WO2021181149A1 - Dispositivo com acoplamento directo para geração de hidrogénio a partir de luz solar concentrada - Google Patents

Dispositivo com acoplamento directo para geração de hidrogénio a partir de luz solar concentrada Download PDF

Info

Publication number
WO2021181149A1
WO2021181149A1 PCT/IB2020/057331 IB2020057331W WO2021181149A1 WO 2021181149 A1 WO2021181149 A1 WO 2021181149A1 IB 2020057331 W IB2020057331 W IB 2020057331W WO 2021181149 A1 WO2021181149 A1 WO 2021181149A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
direct coupling
hydrogen
concentrated sunlight
generating hydrogen
Prior art date
Application number
PCT/IB2020/057331
Other languages
English (en)
French (fr)
Inventor
Jaime Domingos FERREIRA SILVA
Original Assignee
Fusion Welcome-Fuel, Unipessoal Lda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fusion Welcome-Fuel, Unipessoal Lda filed Critical Fusion Welcome-Fuel, Unipessoal Lda
Priority to AU2020434253A priority Critical patent/AU2020434253A1/en
Priority to US17/910,758 priority patent/US20230143168A1/en
Priority to MA58138A priority patent/MA58138B1/fr
Priority to CA3174514A priority patent/CA3174514A1/en
Priority to CN202080098384.9A priority patent/CN115956139A/zh
Priority to EP20765351.0A priority patent/EP4119698A1/en
Priority to JP2022554858A priority patent/JP2023506606A/ja
Priority to IL295882A priority patent/IL295882A/en
Publication of WO2021181149A1 publication Critical patent/WO2021181149A1/pt
Priority to ZA2022/08683A priority patent/ZA202208683B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention relates to a device for collecting and concentrating sunlight, for converting concentrated sunlight into electrical and thermal energy and for using said energy in order to supply a single proton membrane water electrolyser with several areas coated with anodic and cathodic individualized catalysts, with direct coupling for gaseous hydrogen generation with better performance and service life.
  • the Chinese patent application CN 105483745 concerns a concentrated solar energy module and a module for the production of hydrogen by electrolysis, however, the application to be protected differs substantially from the Chinese patent application, in that it discloses a single device with direct coupling, which produces hydrogen from sunlight and water, using only water in its liquid state, avoiding the use of water vapor.
  • Figure 1 illustrates the concept of how the device works, showing that sunlight is collected and concentrated by a factor of 200x or more by means of a Fresnel lens 30, and intended for the device with direct coupling 31, comprising a solar concentrating converter 32 and a water electrolyser 33.
  • the sunlight is further concentrated, by a factor of 1 c or more, by means of the solar concentrating converter 32, which converts the concentrated sunlight into electrical energy and thermal energy, and which also transfers the energy to the water electrolyser 33, whereby thermal energy raises the temperature of the water circulating to said water electrolyser 33 and whereby electrical energy feeds the electrochemical reaction of the electrolysis of water, resulting in the generation of hydrogen and oxygen.
  • Directly coupled device 31 comprises a proton exchange membrane 2, such as Nafion® or other mixture of ionomer, copolymer or polymer, with a plurality of individualized anodic zones (6) coated with catalyst on a suitable side of the membrane to facilitate the reaction of water oxidation, and a plurality of cathode individualized zones (12) coated with catalyst on the opposite side suitable to facilitate/allow the reduction of protons to hydrogen gas, a plurality of monopolar plates (UPP) of cathode 3 and a plurality of UPP of anode 5, each of a pair of cathode and anode UPPs enclosing the proton exchange membrane 2 and disposed contiguously to the individualized catalyst coated zones 12 and 6 on the cathode side and the anode side, respectively.
  • a proton exchange membrane 2 such as Nafion® or other mixture of ionomer, copolymer or polymer
