WO2021179984A1 - 输送机器人、输送系统以及输送机器人连接控制方法 - Google Patents

输送机器人、输送系统以及输送机器人连接控制方法 Download PDF

Info

Publication number
WO2021179984A1
WO2021179984A1 PCT/CN2021/079056 CN2021079056W WO2021179984A1 WO 2021179984 A1 WO2021179984 A1 WO 2021179984A1 CN 2021079056 W CN2021079056 W CN 2021079056W WO 2021179984 A1 WO2021179984 A1 WO 2021179984A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
conveying
conveying robot
robot
connection
Prior art date
Application number
PCT/CN2021/079056
Other languages
English (en)
French (fr)
Inventor
刘洲
Original Assignee
长沙智能驾驶研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙智能驾驶研究院有限公司 filed Critical 长沙智能驾驶研究院有限公司
Publication of WO2021179984A1 publication Critical patent/WO2021179984A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/06Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface having a load-carrying surface formed by a series of interconnected, e.g. longitudinal, links, plates, or platforms
    • B65G17/065Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface having a load-carrying surface formed by a series of interconnected, e.g. longitudinal, links, plates, or platforms the load carrying surface being formed by plates or platforms attached to a single traction element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/06Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface having a load-carrying surface formed by a series of interconnected, e.g. longitudinal, links, plates, or platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G23/00Driving gear for endless conveyors; Belt- or chain-tensioning arrangements
    • B65G23/02Belt- or chain-engaging elements
    • B65G23/04Drums, rollers, or wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G23/00Driving gear for endless conveyors; Belt- or chain-tensioning arrangements
    • B65G23/22Arrangements or mountings of driving motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G41/00Supporting frames or bases for conveyors as a whole, e.g. transportable conveyor frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0266Control or detection relating to the load carrier(s)

