と、第2バイアス回路9と、第3バイアス回路8と、第1整合回路MN1と、第2整合回路MN3と、第3整合回路MN2と、を更に備える。
電力増幅回路10は、ドライブ段増幅器1と、最終段増幅器3と、中間段増幅器2と、電源端子T3と、第1電圧制御回路4と、第2電圧制御回路5と、第3電圧制御回路6と、を備える。また、電力増幅回路10は、信号入力端子T1と、信号出力端子T2と、第1バイアス回路7と、第2バイアス回路9と、第3バイアス回路8と、第1整合回路MN1と、第2整合回路MN3と、第3整合回路MN2と、を更に備える。
電力増幅回路10では、図1に示すように、ドライブ段増幅器1、最終段増幅器3、及び中間段増幅器2が、それぞれ、第1トランジスタQ1、第2トランジスタQ3、及び第3トランジスタQ2を含んでいる。第1トランジスタQ1、第2トランジスタQ3、及び第2トランジスタQ3は、高周波信号を電力増幅する増幅トランジスタである。
第1トランジスタQ1、第2トランジスタQ3、及び第3トランジスタQ2の各々は、例えば、バイポーラトランジスタである。ここにおいて、第1トランジスタQ1、第2トランジスタQ3、及び第3トランジスタQ2の各々は、npn型のバイポーラトランジスタである。
第1トランジスタQ1は、第1入力端子11、第1出力端子12及び第1接地端子13を有する。第1トランジスタQ1では、第1入力端子11、第1出力端子12及び第1接地端子13は、それぞれ、第1ベース端子、第1コレクタ端子及び第1エミッタ端子である。第1トランジスタQ1の第1入力端子11は、信号入力端子T1に接続されている。第1トランジスタQ1の第1接地端子13は、グランドに接続されている。第1トランジスタQ1の第1出力端子12は、第1電圧制御回路4を介して電源端子T3に接続されている。第1トランジスタQ1(の第1出力端子12と第1接地端子13との間)には、第1電圧制御回路4から第1電源電圧Vcc1(図3参照)が印加される。第1トランジスタQ1は、第1入力端子11に入力される高周波信号を増幅して第1出力端子12から出力する。
第2トランジスタQ3は、第2入力端子31、第2出力端子32及び第2接地端子33を有する。第2トランジスタQ3では、第2入力端子31、第2出力端子32及び第2接地端子33は、それぞれ、第2ベース端子、第2コレクタ端子及び第2エミッタ端子である。第2トランジスタQ3の第2入力端子31は、ドライブ段増幅器1の第1トランジスタQ1の第1出力端子12に接続されている。より詳細には、第2トランジスタQ3の第2入力端子31は、中間段増幅器2の第3トランジスタQ2を介して、ドライブ段増幅器1の第1トランジスタQ1の第1出力端子12に接続されている。第2トランジスタQ3の第2出力端子32は、第2電圧制御回路5を介して電源端子T3に接続されている。第2トランジスタQ3(の第2出力端子32と第2接地端子33との間)には、第2電圧制御回路5から第2電源電圧Vcc2(図4参照)が印加される。第2トランジスタQ3は、第2入力端子31に入力される高周波信号を増幅して第2出力端子32から出力する。
第3トランジスタQ2は、第3入力端子21、第3出力端子22及び第3接地端子23を有する。第3トランジスタQ2では、第3入力端子21、第3出力端子22及び第3接地端子23は、それぞれ、第3ベース端子、第3コレクタ端子及び第3エミッタ端子である。第3トランジスタQ2の第3入力端子21は、第1トランジスタQ1の第1出力端子12に接続されている。第3トランジスタQ2の第3出力端子22は、第2トランジスタQ3の第2入力端子31に接続されている。第3トランジスタQ2の第3接地端子23は、グランドに接続されている。第3トランジスタQ2の第3出力端子22は、第3電圧制御回路6を介して電源端子T3に接続されている。第3トランジスタQ2(の第3出力端子22と第3接地端子23との間)には、第3電圧制御回路6から第3電源電圧Vcc3が印加される。第3トランジスタQ2は、第3入力端子21に入力される高周波信号を増幅して第3出力端子22から出力する。
信号入力端子T1は、高周波信号が入力される端子である。より詳細には、信号入力端子T1は、例えば、信号処理回路301からの高周波信号が高周波回路100の高周波信号入力端子106を通して入力される端子である。電力増幅回路10では、信号入力端子T1に、ドライブ段増幅器1の第1トランジスタQ1の第1入力端子11が接続されている。
信号出力端子T2は、電力増幅回路10内で増幅された高周波信号を出力する端子である。電力増幅回路10では、信号出力端子T2に、最終段増幅器3の第2トランジスタQ3の第2出力端子32が接続されている。
第1バイアス回路7は、第1トランジスタQ1の第1入力端子11に接続されている。第1バイアス回路7は、第1トランジスタQ1に第1バイアスを供給する。より詳細には、第1バイアス回路7は、第1トランジスタQ1の第1入力端子11に第1バイアス電流I1(図5参照)を供給する。
第1バイアス回路7は、図5に示すように、トランジスタ70を有する。トランジスタ70は、制御端子、第1主端子及び第2主端子を有する。トランジスタ70は、例えば、npn型のバイポーラトランジスタである。この場合、トランジスタ70では、制御端子、第1主端子及び第2主端子は、それぞれ、ベース、コレクタ及びエミッタである。トランジスタ70では、コレクタが電源端子T3に接続され、エミッタが第1トランジスタQ1の第1入力端子11に接続されている。より詳細には、トランジスタ70では、エミッタが抵抗77を介して第1トランジスタQ1の第1入力端子11に接続されている。電源端子T3には、上述のように、バッテリから電源電圧Vbatが供給される。第1バイアス回路7から出力される第1バイアス電流I1は、抵抗77を介して第1トランジスタQ1の第1入力端子11へ供給される。第1バイアス電流I1は、第1トランジスタQ1の動作点を決める直流電流である。第1バイアス回路7では、トランジスタ70が、エミッタフォロワのトランジスタとして用いられる。トランジスタ70は、電流増幅用トランジスタである。
第1バイアス回路7は、上述のトランジスタ70の他に、2つのダイオード71,72と、キャパシタ73と、抵抗74と、を含む。2つのダイオード71,72の各々は、npn型トランジスタのベースとコレクタとを接続することによって構成されている。
第1バイアス回路7では、トランジスタ70のベースとグランドとの間において、2つのダイオード71,72が直列接続されている。また、第1バイアス回路7では、高周波回路100の備える制御回路110に含まれている第1定電流源117が抵抗74を介してトランジスタ70のベースに接続されている。また、第1バイアス回路7では、トランジスタ70のベースとグランドとの間にキャパシタ73が接続されている。
第1バイアス回路7では、第1定電流源117から出力された定電流がトランジスタ70のベースに入力され、当該定電流が増幅されて第1バイアス電流I1となり、トランジスタ70のエミッタから出力される。トランジスタ70のエミッタから出力される第1バイアス電流I1は、抵抗77を経由して第1トランジスタQ1の第1入力端子11へ供給される。抵抗77は、第1バイアス回路7に含まれていてもよい。
第2バイアス回路9は、第2トランジスタQ3の第2入力端子31に接続されている。第2バイアス回路9は、第2トランジスタQ3に第2バイアスを供給する。より詳細には、第2バイアス回路9は、第2トランジスタQ3の第2入力端子31に第2バイアス電流I3を供給する。
第2バイアス回路9は、トランジスタ90を含む。トランジスタ90は、制御端子、第1主端子及び第2主端子を有する。トランジスタ90は、例えば、npn型のバイポーラトランジスタである。この場合、トランジスタ90では、制御端子、第1主端子及び第2主端子は、それぞれ、ベース、コレクタ及びエミッタである。トランジスタ90では、コレクタが電源端子T3に接続され、エミッタが第2トランジスタQ3の第2入力端子31に接続されている。より詳細には、トランジスタ90では、エミッタが抵抗97を介して第2トランジスタQ3の第2入力端子31に接続されている。電源端子T3には、上述のように、バッテリから電源電圧Vbatが供給される。第2バイアス回路9から出力される第2バイアス電流I3は、抵抗97を介して第2トランジスタQ3の第2入力端子31へ供給される。第2バイアス電流I3は、第2トランジスタQ3の動作点を決める直流電流である。第2バイアス回路9では、トランジスタ90が、エミッタフォロワのトランジスタとして用いられる。トランジスタ90は、電流増幅用トランジスタである。
第2バイアス回路9は、上述のトランジスタ90の他に、2つのダイオード91,92と、キャパシタ93と、抵抗94と、を含む。2つのダイオード91,92の各々は、npn型トランジスタのベースとコレクタとを接続することによって構成されている。