  • the direct coupling device 31 further comprises a plurality of Regeneration electrodes 1 enclosing the proton exchange membrane 2 and disposed towards the periphery of the individualized zones coated with catalyst 6 and 12, so as not to be contiguous with said zones coated on both sides of the proton exchange membrane 2, a plurality of floating flow guide plates 7 on both sides, enclosing the UPP 5 and 3 and the proton exchange membrane 2 between them, a plurality of elastic compression elements 8 on both sides, enclosing the floating flow guide plates 7, the UPP 5 and 3 and the proton exchange membrane 2 between they.
  • the device also comprises a housing consisting of an upper part 9 and a lower part 10, secured together and enclosing the elastic compression elements 8, floating flow guide plates 7, the UPPs 5 and 3, the regeneration electrodes 1 and the proton exchange membrane 2 between them, a source of electrical and thermal energy and the concentrator converter 32 connected to the upper part 9 of the housing.
  • the concentrating converter 32 comprises a concentrating optical element 15, glued to a photovoltaic cell 14 coupled to a heat exchanger 13.
  • the concentrating optical element 15 is made of a glass with suitable optical composition, such as such as borosilicate glass which, by refraction and/or total internal reflection, further redirects and concentrates sunlight falling on its upper surface in a photovoltaic cell 14 of the multiple junction type, such as a triple junction structure of GalnP / GalnAs / Ge or similar high efficiency solar cell.
  • Solar energy that is not directly converted into electrical energy by the photovoltaic cell 14 is absorbed co thermal energy by heat exchanger 13, formed of an aluminum alloy, copper or copper alloy, and which has a plurality of closed channels within which the water can circulate and be heated by the thermal energy.
  • the housing consisting of an upper part 9 and a lower part 10, provides mechanical support to the other parts of the water electrolyser 33.
  • the housing is typically made of a thermoplastic or thermoset polymer, with or without reinforcement additives or other similar material with proper electrical insulation properties and chemical and mechanical resistance.
  • Elastic compression element 8 may be made of, but is not limited to, a polymer material, a metal, an elastomeric foam, or other materials with a suitable modulus of elasticity, typically configured substantially as a solid rectangular block, but which may also be be hollow and which may also include perforations substantially configured as round or rectangular holes.
  • Floating flow guide plates 7 are typically made of a polymer, or blend of polymers, or any other suitable rigid material that is not electrically conductive, including metal alloys coated with electrically insulating layers. They have a plurality of open channels formed on their main surface facing the UPPs of anode 5 or UPPs of cathode 3, respectively. When assembled, and by the action of the elastic compression elements 8, the floating flow guide plates 7 press against the main cooperating surfaces of the monopolar plates 5 and 3 to allow the entry of water and the exit of water and oxygen, and the exit of water and hydrogen, respectively.
  • Elastic compression elements 8 also provide the strength of contact necessary to allow an intimate contact to develop and maintain between the UPPs 5 and 3 and the respective catalyst-coated individualized zones 6 and 12, so that the electrical contact resistance between them can be kept to a minimum, thus lowering the voltage operation of the electrolysis reaction.
  • Anode 5 UPPs are typically made of titanium or a titanium alloy, with a plurality of perforations substantially configured as round or rectangular holes disposed on their main surface, serving as a combination of gas diffusion layer and current collector. .
  • Anode 5 UPPs are typically coated with a thin film of platinum or a platinum alloy.
  • Cathode 3 UPPs are typically made of a stainless steel alloy, with a plurality of perforations substantially configured as round or rectangular holes, disposed on their main surface, serving as a combination of gas diffusion layer and current collector, usually coated with a thin film of gold.