Definitions

  • This application relates to the technical field of conveying robots, and in particular to a conveying robot, a conveying system, a connection control method, device, computer equipment, and storage medium of a conveying robot.
  • conveyor robot technology there has been a technology that uses robots to transport.
  • the use of conveyor crawlers set on the conveyor robot to transport objects from low to high, or from one place to another.
  • manpower can be saved and transportation efficiency can be improved.
  • the traditional transportation method of the conveyor robot is only suitable for specific application scenarios, and can only transport objects from one designated place to another designated place within the transportation processing range of the conveyor crawler.
  • the transportation robot When the starting point of the transportation changes, the transportation robot must be moved and the transportation parameters must be reset. The operation is complicated.
  • a conveying robot including a controller, a walking mechanism, a carrying mechanism, a conveying mechanism, a positioning mechanism, and a connecting part connecting adjacent conveying robots;
  • the walking mechanism is movably connected with the carrying mechanism, the positioning mechanism is arranged on the carrying mechanism, the conveying mechanism is arranged on the upper part of the carrying mechanism, the controller is arranged in the cavity of the carrying mechanism, and the controller is respectively communicatively connected with the walking mechanism, the conveying mechanism and the positioning mechanism, wherein,
  • the connecting part includes a first connecting part and a second connecting part respectively arranged at two opposite ends of the carrying mechanism, and the first connecting part and the second connecting part are mutually connectable parts.
  • the conveying mechanism includes a conveying chain plate, a conveying chain plate supporting mechanism, a conveying chain plate driving motor, a conveying chain plate tensioner and a driving wheel;
  • the conveying chain plate support mechanism is arranged on both sides of the conveying chain plate and connected to the upper part of the carrying mechanism.
  • the bearing of the driving wheel and the bearing of the conveying chain plate tensioner are respectively connected to the conveying chain plate supporting mechanism, the driving wheel and the conveying chain plate tensioning wheel
  • the sprocket wheels are respectively nested between the adjacent conveying chain plates, and the conveying chain plate driving motor is connected with the driving wheel.
  • the positioning mechanism includes a plurality of lidars, and each lidar is respectively arranged at the edge of the frame of the supporting mechanism.
  • the walking mechanism includes a plurality of bendable multi-legs composed of movable connecting parts, and the bendable multi-legs are movably connected to the carrying mechanism.
  • the first connecting portion and the second connecting portion are electromagnetic attraction components, and a flexible base is provided between the electromagnetic attraction component and the carrying mechanism.
  • the conveying robot further includes a lifting protection mechanism, which is arranged on both sides of the driving wheel bearing of the conveying mechanism and connected to the conveying chain plate support mechanism.
  • the above-mentioned conveying robot communicates with the walking mechanism and the positioning mechanism of the conveying robot through the controller, and controls multiple conveying robots to be connected through the first connecting part and the second connecting part, so as to realize the accurate and reliable connection between the conveying robots.
  • the automatic combination and connection of two conveying robots extends the conveying length of the conveying robot and expands the application range of the conveying robot.
  • a conveying system includes a server and a plurality of the above-mentioned conveying robots.
  • the server is in communication connection with a controller of the conveying robot to control the plurality of conveying robots.
  • the server controls multiple conveying robots and controls multiple conveying robots for automatic combination and connection, which extends the conveying length of the conveying robot, expands the application range of the conveying robot, and realizes efficient and accurate unified control.
  • a connection control method for a conveying robot includes:
  • connection matching relationship determine the target conveying robot and the identifier of the part to be connected that matches the target connecting part identifier in the target conveying robot;
  • connection control instruction is sent to the target conveying robot, and the connection control instruction is used to control the connection between the part to be connected of the target conveying robot and the target connecting part.
  • receiving the transportation task and obtaining the target connection part identifier and the connection matching relationship corresponding to the transportation task include:
  • the connecting part of the external fixing device set at the starting point of the conveying is used as the target connecting part, wherein the connecting part of the external fixing device is in an unconnected state;
  • the method after receiving the transportation task and determining the transportation route according to the corresponding transportation starting point and transportation destination in the transportation task, the method further includes:
  • the conveying robot When it is detected that the conveying robot is carrying the object to be conveyed, it sends a carrying movement instruction to the conveying robot, and the carrying movement instruction is used to control the conveying robot to carry the object to be conveyed to the conveying destination.
  • the method further includes:
  • connection part identifier of the connection part in the unconnected state in the target conveying robot Acquiring the connection part identifier of the connection part in the unconnected state in the target conveying robot
  • the connecting part corresponding to the connecting part identifier is updated to the current target connecting part
  • obtaining the relative position information of the target conveying robot's to-be-connected part and the target connecting part includes:
  • the distance sensing data determine the relative horizontal distance and the relative height distance between the to-be-connected part of the target conveying robot and the target connecting part;
  • the conveying robot is provided with flexible multi-legs; according to the relative position information, sending a connection control instruction to the target conveying robot includes:
  • the angle adjustment command is used to asynchronously adjust the bending degree of the bendable quadrupeds, and adjust the inclination angle of the part to be connected of the target conveyor robot;
  • the height adjustment command is used to synchronize the bendable multi-legs to adjust the same degree of bending and adjust the height of the part to be connected of the target conveying robot;
  • a displacement adjustment instruction is sent to the target conveying robot, and the displacement adjustment instruction is used to asynchronously move the flexible multi-legs the same distance, and connect the part to be connected of the target conveying robot to the target connecting part.
  • the connecting part of the conveyor robot includes a first electromagnetic attraction component and a second electromagnetic attraction component; after sending a displacement adjustment instruction to the target conveyor robot according to the relative horizontal distance, it further includes:
  • the first electromagnetic energization instruction and the second electromagnetic energization instruction are used to make The first electromagnetic attraction component and the second electromagnetic attraction component generate electromagnetic attraction forces with opposite polarities and attract them.
  • a connection control device for a conveying robot includes:
  • the task receiving module is used to receive the transportation task, and obtain the target connection part identifier and the connection matching relationship corresponding to the transportation task;
  • the target determination module is used to determine the target conveying robot according to the connection matching relationship, and the identifier of the part to be connected in the target conveying robot that matches the target connecting part identifier;
  • the instruction sending module is used to obtain and determine the target location of the target conveying robot according to the position information of the target connecting part, and send a movement control instruction to the target conveying robot, and the movement control instruction is used to control the target conveying robot to move to the target location;
  • the position acquisition module is used to acquire the relative position information of the part to be connected and the target connecting part of the target conveying robot when it is detected that the target conveying robot reaches the target position;
  • connection control module is used to send a connection control instruction to the target conveying robot according to the relative position information, and the connection control instruction is used to control the connection between the part to be connected of the target conveying robot and the target connecting part.
  • a computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when the computer program is executed:
  • connection matching relationship determine the target conveying robot and the identifier of the part to be connected that matches the target connecting part identifier in the target conveying robot;
  • the movement control instruction is used to control the target conveying robot to move to the target location;
  • connection control instruction is sent to the target conveying robot, and the connection control instruction is used to control the connection between the part to be connected of the target conveying robot and the target connecting part.
  • the computer program is executed by a processor, the following steps are implemented:
  • connection matching relationship determine the target conveying robot and the identifier of the part to be connected that matches the target connecting part identifier in the target conveying robot;
  • the movement control instruction is used to control the target conveying robot to move to the target location;
  • connection control instruction is sent to the target conveying robot, and the connection control instruction is used to control the connection between the part to be connected of the target conveying robot and the target connecting part.
  • the connection control method, device, computer equipment and storage medium of the conveyor robot described above acquire the target connection part and the preset connection matching relationship, and determine the part to be connected of the target conveyor robot for connecting with the target connection part, so as to find the connection quickly and accurately Object.
  • the target conveying robot is driven to move to the target position, the position of the target robot is correctly parked, the relative position information of the part to be connected and the target connecting part of the target conveying robot is determined, and then the connection control command is sent to
  • the target conveying robot realizes the accurate and reliable connection between the to-be-connected part of the target conveying robot and the target connecting part.
  • the conveying length of the conveying robot is extended and the application range of the conveying robot is expanded.
  • Fig. 1 is an application scenario diagram of a method for controlling a connection of a conveying robot in an embodiment
  • Figure 2 is a schematic structural diagram of a transport robot in an embodiment
  • Figure 3 is a schematic structural diagram of the walking mechanism of the transport robot in an embodiment
  • Figure 4 is a schematic structural diagram of a supporting mechanism of a conveying robot in an embodiment
  • Figure 5 is a schematic structural diagram of a conveying mechanism of a conveying robot in an embodiment
  • Fig. 6 is a schematic structural diagram of a lifting protection mechanism of a conveying robot in an embodiment
  • FIG. 7 is a schematic flowchart of a method for controlling the connection of a conveying robot in an embodiment
  • Fig. 8 is a schematic diagram of a single-row combined connection conveying of a conveying robot in an embodiment
  • FIG. 9 is a schematic flowchart of sub-steps of step S220 in an embodiment
  • FIG. 10 is a schematic diagram of a multi-row parallel combined connection conveying of a conveying robot in an embodiment
  • FIG. 11 is a schematic flow chart of a process of carrying a transport robot carrying a transport control in an embodiment
  • FIG. 12 is a schematic diagram of a separate transportation and transportation of a transportation robot in an embodiment
  • FIG. 13 is a schematic diagram of combined transportation and transportation of the transportation robot in an embodiment (the guardrail is raised);
  • FIG. 14 is a schematic flowchart of a method for controlling connection of a conveying robot in another embodiment
  • FIG. 15 is a schematic flowchart of sub-steps of step S240 in an embodiment
  • FIG. 16 is a schematic flowchart of sub-steps of step S250 in an embodiment
  • Fig. 17 is a structural block diagram of a connection control device for a conveying robot in an embodiment
  • Fig. 18 is a diagram of the internal structure of a computer device in an embodiment.
  • connection control method of the conveying robot can be applied to the application environment as shown in FIG. 1.
  • the conveying system includes a plurality of conveying robots 102 and servers 104, and the conveying robots 102 and servers 104 communicate through a network.
  • the server 104 is configured to receive the conveying task, obtain the target connection part identifier and the connection matching relationship corresponding to the conveying task, determine the target conveying robot according to the connection matching relation, and the target conveying robot to be connected with the target connecting part identifier that matches, and obtain According to the position information of the target connecting part, determine the target position of the target conveying robot, and send a movement control command to the target conveying robot.
  • the movement control command is used to control the target conveying robot to move to the target position.
  • the relative position information of the part to be connected and the target connecting part of the target conveyor robot is acquired, and the connection control command is sent to the target conveyor robot according to the relative position information.
  • the connection control command is used to control the target conveyor robot
  • the part to be connected is connected to the target connection part.
  • the server 104 may be implemented by an independent server or a server cluster composed of multiple servers.
  • a conveying robot including a controller, a walking mechanism 110, a carrying mechanism 120, a conveying mechanism 130, a positioning mechanism 140, and a connecting part 150 connecting adjacent conveying robots.
  • the running mechanism 110 is movably connected with the carrying mechanism 120.
  • the positioning mechanism 140 is arranged on the carrying mechanism 120, the conveying mechanism 130 is arranged on the upper part of the carrying mechanism 120, and the controller is arranged in the cavity of the carrying mechanism 120.
  • the controller is respectively connected to the travelling mechanism 110 and the conveying mechanism. 130 and the positioning mechanism 140 are communicatively connected, wherein the connecting portion 150 includes a first connecting portion and a second connecting portion respectively disposed at opposite ends of the carrying mechanism, and the first connecting portion and the second connecting portion are mutually connectable components.
  • the controller of the conveying robot is equivalent to the "brain" of the conveying robot.
  • the controller controls the movement of the conveying robot and the connection between the conveying robots by receiving and sending information with other mechanisms of the conveying robot, specifically, the control
  • the device can receive real-time feedback positioning data from the positioning mechanism, and control the walking mechanism to move to the target position of the target conveying robot by sending a movement control signal.
  • the target position is detected by the positioning mechanism, it controls the part to be connected and the target of the conveying robot.
  • the to-be-connected part of the robot is connected, and the to-be-connected part refers to the connected part in an unconnected state.
  • the conveying mechanism refers to a conveying crawler used by the conveying robot to convey objects.
  • the conveying crawler may specifically be an endless conveying belt composed of chain plates.
  • the conveying crawler may be a stainless steel chain plate conveying mechanism.
  • the conveying mechanism 130 includes a conveying chain plate 1301, a conveying chain plate supporting mechanism 1302, a conveying chain plate driving motor 1303, a conveying chain plate tensioner 1304, and a driving wheel 1305; a conveying chain