第2バイアス回路9では、トランジスタ90のベースとグランドとの間において、2つのダイオード91,92が直列接続されている。また、第2バイアス回路9では、制御回路110に含まれている第2定電流源119が抵抗94を介してトランジスタ90のベースに接続されている。また、第2バイアス回路9では、トランジスタ90のベースとグランドとの間にキャパシタ93が接続されている。
第2バイアス回路9では、第2定電流源119から出力された定電流がトランジスタ90のベースに入力され、当該定電流が増幅されて第2バイアス電流I3となり、トランジスタ90のエミッタから出力される。トランジスタ90のエミッタから出力される第2バイアス電流I3は、抵抗97を経由して第2トランジスタQ3の第2入力端子31へ供給される。抵抗97は、第2バイアス回路9に含まれていてもよい。
第3バイアス回路8は、第3トランジスタQ2の第3入力端子21に接続されている。第3バイアス回路8は、第3トランジスタQ2に第3バイアスを供給する。より詳細には、第3バイアス回路8は、第3トランジスタQ2の第3入力端子21に第3バイアス電流I2を供給する。
第3バイアス回路8は、トランジスタ80を含む。トランジスタ80は、制御端子、第1主端子及び第2主端子を有する。トランジスタ80は、例えば、npn型のバイポーラトランジスタである。この場合、トランジスタ80では、制御端子、第1主端子及び第2主端子は、それぞれ、ベース、コレクタ及びエミッタである。トランジスタ80では、コレクタが電源端子T3に接続され、エミッタが第3トランジスタQ2の第3入力端子21に接続されている。より詳細には、トランジスタ80では、エミッタが抵抗87を介して第3トランジスタQ2の第3入力端子21に接続されている。電源端子T3には、上述のように、バッテリから電源電圧Vbatが供給される。第3バイアス回路8から出力される第3バイアス電流I2は、抵抗87を介して第3トランジスタQ2の第3入力端子21へ供給される。第3バイアス電流I2は、第3トランジスタQ2の動作点を決める直流電流である。第3バイアス回路8では、トランジスタ80が、エミッタフォロワのトランジスタとして用いられる。トランジスタ80は、電流増幅用トランジスタである。
第3バイアス回路8は、上述のトランジスタ80の他に、2つのダイオード81,82と、キャパシタ83と、抵抗84と、を含む。2つのダイオード81,82の各々は、npn型トランジスタのベースとコレクタとを接続することによって構成されている。
第3バイアス回路8では、トランジスタ80のベースとグランドとの間において、2つのダイオード81,82が直列接続されている。また、第3バイアス回路8では、制御回路110に含まれている第3定電流源118が抵抗84を介してトランジスタ80のベースに接続されている。また、第3バイアス回路8では、トランジスタ80のベースとグランドとの間にキャパシタ83が接続されている。
第3バイアス回路8では、第3定電流源118から出力された定電流がトランジスタ80のベースに入力され、当該定電流が増幅されて第3バイアス電流I2となり、トランジスタ80のエミッタから出力される。トランジスタ80のエミッタから出力される第3バイアス電流I2は、抵抗87を経由して第3トランジスタQ2の第3入力端子21へ供給される。抵抗87は、第3バイアス回路8に含まれていてもよい。
第1整合回路MN1は、図1に示すように、信号入力端子T1と第1トランジスタQ1の第1入力端子11との間に設けられている。第1整合回路MN1は、第1トランジスタQ1と信号処理回路301とのインピーダンス整合をとるための回路である。第1整合回路MN1は、例えば、1つの抵抗と、1つのキャパシタと、1つのインダクタとのうち少なくともいずれか1つを含むが、これに限らない。
第2整合回路MN3は、第2トランジスタQ3の第2入力端子31と第3トランジスタQ2の第3出力端子22との間に設けられている。第2整合回路MN3は、第2トランジスタQ3と第3トランジスタQ2とのインピーダンス整合をとるための回路(段間整合回路)である。第2整合回路MN3は、例えば、1つの抵抗と、1つのキャパシタと、1つのインダクタとのうち少なくともいずれか1つを含むが、これに限らない。
第3整合回路MN2は、第1トランジスタQ1の第1出力端子12と第3トランジスタQ2の第3入力端子21との間に設けられている。第3整合回路MN2は、第1トランジスタQ1と第3トランジスタQ2とのインピーダンス整合をとるための回路(段間整合回路)である。第3整合回路MN2は、例えば、1つの抵抗と、1つのキャパシタと、1つのインダクタとのうち少なくともいずれか1つを含むが、これに限らない。
電力増幅回路10は、第1キャパシタC1と、第2キャパシタC3と、第3キャパシタC2と、を更に備える。第1キャパシタC1、第2キャパシタC3及び第3キャパシタC2は、直流カット用の容量素子である。
第1キャパシタC1は、第1整合回路MN1と第1トランジスタQ1の第1入力端子11との間に設けられている。第1キャパシタC1は、一端が第1整合回路MN1に接続され、他端が第1入力端子11に接続されている。上述の第1バイアス回路7は、第1キャパシタC1と第1入力端子11との間の経路の第1ノードN1に、抵抗77を介して接続されている。第1キャパシタC1は、第1整合回路MN1に含まれていてもよい。
第2キャパシタC3は、第2整合回路MN3と第2トランジスタQ3の第2入力端子31との間に設けられている。第2キャパシタC3は、一端が第2整合回路MN3に接続され、他端が第2入力端子31に接続されている。上述の第2バイアス回路9は、第2キャパシタC3と第2入力端子31との間の経路の第2ノードN3に、抵抗97を介して接続されている。第2キャパシタC3は、第2整合回路MN3に含まれていてもよい。
第3キャパシタC2は、第3整合回路MN2と第3トランジスタQ2の第3入力端子21との間に設けられている。第3キャパシタC2は、一端が第3整合回路MN2に接続され、他端が第3入力端子21に接続されている。上述の第3バイアス回路8は、第3キャパシタC2と第3入力端子21との間の経路の第3ノードN2に、抵抗87を介して接続されている。第3キャパシタC2は、第3整合回路MN2に含まれていてもよい。
第1電圧制御回路4は、第1トランジスタQ1に第1電源電圧Vcc1(図3参照)を印加する。第1電圧制御回路4は、例えば、図3に示すようなLDO(Low Dropout)レギュレータである。第1電圧制御回路4を構成するLDOレギュレータは、トランジスタ40(以下、第1出力トランジスタ40という)と、2つの抵抗41,42と、誤差増幅器EA1(以下、第1誤差増幅器EA1という)と、制御端子T4(以下、第1制御端子T4という)と、を備えている。
第1出力トランジスタ40は、制御端子、第1主端子及び第2主端子を有する。第1出力トランジスタ40は、例えば、pチャネルのMOSFETである。この場合、第1出力トランジスタ40では、制御端子、第1主端子及び第2主端子は、それぞれ、ゲート、ドレイン及びソースである。第1出力トランジスタ40では、ソースが第1電圧制御回路4の入力端子を介して電源端子T3に接続され、ドレインが第1電圧制御回路4の出力端子を介して第1トランジスタQ1の第1出力端子12に接続されている。第1出力トランジスタ40のオン抵抗(Ron)は、より低い値であるのが好ましい。第1出力トランジスタ40では、ゲートが第1誤差増幅器EA1の出力端子に接続されている。なお、第1出力トランジスタ40は、pチャネルのMOSFETに限らず、nチャネルのMOSFET、pnp型のバイポーラトランジスタ、npn型のバイポーラトランジスタ等であってもよい。
2つの抵抗41,42の直列回路を含む抵抗分圧回路(以下、第1抵抗分圧回路という)は、第1出力トランジスタ40のドレインとグランドとの間に接続されている。
第1誤差増幅器EA1の反転入力端子は、第1制御端子T4に接続されている。第1誤差増幅器EA1の非反転入力端子は、第1抵抗分圧回路における2つの抵抗41,42間のノードに接続されている。第1誤差増幅器EA1の出力端子は、第1出力トランジスタ40のゲートに接続されている。
第1誤差増幅器EA1は、反転入力端子に入力される電位と非反転入力端子に入力される電位とを比較し、その差である誤差信号を増幅する。反転入力端子には、例えば、信号処理回路301からの制御電圧Vrampが第1制御端子T4を介して入力される。ここにおいて、抵抗41の抵抗値をR41とし、抵抗42の抵抗値をR42とすると、制御電圧Vrampと第1電圧制御回路4から出力される第1電源電圧Vcc1との関係は、Vcc1=Vramp×(1+R41/R42)で表すことができる。
第2電圧制御回路5は、第2トランジスタQ3に第2電源電圧Vcc2(図4参照)を印加する。第2電圧制御回路5は、例えば、図4に示すようなLDOレギュレータである。第2電圧制御回路5を構成するLDOレギュレータは、トランジスタ50(以下、第2出力トランジスタ50という)と、2つの抵抗51,52と、誤差増幅器EA2(以下、第2誤差増幅器EA2という)と、制御端子T5(以下、第2制御端子T5という)と、を備えている。第2出力トランジスタ50は、制御端子、第1主端子及び第2主端子を有する。