  • the cathode UPPs 3 are arranged side by side against the proton exchange membrane 2, with some space separating them from each other and separating them from the regeneration electrodes 1, so they're all physically separate from each other.
  • FIG. 4 illustrates the electrical circuit that drives the electrolysis reaction.
  • a cathode UPP (3) in contact with an individualized catalyst coated zone (12) of the proton exchange membrane 2 and facing an anode 5 UPP in contact with an individualized catalyst coated zone 6, constitutes an electrochemical cell ( 4), the cathode 3 UPP being negatively polarized and the anode 5 UPP positively polarized.
  • Each electrochemical cell (4) is connected in series to the next, as shown in the circuit diagram, and they all share the same proton exchange membrane 2.
  • the voltage Vd necessary to promote the electrolysis reaction of the water, is provided by the concentrator converter 32, shown in figure 2.
  • the device with direct coupling 31 preferably requires that the water used for its operation be very pure and free from ionic contaminants.
  • the quality of deionized water is generally measured by its resistivity, which should be as high as possible (up to > 18 MW ⁇ cm) to avoid contaminating the proton exchange membrane with unwanted cations during operation, which would build up over time and would pre udicate the performance and life of the electrolyser.
  • resistivity should be as high as possible (up to > 18 MW ⁇ cm) to avoid contaminating the proton exchange membrane with unwanted cations during operation, which would build up over time and would pre udicate the performance and life of the electrolyser.
  • resistivity which should be as high as possible (up to > 18 MW ⁇ cm) to avoid contaminating the proton exchange membrane with unwanted cations during operation, which would build up over time and would pre udicate the performance and life of the electrolyser.
  • resistivity > 4 MW ⁇ cm.
  • the water electrolyser 33 comprises a plurality of regeneration electrodes 1, enclosing the proton exchange membrane 2.
  • the electrolysis control voltage is Vd OV .
  • an external circuit to which the regeneration electrodes 1 are connected provides a voltage Vr of about 2 to 25 V, thus establishing an electric field which causes the cations accumulated in the proton exchange membrane 2 to move towards the closed zone between the negatively charged regeneration electrodes out of the enclosed zones between the UPPs, thus removing contamination in the active zones of the electrolyser and thus significantly extending the life of the proton exchange membrane 2.
  • the present invention further discloses a method of generating hydrogen with the device with direct coupling 31 comprising the following implementation steps: establishing the water supply circuit for electrolysis, in which a flow enters into the interior of the heat exchanger 13, exiting towards the water inlet from the top of the casing 9, where it enters its interior, to be distributed by the floating flow guide plates 7 so as to bathe the anode 5 UPPs, the regeneration electrodes 1, the catalyst coated zones 6 and the proton exchange membrane 2;
  • step (3) keeping the array pointed to the sun as referred to in step (3) as long as it is desired to maintain the generation of hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A presente invenção refere-se a Dispositivo com acoplamento directo (31) para geração de hidrogénio a partir de luz solar concentrada que compreende um conversor concentrador solar (32) e um electrolisador de água (33) em que o referido concentrador solar (32) compreende um elemento óptico de concentração (15), adjacente a uma pluralidade de células fotovoltaicas (14) acopladas a um permutador de calor (13) e o electrolisador de água (33) compreende uma membrana de permuta protónica (2) em que a referida membrana compreende uma pluralidade de zonas individualizadas anódicas (6) e catódicas (12) revestidas com catalisador, uma pluralidade de placas monopolares de cátodo (3) e uma pluralidade de placas monopolares de ânodo (5), uma pluralidade de eléctrodos de Regeneração (1), uma pluralidade de placas flutuantes de guiamento de fluxo (7), uma pluralidade de elementos de compressão elástica (8) e um invólucro constituído por uma parte superior (9) e uma parte inferior (10).