  • the plate supporting mechanism 1302 is arranged on the upper part of the carrying mechanism 120, the bearing of the driving wheel 1305 and the bearing of the conveyor chain plate tensioner 1304 are respectively connected to the conveyor chain plate supporting mechanism 1302, the driving wheel 1305 and the sprocket of the conveyor chain plate tensioner 1304 They are respectively nested in the chains of adjacent conveying chain plates 1301, and the conveying chain plate driving motor 1303 is connected with the driving wheel 1305.
  • the conveying chain plate can be an annular stainless steel chain plate.
  • the two sides of the conveying chain plate have a chain structure.
  • the conveying chain plate driving motor and the driving wheel are connected by a chain, and the sprocket chain engages to drive the conveying chain plate to move.
  • the conveying chain plate drive motor controls the rotation of the bearing of the driving wheel
  • the sprocket of the driving wheel is nested with the conveying chain plate
  • the rotation of the conveying chain plate is driven by the rotation of the sprocket.
  • the conveyor chain plate tensioner is the chain plate tensioning device of the conveying mechanism. According to the different tightness of the control chain plate, the tensioning force is automatically adjusted to make the conveying mechanism stable, safe and reliable.
  • the positioning mechanism refers to a device used to collect position information. Specifically, it can be the position information of the conveying robot, and it can also be accurate to the position information of the to-be-connected part of the conveying robot. As shown in FIG. 2, in one of the embodiments, the positioning mechanism includes a plurality of lidars, and each lidar is respectively arranged at the edge of the frame of the supporting mechanism.
  • Lidar refers to a radar device that emits laser beams to detect the location and speed of a target. Its working principle is to transmit a detection signal, such as a laser beam, to the target, and then compare the received signal from the target, such as the reflected echo of the laser beam, with the transmitted signal to obtain relevant information about the target, such as target distance and azimuth.
  • Lidar can specifically consist of a laser transmitter, an optical receiver, a turntable, and an information processing system.
  • the laser converts electrical pulses into light pulses and emits them, and the optical receiver restores the light pulses reflected from the target to electrical pulses.
  • the data collected is of high accuracy, and accurate distance sensing data from other objects can be obtained.
  • the precise positioning data can be collected through the lidar, which improves the accuracy of the connection between the conveying robots. By setting up multiple lidars, the collected data of multiple lidars can be used as data reference to each other to correct the error of the collected data.
  • the walking mechanism includes a plurality of bendable multi-legs composed of movable connecting parts, and the bendable multi-legs are movably connected to the carrying mechanism.
  • the walking mechanism 110 includes a walking mechanism controller 1101 and a walking mechanism power battery 1102 arranged inside the carrying mechanism, and a bendable multi-leg 1103 connected with the carrying mechanism.
  • the bending multi-leg connection, the controller controls the coordinated movement of the bending multi-leg, and adjusts the posture of the conveying robot.
  • the power battery of the walking mechanism provides power for other parts of the walking mechanism.
  • the first connecting portion and the second connecting portion are electromagnetic attraction components, and a flexible base is provided between the electromagnetic attraction component and the carrying mechanism.
  • the first connection part is a magnet
  • the second connection part is an iron block
  • the flexible base is a rubber flexible base to improve vibration resistance.
  • the conveying robot further includes a lifting protection mechanism, which is arranged on both sides of the driving wheel bearing of the conveying mechanism and connected to the conveying chain plate support mechanism.
  • the lifting protection mechanism includes a protection plate 1501, a protection mechanism mounting base 1502, a protection mechanism drive motor 1503, and a rack and pinion lifting mechanism 1504.
  • the rack and pinion lifting mechanism 1504 is connected to the protection plate 1501 through the protection
  • the mechanism driving motor 1503 drives the rack and pinion lifting mechanism 1504 to move up and down, thereby controlling the protection plate 1501 to move up and down.
  • the cavity of the supporting mechanism is also provided with an acceleration sensor 1505 for measuring the inclination of the conveyor chain, a 5G communication module 1506 for communication transmission, and a power module 1507 for providing power to the conveyor mechanism.
  • the above-mentioned conveying robot communicates with the walking mechanism and the positioning mechanism of the conveying robot through the controller, and controls multiple conveying robots to be connected through the first connecting part and the second connecting part, so as to realize the accurate and reliable connection between the conveying robots.
  • the automatic combination and connection of two conveying robots extends the conveying length of the conveying robot and expands the application range of the conveying robot.
  • a conveying system includes a server and a plurality of the above-mentioned conveying robots.
  • the server is in communication connection with a controller of the conveying robot to control the plurality of conveying robots.
  • the server's control of multiple conveying robots includes movement control, connection control, and conveying control.
  • Movement control refers to the control process of controlling the transportation robot to move according to the planned path through the server.
  • Connection control refers to the control process of controlling multiple transportation robots to connect through the server.
  • Transportation control refers to the control of one or more connected conveyors through the server. The process in which the robot transports items through the conveyor chain.
  • the server controls multiple conveying robots and controls multiple conveying robots for automatic combination and connection, which extends the conveying length of the conveying robot, expands the application range of the conveying robot, and realizes efficient and accurate unified control.
  • a method for controlling the connection of a conveying robot is provided. Taking the method applied to a server in the conveying system shown in FIG. 1 as an example for description, the method includes the following steps:
  • Step S210 Receive the transportation task, and obtain the target connection part identifier and the connection matching relationship corresponding to the transportation task.
  • Conveying tasks refer to task data for transporting articles from the starting point to the destination.
  • the task data can include the number of articles, the volume of a single article, the location information of the starting point, and the location information of the destination.
  • the conveying task can be completed by single or multiple conveying robots.
  • the walking mechanism of the conveying robot is specifically flexible and multi-legged.
  • a single conveying robot can carry the articles while walking for conveying. It is also possible to connect a plurality of conveying robots, and to transport the articles from the conveying starting point to the conveying destination through the conveying crawler provided on the conveying robot.
  • the conveying robot is provided with at least two connecting parts, which are used to connect with the connecting parts of other conveying robots or other fixed-position connecting parts.
  • the fixed-position connecting part may be an external fixing device provided at the starting point of the conveying.
  • the objects to be conveyed can be conveyed from the external fixing device directly to the conveying crawler of the connected conveying robot.
  • the connection matching relationship refers to the connection relationship between each connection part.
  • the connection matching relationship can be established based on the principle of the shortest movement distance of each transportation robot according to the number of required transportation robots and the position information of each transportation robot in an idle state.
  • the target connection part refers to the connection part that currently needs to control the connection, and the target connection part is one of the matching objects in the connection matching relationship.
  • a conveying task requires four conveying robots A, B, C, and D.
  • each robot has 2 connecting parts, and each robot is connected end to end.
  • the connection relationship between the robots can specifically be conveying robots.
  • the A1 connection part of A is connected to the connection part of the external fixing device
  • the A2 connection part of the conveying robot A is connected to the B1 connection part of the conveying robot B
  • the B2 connection part of the conveying robot B is connected to the C1 connection part of the conveying robot C.
  • the C2 connecting part of C is connected to the D1 connecting part of the conveying robot D.
  • the D2 connecting part of the conveying robot D is connected to the connecting part of the conveying destination.
  • connection matching relationship includes the external fixing device connection part of the delivery start point-A1, A2-B1, B2-C1, C2-D1, D2- delivery destination connection part or D2-idle.
  • Step S220 According to the connection matching relationship, determine the target conveying robot and the identifier of the part to be connected in the target conveying robot that matches the identifier of the target connecting part.
  • the target connecting part is the connecting part of the external fixing device
  • the target conveying robot is the conveying robot that matches the starting point of the conveying
  • the part to be connected is the one that matches the starting point of conveying.
  • the connecting part represented by the identifier of the part to be connected that matches the identifier of the target connecting part.
  • the target conveying robot is a conveying robot directly or indirectly connected to the connecting part of the external fixing device.
  • the part to be connected can be The connecting part of the conveying robot that is directly or indirectly connected to the connecting part of the external fixing device in an unconnected state.
  • Step S230 Obtain and determine the target position of the target conveying robot according to the position information of the target connecting part, and send a movement control instruction to the target conveying robot.
  • the movement control instruction is used to control the target conveying robot to move to the target position.
  • the position information of the target connecting part can be obtained through the first positioning data collected by the positioning mechanism of the conveying robot.
  • the theory of the positioning data collected by the positioning mechanism of the target conveying robot and the positioning mechanism of the target connecting part Distance determine the target position of the target conveyor robot, send movement control instructions to the target conveyor robot, and receive the second positioning data collected in real time by the positioning mechanism of the target conveyor robot.
  • the server compares the second positioning data with the target position, and corrects the movement in real time. Control instructions to move the target conveyor robot to the target position.
  • step S240 when it is detected that the target conveying robot reaches the target position, obtain the relative position information of the part to be connected and the target connecting part of the target conveying robot.
  • the target conveying robot When the second positioning data coincides with the target position, that is, the target conveying robot reaches the target position.
  • the environment of the target conveyor robot is a construction site, mine and other uneven terrain, when the target conveyor robot reaches the target position, it cannot guarantee that the connecting part and the target connecting part can be accurately connected.
  • the relative position can be obtained by analyzing the data collected by the sensing device provided in the connecting part, for example, the distance between the two connecting parts is measured by lidar, and the inclination angle of the target conveying robot is determined by the inclination sensor, so as to obtain the target
  • the angle difference between the connecting portion and the to-be-connected portion determines the range that needs to be adjusted.
  • the inclination sensor may specifically be an acceleration sensor arranged in the cavity of the supporting structure.
  • step S250 a connection control instruction is sent to the target conveying robot according to the relative position information, and the connection control instruction is used to control the connection between the part to be connected of the target conveying robot and the target connecting part.
  • connection control instructions may specifically include height adjustment instructions, angle adjustment instructions, horizontal position adjustment instructions, etc. of the target conveying robot, which are used to fine-tune the position of the connection part to be connected.
  • the connection part of the conveying robot may also be provided with electromagnetic attraction components. , By sending an electromagnetic energization instruction to the conveying robot, the electromagnetic attraction component of the connection part to be connected and the target connection part are energized and attracted.
  • the connection control method of the conveying robot described above determines the part to be connected of the target conveying robot to be connected to the target connecting part by acquiring the target connecting part and the preset connection matching relationship, so as to quickly and accurately find the connection object.
  • the target conveying robot is driven to move to the target position, the position of the target robot is correctly parked, the relative position information of the part to be connected and the target connecting part of the target conveying robot is determined, and then the connection control command is sent to
  • the target conveying robot realizes the accurate and reliable connection between the to-be-connected part of the target conveying robot and the target connecting part.
  • the conveying length of the conveying robot is extended and the application range of the conveying robot is expanded.
  • step S220 includes step S310 to step S350.
  • step S310 the transportation task is received, and the transportation route is determined according to the transportation starting point and the transportation destination corresponding to the transportation task.
  • Step S320 when the road condition change data corresponding to the transportation route meets the preset transmission condition, the connection part of the external fixing device set at the starting point of the transportation is used as the target connection part, wherein the connection part is in an unconnected state.
  • Step S330 Determine the connection layout of the conveying robot according to the volume of the article to be conveyed and the conveying distance corresponding to the conveying route.
  • step S340 the transportation robot to be connected is selected according to the connection layout of the transportation robot and the acquired position information of each transportation robot in a discrete state.
  • Step S350 according to the position information of each conveying robot to be connected and based on the principle of the shortest distance, establish a connection matching relationship between the connecting part of the external fixing device and the connecting part of each conveying robot to be connected.
  • the transportation starting point and the transportation destination can be determined, and the connection line between the transportation starting point and the transportation destination can be used as the transmission line. Due to environmental differences, not all conveyor lines can be transported by smoothly connecting the conveyor crawlers of each conveyor robot. For example, when the topography difference between the two conveyor robots is beyond the adjustable range of the conveyor robot When the connection of the connection part cannot be completed, it can be judged that the road condition change data corresponding to the conveying route does not meet the preset transmission conditions. When the road condition change data corresponding to the conveying route can make the connection parts of each conveying robot connect smoothly, that is, it can meet the preset transmission conditions.
  • the transmission condition is to obtain the connection status information of the connection part of the external fixing device set at the starting point of the conveying.