第2出力トランジスタ50は、制御端子、第1主端子及び第2主端子を有する。第2出力トランジスタ50は、例えば、pチャネルのMOSFETである。この場合、第2出力トランジスタ50では、制御端子、第1主端子及び第2主端子は、それぞれ、ゲート、ドレイン及びソースである。第2出力トランジスタ50では、ソースが第2電圧制御回路5の入力端子を介して電源端子T3に接続され、ドレインが第2電圧制御回路5の出力端子を介して第2トランジスタQ3の第2出力端子32に接続されている。第2出力トランジスタ50のオン抵抗は、より低い値であるのが好ましい。第2出力トランジスタ50では、ゲートが第2誤差増幅器EA2の出力端子に接続されている。なお、第2出力トランジスタ50は、pチャネルのMOSFETに限らず、nチャネルのMOSFET、pnp型のバイポーラトランジスタ、npn型のバイポーラトランジスタ等であってもよい。
2つの抵抗51,52の直列回路を含む抵抗分圧回路(以下、第2抵抗分圧回路という)は、第2出力トランジスタ50のドレインとグランドとの間に接続されている。
第2誤差増幅器EA2の反転入力端子は、第2制御端子T5に接続されている。第2誤差増幅器EA2の非反転入力端子は、第2抵抗分圧回路における2つの抵抗51,52間のノードに接続されている。第2誤差増幅器EA2の出力端子は、第2出力トランジスタ50のゲートに接続されている。
第2誤差増幅器EA2は、反転入力端子に入力される電位と非反転入力端子に入力される電位とを比較し、その差である誤差信号を増幅する。反転入力端子には、例えば、信号処理回路301からの制御電圧Vrampが第2制御端子T5を介して入力される。ここにおいて、抵抗51の抵抗値をR51とし、抵抗52の抵抗値をR52とすると、制御電圧Vrampと第2電圧制御回路5から出力される第2電源電圧Vcc2との関係は、Vcc2=Vramp×(1+R51/R52)で表すことができる。
第3電圧制御回路6は、例えば、LDOレギュレータである。第3電圧制御回路6を構成するLDOレギュレータの回路構成は、第1電圧制御回路4の回路構成と同様なので、図示及び説明を省略する。
ところで、第2電圧制御回路5では、例えば、R51/R52=1の場合、制御電圧Vrampが0.5Vであると、第2制御電圧Vcc2は1Vとなる。また、第2電圧制御回路5では、例えば、R51/R52=1/100の場合、制御電圧Vrampが0.5Vであると、第2制御電圧Vcc2は、0.505Vとなる。実施形態1に係る電力増幅回路10では、第2電圧制御回路5に関するR51/R52の値は、第1電圧制御回路4に関するR41/R42の値とは異なる。これにより、実施形態1に係る電力増幅回路10では、第1電源電圧Vcc1と第2電源電圧Vcc2とを独立して制御することができ、第1電源電圧Vcc1と第2電源電圧Vcc2とを互いに異なる値とすることが可能となる。実施形態1に係る電力増幅回路10では、第2電圧制御回路5が第2トランジスタQ3に第2電源電圧Vcc2を印加し始めるタイミングは、第1電圧制御回路4が第1トランジスタQ1に第1電源電圧Vcc1を印加し始めるタイミングよりも後である。電力増幅回路10では、例えば、R41/R42の値とR51/R52の値とを適宜異ならせることによって、第2出力トランジスタ50がオフ状態からオン状態に移行するタイミングを、第1出力トランジスタ40がオフ状態からオン状態に移行するタイミングよりも遅らせることが可能となる。よって、電力増幅回路10では、第2電圧制御回路5が第2トランジスタQ3に第2電源電圧Vcc2を印加し始めるタイミングを、第1電圧制御回路4が第1トランジスタQ1に第1電源電圧Vcc1を印加し始めるタイミングよりも後にする(つまり、遅らせる)ことが可能となる。電力増幅回路10では、R41/R42の値が3であり、R51/R52の値が1であるが、これらの数値は一例であり、特に限定されない。
電力増幅回路10では、第2トランジスタQ3の動作開始点において、第1電圧制御回路4が第1トランジスタQ1に印加している第1電源電圧Vcc1は、第1トランジスタQ1のニー電圧(knee voltage)よりも大きな電圧である、第1トランジスタQ1のニー電圧は、第1トランジスタQ1の静特性が線形領域から飽和領域へ移るコレクタ電圧である。第1トランジスタQ1では、飽和領域でのコンダクタンスが線形領域でのコンダクタンスよりも小さい。ここにおいて、コンダクタンスは、第1トランジスタQ1のコレクタ電圧の変化に対するコレクタ電流の変化率である。飽和領域でのコンダクタンスは、より小さいのが好ましい。第1トランジスタQ1のニー電圧は、第1バイアス電流I1の値によって異なる。電力増幅回路10の回路設計では、例えば、第1トランジスタQ1の第1電源電圧Vcc1がニー電圧となるときの制御電圧Vrampの値よりも大きな値の制御電圧Vrampで第2トランジスタQ3の動作が開始されるようにR51/R52の値を決めている。
(2)電力増幅回路、制御回路及び通信装置の動作
電力増幅回路10では、第1電圧制御回路4、第2電圧制御回路5及び第3電圧制御回路6に、電源端子T3を介してバッテリからの電源電圧Vbatが供給される。また、電力増幅回路10では、第1バイアス回路7、第2バイアス回路9及び第3バイアス回路8にも電源電圧Vbatが供給される。
電力増幅回路10では、第1電圧制御回路4、第2電圧制御回路5及び第3電圧制御回路6に、電源端子T3を介してバッテリからの電源電圧Vbatが供給される。また、電力増幅回路10では、第1バイアス回路7、第2バイアス回路9及び第3バイアス回路8にも電源電圧Vbatが供給される。
電力増幅回路10は、例えば、信号処理回路301からの高周波信号(送信信号)を増幅して出力する。ここにおいて、電力増幅回路10は、信号入力端子T1から入力された高周波信号を増幅して、当該増幅された高周波信号を信号出力端子T2から出力する。電力増幅回路10では、第1トランジスタQ1、第3トランジスタQ2、第2トランジスタQ3のそれぞれにおいて入力される高周波信号を増幅して出力させる。
電力増幅回路10は、信号処理回路301及び制御回路110によって制御される。制御回路110は、例えば、電力増幅回路10を制御する制御IC(Integrated Circuit)である。制御回路110は、第1バイアス回路7、第2バイアス回路9及び第3バイアス回路8を制御する。制御回路110は、上述のように、電力増幅回路10の構成要素ではなく、高周波回路100の構成要素である。制御回路110は、上述の第1定電流源117と第2定電流源119と第3定電流源118とを含んでいる。
制御回路110は、信号処理回路301から取得した制御信号に基づいて電力増幅回路10を制御する。制御回路110は、信号処理回路301のRF信号処理回路302からの制御信号にしたがって電力増幅回路10を制御する。制御回路110は、例えば、電力増幅回路10の出力電力(送信電力)の値と制御電圧Vrampの値との関係があらかじめLook up table等にストアされていてもよい。この場合、制御回路110が、電力増幅回路10に求められる送信電力の値を信号処理回路301から指示されたときに、Look up tableを参照して、指示された送信電力の値に応じて制御電圧Vrampの値を制御してもよい。制御回路110は、例えば、信号処理回路301のRF信号処理回路302からのデジタルの制御信号にしたがって電力増幅回路10を制御するように構成されていればよい。
制御回路110は、電力増幅回路10を動作させる場合、例えば、第1バイアス回路7、第2バイアス回路9及び第3バイアス回路8に、それぞれ、第1定電流源117、第2定電流源119及び第3定電流源118から定電流を供給する。
電力増幅回路10では、信号処理回路301からの制御電圧Vrampが第1電圧制御回路4、第2電圧制御回路5及び第3電圧制御回路6へ与えられる。
電力増幅回路10では、第1トランジスタQ1、第3トランジスタQ2、第2トランジスタQ3のそれぞれにおいて入力される高周波信号を増幅して出力させる。
(3)電力増幅回路の特性
図6は、電力増幅回路10に関し、制御電圧Vrampと第1トランジスタQ1、第2トランジスタQ3及び第3トランジスタQ2それぞれの第1アイドル電流Idle1、第2アイドル電流Idle3及び第3アイドル電流Idle2との関係を示す特性図である。図6において、横軸は、制御電圧Vrampである。また、図6において、左側の縦軸は、第2トランジスタQ3のアイドル電流Idle3である。第2トランジスタQ3のアイドル電流Idle3は、第2トランジスタQ3に第2バイアス電流I3が供給されているときの第2トランジスタQ3のコレクタ-エミッタ電流である。また、図6において、右側の縦軸は、第1トランジスタQ1のアイドル電流Idle1及び第3トランジスタQ2のアイドル電流Idle2である。第1トランジスタQ1のアイドル電流Idle1は、第1トランジスタQ1に第1バイアス電流I1が供給されているときの第1トランジスタQ1のコレクタ-エミッタ電流である。第3トランジスタQ2のアイドル電流Idle2は、第3トランジスタQ2に第3バイアス電流I2が供給されているときの第3トランジスタQ2のコレクタ-エミッタ電流である。図6において、「1st」の表記を付した実線は、第1トランジスタQ1のアイドル電流Idle1に対応し、「2nd」の表記を付した実線は、第3トランジスタQ2のアイドル電流Idle2に対応し、「3rd」の表記を付した実線は、第2トランジスタQ3のアイドル電流Idle3に対応している。