Description

Dispositivo com acoplamento directo para geração de hidrogénio a partir de luz solar concentrada
A invenção refere-se a um dispositivo para recolher e concentrar a luz solar, para converter a luz solar concentrada em energia eléctrica e térmica e para usar a dita energia com vista a alimentar um electrolisador de água de membrana protónica única com várias zonas revestidas com catalisador individualizadas anódicas e catódicas, com acoplamento directo para geração de hidrogénio gasoso com melhor desempenho e vida útil.
Estado da Técnica
O pedido de patente chinesa CN 105483745 diz respeito a um módulo concentrado de energia solar e módulo de produção de hidrogénio por electrólise, contudo, o pedido que se pretende proteger difere substancialmente do pedido de patente chinesa, na medida em que divulga um único dispositivo com acoplamento directo, que produz hidrogénio a partir da luz solar e da água, sendo que utiliza apenas a água no seu estado liquido evitando o uso do vapor de água.
Descrição detalhada da invenção
A Figura 1 ilustra o conceito de funcionamento do dispositivo, mostrando que a luz solar é recolhida e concentrada num factor de 200 x ou mais por meio de uma lente de Fresnel 30, e destinada ao dispositivo com acoplamento directo 31, compreendendo um conversor concentrador solar 32 e um electrolisador de água 33.
A luz solar é concentrada ainda mais, num factor de 1 c ou mais, por meio do conversor concentrador solar 32, que converte a luz solar concentrada em energia eléctrica e energia térmica, e que também transfere a energia para o electrolisador de água 33, pelo qual a energia térmica eleva a temperatura da água que circula para o dito electrolisador de água 33 e pelo qual a energia eléctrica alimenta a reacção electroquimica da electrólise da água, resultando na geração de hidrogénio e oxigénio.
O dispositivo com acoplamento directo 31 compreende uma membrana de permuta protónica 2, tal como Nafion® ou outra mistura de ionómero, copolimero ou polímero, com uma pluralidade de zonas individualizadas anódicas (6) revestidas com catalisador num lado da membrana adequado para facilitar a reacção de oxidação da água, e uma pluralidade zonas individualizadas catódicas (12) revestida com catalisador no lado oposto adequado para facilitar / permitir a redução dos protões para hidrogénio gasoso, uma pluralidade de placas monopolares (UPP) de cátodo 3 e uma pluralidade de UPP de ânodo 5, cada uma de um par de UPP de cátodo e de ânodo encerrando a membrana de permuta protónica 2 e dispostas de forma contígua às zonas individualizadas revestidas com catalisador 12 e 6 no lado do cátodo e no lado do ânodo, respectivamente.
O dispositivo com acoplamento directo 31, compreende ainda uma pluralidade de eléctrodos de Regeneração 1, encerrando a membrana de permuta protónica 2 e dispostos em direcção à periferia das zonas individualizadas revestidas com catalisador 6 e 12, de modo a não serem contíguos com as ditas zonas revestidas em ambos os lados da membrana de permuta protónica 2, uma pluralidade de placas flutuantes de guiamento de fluxo 7 em ambos os lados, encerrando as UPP 5 e 3 e a membrana de permuta protónica 2 entre elas, uma pluralidade de elementos de compressão elástica 8 em ambos os lados, encerrando as placas flutuantes de guiamento de fluxo 7, as UPP 5 e 3 e a membrana de permuta protónica 2 entre eles.
O dispositivo compreende também um invólucro constituído por uma parte superior 9 e uma parte inferior 10, presas em conjunto e encerrando os elementos de compressão elástica 8, placas flutuantes de guiamento de fluxo 7, as UPP 5 e 3, os eléctrodos de regeneração 1 e a membrana de permuta protónica 2 entre elas, uma fonte de energia eléctrica e térmica e o conversor concentrador 32 ligado à parte superior 9 do invólucro.