  • connection part When the connection status information is in the unconnected state, the connection part is used as the target connection part so that the conveying robot is connected to the target connection Department. Since the width of the conveyor belt of the conveyor robot is fixed, when the volume of the item to be conveyed is too large, if a single conveyor robot is used for conveying, the center of gravity of the item to be conveyed may be unstable, resulting in the conveyance of the item to be conveyed from the conveying robot. There is a risk of falling on the crawler. At this time, the connection layout of the conveyor robot can be set to double or multiple rows of conveyor robots in parallel connection. The specific connection method is shown in Figure 10.
  • the number of conveying robots required for a single-row connection is determined, and the connection layout of the conveying robots is determined according to the number of single-row robots and the required number of rows.
  • Acquire the conveyor robot set composed of the conveyor robots in the discrete state and select the corresponding number of connection layouts from the conveyor robot set and the closest waiting line to the conveyor line according to the connection layout of the conveyor robots and the acquired position information of the conveyor robots in the conveyor robot set.
  • Connect the conveying robots and then, based on the principle of the shortest distance, establish a connection matching relationship between the connecting parts of the external fixing device at the starting point of the conveying and the connecting parts of the conveying robots to be connected.
  • step S410 to step S440 are further included.
  • Step S410 When the road condition change data corresponding to the conveying route does not meet the preset transmission condition, determine the conveying robot used to carry the object to be conveyed.
  • Step S420 Send a movement control instruction to the determined conveying robot, and the movement control instruction is used to control the conveying robot to move to the starting point of the conveying.
  • step S430 when it is detected that the conveying robot is carrying the object to be conveyed, a carrying movement instruction is sent to the conveying robot.
  • the carrying movement instruction is used to control the conveying robot to carry the object to be conveyed to the conveying destination.
  • the conveying robot can only be carried by the conveying robot to be conveyed.
  • the way items are transported as shown in Figure 12. Specifically, it is first necessary to determine the transport robot used to carry the object to be transported, and the transport robot that completes the task of carrying the object to be transported can be determined by the principle of the shortest distance. Send a movement control instruction to a certain conveying robot to move the conveying robot to the starting point of the conveying. When the volume of the object to be conveyed is large, there can be multiple conveying robots used to complete the task.
  • a transport robot is connected to carry the object to be transported.
  • a protection instruction is sent to the conveying robot to control the conveying robot to raise the guardrail structure carried to prevent the conveying robot from falling off due to the bumpy road surface during the movement of the conveying robot
  • send a carrying movement instruction to the conveying robot so that the conveying robot carries the object to be conveyed and moves to the conveying destination.
  • step S250 further includes step S510 to step S530.
  • Step S510 Obtain the connection part identifier of the connection part in the unconnected state in the target conveying robot.
  • Step S520 When there is a connection part identifier matching the connection part identifier in the connection matching relationship, the connection part corresponding to the connection part identifier is updated to the current target connection part.
  • step S530 when there is no identifier of the part to be connected that matches the identifier of the connecting part in the connection matching relationship, a message of completion of the connection task of the conveying robot is fed back.
  • the target conveying robot completes the connection between the part to be connected and the target connecting part, it is judged whether further connection of the conveying robot is required, by obtaining the connecting part identifier of the connecting part in the unconnected state in the target conveying robot, and then matching according to the established connection Relationship, determine whether there is a connecting part identifier that matches the connecting part identifier, and when there is a to-be-connected part identifier that matches the connecting part identifier in the connection matching relationship, the connecting part corresponding to the connecting part identifier is updated to the current target connecting part, Then update the target conveyor robot according to the connection matching relationship, and connect each conveyor robot in turn.
  • connection matching relationship does not have the identifier of the part to be connected that matches the identifier of the connecting part or there is no connecting part in the unconnected state in the target conveyor robot At the time, the message of completion of the connection task of the conveying robot is fed back.
  • step S240 includes step S610 to step S630.
  • step S610 when it is detected that the target conveying robot reaches the target position, the distance sensing data and the inclination sensing data of the target conveying robot are acquired.
  • Step S620 Determine the relative horizontal distance and the relative height distance between the to-be-connected part of the target conveying robot and the target connecting part according to the distance sensing data.
  • Step S630 Obtain the inclination angle data of the target connecting part, and determine the relative inclination angle amplitude of the to-be-connected part of the target conveying robot and the target connecting part based on the inclination sensor data and the inclination data of the target connecting part.
  • the distance sensing data and inclination sensing data of the target conveying robot can specifically be the data collected by the lidar and inclination sensor installed in the conveying robot.
  • the direction and size in the coordinate system determine the relative horizontal distance and relative height distance between the part to be connected and the target connecting part of the target conveying robot.
  • the inclination direction and angle of the inclination sensor data and the inclination data of the target connecting part relative to the same horizontal plane are respectively determined, and the relative inclination amplitude of the to-be-connected part and the target connecting part of the target conveying robot are determined.
  • step S250 includes step S710 to step S730.
  • Step S710 Send an angle adjustment instruction to the target conveying robot according to the relative inclination angle.
  • the angle adjustment instruction is used to make the bendable quadrupeds asynchronously adjust different bending degrees and adjust the inclination angle of the part to be connected of the target conveying robot.
  • Step S720 Send a height adjustment instruction to the target conveying robot according to the relative height distance.
  • the height adjustment instruction is used to synchronize the bendable multi-legs to adjust the same degree of bending and adjust the height of the part to be connected of the target conveying robot.
  • Step S730 Send a displacement adjustment instruction to the target conveying robot according to the relative horizontal distance.
  • the displacement adjustment instruction is used to asynchronously move the bendable multi-leg by the same distance, and connect the part to be connected of the target conveying robot to the target connecting part.
  • the sending order of the angle adjustment instruction, the height adjustment instruction, and the displacement adjustment instruction may be sent at the same time, or may be sent one by one in sequence.
  • the comprehensive adjustment parameters can be calculated according to the relative inclination angle amplitude, the relative height distance, and the relative horizontal distance, and the adjustment instructions are sent to the target conveying robot according to the comprehensive adjustment parameters, so that the conveying robot can bend multiple feet by adjusting , Connect the to-be-connected part of the target conveying robot to the target connecting part.
  • the connecting part of the conveyor robot includes a first electromagnetic attraction component and a second electromagnetic attraction component; after sending a displacement adjustment instruction to the target conveyor robot according to the relative horizontal distance, it further includes:
  • the connecting part of the external fixing device of the conveying start point and the conveying destination may be provided with a suction member made of iron, and the suction member also has a rubber flexible base.
  • connection control device for a conveying robot including:
  • the task receiving module 810 is configured to receive the transportation task, and obtain the target connection part identifier and the connection matching relationship corresponding to the transportation task.
  • the target determination module 820 is configured to determine the target conveying robot and the identification of the part to be connected in the target conveying robot that matches the target connecting part identifier according to the connection matching relationship.
  • the instruction sending module 830 is used to obtain and determine the target location of the target conveying robot according to the location information of the target connecting part, and send a movement control instruction to the target conveying robot.
  • the movement control instruction is used to control the target conveying robot to move to the target location.
  • the position acquisition module 840 is used for acquiring the relative position information of the part to be connected and the target connecting part of the target conveying robot when it is detected that the target conveying robot reaches the target position.
  • connection control module 850 is configured to send a connection control instruction to the target conveying robot according to the relative position information, and the connection control instruction is used to control the connection between the part to be connected of the target conveying robot and the target connecting part.
  • the task receiving module is also used to receive the transportation task, and determine the transportation route according to the transportation starting point and the transportation destination corresponding to the transportation task.
  • the unconnected connection part of the external fixing device set at the starting point of the conveying is used as the target connection part, and the connection layout of the conveying robot is determined according to the volume of the article to be conveyed and the conveying distance corresponding to the conveying route, and the connection layout of the conveying robot and acquisition
  • the position information of each conveying robot in a discrete state select the conveying robot to be connected, and based on the position information of each conveying robot to be connected, based on the principle of shortest distance, establish the connection part of the external fixing device and the connection part of each conveying robot to be connected Connect the matching relationship.
  • the conveying robot connection control device further includes a piggyback conveying control module, which is used to determine the conveying robot used to carry the object to be conveyed when the road condition change data corresponding to the conveying route does not meet the preset transmission conditions, and send Move the control command to the determined conveying robot.
  • the movement control command is used to control the conveying robot to move to the starting point of the conveying.
  • the carrying movement command is sent to the conveying robot, and the carrying movement command is used to control the conveying
  • the robot carries the object to be conveyed and moves to the conveying destination.
  • the conveying robot connection control device further includes a data update module for acquiring the connection part identifier of the connection part in the unconnected state in the target conveying robot.
  • a data update module for acquiring the connection part identifier of the connection part in the unconnected state in the target conveying robot.
  • the position acquisition module is also used to acquire the distance sensing data and inclination sensing data of the target conveying robot when it is detected that the target conveying robot reaches the target position, and determine the target conveying according to the distance sensing data.
  • the relative horizontal distance and the relative height distance between the robot's to-be-connected part and the target connecting part, the inclination data of the target connecting part is acquired, and the inclination sensor data and the inclination data of the target connecting part are used to determine the connection of the target conveying robot's to-be-connected part and the target The relative inclination amplitude of the part.
  • the conveying robot is provided with bendable multi-legs; connected to the control module 850, it is also used to send an angle adjustment command to the target conveying robot according to the relative inclination angle.
  • the angle adjustment command is used to make the bendable quadrupeds asynchronously adjust For different bending degrees, adjust the inclination angle of the connecting part of the target conveyor robot, and send height adjustment commands to the target conveyor robot according to the relative height distance.
  • the height adjustment commands are used to synchronize the bendable multi-legs to adjust the same bending degree and adjust the target conveyor robot’s According to the relative horizontal distance, the height of the part to be connected sends a displacement adjustment instruction to the target conveying robot.
  • the displacement adjustment command is used to asynchronously move the flexible multi-legs the same distance to connect the part to be connected of the target conveying robot to the target connecting part.
  • the connecting part of the conveying robot includes a first electromagnetic attraction component and a second electromagnetic attraction component; the connection control module is also used to send the first electromagnetic energization instruction to the first electromagnetic attraction of the part to be connected Component, sending the second electromagnetic energization instruction to the second electromagnetic attraction component of the target connection part, the first electromagnetic energization instruction and the second electromagnetic energization instruction are used to make the first electromagnetic attraction component and the second electromagnetic attraction component generate polarity The opposite electromagnetic attraction pulls together.
  • the above-mentioned conveying robot connection control device obtains the target connecting part and the preset connection matching relationship, and determines the part to be connected to the target connecting part of the target conveying robot, so as to quickly and accurately find the connection object.
  • the target conveying robot is driven to move to the target position, the position of the target robot is correctly parked, the relative position information of the part to be connected and the target connecting part of the target conveying robot is determined, and then the connection control command is sent to
  • the target conveying robot realizes the accurate and reliable connection between the to-be-connected part of the target conveying robot and the target connecting part.
  • the conveying length of the conveying robot is extended and the application range of the conveying robot is expanded.
  • connection control device of the conveying robot For the specific definition of the connection control device of the conveying robot, please refer to the above definition of the connection control method of the conveying robot, which will not be repeated here.
  • the various modules in the above-mentioned conveying robot connection control device can be implemented in whole or in part by software, hardware and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure diagram may be as shown in FIG. 18.
  • the computer equipment includes a processor, a memory, a network interface, and a database connected through a system bus. Among them, the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the database of the computer equipment is used to store the connection control data of the conveying robot.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer program is executed by the processor to realize a connection control method of a conveying robot.
  • FIG. 18 is only a block diagram of part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may Including more or less parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • a computer device including a memory and a processor, the memory stores a computer program, and the processor implements the connection control method of the conveying robot in each of the foregoing embodiments when the processor executes the computer program.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the connection control method of the conveying robot in the foregoing embodiments is realized.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Channel
  • memory bus Radbus direct RAM
  • RDRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