図6は、電力増幅回路10に関し、制御電圧Vrampと第1トランジスタQ1、第2トランジスタQ3及び第3トランジスタQ2それぞれの第1アイドル電流Idle1、第2アイドル電流Idle3及び第3アイドル電流Idle2との関係を示す特性図である。図6において、横軸は、制御電圧Vrampである。また、図6において、左側の縦軸は、第2トランジスタQ3のアイドル電流Idle3である。第2トランジスタQ3のアイドル電流Idle3は、第2トランジスタQ3に第2バイアス電流I3が供給されているときの第2トランジスタQ3のコレクタ-エミッタ電流である。また、図6において、右側の縦軸は、第1トランジスタQ1のアイドル電流Idle1及び第3トランジスタQ2のアイドル電流Idle2である。第1トランジスタQ1のアイドル電流Idle1は、第1トランジスタQ1に第1バイアス電流I1が供給されているときの第1トランジスタQ1のコレクタ-エミッタ電流である。第3トランジスタQ2のアイドル電流Idle2は、第3トランジスタQ2に第3バイアス電流I2が供給されているときの第3トランジスタQ2のコレクタ-エミッタ電流である。図6において、「1st」の表記を付した実線は、第1トランジスタQ1のアイドル電流Idle1に対応し、「2nd」の表記を付した実線は、第3トランジスタQ2のアイドル電流Idle2に対応し、「3rd」の表記を付した実線は、第2トランジスタQ3のアイドル電流Idle3に対応している。
図6から、電力増幅回路10では、第1トランジスタQ1のアイドル電流Idle1が流れ始めるタイミング及び第3トランジスタQ2のアイドル電流Idle2が流れ始めるタイミングよりも、第2トランジスタQ3のアイドル電流Idle3が流れ始めるタイミングが遅れていることが分かる。また、図6から、電力増幅回路10では、第2トランジスタQ3のアイドル電流Idle3が第1トランジスタQ1のアイドル電流Idle1及び第3トランジスタQ2のアイドル電流Idle2よりも大きくなることが分かる。
図7は、電力増幅回路10に関し、制御電圧Vrampと出力電力Pout及び第2トランジスタQ3のコレクタ電流Iddとの関係を示す特性図である。図7において、横軸は、制御電圧Vrampである。図7において、左側の縦軸は、電力増幅回路10の出力電力Poutである。図7において、右側の縦軸は、第2トランジスタQ3のコレクタ電流Iddである。図7において、「B1」の表記を付した実線は、電力増幅回路10の出力電力Poutに対応し、「B2」の表記を付した実線は、第2トランジスタQ3のコレクタ電流Iddに対応している。
図7から、電力増幅回路10では、制御電圧Vrampが0.15Vから2Vの間で増加するにつれて出力電力Poutが増加することが分かる。電力増幅回路10では、第1トランジスタQ1が飽和した後、第2トランジスタQ3の動作が開始されるので、制御電圧Vrampと出力電力Poutとの関係は、図7のB1のようになる。なお、第2トランジスタQ3が動作していないときの出力電力Poutは、第1トランジスタQ1の出力を第3トランジスタQ2を介して受ける第2トランジスタQ3のアイソレーションによって漏れる電力である。
また、図7から、電力増幅回路10では、出力電力Pout-コレクタ電流Idd特性が略線形となることが分かる。
実施形態1に係る電力増幅回路10の比較例の電力増幅回路の特性について、図8及び9に基づいて説明する。比較例の電力増幅回路については図示していないが、比較例の電力増幅回路に関し、実施形態1に係る電力増幅回路10と同様の構成要素には同一の符合を付して説明する。比較例の電力制御回路は、実施形態1に係る電力増幅回路10の第1電圧制御回路4、第2電圧制御回路5及び第3電圧制御回路6の代わりに、1つの電圧制御回路を備え、この電圧制御回路が第1トランジスタQ1、第2トランジスタQ3及び第3トランジスタQ2に接続されている点で、実施形態1に係る電力増幅回路10と相違する。図8及び9の見方は、それぞれ、図6及び7の見方と同じである。
図8から分かるように、比較例の電力増幅回路では、第1トランジスタQ1のアイドル電流Idle1が流れ始めるタイミングと、第2トランジスタQ3のアイドル電流Idle3が流れ始めるタイミングと、第3トランジスタQ2のアイドル電流Idle2が流れ始めるタイミングとが略同じである。
図7及び9から分かるように、比較例の電力増幅回路では、Vrampが比較的低い範囲のときに第2トランジスタQ3のコレクタ電流Iddが実施形態1に係る電力増幅回路10の第2トランジスタQ3のコレクタ電流Iddよりも大きくなっていることが分かる。これは、第2トランジスタQ3の動作領域が飽和領域に移行していないためである。
図7及び図9から、実施形態1に係る電力増幅回路10は、出力電力Poutが比較的低いときに、比較例の電力増幅回路と比べて、第2トランジスタQ3のコレクタ電流Iddを小さくできることが分かる。
(4)高周波回路を有する高周波モジュール
高周波モジュールは、実装基板と、実装基板に実装された複数の電子部品と、実装基板に配置された複数の外部接続端子と、を備える。複数の電子部品は、電力増幅回路10を構成する複数の部品、出力整合回路101を構成する1又は複数の部品、第1スイッチ102を構成する部品、フィルタ103を構成する部品、及び、第2スイッチ104を構成する部品を含む。複数の外部接続端子は、アンテナ端子105と、高周波信号入力端子106と、電源用端子111と、グランド端子と、を含む。
高周波モジュールは、実装基板と、実装基板に実装された複数の電子部品と、実装基板に配置された複数の外部接続端子と、を備える。複数の電子部品は、電力増幅回路10を構成する複数の部品、出力整合回路101を構成する1又は複数の部品、第1スイッチ102を構成する部品、フィルタ103を構成する部品、及び、第2スイッチ104を構成する部品を含む。複数の外部接続端子は、アンテナ端子105と、高周波信号入力端子106と、電源用端子111と、グランド端子と、を含む。
電力増幅回路10を構成する複数の部品としては、例えば、第1ICチップと、第2ICチップと、第3ICチップと、第4ICチップと、第5ICチップと、がある。第1ICチップは、例えば、第1トランジスタQ1と第2トランジスタQ3と第3トランジスタQ2とを含むGaAs系ICチップである。この場合、第1トランジスタQ1、第2トランジスタQ3及び第3トランジスタQ2の各々を構成するバイポーラトランジスタは、例えば、HBT(Heterojunction Bipolar Transistor)である。第1ICチップは、第1バイアス回路7、第2バイアス回路9及び第3バイアス回路8も含む。第1ICチップは、GaAs系ICチップに限らず、例えば、Si系ICチップ、又は、SiGe系ICチップ、又は、GaN系ICチップであってもよい。
第2ICチップは、第1電圧制御回路4を含む。第3ICチップは、第2電圧制御回路5を含む。第4ICチップは、第3電圧制御回路6を含む。
制御回路110を構成する部品は、例えば、第5ICチップである。第5ICチップは、制御回路110を含む。第5ICチップは、例えば、Si系ICチップである。制御回路110は、例えば、複数のMOSFETを含むMOS IC(Metal Oxide Semiconductor Integrated Circuit)である。
(5)まとめ
(5.1)電力増幅回路
実施形態1に係る電力増幅回路10は、高周波信号を電力増幅する。電力増幅回路10は、ドライブ段増幅器1と、最終段増幅器3と、電源端子T3と、第1電圧制御回路4と、第2電圧制御回路5と、を備える。ドライブ段増幅器1は、第1トランジスタQ1を含む。第1トランジスタQ1は、第1入力端子11、第1出力端子12及び第1接地端子13を有する。最終段増幅器3は、第2トランジスタQ3を含む。第2トランジスタQ3は、第2入力端子31、第2出力端子32及び第2接地端子33を有する。第2入力端子31は、第1出力端子12に接続されている。第1電圧制御回路4は、電源端子T3と第1出力端子12との間に接続されている。第1電圧制御回路4は、第1トランジスタQ1に印加する第1電源電圧Vcc1を制御する。第2電圧制御回路5は、第1電圧制御回路4とは異なる回路であって電源端子T3と第2出力端子32との間に接続されている。第2電圧制御回路5は、第2トランジスタQ3に印加する第2電源電圧Vcc2を制御する。
(5.1)電力増幅回路