Tal como ilustrado na figura 2, o conversor concentrador 32 compreende um elemento óptico de concentração 15, colado a uma célula fotovoltaica 14 acoplada a um permutador de calor 13. O elemento óptico de concentração 15 é feito de um vidro com composição óptica adequada, tal como vidro de boro-silicato que, por refracção e / ou reflexão interna total, redirecciona e concentra ainda mais a luz solar que incide sobre a sua superfície superior numa célula fotovoltaica 14 do tipo com múltiplas junções, tal como uma estrutura de junção tripla de GalnP / GalnAs / Ge ou célula solar de alta eficiência semelhante. A energia solar que não é convertida directamente em energia eléctrica pela célula fotovoltaica 14 é absorvida co o energia térmica pelo permutador de calor 13, formado por uma liga de alumínio, cobre ou liga de cobre, e que tem uma pluralidade de canais fechados dentro dos quais a água pode circular e ser aquecida pela energia térmica.
O invólucro, constituído por uma parte superior 9 e uma parte inferior 10, provê suporte mecânico às outras partes do electrolisador de água 33. O invólucro é feito tipicamente de um polímero termoplástico ou termoendurecido, com ou sem aditivos de reforço ou outro material semelhante com propriedades de isolamento eléctrico e resistência química e mecânica adequadas.
O elemento de compressão elástica 8 pode ser feito de, mas não está limitado a um material polímero, um metal, uma espuma elastómera, ou outros materiais com um módulo de elasticidade adequado, tipicamente configurados substancialmente como um bloco sólido rectangular, mas que também podem ser ocos e que também podem incluir perfurações substancialmente configuradas como furos redondos ou rectangulares.
As placas flutuantes de guiamento de fluxo 7 são tipicamente feitas de um polímero, ou mistura de polímeros, ou qualquer outro material rígido adequado que não seja condutor de electricidade, incluindo ligas metálicas revestidas com camadas electricamente isolantes. Têm uma pluralidade de canais abertos formados na sua superfície principal voltada para os UPP do ânodo 5 ou UPP do cátodo 3, respectivamente. Quando montadas, e por acção dos elementos de compressão elástica 8, as placas flutuantes de guiamento de fluxo 7 pressionam contra as principais superfícies cooperantes das placas monopolares 5 e 3 para permitir a entrada de água e a saída de água e oxigénio, e a saída de água e hidrogénio, respectivamente. Os elementos de compressão elástica 8 também proveem a força de contacto necessária para permitir que se desenvolva e mantenha um contacto intimo entre as UPP 5 e 3 e as respectivas zonas individualizadas revestidas com catalisador 6 e 12, de modo que a resistência de contacto eléctrico entre elas possa ser mantida ao mínimo, baixando assim a tensão operacional da reacção de electrólise.
As UPP de ânodo 5 são feitas tipicamente de titânio ou de uma liga de titânio, com uma pluralidade de perfurações substancialmente configuradas como furos redondos ou rectangulares, dispostos na sua superfície principal, servindo como uma combinação de camada de difusão de gás e colector de corrente. As UPP de ânodo 5 são tipicamente revestidos com uma película fina de platina ou uma liga de platina.
As UPP de cátodo 3 são feitas tipicamente de uma liga de aço inoxidável, com uma pluralidade de perfurações substancialmente configuradas como furos redondos ou rectangulares, dispostos na sua superfície principal, servindo como uma combinação de camada de difusão de gás e colector de corrente, normalmente revestido com uma película fina de ouro.
Com referência agora à figura 3, pode observar-se que as UPP de cátodo 3 estão dispostas lado a lado contra a membrana de permuta protónica 2, com algum espaço a separá-las entre si e a separá-las dos eléctrodos de regeneração 1, de modo que estão todos fisicamente separados uns dos outros.
A Figura 4 ilustra o circuito elétrico que conduz a reacção de electrólise. Uma UPP de cátodo (3), em contacto com uma zona individualizada revestida com catalisador (12) da membrana de permuta protónica 2 e voltada para uma UPP de ânodo 5 em contacto com uma zona individualizada revestida com catalisador 6, constitui uma célula electroquímica (4), a UPP de cátodo 3 sendo polarizada negativamente e a UPP de ânodo 5 polarizada positivamente. Cada célula electroquí ica (4) está ligada em série à seguinte, conforme ilustrado no esquema do circuito, e todas partilham a mesma membrana de permuta protónica 2.
A tensão Vd, necessária para promover a reacção de electrólise da água, é fornecida pelo conversor concentrador 32, ilustrado na figura 2.