一种输送机器人包括:控制器、行走机构(110)、承载机构(120)、输送机构(130)、定位机构(140)以及连接相邻输送机器人的连接部(150);行走机构(110)与承载机构(120)活动连接,定位机构(140)设置于承载机构(120),输送机构(130)设置于承载机构(120)上部,控制器设置于承载机构(120)的腔体内,控制器分别与行走机构(110)、输送机构(130)以及定位机构(140)通讯连接,其中,连接部(150)包括分别设置于承载机构(120)相对的两端的第一连接部和第二连接部,第一连接部与第二连接部互为可连接部件,通过控制器对输送机器人的行走机构(110)和定位机构(140)进行通讯连接,控制多个输送机器人通过第一连接部和第二连接部连接,延长了输送机器人的运输长度,扩大了输送机器人的应用范围。还涉及一种输送系统、输送机器人连接控制方法、装置、计算机设备及可读存储介质。

Description

输送机器人、输送系统以及输送机器人连接控制方法 技术领域
本申请涉及输送机器人技术领域,特别是涉及一种输送机器人、输送系统、输送机器人连接控制方法、装置、计算机设备和存储介质。
背景技术
随着输送机器人技术的发展,出现了利用机器人进行传送的技术,例如,利用设置于输送机器人上的传送履带,将物体从低处运输到高处,或是从一个地方运输到另一个地方,通过设置有传送履带的输送机器人,可以节省人力,提高运输效率。
然而,传统的输送机器人的运输方法仅适用特定的应用场景,只能在传送履带的运输处理范围内,将一个指定地方的物体运输到另一个指定地方。当运输起始点发生变化时,必须移动输送机器人,并重新设置输送参数,操作复杂。而且,对于超过传送履带的长度范围的输送任务,采用这类输送机器人并没有合适的解决方案,应用范围有限。
发明内容
基于此,有必要针对上述技术问题,提供一种能够扩大输送机器人使用范围的输送机器人、输送系统、输送机器人连接控制方法、装置、计算机设备和存储介质。
一种输送机器人,包括控制器、行走机构、承载机构、输送机构、定位机构以及连接相邻输送机器人的连接部;
行走机构与承载机构活动连接,定位机构设置于承载机构,输送机构设置于承载机构上部,控制器设置于承载机构的腔体内,控制器分别与行走机构、输送机构以及定位机构通讯连接,其中,连接部包括分别设置于承载机构相对的两端的第一连接部和第二连接部,第一连接部与第二连接部互为可连接部件。
在其中一个实施例中,输送机构包括输送链板、输送链板支撑机构、输送 链板驱动电机、输送链板涨紧轮以及主动轮;
输送链板支撑机构设置于输送链板两侧、与承载机构上部连接,主动轮的轴承和输送链板涨紧轮的轴承分别与输送链板支撑机构连接,主动轮以及输送链板涨紧轮的链轮分别嵌套于相邻输送链板之间,输送链板驱动电机与主动轮连接。
在其中一个实施例中,定位机构包括多个激光雷达,各激光雷达分别设置于承载机构的框架边缘位置。
在其中一个实施例中,行走机构包括多个由活动连接部件构成的可弯曲多足,可弯曲多足活动连接于承载机构。
在其中一个实施例中,第一连接部与第二连接部为电磁吸合部件,电磁吸合部件与承载机构之间设置有柔性底座。
在其中一个实施例中,输送机器人还包括升降防护机构,升降防护机构设置于输送机构的主动轮轴承的两侧,与输送链板支撑机构连接。
上述输送机器人,通过控制器对输送机器人的行走机构和定位机构进行通讯连接,控制多个输送机器人通过第一连接部和第二连接部连接,实现了输送机器人之间的准确可靠连接,通过多个输送机器人的自动组合连接,延长了输送机器人的运输长度,扩大了输送机器人的应用范围。
一种输送系统,包括服务器以及多个上述的输送机器人,服务器与输送机器人的控制器通讯连接,对多个输送机器人进行控制。
通过服务器对多个输送机器人进行控制,控制多个输送机器人进行自动组合连接,延长了输送机器人的运输长度,扩大了输送机器人的应用范围,实现高效准确的统一控制。
一种输送机器人连接控制方法,方法包括:
接收输送任务,获取输送任务对应的目标连接部标识和连接匹配关系;
根据连接匹配关系,确定目标输送机器人,以及目标输送机器人中与目标连接部标识匹配的待连接部标识;
获取并根据目标连接部的位置信息,确定目标输送机器人的目的位置,并发送移动控制指令至目标输送机器人,移动控制指令用于控制目标输送机器人 移动至目的位置;
当侦测到目标输送机器人到达目的位置时,获取目标输送机器人的待连接部与目标连接部的相对位置信息;
根据相对位置信息,发送连接控制指令至目标输送机器人,连接控制指令用于控制目标输送机器人的待连接部与目标连接部连接。
在其中一个实施例中,接收输送任务,获取输送任务对应的目标连接部标识和连接匹配关系包括:
接收输送任务,根据输送任务对应的输送起点和输送目的地,确定输送路线;
当输送路线对应的路况变化数据满足预设的传送条件时,将设置于输送起点的外部固定装置的连接部作为目标连接部,其中,外部固定装置的连接部处于未连接状态;
根据待输送物品体积和输送路线对应的输送距离,确定输送机器人的连接布局;
根据输送机器人的连接布局以及获取的各处于离散状态的输送机器人的位置信息,选择待连接输送机器人;
根据各待连接输送机器人的位置信息,基于距离最短原则,建立外部固定装置的连接部以及各待连接输送机器人的连接部的连接匹配关系。
在其中一个实施例中,接收输送任务,根据输送任务中对应的输送起点和输送目的地,确定输送路线之后,还包括:
当输送路线对应的路况变化数据不满足预设的传送条件时,确定用于背负待输送物体的输送机器人;
发送移动控制指令至确定的输送机器人,移动控制指令用于控制输送机器人移动至输送起点;
当侦测到输送机器人背负起待输送物体时,发送背负移动指令至输送机器人,背负移动指令用于控制输送机器人背负待输送物体移动至输送目的地。
在其中一个实施例中,根据相对位置信息,发送连接控制指令至目标输送机器人之后,还包括:
获取目标输送机器人中处于未连接状态的连接部的连接部标识;
当连接匹配关系中存在与连接部标识匹配的待连接部标识时,将连接部标识对应的连接部更新为当前的目标连接部;
当连接匹配关系中不存在与连接部标识匹配的待连接部标识时,反馈输送机器人连接任务完成消息。
在其中一个实施例中,当侦测到目标输送机器人到达目的位置时,获取目标输送机器人的待连接部与目标连接部的相对位置信息包括:
当侦测到目标输送机器人到达目的位置时,获取目标输送机器人的距离传感数据和倾角传感数据;
根据距离传感数据,确定目标输送机器人的待连接部与目标连接部的相对水平距离和相对高度距离;
获取目标连接部的倾角数据,根据倾角传感数据和目标连接部的倾角数据,确定目标输送机器人的待连接部与目标连接部的相对倾角幅度。
在其中一个实施例中,输送机器人设置有可弯曲多足;根据相对位置信息,发送连接控制指令至目标输送机器人包括:
根据相对倾角幅度,发送角度调整指令至目标输送机器人,角度调整指令用于使可弯曲四足异步调整不同弯曲程度,调整目标输送机器人的待连接部的倾角;
根据相对高度距离,发送高度调整指令至目标输送机器人,高度调整指令用于使可弯曲多足同步调整相同弯曲程度,调整目标输送机器人的待连接部的高度;
根据相对水平距离,发送位移调整指令至目标输送机器人,位移调整指令用于使可弯曲多足异步移动相同距离,将目标输送机器人的待连接部连接至目标连接部。
在其中一个实施例中,输送机器人的连接部包括第一电磁吸合部件和第二电磁吸合部件;根据相对水平距离,发送位移调整指令至目标输送机器人之后,还包括:
发送第一电磁通电指令至待连接部的第一电磁吸合部件,发送第二电磁通 电指令至目标连接部的第二电磁吸合部件,第一电磁通电指令与第二电磁通电指令用于使第一电磁吸合部件和第二电磁吸合部件产生极性相反的电磁吸力并吸合。
一种输送机器人连接控制装置,装置包括:
任务接收模块,用于接收输送任务,获取输送任务对应的目标连接部标识和连接匹配关系;
目标确定模块,用于根据连接匹配关系,确定目标输送机器人,以及目标输送机器人中与目标连接部标识匹配的待连接部标识;
指令发送模块,用于获取并根据目标连接部的位置信息,确定目标输送机器人的目的位置,并发送移动控制指令至目标输送机器人,移动控制指令用于控制目标输送机器人移动至目的位置;
位置获取模块,用于当侦测到目标输送机器人到达目的位置时,获取目标输送机器人的待连接部与目标连接部的相对位置信息;
连接控制模块,用于根据相对位置信息,发送连接控制指令至目标输送机器人,连接控制指令用于控制目标输送机器人的待连接部与目标连接部连接。
一种计算机设备,包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现以下步骤:
接收输送任务,获取输送任务对应的目标连接部标识和连接匹配关系;
根据连接匹配关系,确定目标输送机器人,以及目标输送机器人中与目标连接部标识匹配的待连接部标识;
获取并根据目标连接部的位置信息,确定目标输送机器人的目的位置,并发送移动控制指令至目标输送机器人,移动控制指令用于控制目标输送机器人移动至目的位置;
当侦测到目标输送机器人到达目的位置时,获取目标输送机器人的待连接部与目标连接部的相对位置信息;
根据相对位置信息,发送连接控制指令至目标输送机器人,连接控制指令用于控制目标输送机器人的待连接部与目标连接部连接。
一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器 执行时实现以下步骤:
接收输送任务,获取输送任务对应的目标连接部标识和连接匹配关系;
根据连接匹配关系,确定目标输送机器人,以及目标输送机器人中与目标连接部标识匹配的待连接部标识;
获取并根据目标连接部的位置信息,确定目标输送机器人的目的位置,并发送移动控制指令至目标输送机器人,移动控制指令用于控制目标输送机器人移动至目的位置;
当侦测到目标输送机器人到达目的位置时,获取目标输送机器人的待连接部与目标连接部的相对位置信息;
根据相对位置信息,发送连接控制指令至目标输送机器人,连接控制指令用于控制目标输送机器人的待连接部与目标连接部连接。
上述输送机器人连接控制方法、装置、计算机设备和存储介质,获取目标连接部和预设的连接匹配关系,确定目标输送机器人的用于与目标连接部连接的待连接部,以快速准确的找到连接对象。通过确定目标输送机器人对应的目的位置,驱使目标输送机器人移动至目的位置,实现目标机器人的位置正确停放,确定目标输送机器人的待连接部与目标连接部的相对位置信息,然后发送连接控制指令至目标输送机器人,实现了目标输送机器人的待连接部与目标连接部准确可靠连接,通过多个输送机器人的自动组合连接,延长了输送机器人的运输长度,扩大了输送机器人的应用范围。
附图说明
图1为一个实施例中输送机器人连接控制方法的应用场景图;
图2为一个实施例中输送机器人的结构简图;
图3为一个实施例中输送机器人的行走机构结构简图;
图4为一个实施例中输送机器人的支撑机构结构简图;
图5为一个实施例中输送机器人的输送机构结构简图;
图6为一个实施例中输送机器人的可升降防护机构结构简图;
图7为一个实施例中输送机器人连接控制方法的流程示意图;
图8为一个实施例中输送机器人的单排组合连接输送示意图;
图9为一个实施例中步骤S220的子步骤的流程示意图;
图10为一个实施例中输送机器人的多排并列组合连接输送示意图;
图11为一个实施例中输送机器人背负输送控制过程的流程示意图;
图12为一个实施例中输送机器人的单独搬运输送示意图;
图13为一个实施例中输送机器人的组合搬运输送示意图(护栏升起);
图14为另一个实施例中输送机器人连接控制方法的流程示意图;
图15为一个实施例中步骤S240的子步骤的流程示意图;
图16为一个实施例中步骤S250的子步骤的流程示意图;
图17为一个实施例中输送机器人连接控制装置的结构框图;
图18为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的输送机器人连接控制方法,可以应用于如图1所示的应用环境中。其中,输送系统包括多个输送机器人102与服务器104,输送机器人102与服务器104通过网络进行通信。服务器104用于接收输送任务,获取输送任务对应的目标连接部标识和连接匹配关系,根据连接匹配关系,确定目标输送机器人,以及目标输送机器人中与目标连接部标识匹配的待连接部标识,获取目标连接部的位置信息,并根据目标连接部的位置信息,确定目标输送机器人的目的位置,并发送移动控制指令至目标输送机器人,移动控制指令用于控制目标输送机器人移动至目的位置,当侦测到目标输送机器人到达目的位置时,获取目标输送机器人的待连接部与目标连接部的相对位置信息,根据相对位置信息,发送连接控制指令至目标输送机器人,连接控制指令用于控制目标输送机器人的待连接部与目标连接部连接。其中,服务器104可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在一个实施例中,如图2所示,提供了一种输送机器人,包括控制器、行走机构110、承载机构120、输送机构130、定位机构140以及连接相邻输送机器人的连接部150。
行走机构110与承载机构120活动连接,定位机构140设置于承载机构120,输送机构130设置于承载机构120上部,控制器设置于承载机构120的腔体内,控制器分别与行走机构110、输送机构130以及定位机构140通讯连接,其中,连接部150包括分别设置于承载机构相对的两端的第一连接部和第二连接部,第一连接部与第二连接部互为可连接部件。
其中,输送机器人的控制器相当于输送机器人的“大脑”,控制器通过与输送机器人的其他各机构接收、发送信息对输送机器人的移动以及输送机器人之间的连接进行控制,具体来说,控制器可以通过接收定位机构实时反馈的定位数据,通过发送移动控制信号控制行走机构移动到目标输送机器人的目的位置,当通过定位机构侦测到达目的位置时,控制该输送机器人的待连接部与目标机器人的待连接部连接,待连接部是指处于未连接状态的连接部。
输送机构是指用于输送机器人用来输送物体的传送履带,传送履带具体可以是链板构成的环形传送带,在一个实施例中,传送履带可以是不锈钢链板输送机构。
在其中一个实施例中,如图3所示,输送机构130包括输送链板1301、输送链板支撑机构1302、输送链板驱动电机1303、输送链板涨紧轮1304以及主动轮1305;输送链板支撑机构1302设置于承载机构120上部,主动轮1305的轴承和输送链板涨紧轮1304的轴承分别与输送链板支撑机构1302连接,主动轮1305以及输送链板涨紧轮1304的链轮分别嵌套于相邻输送链板1301的链条内,输送链板驱动电机1303与主动轮1305连接。
输送链板具体可以是环形不锈钢链板,输送链板两侧面为链条式结构,输送链板驱动电机与主动轮通过链条连接,通过链轮链条啮合驱动输送链板运动。具体来说,由输送链板驱动电机控制主动轮的轴承转动,主动轮的链轮与输送链板嵌套,通过链轮转动带动输送链板转动。输送链板涨紧轮是输送机构的链板张紧装置,根据控制链板不同的松紧程度,自动调整张紧力,使输送机构稳 定安全可靠。