実施形態1に係る電力増幅回路10は、高周波信号を電力増幅する。電力増幅回路10は、ドライブ段増幅器1と、最終段増幅器3と、電源端子T3と、第1電圧制御回路4と、第2電圧制御回路5と、を備える。ドライブ段増幅器1は、第1トランジスタQ1を含む。第1トランジスタQ1は、第1入力端子11、第1出力端子12及び第1接地端子13を有する。最終段増幅器3は、第2トランジスタQ3を含む。第2トランジスタQ3は、第2入力端子31、第2出力端子32及び第2接地端子33を有する。第2入力端子31は、第1出力端子12に接続されている。第1電圧制御回路4は、電源端子T3と第1出力端子12との間に接続されている。第1電圧制御回路4は、第1トランジスタQ1に印加する第1電源電圧Vcc1を制御する。第2電圧制御回路5は、第1電圧制御回路4とは異なる回路であって電源端子T3と第2出力端子32との間に接続されている。第2電圧制御回路5は、第2トランジスタQ3に印加する第2電源電圧Vcc2を制御する。
実施形態1に係る電力増幅回路10は、最終段増幅器3の第2トランジスタQ3に流れる電流(コレクタ電流Idd)を抑制することが可能となる。ここにおいて、実施形態1に係る電力増幅回路10は、第2トランジスタQ3の第2電源電圧Vcc2が比較的低い場合の第2トランジスタQ3の入力電力を高めることができ、第2トランジスタQ3の効率を高めることができるから、比較的低い出力電力Poutで動作するとき(低パワー時)の第2トランジスタQ3に流れる電流(コレクタ電流Idd)を抑制することが可能となる。
また、実施形態1に係る電力増幅回路10は、互いに異なる第1電圧制御回路4、第2電圧制御回路5及び第3電圧制御回路6を備えている。これにより、実施形態1に係る電力増幅回路10は、電源端子T3が第1トランジスタQ1、第2トランジスタQ3及び第3トランジスタQ2のいずれとも直接接続されないので、アイソレーションを向上させることが可能となる。
また、実施形態1に係る電力増幅回路10は、第1バイアス電流I1、第2バイアス電流I3及び第3バイアス電流I2それぞれの値を一定とすることにより、第1トランジスタQ1、第2トランジスタQ3及び第3トランジスタQ2それぞれのベースの負荷容量の変化を抑制できる。これにより、電力増幅回路10は、周波数特性において、オープンループ特性を得ることができる。
(5.2)高周波回路
実施形態1に係る高周波回路100は、電力増幅回路10と、フィルタ103と、を備える。フィルタ103は、電力増幅回路10で電力増幅されて電力増幅回路10から出力される高周波信号を通す。
実施形態1に係る高周波回路100は、電力増幅回路10と、フィルタ103と、を備える。フィルタ103は、電力増幅回路10で電力増幅されて電力増幅回路10から出力される高周波信号を通す。
実施形態1に係る高周波回路100は、電力増幅回路10を備えるので、電力増幅回路10の最終段増幅器3の第2トランジスタQ3に流れる電流を抑制することが可能となる。
(5.3)通信装置
実施形態1に係る通信装置300は、高周波回路100と、信号処理回路301と、を備える。信号処理回路301は、高周波回路100に高周波信号を出力する。
実施形態1に係る通信装置300は、高周波回路100と、信号処理回路301と、を備える。信号処理回路301は、高周波回路100に高周波信号を出力する。
実施形態1に係る通信装置300は、上述の電力増幅回路10を含む高周波回路100を備えるので、電力増幅回路10の最終段増幅器3の第2トランジスタQ3に流れる電流を抑制することが可能となる。
(実施形態1の変形例)
第2電圧制御回路5は、図4に示したようなLDOレギュレータに限らず、例えば、DC-DCコンバータであってもよい。DC-DCコンバータは、スイッチングレギュレータである。図10は、第2電圧制御回路5を構成するDC-DCコンバータの一例を示す。図10に示したDC-DCコンバータは、降圧型DC-DCコンバータであり、2つのスイッチング素子(電界効果トランジスタ)S1,S2の直列回路と、インダクタL5とキャパシタC5との直列回路と、ドライバ55と、を備える。このDC-DCコンバータでは、インダクタL5とキャパシタC5との直列回路がスイッチング素子Q2に並列接続されている。2つのスイッチング素子S1,S2の各々は、例えば、nチャネルのMOSFETであり、寄生ダイオードを含んでいる。
第2電圧制御回路5は、図4に示したようなLDOレギュレータに限らず、例えば、DC-DCコンバータであってもよい。DC-DCコンバータは、スイッチングレギュレータである。図10は、第2電圧制御回路5を構成するDC-DCコンバータの一例を示す。図10に示したDC-DCコンバータは、降圧型DC-DCコンバータであり、2つのスイッチング素子(電界効果トランジスタ)S1,S2の直列回路と、インダクタL5とキャパシタC5との直列回路と、ドライバ55と、を備える。このDC-DCコンバータでは、インダクタL5とキャパシタC5との直列回路がスイッチング素子Q2に並列接続されている。2つのスイッチング素子S1,S2の各々は、例えば、nチャネルのMOSFETであり、寄生ダイオードを含んでいる。
図10に示したDC-DCコンバータでは、ドライバ55が2つのスイッチング素子S1,S2を駆動する。ドライバ55は、信号処理回路301又は制御回路110によって制御される。これにより、電力増幅回路10は、第2トランジスタQ3に第2電源電圧Vcc2が印加されるタイミングを第1トランジスタQ1に第1電源電圧Vcc1が印加されるタイミングよりも遅らせることができる。
第1電圧制御回路4は、レギュレータであればよく、図3に示したようなLDOレギュレータに限らず、例えば、図10と同様の回路構成を有するDC-DCコンバータであってもよい。
また、第1電圧制御回路4は、例えば、図11に示すように、第1トランジスタQ1にカスコード接続されたトランジスタQ6を含む回路であってもよい。図11における矢印は、高周波信号の通る経路の説明のために付してある。
トランジスタQ6は、ベース端子61と、コレクタ端子62と、エミッタ端子63と、を有する。トランジスタQ6のエミッタ端子63は、第1トランジスタQ1の第1出力端子12に接続されている。また、トランジスタQ6のベース端子61は、キャパシタ46を介してグランドに接続されるとともに、抵抗45を介してバイアス端子T41に接続されている。また、トランジスタQ6のコレクタ端子62は、電源端子T3に接続されるとともに、キャパシタ43と抵抗R44との直列回路を介して第1トランジスタQ1の第1入力端子11に接続されている。バイアス端子T41は、制御回路110に接続され、制御回路110からバイアスが与えられる。
(実施形態2)
以下、実施形態2に係る電力増幅回路10aについて、図12を参照して説明する。実施形態2に係る電力増幅回路10aに関し、実施形態1に係る電力増幅回路10と同様の構成要素には、同一の符合を付して説明を省略する。実施形態2に係る電力増幅回路10aは、実施形態1に係る高周波回路100(図2参照)及び通信装置300(図2参照)における電力増幅回路10の代わりに用いることができる。言い換えれば、高周波回路100及び通信装置300は、実施形態1に係る電力増幅回路10の代わりに、実施形態2に係る電力増幅回路10aを備えていてもよい。
以下、実施形態2に係る電力増幅回路10aについて、図12を参照して説明する。実施形態2に係る電力増幅回路10aに関し、実施形態1に係る電力増幅回路10と同様の構成要素には、同一の符合を付して説明を省略する。実施形態2に係る電力増幅回路10aは、実施形態1に係る高周波回路100(図2参照)及び通信装置300(図2参照)における電力増幅回路10の代わりに用いることができる。言い換えれば、高周波回路100及び通信装置300は、実施形態1に係る電力増幅回路10の代わりに、実施形態2に係る電力増幅回路10aを備えていてもよい。
実施形態2に係る電力増幅回路10aは、実施形態1に係る電力増幅回路10における第3電圧制御回路6を備えていない。また、実施形態2に係る電力増幅回路10aでは、第2電圧制御回路5が第2トランジスタQ3及び第3トランジスタQ2に接続されている。実施形態2に係る電力増幅回路10aでは、第2トランジスタQ3と第3トランジスタQ2とに第2電源電圧Vcc2が印加される。
実施形態2に係る電力増幅回路10aは、実施形態1に係る電力増幅回路10と同様、第1トランジスタQ1に第1電源電圧Vcc1を印加する第1電圧制御回路4と、第2トランジスタQ3に第2電源電圧Vcc2を印加する第2電圧制御回路5と、を備える。これにより、実施形態2に係る電力増幅回路10aは、実施形態1に係る電力増幅回路10と同様、最終段増幅器3の第2トランジスタQ3に流れる電流を抑制することが可能となる。
(実施形態3)
以下、実施形態3に係る電力増幅回路10bについて、図13を参照して説明する。実施形態3に係る電力増幅回路10bに関し、実施形態1に係る電力増幅回路10と同様の構成要素には、同一の符合を付して説明を省略する。実施形態3に係る電力増幅回路10bは、実施形態1に係る高周波回路100(図2参照)及び通信装置300(図2参照)における電力増幅回路10の代わりに用いることができる。言い換えれば、高周波回路100及び通信装置300は、実施形態1に係る電力増幅回路10の代わりに、実施形態3に係る電力増幅回路10bを備えていてもよい。