O dispositivo com acoplamento directo 31 requer, de preferência, que a água utilizada para o seu funcionamento seja muito pura e isenta de contaminantes iónicos. A qualidade da água desionizada é medida geralmente pela sua resistividade, que deveria ser tão alta quanto possível (até > 18 MW · cm) para evitar contaminar a membrana de permuta protónica com catiões indesejados durante a operação, que se acumulariam ao longo do tempo e pre udicariam o desempenho e a vida útil do electrolisador. No entanto, na prática, e por motivos económicos, é desejável usar menos água pura com resistividade > 4 MW · cm. Para permitir a utilização de água menos pura, é necessário reduzir bastante a acumulação de contaminantes iónicos na membrana de permuta protónica e, portanto, o electrolisador de água 33, tal como ilustrado na figura 2, compreende uma pluralidade de eléctrodos de regeneração 1, encerrando a membrana de permuta protónica 2.
Com referência agora à figura 5, nos momentos em que o dispositivo não está em funcionamento, por exemplo, durante a noite ou com tempo nublado, a tensão de comando da electrólise é de Vd OV . Nestas condições, um circuito externo ao qual os eléctrodos de regeneração 1 estão ligados fornece uma tensão Vr de cerca de 2 a 25 V, estabelecendo assim um campo eléctrico que leva os catiões acumulados na membrana de permuta protónica 2 a deslocarem-se em direcção à zona encerrada entre os eléctrodos de regeneração carregados negativamente e para fora das zonas encerradas entre as UPP, removendo assim a contaminação nas zonas activas do eletrolisador e, como tal, prolongando significativamente a vida útil da membrana de permuta protónica 2.
A presente invenção divulga ainda um método de geração de hidrogénio com o dispositivo com acoplamento directo 31 compreendendo os seguintes passos de implementação: estabelecer o circuito de alimentação de água para a electrólise, em que um fluxo entra para o interior do permutador de calor 13, saindo em direcção à entrada de água da parte de cima do invólucro 9, por onde entra no seu interior, para ser distribuída pelas placas flutuantes de guiamento de fluxo 7 de modo a banhar as UPP de ânodo 5, os eléctrodos de regeneração 1, as zonas revestidas com catalisador 6 e a membrana permutadora de protónica 2;
- estabelecer o circuito de recolha de hidrogénio e água, em que um fluxo de hidrogénio e água é conduzido para fora da cavidade da parte de baixo do invólucro 10, em direcção a um recipiente adequado para o efeito; apontar o dispositivo com acoplamento directo 31 em direcção ao sol, de modo a captar a energia eléctrica e térmica necessária para sustentar a reacção de electrólise da água;
- fechar o circuito eléctrico, de modo a polarizar as UPP 3 e 5 com a tensão de operação Vd fornecida pela célula fotovoltaica 14, iniciando assim a reacção de electrólise da água, que entretanto foi aquecida durante a sua passagem pelo permutador de calor 13;
- manter o conjunto apontado ao sol como referido na etapa (3) enquanto se desejar manter a geração de hidrogénio;
Quando já não se desejar produzir hidrogénio, interromper a produção de hidrogénio deixando de apontar ao sol como referido na etapa (3) e abrindo o circuito eléctrico referido na etapa (4).
Efectuar, periodicamente, a intervalos adequados e durante um tempo adequado, e quando a produção de hidrogénio esteja interrompida (ou não for possível produzir directamente a partir da energia solar, nomeadamente durante a noite ou em tempo encoberto), a regeneração das zonas activas da membrana permutadora protónica 2, fechando o circuito externo que liga a fonte de uma tensão Vr aos eléctrodos de regeneração 1.
Legendas das figuras
1-Eléctrodos de regeneração
2-Membrana de permuta protónica
3- Placa monopolar (UPP) de cátodo
4- Célula electroquímica
5- Placa monopolar (UPP) de ânodo
6- Zona individualizada anódica revestida com catalisador
7- Placa flutuante de guiamento de fluxo
8-Elemento de compressão elástica 9- Parte superior do invólucro
10- Parte inferior do invólucro
12- Zona individualizada catódica revestida com catalisador
13 - Permutador de calor
14 - Célula fotovoltaica
15 - Elemento óptico de concentração
31 - Dispositivo com acoplamento directo
32 - conversor concentrador
33 - electrolisador de água