定位机构是指用于采集位置信息的装置。具体来说可以是输送机器人的位置信息,还可以精确到输送机器人的待连接部的位置信息。如图2所示,在其中一个实施例中,定位机构包括多个激光雷达,各激光雷达分别设置于承载机构的框架边缘位置。激光雷达是指以发射激光束探测目标的位置、速度等特征量的雷达装置。其工作原理是向目标发射探测信号,例如激光束,然后将接收到的从目标反射回来的信号例如激光束的反射回波,与发射信号进行比较,得到目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对目标进行探测、跟踪和识别。激光雷达具体可以是由激光发射机、光学接收机、转台和信息处理系统等组成,激光器将电脉冲变成光脉冲发射出去,光接收机再把从目标反射回来的光脉冲还原成电脉冲,采集的数据精度高,得到与其他物体间准确的距离传感数据,通过激光雷达可以采集到精确的定位数据,提高输送机器人之间的连接准确性。通过设置多个激光雷达,可以将多个激光雷达的采集数据互为数据参考,修正采集数据的误差。还可以基于输送机器人中的某个部件如待连接部相对于多个激光雷达的位置,进而确定该待连接部与其他输送机器人的待连接部或与其他物体之间的准确距离,提高多个输送机器人的待连接部之间的距离传感数据的精确性。
在其中一个实施例中,行走机构包括多个由活动连接部件构成的可弯曲多足,可弯曲多足活动连接于承载机构。如图4所示,具体来说,行走机构110包括设置于承载机构内部的行走机构控制器1101和行走机构动力电池1102、以及与承载机构连接的可弯曲多足1103,行走机构控制器与可弯曲多足连接,控制器控制可弯曲多足协调运动,调节输送机器人的姿势,行走机构动力电池为行走机构的其他各部件提供动力。
在其中一个实施例中,第一连接部与第二连接部为电磁吸合部件,电磁吸合部件与承载机构之间设置有柔性底座。在实施例中,第一连接部为磁铁,第二连接部为铁块,柔性底座为橡胶柔性底座,以提高抗振性。
在其中一个实施例中,输送机器人还包括升降防护机构,升降防护机构设置于输送机构的主动轮轴承的两侧,与输送链板支撑机构连接。如图5和图6 所示,升降防护机构包括防护板1501、防护机构安装底座1502,防护机构驱动电机1503以及齿轮齿条升降机构1504,齿轮齿条升降机构1504与防护板1501连接,通过防护机构驱动电机1503带动齿轮齿条升降机构1504上下动作,从而控制防护板1501上下移动。
如图6所示,支撑机构的腔体内部还设置有用于测量输送链板倾角的加速度传感器1505,用于进行通信传输的5G通信模块1506,以及用于为输送机构提供电源的电源模块1507。
上述输送机器人,通过控制器对输送机器人的行走机构和定位机构进行通讯连接,控制多个输送机器人通过第一连接部和第二连接部连接,实现了输送机器人之间的准确可靠连接,通过多个输送机器人的自动组合连接,延长了输送机器人的运输长度,扩大了输送机器人的应用范围。
一种输送系统,包括服务器以及多个上述的输送机器人,服务器与输送机器人的控制器通讯连接,对多个输送机器人进行控制。
服务器对多个输送机器人的控制包括移动控制、连接控制、以及输送控制等。移动控制是指通过服务器控制输送机器人按照规划的路径移动的控制过程,连接控制是指通过服务器控制多个输送机器人进行连接的控制过程,输送控制是指通过服务器控制一个或多个连接好的输送机器人通过输送链板对物品进行输送的过程。通过服务器对多个输送机器人进行控制,控制多个输送机器人进行自动组合连接,延长了输送机器人的运输长度,扩大了输送机器人的应用范围,实现高效准确的统一控制。
在一个实施例中,如图7所示,提供了一种输送机器人连接控制方法,以该方法应用于图1所示的输送系统中的服务器为例进行说明,包括以下步骤:
步骤S210,接收输送任务,获取输送任务对应的目标连接部标识和连接匹配关系。
输送任务是指将物品从输送起点运输到输送目的地的任务数据,任务数据可以包括物品的数量,单个物品的体积,输送起点的位置信息以及输送目的地的位置信息等。输送任务可以利用单个或多个输送机器人来完成,具体来说,输送机器人的行走机构具体为可弯曲多足,在物品输送过程中,可以通过单个 输送机器人背负物品行走进行输送。也可以通过将多个输送机器人连接起来,通过设置于输送机器人的传送履带,将物品从输送起点运输至输送目的地。在实施例中,输送机器人设置有至少2个连接部,用于与其他输送机器人的连接部或者其他固定位置的连接部进行连接,固定位置的连接部可以是设置于输送起点的外部固定装置的连接部,待输送的物体可以从外部固定装置输送出来直接传输至连接的输送机器人传送履带上。连接匹配关系是指各个连接部之间的连接关系。连接匹配关系可以根据需要的输送机器人的数量以及处于空闲状态的各输送机器人的位置信息,基于各输送机器人的移动距离最短原则来建立。目标连接部是指当前需要控制连接的连接部,目标连接部是连接匹配关系中的其中一个匹配对象。例如,输送任务需要四个输送机器人分别为A、B、C、D,如图8所示,每个机器人有2个连接部,各机器人首尾连接,机器人之间的连接关系具体可以是输送机器人A的A1连接部与外部固定装置的连接部连接,输送机器人A的A2连接部与输送机器人B的B1连接部连接,输送机器人B的B2连接部与输送机器人C的C1连接部连接,输送机器人C的C2连接部与输送机器人D的D1连接部连接,当输送目的地有连接部时,输送机器人D的D2连接部与输送目的地的连接部连接,当输送目的地没有连接部时,输送机器人D的D2连接部不连接。连接匹配关系包括输送起点外部固定装置连接部-A1,A2-B1,B2-C1,C2-D1,D2-输送目的地连接部或D2-空闲。
步骤S220,根据连接匹配关系,确定目标输送机器人,以及目标输送机器人中与目标连接部标识匹配的待连接部标识。
当输送起点的外部固定装置的连接部为未连接状态时,目标连接部即为外部固定装置的连接部,目标输送机器人是与输送起点匹配的输送机器人,待连接部即为与输送起点匹配的输送机器人的多个连接部中,与目标连接部标识匹配的待连接部标识所表征的连接部。当外部固定装置的连接部为已连接状态时,目标输送机器人为与外部固定装置的连接部直接或间接连接的输送机器人,当输送机器人的连接部的数量为2个时,待连接部可以是与外部固定装置的连接部直接或间接连接的输送机器人中处于未连接状态的连接部。
步骤S230,获取并根据目标连接部的位置信息,确定目标输送机器人的目 的位置,并发送移动控制指令至目标输送机器人,移动控制指令用于控制目标输送机器人移动至目的位置。
目标连接部的位置信息可以通过设置于的输送机器人的定位机构采集的第一定位数据来获得,根据第一定位数据,目标输送机器人的定位机构与目标连接部的定位机构采集的定位数据的理论距离,确定目标输送机器人的目的位置,发送移动控制指令至目标输送机器人,同时接收目标输送机器人的定位机构实时采集的第二定位数据,服务器将第二定位数据和目的位置进行比较,实时修正移动控制指令,以使目标输送机器人向目的位置移动。
步骤S240,当侦测到目标输送机器人到达目的位置时,获取目标输送机器人的待连接部与目标连接部的相对位置信息。
当第二定位数据和目的位置重合时,即目标输送机器人到达目的位置。当目标输送机器人的所处环境为工地、矿山等地势非平坦的环境时,当目标输送机器人到达目的位置时,并不能保证待连接部与目标连接部能够准确衔接,此时还需要进一步确定相对位置,通过对目标输送机器人的可弯曲多足的姿态进行微调,以实现待连接部与目标连接部的准确衔接。具体来说,相对位置可以通过设置于连接部的传感设备采集的数据分析得到,例如,通过激光雷达测量两个连接部之间的距离,通过倾角传感器确定目标输送机器人的倾角,从而得到目标连接部与待连接部之间的角度差,进而确定需要调整的幅度,其中倾角传感器具体可以是设置于支撑结构的腔体内的加速度传感器。
步骤S250,根据相对位置信息,发送连接控制指令至目标输送机器人,连接控制指令用于控制目标输送机器人的待连接部与目标连接部连接。
连接控制指令具体可以包括目标输送机器人的高度调整指令、角度调整指令、水平位置调整指令等,用于对待连接部的位置进行微调,进一步地,输送机器人的连接部还可以设置有电磁吸合部件,通过发送电磁通电指令至输送机器人,使待连接部与目标连接部的电磁吸合部件通电吸合。
上述输送机器人连接控制方法,通过获取目标连接部和预设的连接匹配关系,确定目标输送机器人的用于与目标连接部连接的待连接部,以快速准确的找到连接对象。通过确定目标输送机器人对应的目的位置,驱使目标输送机器 人移动至目的位置,实现目标机器人的位置正确停放,确定目标输送机器人的待连接部与目标连接部的相对位置信息,然后发送连接控制指令至目标输送机器人,实现了目标输送机器人的待连接部与目标连接部准确可靠连接,通过多个输送机器人的自动组合连接,延长了输送机器人的运输长度,扩大了输送机器人的应用范围。
在其中一个实施例中,如图9所示,步骤S220包括步骤S310至步骤S350。
步骤S310,接收输送任务,根据输送任务对应的输送起点和输送目的地,确定输送路线。
步骤S320,当输送路线对应的路况变化数据满足预设的传送条件时,将设置于输送起点的外部固定装置的连接部作为目标连接部,其中,该连接部处于未连接状态。
步骤S330,根据待输送物品体积和输送路线对应的输送距离,确定输送机器人的连接布局。
步骤S340,根据输送机器人的连接布局以及获取的各处于离散状态的输送机器人的位置信息,选择待连接输送机器人。
步骤S350,根据各待连接输送机器人的位置信息,基于距离最短原则,建立外部固定装置的连接部以及各待连接输送机器人的连接部的连接匹配关系。
根据接收的输送任务,可以确定输送起点和输送目的地,将输送起点与输送目的地的连线作为输送线路。由于环境的差异性,并不是所有的输送线路都可以通过让各输送机器人的传送履带顺利连接进行传送的,例如,当两个传输机器人所处位置的地势高低差异,超过传输机器人的可调节范围,不能完成连接部的连接时,可以判断输送路线对应的路况变化数据不满足预设的传送条件,当输送路线对应的路况变化数据可以使各个输送机器人的连接部顺利连接,即满足预设的传送条件,获取设置于输送起点的外部固定装置的连接部的连接状态信息,当该连接状态信息为处于未连接状态时,将该连接部作为目标连接部,以使输送机器人连接至该目标连接部。由于输送机器人的传送履带的宽度是固定的,当待输送物品的体积过大时,若使用单个输送机器人进行传送可能会由于待输送物品的重心不稳,导致待输送物品存在从输送机器人的传送履带上掉 落的风险,此时可以将输送机器人的连接布局设置为双排或多排输送机器人并列连接,具体连接方式如图10所示。根据单个输送机器人的可传送距离,以及输送路线对应的输送距离,确定单排连接需要的输送机器人的数量,根据单排机器人的数量以及所需要的排数,确定输送机器人的连接布局。获取处于离散状态的输送机器人构成的输送机器人集合,根据输送机器人的连接布局以及获取的输送机器人集合中各输送机器人的位置信息,从输送机器人集合中选择连接布局对应数量且与输送线路最近的待连接输送机器人,然后基于距离最短原则,建立输送起点的外部固定装置的连接部以及各待连接输送机器人的连接部的连接匹配关系。
在其中一个实施例中,如图11所示,步骤S310之后,还包括步骤S410至步骤S440。
步骤S410,当输送路线对应的路况变化数据不满足预设的传送条件时,确定用于背负待输送物体的输送机器人。
步骤S420,发送移动控制指令至确定的输送机器人,移动控制指令用于控制输送机器人移动至输送起点。
步骤S430,当侦测到输送机器人背负起待输送物体时,发送背负移动指令至输送机器人,背负移动指令用于控制输送机器人背负待输送物体移动至输送目的地。
当输送路线对应的路况变化数据不满足预设的传送条件即不能让处于输送线路上的各个输送机器人连接部成功连接或成功连接但无法完成传送时,此时,只能通过输送机器人背负待输送物品的方式来运输,如图12所示。具体来说,首先需要确定用于背负待输送物体的输送机器人,完成背负待输送物体的背负任务的输送机器人可以通过距离最短原则来确定。发送移动控制指令至确定的输送机器人,以使输送机器人移动至输送起点,当待输送物体体积较大时,用于完成背负任务的输送机器人可以为多个,如图13所示,可以通过多个输送机器人的连接来背负该待输送物体。当侦测到输送机器人背负起待输送物体时,发送防护指令至输送机器人,控制输送机器人升起携带的护栏结构,以防在输送机器人在移动过程中,由于路面的颠簸,导致待输送物品掉落,最后,发送 背负移动指令至输送机器人,以使输送机器人背负待输送物体移动至输送目的地。
在其中一个实施例中,如图14所示,步骤S250之后还包括步骤S510至步骤S530。
步骤S510,获取目标输送机器人中处于未连接状态的连接部的连接部标识。
步骤S520,当连接匹配关系中存在与连接部标识匹配的待连接部标识时,将连接部标识对应的连接部更新为当前的目标连接部。
步骤S530,当连接匹配关系中不存在与连接部标识匹配的待连接部标识时,反馈输送机器人连接任务完成消息。
当目标输送机器人完成待连接部与目标连接部的连接时,判断是否需要进一步进行输送机器人的连接,通过获取目标输送机器人中处于未连接状态的连接部的连接部标识,然后根据建立的连接匹配关系,确定是否有与该连接部标识匹配的连接部标识,当连接匹配关系中存在与连接部标识匹配的待连接部标识时,将连接部标识对应的连接部更新为当前的目标连接部,然后根据连接匹配关系,更新目标输送机器人,依次将各个输送机器人连接起来,当连接匹配关系中不存在与连接部标识匹配的待连接部标识或目标输送机器人中不存在处于未连接状态的连接部时,反馈输送机器人连接任务完成消息。
在其中一个实施例中,如图15所示,步骤S240包括步骤S610至步骤S630。
步骤S610,当侦测到目标输送机器人到达目的位置时,获取目标输送机器人的距离传感数据和倾角传感数据。
步骤S620,根据距离传感数据,确定目标输送机器人的待连接部与目标连接部的相对水平距离和相对高度距离。
步骤S630,获取目标连接部的倾角数据,根据倾角传感数据和目标连接部的倾角数据,确定目标输送机器人的待连接部与目标连接部的相对倾角幅度。
目标输送机器人的距离传感数据和倾角传感数据具体可以是设置于输送机器人的激光雷达和倾角传感器采集的数据,通过距离传感数据,通过建立的参考坐标系,根据距离传感数据在参考坐标系中的方向和大小,确定目标输送机器人的待连接部与目标连接部的相对水平距离和相对高度距离。通过获取目标 连接部的倾角数据,分别确定倾角传感数据和目标连接部的倾角数据相对于同一水平面的倾角方向和角度,确定目标输送机器人的待连接部与目标连接部的相对倾角幅度。
在其中一个实施例中,如图16所示,步骤S250包括步骤S710至步骤S730。
步骤S710,根据相对倾角幅度,发送角度调整指令至目标输送机器人,角度调整指令用于使可弯曲四足异步调整不同弯曲程度,调整目标输送机器人的待连接部的倾角。
步骤S720,根据相对高度距离,发送高度调整指令至目标输送机器人,高度调整指令用于使可弯曲多足同步调整相同弯曲程度,调整目标输送机器人的待连接部的高度。
步骤S730,根据相对水平距离,发送位移调整指令至目标输送机器人,位移调整指令用于使可弯曲多足异步移动相同距离,将目标输送机器人的待连接部连接至目标连接部。
在实施例中,角度调整指令、高度调整指令以及位移调整指令的发送顺序可以是同时发送,也可以是逐个依次发送。