以下、実施形態3に係る電力増幅回路10bについて、図13を参照して説明する。実施形態3に係る電力増幅回路10bに関し、実施形態1に係る電力増幅回路10と同様の構成要素には、同一の符合を付して説明を省略する。実施形態3に係る電力増幅回路10bは、実施形態1に係る高周波回路100(図2参照)及び通信装置300(図2参照)における電力増幅回路10の代わりに用いることができる。言い換えれば、高周波回路100及び通信装置300は、実施形態1に係る電力増幅回路10の代わりに、実施形態3に係る電力増幅回路10bを備えていてもよい。
実施形態3に係る電力増幅回路10bは、実施形態1に係る電力増幅回路10における第3電圧制御回路6を備えていない。また、実施形態3に係る電力増幅回路10bでは、第1電圧制御回路4が第1トランジスタQ1及び第3トランジスタQ2に接続されている。実施形態3に係る電力増幅回路10bでは、第1トランジスタQ1と第3トランジスタQ2とに第1電源電圧Vcc1が印加される。
実施形態3に係る電力増幅回路10bは、実施形態1に係る電力増幅回路10と同様、第1トランジスタQ1に第1電源電圧Vcc1を印加する第1電圧制御回路4と、第2トランジスタQ3に第2電源電圧Vcc2を印加する第2電圧制御回路5と、を備える。これにより、実施形態3に係る電力増幅回路10bは、実施形態1に係る電力増幅回路10と同様、最終段増幅器3の第2トランジスタQ3に流れる電流を抑制することが可能となる。
(実施形態4)
以下、実施形態4に係る電力増幅回路10cについて、図14を参照して説明する。実施形態4に係る電力増幅回路10cに関し、実施形態1に係る電力増幅回路10と同様の構成要素には、同一の符合を付して説明を省略する。実施形態4に係る電力増幅回路10cは、実施形態1に係る高周波回路100(図2参照)及び通信装置300(図2参照)における電力増幅回路10の代わりに用いることができる。言い換えれば、高周波回路100及び通信装置300は、実施形態1に係る電力増幅回路10の代わりに、実施形態4に係る電力増幅回路10cを備えていてもよい。
以下、実施形態4に係る電力増幅回路10cについて、図14を参照して説明する。実施形態4に係る電力増幅回路10cに関し、実施形態1に係る電力増幅回路10と同様の構成要素には、同一の符合を付して説明を省略する。実施形態4に係る電力増幅回路10cは、実施形態1に係る高周波回路100(図2参照)及び通信装置300(図2参照)における電力増幅回路10の代わりに用いることができる。言い換えれば、高周波回路100及び通信装置300は、実施形態1に係る電力増幅回路10の代わりに、実施形態4に係る電力増幅回路10cを備えていてもよい。
実施形態4に係る電力増幅回路10cは、実施形態1に係る電力増幅回路10における中間段増幅器2、第3整合回路NM2、第3キャパシタC2、及び第3電圧制御回路6を備えていない。
実施形態4に係る電力増幅回路10cでは、第2整合回路MN3は、第2トランジスタQ3の第2入力端子31と第1トランジスタQ1の第1出力端子12との間に設けられている。第2整合回路MN3は、第2トランジスタQ3と第1トランジスタQ1とのインピーダンス整合をとるための回路(段間整合回路)である。
実施形態4に係る電力増幅回路10cは、実施形態1に係る電力増幅回路10と同様、第1トランジスタQ1に第1電源電圧Vcc1を印加する第1電圧制御回路4と、第2トランジスタQ3に第2電源電圧Vcc2を印加する第2電圧制御回路5と、を備える。これにより、実施形態4に係る電力増幅回路10cは、実施形態1に係る電力増幅回路10と同様、最終段増幅器3の第2トランジスタQ3に流れる電流を抑制することが可能となる。
(変形例)
上記の実施形態1~4等は、本発明の様々な実施形態の一つに過ぎない。上記の実施形態1~4等は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
上記の実施形態1~4等は、本発明の様々な実施形態の一つに過ぎない。上記の実施形態1~4等は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
例えば、電力増幅回路10、10a、10bの段数は、3段に限らず、4段以上であってもよい。つまり、電力増幅回路10、10a、10bは、ドライブ段増幅器1と最終段増幅器3との間に、中間段増幅器2を2つ以上備えていてもよい。
また、電力増幅回路10では、第1トランジスタQ1、第2トランジスタQ3及び第3トランジスタQ2の各々がバイポーラトランジスタであるが、これに限らず、例えば、FET(Field Effect Transistor)であってもよい。FETは、例えば、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)である。第1トランジスタQ1がMOSFETである場合、第1入力端子11、第1出力端子12及び第1接地端子13は、例えば、ゲート端子、ドレイン端子及びソース端子である。第1バイアス回路7から第1トランジスタQ1の第1入力端子11に供給される第1バイアスは、第1バイアス電圧である。第2トランジスタQ3がMOSFETである場合、第2入力端子31、第2出力端子32及び第2接地端子33は、例えば、ゲート端子、ドレイン端子及びソース端子である。第2バイアス回路9から第2トランジスタQ3の第2入力端子31に供給される第2バイアスは、第2バイアス電圧である。第3トランジスタQ2がMOSFETである場合、第3入力端子21、第3出力端子22及び第3接地端子23は、例えば、ゲート端子、ドレイン端子及びソース端子である。第3バイアス回路8から第3トランジスタQ2の第3入力端子21に供給される第3バイアスは、第3バイアス電圧である。
高周波回路100では、電力増幅回路10の第1トランジスタQ1、第2トランジスタQ3及び第3トランジスタQ2の各々がHBTではなくてMOSFETの場合、電力増幅回路10と制御回路110とが1チップに集積化されていてもよい。
高周波回路100では、フィルタ103は、弾性表面波を利用する弾性波フィルタであるが、これに限らず、例えば、弾性境界波、板波等を利用する弾性波フィルタであってもよい。
弾性波フィルタでは、複数の直列腕共振子及び複数の並列腕共振子の各々は、SAW共振子に限らず、例えば、BAW(Bulk Acoustic Wave)共振子であってもよい。
高周波回路100は、アンテナ端子105から入力される受信信号を増幅するローノイズアンプとローノイズアンプに接続されるフィルタとを含む受信回路を備えていてもよい。
また、フィルタ103は、送信フィルタに限らず、デュプレクサであってもよい。
また、高周波回路100では、第1スイッチ102及び第2スイッチ104は、例えば、GPIO(General Purpose Input/Output)に対応したスイッチICであってもよい。
(態様)
本明細書には、以下の態様が開示されている。
本明細書には、以下の態様が開示されている。
第1の態様に係る電力増幅回路(10;10a;10b;10c)は、高周波信号を電力増幅する。電力増幅回路(10;10a;10b;10c)は、ドライブ段増幅器(1)と、最終段増幅器(3)と、電源端子(T3)と、第1電圧制御回路(4)と、第2電圧制御回路(5)と、を備える。ドライブ段増幅器(1)は、第1トランジスタ(Q1)を含む。第1トランジスタ(Q1)は、第1入力端子(11)、第1出力端子(12)及び第1接地端子(13)を有する。最終段増幅器(3)は、第2トランジスタ(Q3)を含む。第2トランジスタ(Q3)は、第2入力端子(31)、第2出力端子(32)及び第2接地端子(33)を有する。第2入力端子(31)は、第1出力端子(12)に接続されている。第1電圧制御回路(4)は、電源端子(T3)と第1出力端子(12)との間に接続されている。第1電圧制御回路(4)は、第1トランジスタ(Q1)に印加する第1電源電圧(Vcc1)を制御する。第2電圧制御回路(5)は、第1電圧制御回路(4)とは異なる回路であって電源端子(T3)と第2出力端子(32)との間に接続されている。第2電圧制御回路(5)は、第2トランジスタ(Q3)に印加する第2電源電圧(Vcc2)を制御する。
第1の態様に係る電力増幅回路(10;10a;10b;10c)は、最終段増幅器(3)の第2トランジスタ(Q3)に流れる電流(コレクタ電流Idd)を抑制することが可能となる。
第2の態様に係る電力増幅回路(10;10a;10b;10c)では、第1の態様において、第1電圧制御回路(4)による第1電源電圧(Vcc1)の制御と、第2電圧制御回路(5)による第2電源電圧(Vcc2)の制御とは、互いに独立している。