Claims

Reivindicações
1. Dispositivo com acoplamento directo (31) para geração de hidrogénio a partir de luz solar concentrada que compreende um conversor concentrador solar (32)e um electrolisador de água (33)caracterizado por o dito conversor concentrador solar (32) compreender um elemento óptico de concentração (15), adjacente a uma pluralidade de células fotovoltaicas (14) acopladas a um permutador de calor (13) e o electrolisador de água (33) compreender uma membrana de permuta protónica (2) em que a referida membrana compreende uma pluralidade de zonas individualizadas anódicas (6) e catódicas (12)revestidas com catalisador , uma pluralidade de placas monopolares de cátodo (3)e uma pluralidade de placas monopolares de ânodo (5)dispostas de forma contígua às zonas revestidas com catalisador (12) e (6), uma pluralidade de eléctrodos de Regeneração (1), uma pluralidade de placas flutuantes de guiamento de fluxo (7), uma pluralidade de elementos de compressão elástica (8) e um invólucro constituído por uma parte superior (9) e uma parte inferior (10).
2. Dispositivo com acoplamento directo (31) para geração de hidrogénio a partir de luz solar concentrada de acordo com a reivindicação 1, caracterizado por uma placa monopolar de cátodo (3) em contacto com uma zona revestida por catalisador (12) da membrana de permuta protónica (2), direcionada para uma placa monopolar de ânodo (5) em contacto com uma zona revestida com catalisador (6), constituir uma célula eletroquímica (4).
3.Dispositivo com acoplamento directo(31) para geração de hidrogénio a partir de luz solar concentrada de acordo com as reivindicações anteriores, caracterizado por cada célula eletroquimica (4)estar ligada electricamente em série com a célula seguinte e cada uma das células partilhar a mesma membrana protónica (2), conduzindo à reacção de electrólise.
4.Dispositivo com acoplamento directo(31) para geração de hidrogénio a partir de luz solar concentrada de acordo com as reivindicações anteriores, caracterizado por a tensão necessária Vd para promover a reaccão de electrólise, ser fornecida pelo conversor concentrador (32).
5.Dispositivo com acoplamento directo(31) para geração de hidrogénio a partir de luz solar concentrada de acordo com a reivindicação 1, caracterizado por as placas monopolares de ânodo (5) e de cátodo (3) compreenderem uma pluralidade de furações, dispostos na superfície principal e aptos a combinarem uma camada de difusão de gás e um colector de corrente.
6.Dispositivo com acoplamento directo(31) para geração de hidrogénio a partir de luz solar concentrada de acordo com a reivindicação 1, caracterizado por as placas flutuantes de guiamento de fluxo (7)serem comprimidas por acção dos elementos de compressão elástica (8)contra as placas monopolares (5) e (3), proporcionando a entrada de água e saída de água e oxigénio, e a saída de água e hidrogénio.
7.Dispositivo com acoplamento directo(31) para geração de hidrogénio a partir de luz solar concentrada de acordo com a reivindicação 1, caracterizado por os eléctrodos de regeneração (1), em condições de não funcionamento do dispositivo, promoverem a remoção de contaminação nas zonas activas do electrolisador , através da deslocação de catiões acumulados na membrana de permuta protónica (2).
8.Método de geração de hidrogénio com o dispositivo com acoplamento directo reivindicado na reivindicação 1, caracterizado por compreender as seguintes etapas: estabelecer o circuito de alimentação de água para a electrólise, em que um fluxo entra para o interior do permutador de calor (13), saindo em direcção à entrada de água da parte de cima do invólucro (9), por onde entra no seu interior, para ser distribuída pelas placas flutuantes de guiamento de fluxo (7) de modo a banhar as UPP de ânodo (5), os eléctrodos de regeneração (1), as zonas revestidas com catalisador (6) e a membrana permutadora de protónica (2);
- estabelecer o circuito de recolha de hidrogénio e água, em que um fluxo de hidrogénio e água é conduzido para fora da cavidade da parte de baixo do invólucro (10), em direcção a um recipiente adequado para o efeito;
- apontar o dispositivo com acoplamento directo (31) em direcção ao sol, de modo a captar a energia eléctrica e térmica necessária para sustentar a reacção de electrólise da água;
- fechar o circuito eléctrico, de modo a polarizar as UPP 3 e 5 com a tensão de operação Vd fornecida pela célula fotovoltaica (14), iniciando assim a reacção de electrólise da água, que entretanto foi aquecida durante a sua passagem pelo permutador de calor (13);
- manter o conjunto apontado ao sol como referido na terceira etapa, enquanto se desejar manter a geração de hidrogénio.
PCT/IB2020/057331 2020-03-10 2020-08-03 Dispositivo com acoplamento directo para geração de hidrogénio a partir de luz solar concentrada WO2021181149A1 (pt)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2020434253A AU2020434253A1 (en) 2020-03-10 2020-08-03 Direct coupling device for generating hydrogen from concentrated sunlight
US17/910,758 US20230143168A1 (en) 2020-03-10 2020-08-03 Direct Coupling Device for Generating Hydrogen from Concentrated Sunlight
MA58138A MA58138B1 (fr) 2020-03-10 2020-08-03 Dispositif à accouplement direct pour la production d'hydrogène à partir de lumière solaire concentrée
CA3174514A CA3174514A1 (en) 2020-03-10 2020-08-03 Direct coupling device for generating hydrogen from concentrated sunlight
CN202080098384.9A CN115956139A (zh) 2020-03-10 2020-08-03 从聚集太阳光中产生氢的直接耦合装置
EP20765351.0A EP4119698A1 (en) 2020-03-10 2020-08-03 Direct coupling device for generating hydrogen from concentrated sunlight
JP2022554858A JP2023506606A (ja) 2020-03-10 2020-08-03 集光された太陽光から水素を生成するための直接結合装置
IL295882A IL295882A (en) 2020-03-10 2020-08-03 Direct coupling device for hydrogen production from concentrated sunlight
ZA2022/08683A ZA202208683B (en) 2020-03-10 2022-08-03 Direct coupling device for generating hydrogen from concentrated sunlight

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT116152Y 2020-03-10
PT116152A PT116152A (pt) 2020-03-10 2020-03-10 Dispositivo com acoplamento directo para geração de hidrogénio a partir de luz solar concentrada

Publications (1)

Publication Number Publication Date
WO2021181149A1 true WO2021181149A1 (pt) 2021-09-16

Family

ID=72340382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/057331 WO2021181149A1 (pt) 2020-03-10 2020-08-03 Dispositivo com acoplamento directo para geração de hidrogénio a partir de luz solar concentrada

Country Status (11)