在其他实施例中,还可以根据相对倾角幅度、相对高度距离以及相对水平距离,计算综合调整参数,并根据该综合调整参数发送调整指令至目标输送机器人,以使输送机器人通过调整可弯曲多足,将目标输送机器人的待连接部连接至目标连接部。
在其中一个实施例中,输送机器人的连接部包括第一电磁吸合部件和第二电磁吸合部件;根据相对水平距离,发送位移调整指令至目标输送机器人之后,还包括:
发送第一电磁通电指令至待连接部的第一电磁吸合部件,发送第二电磁通电指令至目标连接部的第二电磁吸合部件,第一电磁通电指令与第二电磁通电指令用于使第一电磁吸合部件和第二电磁吸合部件产生极性相反的电磁吸力并吸合。在实施例中,输送起点和输送目的地的外部固定装置的连接部可以设置有材质为铁的吸合部件,吸合部件还具有橡胶柔性底座,当目标输送机器人的电吸合装置通电时,可以与该吸合部件直接吸合。通过上述方式,可以提高抗 振动性能。
应该理解的是,虽然图7、9、11、14-16的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图7、9、11、14-16中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图17所示,提供了一种输送机器人连接控制装置,包括:
任务接收模块810,用于接收输送任务,获取输送任务对应的目标连接部标识和连接匹配关系。
目标确定模块820,用于根据连接匹配关系,确定目标输送机器人,以及目标输送机器人中与目标连接部标识匹配的待连接部标识。
指令发送模块830,用于获取并根据目标连接部的位置信息,确定目标输送机器人的目的位置,并发送移动控制指令至目标输送机器人,移动控制指令用于控制目标输送机器人移动至目的位置。
位置获取模块840,用于当侦测到目标输送机器人到达目的位置时,获取目标输送机器人的待连接部与目标连接部的相对位置信息。
连接控制模块850,用于根据相对位置信息,发送连接控制指令至目标输送机器人,连接控制指令用于控制目标输送机器人的待连接部与目标连接部连接。
在其中一个实施例中,任务接收模块,还用于接收输送任务,根据输送任务对应的输送起点和输送目的地,确定输送路线,当输送路线对应的路况变化数据满足预设的传送条件时,将设置于输送起点的外部固定装置的处于未连接状态的连接部作为目标连接部,根据待输送物品体积和输送路线对应的输送距离,确定输送机器人的连接布局,根据输送机器人的连接布局以及获取的各处于离散状态的输送机器人的位置信息,选择待连接输送机器人,根据各待连接 输送机器人的位置信息,基于距离最短原则,建立外部固定装置的连接部以及各待连接输送机器人的连接部的连接匹配关系。
在其中一个实施例中,输送机器人连接控制装置还包括背负输送控制模块,用于当输送路线对应的路况变化数据不满足预设的传送条件时,确定用于背负待输送物体的输送机器人,发送移动控制指令至确定的输送机器人,移动控制指令用于控制输送机器人移动至输送起点,当侦测到输送机器人背负起待输送物体时,发送背负移动指令至输送机器人,背负移动指令用于控制输送机器人背负待输送物体移动至输送目的地。
在其中一个实施例中,输送机器人连接控制装置还包括数据更新模块,用于获取目标输送机器人中处于未连接状态的连接部的连接部标识,当连接匹配关系中存在与连接部标识匹配的待连接部标识时,将连接部标识对应的连接部更新为当前的目标连接部,当连接匹配关系中不存在与连接部标识匹配的待连接部标识时,反馈输送机器人连接任务完成消息。
在其中一个实施例中,位置获取模块,还用于当侦测到目标输送机器人到达目的位置时,获取目标输送机器人的距离传感数据和倾角传感数据,根据距离传感数据,确定目标输送机器人的待连接部与目标连接部的相对水平距离和相对高度距离,获取目标连接部的倾角数据,根据倾角传感数据和目标连接部的倾角数据,确定目标输送机器人的待连接部与目标连接部的相对倾角幅度。
在其中一个实施例中,输送机器人设置有可弯曲多足;连接控制模块850,还用于根据相对倾角幅度,发送角度调整指令至目标输送机器人,角度调整指令用于使可弯曲四足异步调整不同弯曲程度,调整目标输送机器人的待连接部的倾角,根据相对高度距离,发送高度调整指令至目标输送机器人,高度调整指令用于使可弯曲多足同步调整相同弯曲程度,调整目标输送机器人的待连接部的高度,根据相对水平距离,发送位移调整指令至目标输送机器人,位移调整指令用于使可弯曲多足异步移动相同距离,将目标输送机器人的待连接部连接至目标连接部。
在其中一个实施例中,输送机器人的连接部包括第一电磁吸合部件和第二电磁吸合部件;连接控制模块,还用于发送第一电磁通电指令至待连接部的第 一电磁吸合部件,发送第二电磁通电指令至目标连接部的第二电磁吸合部件,第一电磁通电指令与第二电磁通电指令用于使第一电磁吸合部件和第二电磁吸合部件产生极性相反的电磁吸力并吸合。
上述输送机器人连接控制装置,获取目标连接部和预设的连接匹配关系,确定目标输送机器人用于与目标连接部连接的待连接部,以快速准确的找到连接对象。通过确定目标输送机器人对应的目的位置,驱使目标输送机器人移动至目的位置,实现目标机器人的位置正确停放,确定目标输送机器人的待连接部与目标连接部的相对位置信息,然后发送连接控制指令至目标输送机器人,实现了目标输送机器人的待连接部与目标连接部准确可靠连接,通过多个输送机器人的自动组合连接,延长了输送机器人的运输长度,扩大了输送机器人的应用范围。
关于输送机器人连接控制装置的具体限定可以参见上文中对于输送机器人连接控制方法的限定,在此不再赘述。上述输送机器人连接控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图18所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储输送机器人连接控制数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种输送机器人连接控制方法。
本领域技术人员可以理解,图18中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件, 或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,该存储器存储有计算机程序,该处理器执行计算机程序时实现上述各实施例中的输送机器人连接控制方法。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述各实施例中的输送机器人连接控制方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种输送机器人,其特征在于,包括控制器、行走机构、承载机构、输送机构、定位机构以及连接相邻输送机器人的连接部;
    所述行走机构与所述承载机构活动连接,所述定位机构设置于所述承载机构,所述输送机构设置于所述承载机构上部,所述控制器设置于所述承载机构的腔体内,所述控制器分别与所述行走机构、所述输送机构以及所述定位机构通讯连接,其中,所述连接部包括分别设置于所述承载机构相对的两端的第一连接部和第二连接部,所述第一连接部与所述第二连接部互为可连接部件。
  2. 根据权利要求1所述的输送机器人,其特征在于,所述输送机构包括环形的输送链板、输送链板支撑机构、输送链板驱动电机、输送链板涨紧轮以及主动轮;
    所述输送链板支撑机构设置于所述输送链板两侧、与所述承载机构上部连接,所述主动轮的轴承和所述输送链板涨紧轮的轴承分别与所述输送链板支撑机构连接,所述主动轮以及所述输送链板涨紧轮的链轮分别嵌套于相邻输送链板之间,所述输送链板驱动电机与所述主动轮连接。
  3. 根据权利要求1所述的输送机器人,其特征在于,所述行走机构包括多个由活动连接部件构成的可弯曲多足,所述可弯曲多足活动连接于所述承载机构。
  4. 根据权利要求1所述的输送机器人,其特征在于,所述第一连接部与所述第二连接部为电磁吸合部件,所述电磁吸合部件与所述承载机构之间设置有柔性底座。
  5. 根据权利要求1所述的输送机器人,其特征在于,所述输送机器人还包括升降防护机构,所述升降防护机构设置于所述输送机构的主动轮轴承的两侧,与所述输送机构的输送链板支撑机构连接。
  6. 一种输送系统,其特征在于,包括服务器以及多个权利要求1-5任一项所述的输送机器人,所述服务器与所述输送机器人的控制器通讯连接,对多个所述输送机器人进行控制。
  7. 一种输送机器人连接控制方法,应用于权利要求6所述的输送机器人系统,其特征在于,所述方法包括:
    接收输送任务,获取所述输送任务对应的目标连接部标识和连接匹配关系;
    根据所述连接匹配关系,确定目标输送机器人、以及所述目标输送机器人中与所述目标连接部标识匹配的待连接部标识;
    获取并根据目标连接部的位置信息,确定所述目标输送机器人的目的位置,并发送移动控制指令至所述目标输送机器人,所述移动控制指令用于控制所述目标输送机器人移动至所述目的位置;
    当侦测到所述目标输送机器人到达所述目的位置时,获取所述目标输送机器人的待连接部与所述目标连接部的相对位置信息;
    根据所述相对位置信息,发送连接控制指令至所述目标输送机器人,所述连接控制指令用于控制所述目标输送机器人的待连接部与所述目标连接部连接。
  8. 根据权利要求7所述的方法,其特征在于,所述接收输送任务,获取所述输送任务对应的目标连接部标识和连接匹配关系包括:
    接收输送任务,根据所述输送任务对应的输送起点和输送目的地,确定输送路线;
    当所述输送路线对应的路况变化数据满足预设的传送条件时,将设置于所述输送起点的外部固定装置的连接部作为目标连接部,其中,所述外部固定装置的连接部处于未连接状态;
    根据待输送物品体积和所述输送路线对应的输送距离,确定输送机器人的连接布局;
    根据所述输送机器人的连接布局以及获取的各处于离散状态的输送机器人的位置信息,选择待连接输送机器人;
    根据各所述待连接输送机器人的位置信息,基于距离最短原则,建立所述外部固定装置的连接部以及各所述待连接输送机器人的连接部的连接匹配关系。
  9. 据权利要求8所述的方法,其特征在于,所述接收输送任务,根据所述输送任务中对应的输送起点和输送目的地,确定输送路线之后,还包括:
    当所述输送路线对应的路况变化数据不满足预设的传送条件时,确定用于 背负待输送物体的输送机器人;
    发送移动控制指令至所述用于背负待输送物体的输送机器人,所述移动控制指令用于控制所述输送机器人移动至所述输送起点;
    当侦测到所述输送机器人背负起所述待输送物体时,发送背负移动指令至所述输送机器人,所述背负移动指令用于控制所述输送机器人背负所述待输送物体移动至所述输送目的地。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述相对位置信息,发送连接控制指令至所述目标输送机器人之后,还包括:
    获取所述目标输送机器人中处于未连接状态的连接部对应的连接部标识;
    当所述连接匹配关系中存在与所述连接部标识匹配的待连接部标识时,将所述连接部标识对应的连接部更新为当前的目标连接部;
    当所述连接匹配关系中不存在与所述连接部标识匹配的待连接部标识时,反馈输送机器人连接任务完成消息至发送所述输送任务的终端。
  11. 根据权利要求7所述的方法,其特征在于,所述当侦测到所述目标输送机器人到达所述目的位置时,获取所述目标输送机器人的待连接部与所述目标连接部的相对位置信息包括:
    当侦测到所述目标输送机器人到达所述目的位置时,获取所述目标输送机器人的距离传感数据和倾角传感数据;
    根据所述距离传感数据,确定所述目标输送机器人的待连接部与所述目标连接部的相对水平距离和相对高度距离;
    获取目标连接部的倾角数据,根据所述倾角传感数据和所述目标连接部的倾角数据,确定目标输送机器人的待连接部与所述目标连接部的相对倾角幅度。
  12. 根据权利要求11所述的方法,其特征在于,所述输送机器人设置有可弯曲多足;所述根据所述相对位置信息,发送连接控制指令至所述目标输送机器人包括:
    根据所述相对倾角幅度,发送角度调整指令至所述目标输送机器人,所述角度调整指令用于使所述可弯曲四足异步调整不同弯曲程度,调整所述目标输送机器人的待连接部的倾角;
    根据所述相对高度距离,发送高度调整指令至所述目标输送机器人,所述高度调整指令用于使所述可弯曲多足同步调整相同弯曲程度,调整所述目标输送机器人的待连接部的高度;
    根据所述相对水平距离,发送位移调整指令至所述目标输送机器人,所述位移调整指令用于使所述可弯曲多足异步移动相同距离,将所述目标输送机器人的待连接部连接至所述目标连接部。
  13. 根据权利要求11所述的方法,其特征在于,所述输送机器人的连接部包括第一电磁吸合部件和第二电磁吸合部件;所述根据所述相对水平距离,发送位移调整指令至所述目标输送机器人之后,还包括:
    发送第一电磁通电指令至所述待连接部的第一电磁吸合部件,发送第二电磁通电指令至所述目标连接部的第二电磁吸合部件,所述第一电磁通电指令与所述第二电磁通电指令用于使所述第一电磁吸合部件和所述第二电磁吸合部件产生极性相反的电磁吸力并吸合。
  14. 一种输送机器人连接控制装置,其特征在于,所述装置包括:
    任务接收模块,用于接收输送任务,获取所述输送任务对应的目标连接部标识和连接匹配关系;
    目标确定模块,用于根据所述连接匹配关系,确定目标输送机器人,以及所述目标输送机器人中与所述目标连接部标识匹配的待连接部标识;
    指令发送模块,用于获取并根据目标连接部的位置信息,确定所述目标输送机器人的目的位置,并发送移动控制指令至所述目标输送机器人,所述移动控制指令用于控制所述目标输送机器人移动至所述目的位置;
    位置获取模块,用于当侦测到所述目标输送机器人到达所述目的位置时,获取所述目标输送机器人的待连接部与所述目标连接部的相对位置信息;
    连接控制模块,用于根据所述相对位置信息,发送连接控制指令至所述目标输送机器人,所述连接控制指令用于控制所述目标输送机器人的待连接部与所述目标连接部连接。
  15. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求7至13中任 一项所述方法的步骤。
  16. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求7至13中任一项所述的方法的步骤。
PCT/CN2021/079056 2020-03-11 2021-03-04 输送机器人、输送系统以及输送机器人连接控制方法 WO2021179984A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010165888.XA CN113387117A (zh) 2020-03-11 2020-03-11 输送机器人、输送系统以及输送机器人连接控制方法
CN202010165888.X 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021179984A1 true WO2021179984A1 (zh) 2021-09-16

Family

ID=77615361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079056 WO2021179984A1 (zh) 2020-03-11 2021-03-04 输送机器人、输送系统以及输送机器人连接控制方法

Country Status (2)

Country Link
CN (1) CN113387117A (zh)
WO (1) WO2021179984A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2356383A (en) * 1999-10-15 2001-05-23 Red Ledge Ltd Sorting scannable articles
EP1407989A1 (de) * 2002-10-11 2004-04-14 Siemens Aktiengesellschaft Fördertechnische Anlage, insbesondere High-Speed-Strecke in Gepäcksortieranlagen
CN106315150A (zh) * 2016-09-05 2017-01-11 广州市丹爵通讯科技有限公司 一种具有自检功能的货物传输系统
CN208560686U (zh) * 2018-07-26 2019-03-01 嘉兴金龙德输送设备有限公司 一种货物输送衔接机器人
CN209922169U (zh) * 2019-03-08 2020-01-10 武汉家家乐饲料股份有限公司 一种传送装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2412815A1 (fr) * 2002-11-27 2004-05-27 Martin Deschambault Plate-forme robotique mobile et modulaire offrant plusieurs modes de locomotion pour effectuer des mouvements evolues en trois dimensions
CN205574936U (zh) * 2016-01-29 2016-09-14 中民筑友有限公司 一种预制件运输装置
CN205574940U (zh) * 2016-01-29 2016-09-14 中民筑友有限公司 一种预制件运输装置
CN206705133U (zh) * 2017-05-08 2017-12-05 海汇集团有限公司 Agv智能升降运输平台
CN108116853B (zh) * 2017-11-29 2020-04-17 中车长春轨道客车股份有限公司 一种传送装置
CN108773630A (zh) * 2018-06-14 2018-11-09 广东友力智能科技有限公司 一种配置传输和机器人功能的智能输送车
CN209177372U (zh) * 2018-11-20 2019-07-30 普罗格智芯科技(湖北)有限公司 一种人机协同全流程柔性分拣系统
CN109533850B (zh) * 2019-01-15 2020-10-13 贵州工程应用技术学院 一种升降式搬运机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2356383A (en) * 1999-10-15 2001-05-23 Red Ledge Ltd Sorting scannable articles
EP1407989A1 (de) * 2002-10-11 2004-04-14 Siemens Aktiengesellschaft Fördertechnische Anlage, insbesondere High-Speed-Strecke in Gepäcksortieranlagen
CN106315150A (zh) * 2016-09-05 2017-01-11 广州市丹爵通讯科技有限公司 一种具有自检功能的货物传输系统
CN208560686U (zh) * 2018-07-26 2019-03-01 嘉兴金龙德输送设备有限公司 一种货物输送衔接机器人
CN209922169U (zh) * 2019-03-08 2020-01-10 武汉家家乐饲料股份有限公司 一种传送装置

Also Published As

Publication number Publication date
CN113387117A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN107922119B (zh) 货架配置系统、搬运机器人以及货架配置方法
JP7199003B2 (ja) 搬送装置、受信機能付き搬送装置、搬送システム、上位システム、搬送装置の制御方法、及びプログラム
JP2019087073A (ja) 移動式マニピュレータ、移動式マニピュレータの制御方法及びプログラム
US11378968B2 (en) Autonomous ground vehicle (AGV) cart for item distribution
US20230158551A1 (en) Sorting Vehicle, Goods Sorting System, and Goods Sorting Method
CN206193534U (zh) 一种运载装置以及库存物品管理系统
US20200103915A1 (en) Determining Changes in Marker Setups for Robot Localization
EP2869157A2 (en) Mobile unit and method of moving mobile unit
KR102281588B1 (ko) 운송 로봇의 실내자율주행 시스템
KR20200138486A (ko) 하역장치
WO2021179984A1 (zh) 输送机器人、输送系统以及输送机器人连接控制方法
US11087492B2 (en) Methods for identifying location of automated guided vehicles on a mapped substrate
WO2019166027A1 (zh) 用于搬运设备的定位方法、装置、搬运设备及存储介质
ITTO20080489A1 (it) Sistema di guida a infrarossi per carrelli a guida automatica
JP7500484B2 (ja) 無人搬送車、無人搬送システム及び搬送プログラム
CN113733043A (zh) 一种自动化递送机器人及其自动驱动方法
US20240231390A9 (en) Automated Recovery Assistance for Incapacitated Mobile Robots
JP7409264B2 (ja) 運搬システム、運搬方法、及びプログラム
JP7272451B2 (ja) 搬送制御方法、搬送制御装置、及び搬送制御システム
KR20220106031A (ko) 무인 비행체와 자율 주행 로봇을 이용한 물품 처리 방법 및 이를 위한 장치
CN113460558A (zh) 一种室外可移动货物搬运机器人
JP2019214122A (ja) 作業システム
CN115735133A (zh) 工业车辆距离和范围测量设备的校准
JP2020193081A (ja) ティーチングシステム、搬送システム、及びティーチングデータ生成方法
US20240131709A1 (en) Guided Travel Mode with Dynamic Force Feedback for Mobile Robots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767007

Country of ref document: EP

Kind code of ref document: A1