第2の態様に係る電力増幅回路(10;10a;10b;10c)では、アイソレーションを向上させることが可能となる。
第3の態様に係る電力増幅回路(10;10a;10b;10c)では、第1又は2の態様において、第2電圧制御回路(5)が第2トランジスタ(Q3)に第2電源電圧(Vcc2)を印加し始めるタイミングは、第1電圧制御回路(4)が第1トランジスタ(Q1)に第1電源電圧(Vcc1)を印加し始めるタイミングよりも後である。
第3の態様に係る電力増幅回路(10;10a;10b;10c)では、最終段増幅器(3)の第2トランジスタ(Q3)に流れる電流(コレクタ電流Idd)を抑制することができる。
第4の態様に係る電力増幅回路(10;10a;10b;10c)では、第1~3の態様のいずれか一つにおいて、第2トランジスタ(Q3)の動作開始点において、第1電圧制御回路(4)が第1トランジスタ(Q1)に印加している第1電源電圧(Vcc1)は、第1トランジスタ(Q1)のニー電圧よりも大きな電圧である。
第4の態様に係る電力増幅回路(10;10a;10b;10c)では、第2トランジスタ(Q3)の動作開始点において、第1トランジスタ(Q1)が飽和しているので、最終段増幅器(3)の第2トランジスタ(Q3)に流れる電流(コレクタ電流Idd)を抑制することができる。
第5の態様に係る電力増幅回路(10;10a;10b;10c)では、第1~4の態様のいずれか一つにおいて、第1電圧制御回路(4)は、レギュレータである。
第5の態様に係る電力増幅回路(10;10a;10b;10c)は、第1電圧制御回路(4)から第1トランジスタ(Q1)に印加する第1電源電圧(Vcc1)を安定化することが可能となる。
第6の態様に係る電力増幅回路(10;10a;10b;10c)では、第1~5の態様のいずれか一つにおいて、第2電圧制御回路(5)は、LDOレギュレータである。
第6の態様に係る電力増幅回路(10;10a;10b;10c)は、ノイズの発生を抑制することが可能となる。
第7の態様に係る電力増幅回路(10;10a;10b;10c)では、第1~5の態様のいずれか一つにおいて、第2電圧制御回路(5)は、DC-DCコンバータである。
第8の態様に係る電力増幅回路(10;10a;10b;10c)は、第1~7の態様のいずれか一つにおいて、第1バイアス回路(7)と、第2バイアス回路(9)と、を更に備える。第1バイアス回路(7)は、第1入力端子(11)に接続されている。第2バイアス回路(9)は、第2入力端子(31)に接続されている。
第8の態様に係る電力増幅回路(10;10a;10b;10c)では、第1トランジスタ(Q1)のバイアス(第1バイアス電流I1)と第2トランジスタ(Q3)のバイアス(第2バイアス電流I3)とを独立して制御することが可能となる。
第9の態様に係る高周波回路(100)は、第1~8の態様のいずれか一つの電力増幅回路(10;10a;10b;10c)と、フィルタ(103)と、を備える。フィルタ(103)は、電力増幅回路(10;10a;10b;10c)で電力増幅されて電力増幅回路(10;10a;10b;10c)から出力される高周波信号を通す。
第9の態様に係る高周波回路(100)では、電力増幅回路(10;10a;10b;10c)の最終段増幅器(3)の第2トランジスタ(Q3)に流れる電流を抑制することが可能となる。
第10の態様に係る通信装置(300)は、第9の態様の高周波回路(100)と、信号処理回路(301)と、を備える。信号処理回路(301)は、高周波回路(100)に高周波信号を出力する。
第10の態様に係る通信装置(300)は、電力増幅回路(10;10a;10b;10c)の最終段増幅器(3)の第2トランジスタ(Q3)に流れる電流を抑制することが可能となる。
1 ドライブ段増幅器
2 中間段増幅器
3 最終段増幅器
4 第1電圧制御回路
40 トランジスタ(第1出力トランジスタ)
41、42 抵抗
5 第2電圧制御回路
50 トランジスタ(第2出力トランジスタ)
51、52 抵抗
55 ドライバ
6 第3電圧制御回路
7 第1バイアス回路
8 第3バイアス回路
9 第2バイアス回路
10、10a、10b、10c 電力増幅回路
11 第1入力端子
12 第1出力端子
13 第1接地端子
21 第3入力端子
22 第3出力端子
23 第3接地端子
31 第2入力端子
32 第2出力端子
33 第2接地端子
61 ベース端子
62 コレクタ端子
63 エミッタ端子
70 トランジスタ
71 ダイオード
72 ダイオード
73 キャパシタ
74 抵抗
77 抵抗
80 トランジスタ
81 ダイオード
82 ダイオード
83 キャパシタ
84 抵抗
87 抵抗
90 トランジスタ
91 ダイオード
92 ダイオード
93 キャパシタ
94 抵抗
97 抵抗
100 高周波回路
101 出力整合回路
102 第1スイッチ
103 フィルタ
104 第2スイッチ
105 アンテナ端子
110 制御回路
111 電源用端子
117 第1定電流源
118 第3定電流源
119 第2定電流源
300 通信装置
301 信号処理回路
302 RF信号処理回路
303 ベースバンド信号処理回路
310 アンテナ
C1 第1キャパシタ
C2 第3キャパシタ
C3 第2キャパシタ
C5 キャパシタ
EA1 誤差増幅器(第1誤差増幅器)
EA2 誤差増幅器(第2誤差増幅器)
I1 第1バイアス電流
I2 第3バイアス電流
I3 第2バイアス電流
Idd コレクタ電流
Idle1 第1アイドル電流
Idle2 第3アイドル電流
Idle3 第2アイドル電流
L5 インダクタ
MN1 第1整合回路
MN2 第3整合回路
MN3 第2整合回路
N1 第1ノード
N2 第3ノード
N3 第2ノード
Q1 第1トランジスタ
Q2 第3トランジスタ
Q3 第2トランジスタ
Q6 トランジスタ
S1 スイッチング素子
S2 スイッチング素子
T3 電源端子
T4 制御端子(第1制御端子)
T5 制御端子(第2制御端子)
Vbat バッテリ電圧
Vcc1 第1電源電圧
Vcc2 第2電源電圧
Vramp 制御電圧
2 中間段増幅器
3 最終段増幅器
4 第1電圧制御回路
40 トランジスタ(第1出力トランジスタ)
41、42 抵抗
5 第2電圧制御回路
50 トランジスタ(第2出力トランジスタ)
51、52 抵抗
55 ドライバ
6 第3電圧制御回路
7 第1バイアス回路
8 第3バイアス回路
9 第2バイアス回路
10、10a、10b、10c 電力増幅回路
11 第1入力端子
12 第1出力端子
13 第1接地端子
21 第3入力端子
22 第3出力端子
23 第3接地端子
31 第2入力端子
32 第2出力端子
33 第2接地端子
61 ベース端子
62 コレクタ端子
63 エミッタ端子
70 トランジスタ
71 ダイオード
72 ダイオード
73 キャパシタ
74 抵抗
77 抵抗
80 トランジスタ
81 ダイオード
82 ダイオード
83 キャパシタ
84 抵抗
87 抵抗
90 トランジスタ
91 ダイオード
92 ダイオード
93 キャパシタ
94 抵抗
97 抵抗
100 高周波回路
101 出力整合回路
102 第1スイッチ
103 フィルタ
104 第2スイッチ
105 アンテナ端子
110 制御回路
111 電源用端子
117 第1定電流源
118 第3定電流源
119 第2定電流源
300 通信装置
301 信号処理回路
302 RF信号処理回路
303 ベースバンド信号処理回路
310 アンテナ
C1 第1キャパシタ
C2 第3キャパシタ
C3 第2キャパシタ
C5 キャパシタ
EA1 誤差増幅器(第1誤差増幅器)
EA2 誤差増幅器(第2誤差増幅器)
I1 第1バイアス電流
I2 第3バイアス電流
I3 第2バイアス電流
Idd コレクタ電流
Idle1 第1アイドル電流
Idle2 第3アイドル電流
Idle3 第2アイドル電流
L5 インダクタ
MN1 第1整合回路
MN2 第3整合回路
MN3 第2整合回路
N1 第1ノード
N2 第3ノード
N3 第2ノード
Q1 第1トランジスタ
Q2 第3トランジスタ
Q3 第2トランジスタ
Q6 トランジスタ
S1 スイッチング素子
S2 スイッチング素子
T3 電源端子
T4 制御端子(第1制御端子)
T5 制御端子(第2制御端子)
Vbat バッテリ電圧
Vcc1 第1電源電圧
Vcc2 第2電源電圧
Vramp 制御電圧
Claims (10)
- 高周波信号を電力増幅する電力増幅回路であって、
第1入力端子、第1出力端子及び第1接地端子を有する第1トランジスタを含むドライブ段増幅器と、
第2入力端子、第2出力端子及び第2接地端子を有し、前記第2入力端子が前記第1出力端子に接続されている第2トランジスタを含む最終段増幅器と、
電源端子と、
前記電源端子と前記第1出力端子との間に接続されており、前記第1トランジスタに印加する第1電源電圧を制御する第1電圧制御回路と、
前記第1電圧制御回路とは異なる回路であって前記電源端子と前記第2出力端子との間に接続されており、前記第2トランジスタに印加する第2電源電圧を制御する第2電圧制御回路と、を備える、