Country Link
US (1) US20230143168A1 (pt)
EP (1) EP4119698A1 (pt)
JP (1) JP2023506606A (pt)
CN (1) CN115956139A (pt)
AU (1) AU2020434253A1 (pt)
CA (1) CA3174514A1 (pt)
IL (1) IL295882A (pt)
MA (1) MA58138B1 (pt)
PT (1) PT116152A (pt)
WO (1) WO2021181149A1 (pt)
ZA (1) ZA202208683B (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127764A1 (fr) * 2021-10-04 2023-04-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Convertisseur photoélectrochimique pour la production de dihydrogène.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009673A2 (en) * 2004-06-18 2006-01-26 General Motors Corporation System and sub-systems for production and use of hydrogen
US20070246370A1 (en) * 2004-10-18 2007-10-25 Frank Dimroth Device and Method for Photovoltaic Generation of Hydrogen
WO2015149185A1 (en) * 2014-04-02 2015-10-08 The University Of British Columbia Conversion of gas and treatment of a solution
WO2018068788A1 (de) * 2016-10-13 2018-04-19 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Photovoltaik-elektrolyse-einheit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009673A2 (en) * 2004-06-18 2006-01-26 General Motors Corporation System and sub-systems for production and use of hydrogen
US20070246370A1 (en) * 2004-10-18 2007-10-25 Frank Dimroth Device and Method for Photovoltaic Generation of Hydrogen
WO2015149185A1 (en) * 2014-04-02 2015-10-08 The University Of British Columbia Conversion of gas and treatment of a solution
WO2018068788A1 (de) * 2016-10-13 2018-04-19 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Photovoltaik-elektrolyse-einheit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127764A1 (fr) * 2021-10-04 2023-04-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Convertisseur photoélectrochimique pour la production de dihydrogène.
WO2023057376A1 (fr) * 2021-10-04 2023-04-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Convertisseur photoélectrochimique pour la production de dihydrogène

Also Published As

Publication number Publication date
CA3174514A1 (en) 2021-09-16
CN115956139A (zh) 2023-04-11
IL295882A (en) 2022-10-01
ZA202208683B (en) 2023-03-29
US20230143168A1 (en) 2023-05-11
EP4119698A1 (en) 2023-01-18
JP2023506606A (ja) 2023-02-16
MA58138A1 (fr) 2022-11-30
MA58138B1 (fr) 2024-04-30
AU2020434253A1 (en) 2022-11-10
PT116152A (pt) 2021-09-10

Similar Documents

Publication Publication Date Title
ES2562913T3 (es) Dispositivo y procedimiento para la generación fotovoltaica de hidrógeno
US4048383A (en) Combination cell
JP3424223B2 (ja) 燃料電池スタック構造
US20050183962A1 (en) System and method for generating hydrogen gas using renewable energy
KR20110124283A (ko) 흐름 전지용 전극
CN104716392B (zh) 一种液流电池结构
KR20160119457A (ko) 대용량 평관형 고체산화물 셀스택, 이를 이용한 고체산화물 연료전지 및 고체산화물 수전해장치
JP5200300B2 (ja) 燃料電池スタック
JP2004197167A (ja) 水素製造装置
CN101409357B (zh) 基于金属双极板结构的被动式自呼吸直接甲醇燃料电池组
WO2021181149A1 (pt) Dispositivo com acoplamento directo para geração de hidrogénio a partir de luz solar concentrada
US20190249314A1 (en) Optical fiber, optical cable, and hydrogen production device comprising optical cable
CN214099660U (zh) 一种包含两个对称结构燃料电池模块的燃料电池组
CN112359372A (zh) 一种臭氧电解槽
WO2021026186A1 (en) Radiation-assisted electrolyzer cell and panel
US8927172B2 (en) Flat-tubular solid oxide cell stack
JP5916648B2 (ja) 平管型固体酸化物単位セル
CN109643814A (zh) 电化学电池的流动框架
KR200285556Y1 (ko) 전해조
KR100556814B1 (ko) 연료전지의 스택
CN116404224B (zh) 一种燃料电池堆及其电能器件
JP4100096B2 (ja) 固体高分子型燃料電池
JP2012089508A (ja) 固体酸化物形燃料電池スタック
KR20130019680A (ko) 고체산화물 연료전지 스택
WO2007099193A1 (es) Demostrador didáctico del ciclo solar del hidrógeno

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3174514

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022554858

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022018014

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020765351

Country of ref document: EP

Effective date: 20221010

ENP Entry into the national phase

Ref document number: 2020434253

Country of ref document: AU

Date of ref document: 20200803

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 522440449

Country of ref document: SA