電力増幅回路。 - 前記第1電圧制御回路による前記第1電源電圧の制御と、前記第2電圧制御回路による前記第2電源電圧の制御とは、互いに独立している、
請求項1に記載の電力増幅回路。 - 前記第2電圧制御回路が前記第2トランジスタに前記第2電源電圧を印加し始めるタイミングは、前記第1電圧制御回路が前記第1トランジスタに前記第1電源電圧を印加し始めるタイミングよりも後である、
請求項1又は2に記載の電力増幅回路。 - 前記第2トランジスタの動作開始点において、前記第1電圧制御回路が前記第1トランジスタに印加している前記第1電源電圧は、前記第1トランジスタのニー電圧よりも大きな電圧である、
請求項1~3のいずれか一項に記載の電力増幅回路。 - 前記第1電圧制御回路は、レギュレータである、
請求項1~4のいずれか一項に記載の電力増幅回路。 - 前記第2電圧制御回路は、LDOレギュレータである、
請求項1~5のいずれか一項に記載の電力増幅回路。 - 前記第2電圧制御回路は、DC-DCコンバータである、
請求項1~5のいずれか一項に記載の電力増幅回路。 - 前記第1入力端子に接続されている第1バイアス回路と、前記第2入力端子に接続されている第2バイアス回路と、を更に備える、
請求項1~7のいずれか一項に記載の電力増幅回路。 - 請求項1~8のいずれか一項に記載の電力増幅回路と、
前記電力増幅回路で電力増幅されて前記電力増幅回路から出力される前記高周波信号を通すフィルタと、を備える、
高周波回路。 - 請求項9に記載の高周波回路と、
前記高周波回路に高周波信号を出力する信号処理回路と、を備える、
通信装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080098048.4A CN115211030A (zh) | 2020-03-12 | 2020-11-09 | 功率放大电路、高频电路以及通信装置 |
US17/815,288 US20220368284A1 (en) | 2020-03-12 | 2022-07-27 | Power amplification circuit, radio-frequency circuit, and communication device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-043530 | 2020-03-12 | ||
JP2020043530 | 2020-03-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/815,288 Continuation US20220368284A1 (en) | 2020-03-12 | 2022-07-27 | Power amplification circuit, radio-frequency circuit, and communication device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021181751A1 true WO2021181751A1 (ja) | 2021-09-16 |
Family
ID=77671515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/041757 WO2021181751A1 (ja) | 2020-03-12 | 2020-11-09 | 電力増幅回路、高周波回路、及び通信装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220368284A1 (ja) |
CN (1) | CN115211030A (ja) |
WO (1) | WO2021181751A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04126414U (ja) * | 1991-05-02 | 1992-11-18 | 日本電気株式会社 | GaAS MMIC増幅回路 |
JP2007104280A (ja) * | 2005-10-04 | 2007-04-19 | Nec Electronics Corp | 高周波電力増幅回路 |
JP2019220873A (ja) * | 2018-06-21 | 2019-12-26 | 株式会社村田製作所 | 電力増幅回路 |
-
2020
- 2020-11-09 CN CN202080098048.4A patent/CN115211030A/zh active Pending
- 2020-11-09 WO PCT/JP2020/041757 patent/WO2021181751A1/ja active Application Filing
-
2022
- 2022-07-27 US US17/815,288 patent/US20220368284A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04126414U (ja) * | 1991-05-02 | 1992-11-18 | 日本電気株式会社 | GaAS MMIC増幅回路 |
JP2007104280A (ja) * | 2005-10-04 | 2007-04-19 | Nec Electronics Corp | 高周波電力増幅回路 |
JP2019220873A (ja) * | 2018-06-21 | 2019-12-26 | 株式会社村田製作所 | 電力増幅回路 |
Also Published As
Publication number | Publication date |
---|---|
CN115211030A (zh) | 2022-10-18 |
US20220368284A1 (en) | 2022-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10135408B2 (en) | Amplifier with termination circuit and resonant circuit | |
JP5467979B2 (ja) | 高周波モジュール | |
US10355653B2 (en) | Power amplifier circuit | |
US6774725B2 (en) | Power supply system for a high frequency power amplifier | |
CN210986051U (zh) | 功率放大电路 | |
WO2021124613A1 (ja) | 電力増幅回路 | |
KR20110039369A (ko) | 다중 모드 구성가능한 송신기 회로 | |
CN113225023B (zh) | 功率放大电路 | |
JP2018019231A (ja) | 電力増幅モジュール | |
JP2007019784A (ja) | 高周波電力増幅器および動作電圧制御回路 | |
JP2020120368A (ja) | 電力増幅回路 | |
JP2003318751A (ja) | 高周波電力増幅モジュール | |
JP4430246B2 (ja) | 電界効果トランジスタのためのバイアス構成 | |
CN115088191A (zh) | 功率放大电路、高频电路以及通信装置 | |
JP2019115033A (ja) | 電力増幅回路 | |
WO2021181751A1 (ja) | 電力増幅回路、高周波回路、及び通信装置 | |
WO2008004034A1 (en) | Integrated amplifier bias circuit | |
US20220294401A1 (en) | Power amplifier circuit, high frequency circuit, and communication apparatus | |
WO2023282206A1 (ja) | 電力増幅回路および通信装置 | |
WO2021157152A1 (ja) | 電力増幅回路、高周波回路、及び通信装置 | |
WO2021255976A1 (ja) | 高周波回路及び通信装置 | |
CN111416584A (zh) | 高频放大电路及半导体装置 | |
WO2021256088A1 (ja) | 高周波回路及び通信装置 | |
KR101435342B1 (ko) | 이득을 부스팅하는 증폭기 | |
KR20130032501A (ko) | 주파수 혼합기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20924893 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20924893 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |