WO2021179976A1 - 电子设备、无线通信方法和计算机可读存储介质 - Google Patents

电子设备、无线通信方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2021179976A1
WO2021179976A1 PCT/CN2021/078972 CN2021078972W WO2021179976A1 WO 2021179976 A1 WO2021179976 A1 WO 2021179976A1 CN 2021078972 W CN2021078972 W CN 2021078972W WO 2021179976 A1 WO2021179976 A1 WO 2021179976A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
interfered
interference
side device
network side
Prior art date
Application number
PCT/CN2021/078972
Other languages
English (en)
French (fr)
Inventor
周明拓
刘敏
Original Assignee
索尼集团公司
周明拓
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 周明拓 filed Critical 索尼集团公司
Priority to CN202180010056.3A priority Critical patent/CN114982353A/zh
Publication of WO2021179976A1 publication Critical patent/WO2021179976A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the embodiments of the present disclosure generally relate to the field of wireless communication, and specifically relate to electronic devices, wireless communication methods, and computer-readable storage media. More specifically, the present disclosure relates to an electronic device as a network-side device in a wireless communication system, a wireless communication method executed by the network-side device in a wireless communication system, and a computer-readable storage medium.
  • NTN Non-terrestrial network
  • TN Transmission-G network
  • an Integrated Satellite Terrestrial Network is proposed, the basic feature of which is that NTN and TN share the same frequency band.
  • ISTN can improve spectrum utilization and optimize scarce low-frequency spectrum resources. Because NTN and TN use the same frequency band, it will inevitably cause interference between the two networks.
  • NTN-UE user equipment in NTN
  • NTN-gNB network side equipment in NTN
  • TN-gNB network side equipment in TN
  • TN-gNB network side equipment in TN
  • TN-gNB network side equipment in TN
  • the purpose of the present disclosure is to provide an electronic device, a wireless communication method, and a computer-readable storage medium to perform interference coordination in a wireless communication system including NTN to reduce or avoid uplink interference.
  • an electronic device including a processing circuit configured to determine an interfered area of a user equipment, the interfered area including an area interfered by uplink information sent by the user equipment; Determine the interfered network side device according to the interfered area of the user equipment; generate an interference impact information table, the interference impact information table including the interference to the interfered network side device when the user equipment uses various resources The level of interference caused; and sending the interference impact information table to the interfered network side device.
  • a wireless communication method including: determining an interfered area of a user equipment, where the interfered area includes an area interfered by uplink information sent by the user equipment; The interfered area of the device determines the interfered network side device; and generates an interference impact information table, the interference impact information table including information on the interference caused to the interfered network side device when the user equipment uses various resources Level; and sending the interference impact information table to the interfered network side device.
  • a computer-readable storage medium including executable computer instructions that, when executed by a computer, cause the computer to execute the wireless communication method according to the present disclosure.
  • the electronic device can determine the interfered area of the user equipment, and determine the network side device that is interfered, thereby generating an interference impact information table, which is included in the user equipment The level of interference caused to the interfered network-side equipment when each resource is used. In this way, the interfered network side device can give feedback to the interference impact information table, so that the electronic device can perform interference coordination according to the interference impact information table, thereby reducing or avoiding the uplink information from the user equipment causing other network side devices. interference.
  • Fig. 1 is a schematic diagram showing an application scenario according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing an example of the configuration of an electronic device according to an embodiment of the present disclosure
  • FIG. 3 is a diagram showing an example of an interference influence information table according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing that a network-side device in an interfered area is interfered according to an embodiment of the present disclosure
  • FIG. 5 is a diagram showing an example of feedback information according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram showing an example of feedback information according to an embodiment of the present disclosure.
  • FIG. 7 is a signaling flowchart showing an interference coordination process according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating a scenario in which a ground station assists a non-ground network side device to perform an interference coordination process according to an embodiment of the present disclosure
  • FIG. 9 is a signaling flow chart showing that a ground station assists a non-ground network side device to perform an interference coordination process according to an embodiment of the present disclosure
  • FIG. 10 is a flowchart showing a wireless communication method performed by an electronic device according to an embodiment of the present disclosure
  • Fig. 11 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B).
  • Fig. 12 is a block diagram showing a second example of the schematic configuration of an eNB.
  • Example embodiments are provided so that this disclosure will be thorough and will fully convey its scope to those skilled in the art. Numerous specific details such as examples of specific components, devices, and methods are described to provide a detailed understanding of the embodiments of the present disclosure. It will be obvious to those skilled in the art that specific details do not need to be used, the example embodiments can be implemented in many different forms, and none of them should be construed as limiting the scope of the present disclosure. In some example embodiments, well-known processes, well-known structures, and well-known technologies are not described in detail.
  • Fig. 1 is a schematic diagram showing an application scenario of the present disclosure.
  • NTN-gNB provides services for NTN-UE1 and NTN-UE2, and there are multiple TN-gNBs on the ground, which provide services for TN-UE.
  • TN-gNB near NTN-UE1 may receive uplink information from TN-UE at the same frequency, so TN-gNB may be The information from the NTN-UE1 is received, and the information is interference information for the TN-gNB.
  • TN-gNB near NTN-UE2 may receive uplink information from TN-UE at the same frequency, so TN- The gNB may receive information from the NTN-UE2, which is interference information for the TN-gNB.
  • the present disclosure proposes an electronic device in a wireless communication system, a wireless communication method executed by the electronic device in the wireless communication system, and a computer-readable storage medium for such a scenario to perform interference coordination in a wireless communication system including NTN To reduce or avoid uplink interference.
  • FIG. 1 shows an example of TN-gNB being interfered by the uplink information in the NTN, it is not only the network side equipment in the TN, but the network side equipment in the NTN may also be subjected to such interference.
  • the network side equipment on the satellite equipment in the low or medium orbit in the NTN may be interfered by the uplink information from the NTN-UE1 or NTN-UE2 to the NTN-gNB located on the satellite equipment as shown in FIG. 1.
  • the wireless communication system according to the present disclosure may be a 5G NR (New Radio) communication system. Further, the wireless communication system according to the present disclosure may include NTN. That is, the wireless communication system according to the present disclosure may include one or more non-terrestrial network-side devices and one or more user equipment serviced by the non-terrestrial network-side devices. Preferably, the wireless communication system according to the present disclosure may include NTN and TN. That is, the wireless communication system according to the present disclosure may include one or more non-terrestrial network-side equipment, one or more terrestrial network-side equipment, one or more user equipment served by the non-terrestrial network-side equipment, and One or more user equipments that the network side equipment provides services.
  • NTN New Radio
  • the network-side equipment may be any type of base station equipment, for example, it may be an eNB or a gNB (base station in the 5th generation communication system).
  • the ground network side device may be a network side device located on the ground.
  • the non-terrestrial network side device may be a network side device located on a satellite device.
  • Satellite equipment may include, for example, GEO (Geosynchronous Orbit) satellite equipment, LEO (Low Earth Orbit, near earth orbit) satellite equipment, MEO (Medium Earth Orbit, medium earth orbit) satellite equipment, HEO (Highly Elliptical Orbiting, high Elliptical orbit) satellite equipment and HAPS (High Altitude Platform Station).
  • GEO Global System forbit
  • LEO Low Earth Orbit, near earth orbit
  • MEO Medium Earth Orbit, medium earth orbit
  • HEO Highly Elliptical Orbiting, high Elliptical orbit
  • HAPS High Altitude Platform Station
  • non-terrestrial network side equipment it can be a transparent base station equipment, that is, it only has the function of receiving and sending information, and does not have the ability to process data.
  • the transparent base station receives the information, it must be forwarded to the Other equipment with processing capabilities (for example, processing equipment located on the ground) performs data processing.
  • the base station equipment in the NTN can also be a non-transparent base station equipment, that is, it has the capability of data processing.
  • the user equipment may be a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device) ).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 2 is a block diagram showing an example of the configuration of an electronic device 200 according to an embodiment of the present disclosure.
  • the electronic device 200 here can be used as a network side device in a wireless communication system.
  • the electronic device 200 may be a non-terrestrial network-side device or a terrestrial network-side device.
  • the electronic device 200 may include an area determination unit 210, a victim device determination unit 220, a generation unit 230, and a communication unit 240.
  • each unit of the electronic device 200 may be included in the processing circuit.
  • the electronic device 200 may include one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be implemented by the same physical entity.
  • the area determination unit 210 may determine the interfered area of the user equipment.
  • the interfered area is for the user equipment. That is, the area determining unit 210 may determine the interfered area of the user equipment for any user equipment for which the electronic device 200 provides services.
  • the interfered area refers to an area that is interfered by the uplink information sent by the user equipment.
  • the interfered device determining unit 220 may determine the interfered network side device according to the interfered area of the user equipment.
  • the generating unit 230 may generate an interference impact information table, which includes the level of interference caused to the interfered network side device when the user equipment uses various resources.
  • the electronic device 200 may send the interference influence information table to the interfered network side device through the communication unit 240.
  • the interfered area of the user equipment can be determined, and the network side device that is interfered can be determined, thereby generating the interference impact information table.
  • the interfered network side device can give feedback to the interference impact information table, so that the electronic device can perform interference coordination according to the interference impact information table, thereby reducing or avoiding the uplink information from the user equipment causing other network side devices. interference.
  • the interfered area of the user equipment refers to an area that is interfered by the uplink information sent by the user equipment.
  • the interfered area refers to an area within a predetermined range around the user equipment.
  • the destination of the uplink information sent by the user equipment is a non-terrestrial network side device.
  • the destination of the uplink information sent by the user equipment may be the electronic device 200.
  • the destination of the uplink information sent by the user equipment may be a non-terrestrial network side device that will provide services for the user equipment.
  • the area around NTN-UE1 shown by the oval area represents the interfered area of NTN-UE1
  • the area around NTN-UE2 shown by the oval area represents the interfered area of NTN-UE2.
  • the area determining unit 210 may determine the interfered area of the user equipment according to the location, beam, and transmission power of the user equipment.
  • the area determining unit 210 may determine the location of the interfered area of the user equipment according to the location of the user equipment, determine the direction of the interfered area relative to the location of the user equipment according to the beam direction of the user equipment sending uplink information, and determine the direction of the interfered area relative to the location of the user equipment according to the user equipment transmission.
  • the transmit power of the uplink information determines the size of the interfered area.
  • the electronic device 200 may send request information to the user equipment through the communication unit 240 to request location information, beam radiation characteristic information, and transmission power information of the user equipment. Further, the electronic device 200 may receive the position information, the beam radiation characteristic information, and the transmission power information sent by the user equipment in response to the request information from the user equipment through the communication unit 240.
  • the electronic device 200 may determine a user equipment that needs to perform interference coordination. For example, the electronic device 200 may send request information to all user equipments within its coverage area to perform interference coordination for all user equipments. Optionally, the electronic device 200 may only send the request information to the user equipment in the area with relatively large interference to perform interference coordination for this part of the user equipment. Optionally, since the user equipment is being or will be served by non-terrestrial network-side equipment, and the movement of the non-terrestrial network-side equipment is periodic, the electronic device 200 may determine the area with relatively large interference based on historical information, thereby comparing the interference User equipment in a large area sends request information.
  • the interfered area determined by the area determining unit 210 may be a two-dimensional area or a three-dimensional area.
  • the area determining unit 210 may determine an area in a predetermined range around the user equipment on the ground as the interfered area; when the interfered area is a three-dimensional area, the area determining unit 210 may determine that it is located in a three-dimensional space The area in the predetermined range around the user equipment in, is regarded as the interfered area.
  • the interfered device determining unit 220 may determine the network side device in the interfered area as the interfered network side device .
  • the interfered device determining unit 220 may determine the ground network side device in the interfered area as the interfered network side device. That is to say, only the interference of the uplink information sent from the user equipment to the non-terrestrial network-side equipment to the terrestrial network-side equipment is considered.
  • the interfered device determining unit 220 may determine the ground network side device and the non-terrestrial network side device in the interfered area as the interfered network side device.
  • the uplink information sent from the user equipment to the non-terrestrial network side equipment to the terrestrial network side equipment may cause interference to MEO or LEO.
  • the interference impact information table generated by the generating unit 230 includes the level of interference caused to the interfered network side device when the user equipment uses each resource.
  • the interference impact information table includes a mapping relationship between each of the multiple resources used by the user equipment and the level of interference caused to the interfered network side device when the user equipment uses the resource.
  • the resources used by the user equipment include: time domain resources used by the user equipment, frequency domain resources used by the user equipment, and beams used by the user equipment.
  • the interference impact information table includes multiple mapping relationships, and each mapping relationship represents the time domain resources used by the user equipment, the frequency domain resources used by the user equipment, the beam used by the user equipment and the interference received by the interfered network side device. The mapping relationship between the levels.
  • the time domain resource used by the user equipment represents the time for the user equipment to send uplink information (for example, expressed by a time slot)
  • the frequency domain resource used by the user equipment represents the frequency used by the user equipment for sending uplink information (for example, the BWP (BandWidth Part)
  • the beam used by the user equipment represents spatial domain information when the user equipment sends uplink information, that is, the beam used (for example, represented by beam direction and beam width). That is to say, the level of interference received by the interfered network-side equipment means that the time represented by the time domain resource, the user equipment uses the frequency represented by the frequency domain resource and the beam represented by the beam to send uplink information to the network-side equipment. The level of interference caused.
  • FIG. 3 is a diagram showing an example of an interference influence information table according to an embodiment of the present disclosure.
  • f represents the frequency domain resources used by the user equipment
  • s represents the beam used by the user equipment
  • t represents the time domain resources used by the user equipment
  • IL Interference Level
  • f1, s1, t1 and IL1 have a mapping relationship
  • f2, s2, t2 and IL2 have a mapping relationship
  • ..., fN, sN, tN and ILN have a mapping relationship.
  • the level of interference received by the network side equipment is IL1
  • the level of interference received by the network side equipment is IL2,...
  • the level of interference received by the network-side equipment when the user equipment uses fN, sN, and tN to send uplink information is ILN.
  • 1, 2, ..., N in FIG. 3 are only sequence numbers used to distinguish the mapping relationship in the interference impact information table, and different sequence numbers may also correspond to the same resource.
  • f1 and f2 may be the same frequency domain resource, or s1 and s2 may be the same beam. That is, the electronic device 200 can determine the level of interference for different combinations of frequency domain resources, time domain resources, and beams.
  • the transmission power of the user equipment may be used to represent the level of interference, that is, IL in FIG. 3 represents the transmission power of the user equipment. That is, each mapping relationship represents the mapping relationship between the time domain resources used by the user equipment, the frequency domain resources used by the user equipment, the beam used by the user equipment and the transmission power of the user equipment.
  • the interference influence information table is not associated with the interfered network side device, so the generating unit 230 may generate the same interference influence information table for all the interfered network side devices.
  • the value of the interference received by the interfered network-side device can also be used to represent the level of interference, that is, IL in FIG. 3 represents the value of the interference received by the interfered network-side device. That is, each mapping relationship represents the mapping relationship between the time domain resources used by the user equipment, the frequency domain resources used by the user equipment, the beam used by the user equipment, and the value of the interference received by the interfered network side device.
  • the interference impact information table is associated with the interfered network side device, so the generating unit 230 generates an interference impact information table for each interfered network side device.
  • the electronic device 200 can determine the level of interference corresponding to each combination of frequency domain resources, time domain resources, and beams, thereby determining the interference influence information table.
  • the electronic device 200 may use a specific propagation model (including but not limited to a free-space propagation model) to calculate the interference subject according to the location, transmission power, beam direction and width of the user equipment, and the location of the interfered network side device.
  • the value of the interference received by the network-side equipment may calculate the value of interference according to any method known in the art, which is not limited in the present disclosure.
  • the electronic device 200 may send the corresponding interference influence information table to each interfered network side device through the communication unit 240.
  • the electronic device 200 may also receive feedback information for the interference influence information table from the interfered network side device through the communication unit 240.
  • the feedback information may include the value of the interference received by the interfered network-side device when the user equipment uses various resources. That is to say, the feedback information may include a mapping relationship between each of the multiple resources used by the user equipment and the value of the interference received by the interfered network-side device when the user equipment uses the resource. According to an embodiment of the present disclosure, the value of the interference received by the interfered network-side device included in the feedback information takes into account the beam information of the interfered network-side device, for example, including information such as beam direction and beam width.
  • the interfered network-side device can determine the frequency domain resources and time used by each group of user equipment. The domain resource and beam determine the value of the interference corresponding to it, thereby determining the feedback information. Specifically, the interfered network-side device can use a specific propagation model (including but not limited to free space Propagation model) to calculate the value of the interference received by the interfered network-side device. If the interference level in the interference impact information table received by the interfered network-side equipment is represented by the value of the interference received by the interfered network-side equipment, the interfered network-side equipment can be further calculated on the basis of this value. The value of the interference received by the interfered network side device in the case of considering the beam information of the interfered network side device.
  • Fig. 4 is a schematic diagram showing that a network-side device in an interfered area is interfered according to an embodiment of the present disclosure.
  • the interfered area of the NTN-UE includes gNB1 on the ground. If gNB1 uses beam 1 to receive uplink information from TN-UE, it may be interfered by the uplink information from NTN-UE; if gNB1 uses beam 2 to receive uplink information from TN-UE, the receiving beam of gNB1 and NTN-UE If the direction is different, gNB1 may not be interfered by the uplink information from NTN-UE.
  • the value of the interference received by the interfered network-side device is related to the beam used by the interfered network-side device.
  • the interference level in the interference influence information table generated by the electronic device 200 does not consider the beam information of the interfered network side device.
  • each interfered network-side device may further consider the beam information on the basis of the interference influence information table to calculate the value of the interference it receives, so that the calculated interference value is more accurate.
  • the feedback information received by the electronic device 200 may include the value of the interference between each resource used by the user equipment and the interference received by the interfered network-side device when the user equipment uses the resource.
  • the mapping relationship may be used to determine the mapping relationship.
  • each interfered network-side device can also determine the degree to which the interfered network-side device can tolerate interference when the user equipment uses each resource.
  • the interfered network-side device may determine the degree of tolerance to interference according to the relationship between the value of the interference received by the interfered network-side device and the interference threshold.
  • the interfered network-side device can determine that it cannot tolerate the interference; when the value of the interference received is not greater than the interference threshold, the interfered network-side device can Make sure you can tolerate the interference.
  • the interfered network-side device can sequentially determine the degree of tolerance of the interfered network-side device to interference when the user equipment uses various resources.
  • the interference threshold may be determined by the electronic device 200 and sent to the interfered network-side device.
  • the feedback information received by the electronic device 200 may include the degree of tolerance of the interfered network-side device to the interference when the user equipment uses various resources. That is, the feedback information may include a mapping relationship between each resource used by the user equipment and the interference tolerance of the interfered network side device when the user equipment uses the resource.
  • FIG. 5 is a diagram showing an example of feedback information according to an embodiment of the present disclosure.
  • FIG. 5 shows an example in which the feedback information includes the degree of tolerance of the interfered network-side device to interference when the user equipment uses various resources. As shown in Figure 5, "Yes/No" indicates whether the interfered network-side device can tolerate the interference.
  • FIG. 6 is a diagram showing an example of feedback information according to an embodiment of the present disclosure.
  • FIG. 6 shows an example in which the feedback information includes the value of the interference received by the interfered network-side device when the user equipment uses each resource.
  • the value of the interference received by the interfered network-side device is the interference value 1.
  • the value The value of the interference received by the interfered network-side device is an interference value of 2,..., and the value of interference received by the interfered network-side device is the interference value N when the user equipment uses fN, sN, and tN to send uplink information.
  • FIGS. 5 and 6 show two non-limiting examples of feedback information.
  • the feedback information sent by the interfered network-side device can be simpler. For example, only 1 bit is used to indicate that all the interfered network-side devices can tolerate the interference when the user equipment uses various resources. In this case, the electronic device 200 may not perform the interference coordination process.
  • the electronic device 200 may further include a coordination unit 250, configured to coordinate the interference from the user equipment according to the feedback information.
  • the coordination unit 250 may directly obtain from the feedback information the information on the use of each resource in the user equipment. The degree to which the interfered network-side equipment can tolerate the interference under the circumstances. If the feedback information includes the value of the interference received by the interfered network-side device when the user equipment uses each resource, the coordination unit 250 needs to determine, according to the feedback information, the interfered value when the user equipment uses each resource. The degree of tolerance of the network-side equipment to interference. Similarly, the coordination unit 250 may determine the degree of tolerance of the interfered network side device to the interference according to the relationship between the value of the interference received by the interfered network side device and the interference threshold.
  • the coordination unit 250 may determine that the interfered network-side device cannot tolerate the interference; when the value of the received interference is not greater than the interference threshold, the coordination unit 250 may It is determined that the interfered network-side device can tolerate the interference. In this way, the coordination unit 250 can sequentially determine the degree of tolerance of the interfered network-side device to the interference when the user equipment uses each resource.
  • the coordination unit 250 can adjust the resources used by the user equipment. That is to say, when the user uses various resources, as long as there is a situation where the interfered network side device cannot tolerate the received interference, the coordination unit 250 can adjust the resources used by the user equipment to perform the interference coordination process.
  • the electronic device 200 may also send the result of interference coordination to the user equipment through the communication unit 240.
  • the electronic device 200 may also send the interference coordination result to the interfered network side device through the communication unit 240.
  • the coordination unit 250 can silence the user equipment on the specific time domain resource. For example, when the user equipment uses f1, s1, and t1, the interfered network side device can tolerate the interference received, and when the user equipment uses f2, s2, and t2, the interfered network side device cannot tolerate the interference received. , Where f1 and f2 represent the same frequency domain resource, s1 and s2 represent the same beam, and t1 and t2 represent different time domain resources. In this case, the coordination unit 250 can make the user equipment silent on t2, thereby avoiding Or reduce the interference caused to the interfered network-side equipment. Further, the electronic device 200 may send adjustment information indicating that the user equipment is silent at t2 to the user equipment through the communication unit 240.
  • the coordination unit 250 may perform probabilistic frequency hopping so that the specific frequency domain resource has a low probability. be chosen. For example, when the user equipment uses f1, s1, and t1, the interfered network side device can tolerate the interference received, and when the user equipment uses f2, s2, and t2, the interfered network side device cannot tolerate the interference received. , Where f1 and f2 represent different frequency domain resources, s1 and s2 represent the same beam, and t1 and t2 represent the same time domain resource.
  • the coordination unit 250 can perform probabilistic frequency hopping so that f2 has a low probability Is selected, and f1 is selected with a high probability. In this way, the interference caused by the user equipment to the interfered network-side equipment can be avoided or reduced with a high probability. Further, the electronic device 200 may send the probability frequency hopping information to the user equipment and the interfered network side device through the communication unit 240.
  • the beam used by the user equipment is adjusted to a beam other than the specific beam.
  • the interfered network side device can tolerate the interference received
  • the user equipment uses f2, s2, and t2
  • the interfered network side device cannot tolerate the interference received.
  • f1 and f2 represent the same frequency domain resource
  • s1 and s2 represent different beams
  • t1 and t2 represent the same time domain resource.
  • the coordination unit 250 can compare the user equipment with the interfered network side device Dynamic beam planning is performed for the communication between the user equipment, that is, the beam used by the user equipment is adjusted to beams other than s2. In this way, the interference caused by the user equipment to the interfered network-side equipment can be avoided or reduced.
  • the electronic device 200 may send the adjustment information including the adjusted beam to the user equipment through the communication unit 240. Further, the adjustment information may also include the start time and end time of the beam adjustment.
  • the frequency domain resources of the user equipment may be bound to the beam.
  • the frequency domain resources of the user equipment have a corresponding relationship with the beam.
  • the beam of the user equipment also needs to be adjusted; in the case of adjusting the beam of the user equipment, the frequency domain resources of the user equipment also need to be adjusted.
  • the user equipment needs to ensure that the frequency domain resources and beams after adjustment also have a corresponding relationship.
  • the user equipment can be configured with 3 BWPs, BWP1, BWP2, and BWP3, and 3 beams, beam 1, beam 2, and beam 3, respectively, where BWP1 is bound to beam 1, and BWP2 is bound to beam 2.
  • BWP3 is bound to beam 3. That is, the control and/or data channel operating in BWP1 is only transmitted by beam 1, the control and/or data channel operating in BWP2 is only transmitted by beam 2, and the control and/or data channel operating in BWP3 is only transmitted by beam 2. Sent by beam 3.
  • the user equipment receives the adjustment information for adjusting BWP1 to BWP2, the user equipment needs to also adjust beam 1 to beam 2; if the user equipment receives the adjustment information for adjusting beam 2 to beam 3, then The user equipment needs to adjust BWP2 to BWP3.
  • the frequency domain resources used by three adjacent terrestrial cells are frequency band 1, frequency band 2, and frequency band 3, and the corresponding beams are beam 1, beam 2, and beam 3, respectively. That is, when a user equipment accesses a cell operating in frequency band 1, the user equipment uses beam 1 for transmission and/or reception, and when a user equipment accesses a cell operating in frequency band 2, the user equipment uses beam 2 to perform transmission and/or reception. Sending and/or receiving.
  • the user equipment uses beam 3 to send and/or receive.
  • the user equipment receives adjustment information to adjust band 1 to band 2
  • the user equipment needs to also adjust beam 1 to beam 2
  • the user equipment receives adjustment information to adjust beam 2 to beam 3
  • the user equipment needs to adjust frequency band 2 to frequency band 3.
  • the electronic device 200 can send the interference impact information table to the interfered network-side device and receive feedback information from the interfered network-side device, thereby performing interference coordination based on the feedback information to reduce or avoid interference from the user equipment.
  • the interference caused by the uplink information on the interfered network-side equipment may be a non-terrestrial network-side device currently serving user equipment, for example, a network-side device located on a satellite device. That is, the uplink information sent by the user equipment is the uplink information sent to the electronic device 200.
  • Fig. 7 is a signaling flowchart showing an interference coordination process according to an embodiment of the present disclosure.
  • the NTN-gNB can be implemented by the electronic device 200, and the NTN-UE is currently served by the NTN-gNB, and the interfered gNB can be other NTN-gNB or TN-gNB.
  • the NTN-gNB sends request information to the NTN-UE to request information such as the location of the NTN-UE, beam radiation characteristics, and transmission power.
  • the NTN-UE sends information such as its position, beam radiation characteristics, and transmission power to the NTN-gNB.
  • the NTN-gNB determines the interfered area of the NTN-UE according to the location of the NTN-UE, the beam radiation characteristics, and the transmission power.
  • the NTN-gNB determines the interfered gNB in the interfered area according to the interfered area of the NTN-UE.
  • NTN-gNB generates an interference impact information table, where the same interference impact information table can be generated for all interfered gNBs, or different interference impact information can be generated for each interfered gNB. surface.
  • the NTN-gNB sends an interference influence information table to each interfered gNB.
  • each interfered gNB generates feedback information.
  • each interfered gNB sends feedback information to NTN-gNB.
  • the NTN-gNB performs interference coordination according to the received feedback information, such as adjusting the NTN-UE used Resource information.
  • the NTN-gNB sends the adjusted result to the NTN-UE.
  • the NTN-gNB can also send the adjusted result to the interfered gNB.
  • the process is terminated, that is, the NTN-gNB does not need to perform interference coordination.
  • the interference impact information table between gNBs by transferring the interference impact information table between gNBs, the interference from the uplink information of the NTN-UE can be effectively avoided or reduced.
  • the electronic device 200 may also be a terrestrial network side device that currently provides services for user equipment.
  • the ground network side equipment can be a ground base station equipment or a ground station that provides services for satellite equipment.
  • the uplink information sent by the user equipment is the uplink information sent to the non-terrestrial network side device that will provide services for the user equipment.
  • the electronic device 200 as a terrestrial network side device can send the interference impact information table to each interfered network side device, and receive feedback information from the interfered network side device. Further, the electronic device 200 may send the received feedback information through the communication unit 240 to a non-terrestrial network-side device that will provide a service for the user equipment. Next, the non-terrestrial network-side equipment that will provide services to the user equipment can perform interference coordination in advance according to the feedback information.
  • the manner in which the non-terrestrial network side device that is about to provide service to the user equipment performs interference coordination may be the same as the manner in which the electronic device 200 performs interference coordination, and will not be repeated here.
  • FIG. 8 is a schematic diagram illustrating a scenario in which a ground station assists a non-ground network side device to perform an interference coordination process according to an embodiment of the present disclosure.
  • the non-terrestrial network side equipment is located at position 1, and has not yet provided service to the user equipment.
  • the ground station can obtain feedback information through information interaction with the interfered gNB, and send the feedback information to the non-ground network side device at position 1.
  • the non-terrestrial network-side device at position 1 can perform the interference coordination process.
  • the non-terrestrial network side device moves from location 1 to location 2, it starts to provide services to the user equipment. That is to say, when the non-terrestrial network side device provides services for the user equipment, the interference coordination process has been performed.
  • Fig. 9 is a signaling flow chart showing that a ground station assists a non-ground network side device to perform an interference coordination process according to an embodiment of the present disclosure.
  • the ground station in FIG. 9 can be implemented by the electronic device 200, and the ground station is currently serving NTN-UE.
  • the ground station sends request information to the NTN-UE to request information such as the location of the NTN-UE, beam radiation characteristics, and transmission power.
  • the NTN-UE sends information such as its location, beam radiation characteristics, and transmission power to the ground station.
  • step S903 the ground station determines the interfered area of the NTN-UE according to the location of the NTN-UE, the beam radiation characteristics, and the transmission power.
  • step S904 the ground station determines the interfered gNB in the interfered area according to the interfered area of the NTN-UE.
  • step S905 the ground station generates an interference impact information table, where the same interference impact information table can be generated for all interfered gNBs, or a different interference impact information table can be generated for each interfered gNB.
  • step S906 the ground station sends an interference impact information table to each interfered gNB.
  • step S907 each interfered gNB generates feedback information.
  • step S908 each interfered gNB sends feedback information to the ground station.
  • step S909 the ground station sends the feedback information of each interfered gNB to the NTN-gNB that will serve the NTN-UE.
  • the NTN-gNB performs interference coordination according to the received feedback information, such as adjusting the NTN-UE used Resource information.
  • step S911 the NTN-gNB sends the adjusted result to the NTN-UE.
  • the NTN-gNB can also send the adjusted result to the interfered gNB.
  • the procedure is terminated, that is, the NTN-gNB does not need to perform interference coordination.
  • the NTN-gNB which is about to provide services for the NTN-UE, can perform the interference coordination process in advance, so as to effectively avoid or reduce the interference from the NTN when the NTN-gNB provides services for the NTN-UE. -Interference of the UE's uplink information.
  • the interference coordination process can be performed in advance with the assistance of the terrestrial network-side device, so that the non-terrestrial network-side device In the case of providing services for the user equipment, avoid or reduce the interference of the uplink information sent by the user equipment to the non-terrestrial network-side equipment to other network-side equipment.
  • the interference coordination process can be performed more accurately and effectively, thereby reducing or avoiding the transfer from the user equipment to the non-ground
  • the uplink information of the network-side device causes interference to other network-side devices.
  • FIG. 10 is a flowchart illustrating a wireless communication method executed by an electronic device 200 as a network-side device in a wireless communication system according to an embodiment of the present disclosure.
  • step S1010 the interfered area of the user equipment is determined, and the interfered area includes an area interfered by the uplink information sent by the user equipment.
  • step S1020 the interfered network side device is determined according to the interfered area of the user equipment.
  • step S1030 an interference impact information table is generated, and the interference impact information table includes the level of interference caused to the interfered network side device when the user equipment uses each resource.
  • step S1040 the interference impact information table is sent to the interfered network side device.
  • determining the interfered area of the user equipment in step S1010 includes: determining the interfered area of the user equipment according to the location, beam, and transmission power of the user equipment.
  • the interfered area is a two-dimensional area or a three-dimensional area.
  • the interfered network side equipment includes the ground network side equipment in the interfered area.
  • the interfered area is a three-dimensional area,
  • the interfered network side equipment includes ground network side equipment and non-ground network side equipment in the interfered area.
  • the resources used by the user equipment include: time domain resources used by the user equipment, frequency domain resources used by the user equipment, and beams used by the user equipment.
  • the level of interference includes the transmit power of the user equipment.
  • the level of interference includes the value of the interference received by the interfered network-side device.
  • the wireless communication method further includes: receiving feedback information for the interference influence information table from the interfered network side device, the feedback information including the value of the interference received by the interfered network side device when the user equipment uses each resource, Or the feedback information includes the degree of tolerance of the interfered network side device to the interference when the user equipment uses each resource.
  • the wireless communication method further includes: determining, according to the feedback information, the degree to which the interfered network-side device can tolerate the interference when the user equipment uses each resource; in the case that the interfered network-side device cannot tolerate the interference received , Adjust the resources used by the user equipment; and send the adjusted result to the user equipment.
  • adjusting the resources used by the user equipment includes: silencing the user equipment on the specific time domain resource when the interfered network side device cannot tolerate the interference when the user equipment uses the specific time domain resource;
  • the device uses a specific frequency domain resource, when the interfered network side device cannot tolerate the interference received, it performs probabilistic frequency hopping so that the specific frequency domain resource is selected with a low probability; and when the user equipment uses a specific beam
  • the beam used by the user equipment is adjusted to a beam other than the specific beam.
  • the electronic device is a non-terrestrial network side device that provides services for user equipment.
  • the electronic device is a ground network side device that provides services for the user equipment
  • the wireless communication method further includes: sending feedback information to a non-ground network side device that will provide services for the user equipment.
  • the subject that executes the above-mentioned method may be the electronic device 200 according to the embodiment of the present disclosure, so all the foregoing embodiments regarding the electronic device 200 are applicable to this.
  • the technology of the present disclosure can be applied to various products.
  • the network-side equipment can be implemented as any type of base station equipment, such as a macro eNB and a small eNB, and can also be implemented as any type of gNB (base station in a 5G system).
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a place different from the main body.
  • RRH remote radio heads
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above-mentioned user equipment.
  • FIG. 11 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1100 includes one or more antennas 1110 and a base station device 1120.
  • the base station apparatus 1120 and each antenna 1110 may be connected to each other via an RF cable.
  • Each of the antennas 1110 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 1120 to transmit and receive wireless signals.
  • the eNB 1100 may include multiple antennas 1110.
  • multiple antennas 1110 may be compatible with multiple frequency bands used by eNB 1100.
  • FIG. 11 shows an example in which the eNB 1100 includes multiple antennas 1110, the eNB 1100 may also include a single antenna 1110.
  • the base station device 1120 includes a controller 1121, a memory 1122, a network interface 1123, and a wireless communication interface 1125.
  • the controller 1121 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1120. For example, the controller 1121 generates a data packet based on data in the signal processed by the wireless communication interface 1125, and transmits the generated packet via the network interface 1123. The controller 1121 may bundle data from multiple baseband processors to generate a bundled packet, and transfer the generated bundled packet. The controller 1121 may have a logic function for performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1122 includes RAM and ROM, and stores programs executed by the controller 1121 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 1123 is a communication interface for connecting the base station device 1120 to the core network 1124.
  • the controller 1121 may communicate with a core network node or another eNB via a network interface 1123.
  • the eNB 1100 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 1123 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1123 is a wireless communication interface, the network interface 1123 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1125.
  • the wireless communication interface 1125 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to a terminal located in a cell of the eNB 1100 via an antenna 1110.
  • the wireless communication interface 1125 may generally include, for example, a baseband (BB) processor 1126 and an RF circuit 1127.
  • the BB processor 1126 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • layers such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)
  • the BB processor 1126 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1126 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 1126.
  • the module may be a card or a blade inserted into the slot of the base station device 1120. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1127 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1110.
  • the wireless communication interface 1125 may include a plurality of BB processors 1126.
  • multiple BB processors 1126 may be compatible with multiple frequency bands used by the eNB 1100.
  • the wireless communication interface 1125 may include a plurality of RF circuits 1127.
  • multiple RF circuits 1127 may be compatible with multiple antenna elements.
  • FIG. 11 shows an example in which the wireless communication interface 1125 includes a plurality of BB processors 1126 and a plurality of RF circuits 1127, the wireless communication interface 1125 may also include a single BB processor 1126 or a single RF circuit 1127.
  • FIG. 12 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1230 includes one or more antennas 1240, base station equipment 1250, and RRH 1260.
  • the RRH 1260 and each antenna 1240 may be connected to each other via an RF cable.
  • the base station device 1250 and the RRH 1260 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 1240 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 1260 to transmit and receive wireless signals.
  • the eNB 1230 may include multiple antennas 1240.
  • multiple antennas 1240 may be compatible with multiple frequency bands used by eNB 1230.
  • FIG. 12 shows an example in which the eNB 1230 includes multiple antennas 1240, the eNB 1230 may also include a single antenna 1240.
  • the base station equipment 1250 includes a controller 1251, a memory 1252, a network interface 1253, a wireless communication interface 1255, and a connection interface 1257.
  • the controller 1251, the memory 1252, and the network interface 1253 are the same as the controller 1121, the memory 1122, and the network interface 1123 described with reference to FIG. 11.
  • the wireless communication interface 1255 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 1260 via the RRH 1260 and the antenna 1240.
  • the wireless communication interface 1255 may generally include a BB processor 1256, for example.
  • the BB processor 1256 is the same as the BB processor 1126 described with reference to FIG. 11 except that the BB processor 1256 is connected to the RF circuit 1264 of the RRH 1260 via the connection interface 1257.
  • the wireless communication interface 1255 may include a plurality of BB processors 1256.
  • multiple BB processors 1256 may be compatible with multiple frequency bands used by eNB 1230.
  • FIG. 12 shows an example in which the wireless communication interface 1255 includes a plurality of BB processors 1256, the wireless communication interface 1255 may also include a single BB processor 1256.
  • connection interface 1257 is an interface for connecting the base station device 1250 (wireless communication interface 1255) to the RRH 1260.
  • the connection interface 1257 may also be a communication module used to connect the base station device 1250 (wireless communication interface 1255) to the communication in the above-mentioned high-speed line of the RRH 1260.
  • the RRH 1260 includes a connection interface 1261 and a wireless communication interface 1263.
  • connection interface 1261 is an interface for connecting the RRH 1260 (wireless communication interface 1263) to the base station device 1250.
  • the connection interface 1261 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1263 transmits and receives wireless signals via the antenna 1240.
  • the wireless communication interface 1263 may generally include, for example, an RF circuit 1264.
  • the RF circuit 1264 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1240.
  • the wireless communication interface 1263 may include a plurality of RF circuits 1264.
  • multiple RF circuits 1264 may support multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 1263 includes a plurality of RF circuits 1264, the wireless communication interface 1263 may also include a single RF circuit 1264.
  • the area determining unit 210, the interfered device determining unit 220, the generating unit 230, and the coordination unit 250 described in FIG. 2 can be controlled by the controller 1121 and/or The controller 1251 is implemented. At least part of the functions may also be implemented by the controller 1121 and the controller 1251.
  • the controller 1121 and/or the controller 1251 may execute the functions of determining the interfered area of the user equipment, determining the interfered network side device, generating the interference impact information table, and performing interference coordination by executing instructions stored in the corresponding memory. .
  • the units shown in dashed boxes in the functional block diagram shown in the drawings all indicate that the functional unit is optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to achieve the required function .
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • the multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the described order, but also processing performed in parallel or individually rather than necessarily in time series.
  • the order can be changed appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及电子设备、无线通信方法和计算机可读存储介质。根据本公开的电子设备包括处理电路,被配置为:确定用户设备的被干扰区域,所述被干扰区域包括受到所述用户设备发送的上行信息的干扰的区域;根据所述用户设备的被干扰区域确定受干扰的网络侧设备;生成干扰影响信息表,所述干扰影响信息表包括在所述用户设备使用各个资源的情况下对所述受干扰的网络侧设备造成的干扰的水平;以及向所述受干扰的网络侧设备发送所述干扰影响信息表。使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,可以在包括NTN的无线通信系统中执行干扰协调以减少或避免上行干扰。

Description

电子设备、无线通信方法和计算机可读存储介质
本申请要求于2020年3月11日提交中国专利局、申请号为202010165599.X、发明名称为“电子设备、无线通信方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种作为无线通信系统中的网络侧设备的电子设备、一种由无线通信系统中的网络侧设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
由于广泛的服务覆盖能力,NTN(Non-terrestrial network,非地面网络)可以在TN(Terrestrial network,地面网络)的5G网络无法覆盖的区域提供5G服务。因此,提出了综合卫星地面网络(Integrated Satellite Terrestrial Network,ISTN),其基本特征是NTN与TN共享相同的频带。ISTN可以提高频谱利用率,并且优化稀缺的低频的频谱资源。由于NTN和TN使用相同的频带,因此不可避免地会在两个网络之间造成干扰。
例如,在NTN的上行通信中,NTN-UE(NTN中的用户设备)向NTN-gNB(NTN中的网络侧设备)发送信息,而在TN中的TN-gNB(TN中的网络侧设备)可能在以相同的频率接收来自TN-UE(TN中的用户设备)的上行信息,或者NTN中的其他NTN-gNB可能在以相同的频率接收来自其他NTN-UE的上行信息,因此TN-gNB或者其他NTN-gNB可能会接收到来自该NTN-UE的信息,该信息对于TN-gNB或者其他NTN-gNB来说属于干扰信息。
因此,有必要提出一种技术方案,以在包括NTN的无线通信系统中执行干扰协调以减少或避免上行干扰。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、无线通信方法和计算机可读存储介质,以在包括NTN的无线通信系统中执行干扰协调以减少或避免上行干扰。
根据本公开的一方面,提供了一种电子设备,包括处理电路,被配置为:确定用户设备的被干扰区域,所述被干扰区域包括受到所述用户设备发送的上行信息的干扰的区域;根据所述用户设备的被干扰区域确定受干扰的网络侧设备;生成干扰影响信息表,所述干扰影响信息表包括在所述用户设备使用各个资源的情况下对所述受干扰的网络侧设备造成的干扰的水平;以及向所述受干扰的网络侧设备发送所述干扰影响信息表。
根据本公开的另一方面,提供了一种无线通信方法,包括:确定用户设备的被干扰区域,所述被干扰区域包括受到所述用户设备发送的上行信息的干扰的区域;根据所述用户设备的被干扰区域确定受干扰的网络侧设备;生成干扰影响信息表,所述干扰影响信息表包括在所述用户设备使用各个资源的情况下对所述受干扰的网络侧设备造成的干扰的水平;以及向所述受干扰的网络侧设备发送所述干扰影响信息表。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,电子设备可以确定用户设备的被干扰区域,并且确定受到干扰的网络侧设备,从而生成干扰影响信息表,其包括在用户设备使用各个资源的情况下对受干扰的网络侧设备造成的干扰的水平。这样一来,受干扰的网络侧设备可以对干扰影响信息表作出反馈,从而电子设备可以根据干扰影响信息表执行干扰协调,从而减小或者避免来自用户设备的上行信息对其他网络侧设备造成的干扰。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的应用场景的示意图;
图2是示出根据本公开的实施例的电子设备的配置的示例的框图;
图3是示出根据本公开的实施例的干扰影响信息表的示例的图;
图4是示出根据本公开的实施例的被干扰区域内的网络侧设备受到干扰的示意图;
图5是示出根据本公开的实施例的反馈信息的示例的图;
图6是示出根据本公开的实施例的反馈信息的示例的图;
图7是示出根据本公开的实施例的干扰协调过程的信令流程图;
图8是示出根据本公开的实施例的由地面站协助非地面网络侧设备执行干扰协调过程的场景的示意图;
图9是示出根据本公开的实施例的由地面站协助非地面网络侧设备执行干扰协调过程的信令流程图;
图10是示出根据本公开的实施例的由电子设备执行的无线通信方法的流程图;
图11是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;以及
图12是示出eNB的示意性配置的第二示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域 技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.场景的描述;
2.电子设备的配置示例;
3.方法实施例;
4.应用示例。
<1.场景的描述>
图1是示出本公开的应用场景的示意图。如图1所示,NTN-gNB为NTN-UE1和NTN-UE2提供服务,地面上还存在多个TN-gNB,其为TN-UE提供服务。在NTN-UE1利用波束赋形技术向NTN-gNB发送上行信息的情况下,在NTN-UE1附近的TN-gNB可能在以相同的频率接收来自TN-UE的上行信息,因此TN-gNB可能会接收到来自该NTN-UE1的信息,该信息对于TN-gNB来说属于干扰信息。类似地,在NTN-UE2利用波束赋形技术向NTN-gNB发送上行信息的情况下,在NTN-UE2附近的TN-gNB可能在以相同的频率接收来自TN-UE的上行信息,因此TN-gNB可能会接收到来自该NTN-UE2的信息,该信息对于TN-gNB来说属于干扰信息。
本公开针对这样的场景提出了一种无线通信系统中的电子设备、由无线通信系统中的电子设备执行的无线通信方法以及计算机可读存储介质,以在包括NTN的无线通信系统中执行干扰协调以减少或避免上行干扰。
值得注意的是,虽然图1示出了TN-gNB受到了NTN中的上行信息的干扰的示例,但是不仅仅是TN中的网络侧设备,NTN中的网络侧设备也可能受到这样的干扰。例如,NTN中的位于低轨道或中轨道的卫星设备上的网络侧设备可能受到图1所示的从NTN-UE1或NTN-UE2至位于卫星设备上的NTN-gNB的上行信息的干扰。
根据本公开的无线通信系统可以是5G NR(New Radio,新无线)通信系统。进一步,根据本公开的无线通信系统可以包括NTN。也就是说,根据本公开的无线通信系统可以包括一个或多个非地面网络侧设备和由非地面网络侧设备提供服务的一个或多个用户设备。优选地,根据本公开的无线通信系统可以包括NTN和TN。也就是说,根据本公开的无线通信系统可以包括一个或多个非地面网络侧设备、一个或多个地面网络侧设备、由非地面网络侧设备提供服务的一个或多个用户设备以及由地面网络侧设备提供服务的一个或多个用户设备。
根据本公开的网络侧设备可以是任何类型的基站设备,例如可以是eNB,也可以是gNB(第5代通信系统中的基站)。
根据本公开的地面网络侧设备可以是位于地面上的网络侧设备。根据本公开的非地面网络侧设备可以是位于卫星设备上的网络侧设备。卫星设备例如可以包括GEO(Geosynchronous Orbit,地球同步轨道)卫星设备、LEO(Low Earth Orbit,近地球轨道)卫星设备、MEO(Medium Earth Orbit,中地球轨道)卫星设备、HEO(Highly Elliptical Orbiting,高椭圆轨道)卫星设备和HAPS(High Altitude Platform Station,高空平台)。
此外,对于非地面网络侧设备,其可以是透明的基站设备,即只具备接收信息和发送信息的功能,不具备数据处理的能力,当透明的基站设备接收到信息时,必须转发到具备数据处理能力的其它设备(例如位于地面上的处理设备)进行数据处理。NTN中的基站设备也可以是非透明的基站设备,即具备数据处理的能力。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.电子设备的配置示例>
图2是示出根据本公开的实施例的电子设备200的配置的示例的框图。这里的电子设备200可以作为无线通信系统中的网络侧设备。例如,电子设备200可以是非地面网络侧设备,也可以是地面网络侧设备。
如图2所示,电子设备200可以包括区域确定单元210、受干扰设备 确定单元220、生成单元230和通信单元240。
这里,电子设备200的各个单元都可以包括在处理电路中。需要说明的是,电子设备200既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,区域确定单元210可以确定用户设备的被干扰区域。这里,被干扰区域是针对用户设备而言的。也就是说,区域确定单元210可以针对电子设备200为其提供服务的任意一个用户设备确定该用户设备的被干扰区域。这里,被干扰区域表示受到该用户设备发送的上行信息的干扰的区域。
根据本公开的实施例,受干扰设备确定单元220可以根据用户设备的被干扰区域确定受干扰的网络侧设备。
根据本公开的实施例,生成单元230可以生成干扰影响信息表,干扰影响信息表包括在用户设备使用各个资源的情况下对受干扰的网络侧设备造成的干扰的水平。
根据本公开的实施例,电子设备200可以通过通信单元240向受干扰的网络侧设备发送干扰影响信息表。
由此可见,根据本公开的实施例的电子设备200,可以确定用户设备的被干扰区域,并且确定受到干扰的网络侧设备,从而生成干扰影响信息表。这样一来,受干扰的网络侧设备可以对干扰影响信息表作出反馈,从而电子设备可以根据干扰影响信息表执行干扰协调,从而减小或者避免来自用户设备的上行信息对其他网络侧设备造成的干扰。
根据本公开的实施例,用户设备的被干扰区域表示受到该用户设备发送的上行信息的干扰的区域。换句话说,被干扰区域表示该用户设备周围预定范围内的区域,在该区域中的网络侧设备使用与该用户设备相同的频域资源接收上行信号的情况下,该区域中的网络侧设备会受到该用户设备发送的上行信息的干扰。
进一步,用户设备发送的上行信息的目的地为非地面网络侧设备。例如,在电子设备200是当前为用户设备提供服务的非地面网络侧设备的情况下,用户设备发送的上行信息的目的地可以为电子设备200。可选地,在电子设备200是当前为用户设备提供服务的地面网络侧设备的情况下, 用户设备发送的上行信息的目的地可以为即将为用户设备提供服务的非地面网络侧设备。
如图1所示,用椭圆形区域示出的NTN-UE1周围的区域表示NTN-UE1的被干扰区域,用椭圆形区域示出的NTN-UE2周围的区域表示NTN-UE2的被干扰区域。
根据本公开的实施例,区域确定单元210可以根据用户设备的位置、波束和发送功率来确定用户设备的被干扰区域。
具体地,区域确定单元210可以根据用户设备的位置确定用户设备的被干扰区域的位置,根据用户设备发送上行信息的波束方向来确定被干扰区域相对于用户设备的位置的方向,根据用户设备发送上行信息的发送功率来确定被干扰区域的大小。
根据本公开的实施例,电子设备200可以通过通信单元240向用户设备发送请求信息,以请求用户设备的位置信息、波束辐射特征信息和发送功率信息。进一步,电子设备200可以通过通信单元240从用户设备接收用户设备响应于请求信息而发送的位置信息、波束辐射特征信息和发送功率信息。
根据本公开的实施例,电子设备200可以确定需要执行干扰协调的用户设备。例如,电子设备200可以向其覆盖范围内的所有用户设备发送请求信息,以针对所有用户设备执行干扰协调。可选地,电子设备200可以仅向干扰比较大的区域内的用户设备发送请求信息以针对这部分用户设备执行干扰协调。可选地,由于用户设备正在或者即将由非地面网络侧设备提供服务,而非地面网络侧设备的运动具有周期性,因此电子设备200可以基于历史信息确定干扰比较大的区域,从而向干扰比较大的区域内的用户设备发送请求信息。
根据本公开的实施例,区域确定单元210确定的被干扰区域可以是二维区域,也可以是三维区域。当被干扰区域是二维区域时,区域确定单元210可以确定位于地面上的用户设备周围预定范围的区域作为被干扰区域;当被干扰区域是三维区域时,区域确定单元210可以确定位于三维空间中的用户设备周围预定范围的区域作为被干扰区域。
根据本公开的实施例,在如上所述由区域确定单元210确定了用户设备的被干扰区域之后,受干扰设备确定单元220可以将被干扰区域中的网络侧设备确定为受干扰的网络侧设备。
根据本公开的实施例,在被干扰区域为二维区域的情况下,受干扰设备确定单元220可以将被干扰区域中的地面网络侧设备确定为受干扰的网络侧设备。也就是说,仅考虑从该用户设备发送至非地面网络侧设备的上行信息对地面网络侧设备的干扰。在被干扰区域为三维区域的情况下,受干扰设备确定单元220可以将被干扰区域中的地面网络侧设备和非地面网络侧设备确定为受干扰的网络侧设备。也就是说,不仅考虑从该用户设备发送至非地面网络侧设备的上行信息对地面网络侧设备的干扰,还考虑从该用户设备发送至非地面网络侧设备的上行信息对其他非地面网络侧设备的干扰。例如,从该用户设备发送至GEO的上行信息可能会对MEO或LEO造成干扰。
根据本公开的实施例,生成单元230生成的干扰影响信息表包括在用户设备使用各个资源的情况下对受干扰的网络侧设备造成的干扰的水平。优选地,干扰影响信息表包括用户设备使用的多个资源中的每个资源与在该用户设备使用该资源的情况下对受干扰的网络侧设备造成的干扰的水平之间的映射关系。
根据本公开的实施例,用户设备使用的资源包括:用户设备使用的时域资源、用户设备使用的频域资源以及用户设备使用的波束。也就是说,干扰影响信息表包括多个映射关系,每个映射关系表示用户设备使用的时域资源、用户设备使用的频域资源、用户设备使用的波束与受干扰的网络侧设备受到的干扰的水平之间的映射关系。
根据本公开的实施例,用户设备使用的时域资源表示用户设备发送上行信息的时间(例如用时隙表示),用户设备使用的频域资源表示用户设备发送上行信息时使用的频率(例如用BWP(BandWidth Part,带宽部分)表示),用户设备使用的波束表示用户设备发送上行信息时的空间域信息,即使用的波束(例如用波束方向和波束宽度表示)。也就是说,受干扰的网络侧设备受到的干扰的水平表示在由时域资源表示的时间、用户设备使用由频域资源表示的频率和由波束表示的波束来发送上行信息时对网络侧设备造成的干扰的水平。
图3是示出根据本公开的实施例的干扰影响信息表的示例的图。如图3所示,f表示用户设备使用的频域资源,s表示用户设备使用的波束,t表示用户设备使用的时域资源,IL(Interference Level,干扰水平)表示网络侧设备受到的干扰的水平。在图3中,f1、s1、t1与IL1具有映射关系,f2、s2、t2与IL2具有映射关系,…,fN、sN、tN与ILN具有映射 关系。也就是说,在用户设备使用f1、s1、t1发送上行信息时网络侧设备受到的干扰的水平为IL1,在用户设备使用f2、s2、t2发送上行信息时网络侧设备受到的干扰的水平为IL2,…,在用户设备使用fN、sN、tN发送上行信息时网络侧设备受到的干扰的水平为ILN。值得注意的是,图3中的1、2、…、N仅仅是用于区分干扰影响信息表中的映射关系的序号,序号不同也可能对应着相同的资源。例如,f1与f2可能是相同的频域资源,或者s1与s2可能是相同的波束等。也就是说,电子设备200可以针对不同的频域资源、时域资源和波束的组合来确定干扰的水平。
根据本公开的实施例,可以用用户设备的发送功率来表示干扰的水平,即图3中的IL表示用户设备的发送功率。也就是说,每个映射关系表示用户设备使用的时域资源、用户设备使用的频域资源、用户设备使用的波束与用户设备的发送功率之间的映射关系。在这种情况下,干扰影响信息表与受干扰的网络侧设备没有关联,因此生成单元230可以针对所有的受干扰的网络侧设备生成同一张干扰影响信息表。
根据本公开的实施例,还可以用受干扰的网络侧设备受到的干扰的值来表示干扰的水平,即图3中的IL表示受干扰的网络侧设备受到的干扰的值。也就是说,每个映射关系表示用户设备使用的时域资源、用户设备使用的频域资源、用户设备使用的波束与受干扰的网络侧设备受到的干扰的值之间的映射关系。在这种情况下,干扰影响信息表与受干扰的网络侧设备有关联,因此生成单元230针对每个受干扰的网络侧设备生成一张干扰影响信息表。
根据本公开的实施例,电子设备200可以针对每一个频域资源、时域资源和波束的组合确定与其相对应的干扰的水平,从而确定出干扰影响信息表。具体地,电子设备200可以根据用户设备的位置、发送功率、波束方向和宽度以及受干扰的网络侧设备的位置,利用特定的传播模型(包括但不限于自由空间传播模型)来计算该受干扰的网络侧设备受到的干扰的值。这里,电子设备200可以根据本领域中公知的任何方法来计算干扰的值,本公开对此不做限定。
如上所述,在生成单元230生成了干扰影响信息表之后,电子设备200可以通过通信单元240向各个受干扰的网络侧设备发送对应的干扰影响信息表。
根据本公开的实施例,电子设备200还可以通过通信单元240从受干扰的网络侧设备接收针对干扰影响信息表的反馈信息。
根据本公开的实施例,反馈信息可以包括在用户设备使用各个资源的情况下该受干扰的网络侧设备受到的干扰的值。也就是说,反馈信息可以包括用户设备使用的多个资源中的每个资源与在用户设备使用该资源的情况下受干扰的网络侧设备受到的干扰的值之间的映射关系。根据本公开的实施例,反馈信息中包括的受干扰的网络侧设备受到的干扰的值考虑了受干扰的网络侧设备的波束信息,例如包括波束方向和波束宽度等信息。
这里,如果受干扰的网络侧设备接收到的干扰影响信息表中的干扰的水平由用户设备的发送功率表示,则受干扰的网络侧设备可以针对每一组用户设备使用的频域资源、时域资源和波束确定与其相对应的干扰的值,从而确定出反馈信息。具体地,受干扰的网络侧设备可以根据用户设备的位置、发送功率、波束方向和宽度以及受干扰的网络侧设备的位置、波束方向和宽度,利用特定的传播模型(包括但不限于自由空间传播模型)来计算该受干扰的网络侧设备受到的干扰的值。如果受干扰的网络侧设备接收到的干扰影响信息表中的干扰的水平由受干扰的网络侧设备受到的干扰的值表示,则受干扰的网络侧设备可以在这个值的基础上进一步计算在考虑了受干扰的网络侧设备的波束信息的情况下该受干扰的网络侧设备受到的干扰的值。
图4是示出根据本公开的实施例的被干扰区域内的网络侧设备受到干扰的示意图。如图4所示,假定NTN-UE的被干扰区域包括地面上的gNB1。如果gNB1使用波束1从TN-UE接收上行信息,则可能会受到来自NTN-UE的上行信息的干扰;如果gNB1使用波束2从TN-UE接收上行信息,则由于gNB1的接收波束与NTN-UE的方向不同,则gNB1可能不会受到来自NTN-UE的上行信息的干扰。
根据本公开的实施例,如图4所示,受干扰的网络侧设备受到的干扰的值与受干扰的网络侧设备使用的波束有关。这里,由于电子设备200难以获取受干扰的网络侧设备的波束信息,因此电子设备200生成的干扰影响信息表中的干扰的水平没有考虑受干扰的网络侧设备的波束信息。根据本公开的实施例,各个受干扰的网络侧设备可以在干扰影响信息表的基础上进一步考虑波束信息来计算其受到的干扰的值,使得计算出的干扰的值更加准确。
如上所述,根据本公开的实施例,电子设备200接收到的反馈信息可以包括用户设备使用的各个资源与在用户设备使用该资源的情况下受 干扰的网络侧设备受到的干扰的值之间的映射关系。
根据本公开的实施例,各个受干扰的网络侧设备还可以确定在用户设备使用各个资源的情况下该受干扰的网络侧设备对干扰的忍受程度。例如,受干扰的网络侧设备可以根据受干扰的网络侧设备受到的干扰的值与干扰阈值之间的关系来确定对干扰的忍受程度。这里,可以简单地用是否能够忍受该干扰来表示对干扰的忍受程度。具体地,在受到的干扰的值大于干扰阈值的情况下,受干扰的网络侧设备可以确定不能忍受该干扰;在受到的干扰的值不大于干扰阈值的情况下,受干扰的网络侧设备可以确定能够忍受该干扰。以这样的方式,受干扰的网络侧设备可以依次确定在用户设备使用各个资源的情况下该受干扰的网络侧设备对干扰的忍受程度。
根据本公开的实施例,干扰阈值可以由电子设备200来确定并发送至受干扰的网络侧设备。
根据本公开的实施例,电子设备200接收的反馈信息可以包括在用户设备使用各个资源的情况下受干扰的网络侧设备对干扰的忍受程度。也就是说,反馈信息可以包括用户设备使用的各个资源与在用户设备使用该资源的情况下受干扰的网络侧设备对干扰的忍受程度的映射关系。
图5是示出根据本公开的实施例的反馈信息的示例的图。图5示出了反馈信息包括在用户设备使用各个资源的情况下受干扰的网络侧设备对干扰的忍受程度的示例。如图5所示,“是/否”表示受干扰的网络侧设备是否能够忍受干扰。如果在与f1、s1、t1对应的“是/否”中表示为“是”,则说明在用户设备使用f1、s1、t1发送上行信息时网络侧设备能够忍受来自用户设备的干扰;如果在与f1、s1、t1对应的“是/否”中表示为“否”,则说明在用户设备使用f1、s1、t1发送上行信息时网络侧设备不能够忍受来自用户设备的干扰。
图6是示出根据本公开的实施例的反馈信息的示例的图。图6示出了反馈信息包括在用户设备使用各个资源的情况下受干扰的网络侧设备受到的干扰的值的示例。如图6所示,在用户设备使用f1、s1、t1发送上行信息时该受干扰的网络侧设备受到的干扰的值为干扰值1,在用户设备使用f2、s2、t2发送上行信息时该受干扰的网络侧设备受到的干扰的值为干扰值2,…,在用户设备使用fN、sN、tN发送上行信息时该受干扰的网络侧设备受到的干扰的值为干扰值N。
如上所述,图5和图6示出了反馈信息的非限制性的两个示例。根 据本公开的实施例,如果受干扰的网络侧设备确定在用户设备使用各个资源的情况下其对干扰的忍受程度都是能够忍受,则受干扰的网络侧设备发送的反馈信息可以更加简单,例如仅用1比特表示在用户设备使用各个资源的情况下受干扰的网络侧设备都可以忍受干扰。在这种情况下,电子设备200可以不执行干扰协调过程。
根据本公开的实施例,如图2所示,电子设备200还可以包括协调单元250,用于根据反馈信息对来自用户设备的干扰进行协调。
根据本公开的实施例,如果反馈信息包括了在用户设备使用各个资源的情况下受干扰的网络侧设备对干扰的忍受程度,则协调单元250可以直接从反馈信息获取在用户设备使用各个资源的情况下受干扰的网络侧设备对干扰的忍受程度。如果反馈信息包括了在用户设备使用各个资源的情况下受干扰的网络侧设备受到的干扰的值,则协调单元250需要根据反馈信息确定在所述用户设备使用各个资源的情况下所述受干扰的网络侧设备对干扰的忍受程度。类似地,协调单元250可以根据受干扰的网络侧设备受到的干扰的值与干扰阈值之间的关系来确定受干扰的网络侧设备对干扰的忍受程度。这里,可以简单地用是否能够忍受该干扰来表示对干扰的忍受程度。具体地,在受到的干扰的值大于干扰阈值的情况下,协调单元250可以确定受干扰的网络侧设备不能忍受该干扰;在受到的干扰的值不大于干扰阈值的情况下,协调单元250可以确定受干扰的网络侧设备能够忍受该干扰。以这样的方式,协调单元250可以依次确定在用户设备使用各个资源的情况下受干扰的网络侧设备对干扰的忍受程度。
根据本公开的实施例,在受干扰的网络侧设备不能忍受受到的干扰的情况下,协调单元250可以调整用户设备使用的资源。也就是说,在用户使用各个资源的情况下,只要存在受干扰的网络侧设备不能忍受受到的干扰的情况,协调单元250就可以调整用户设备使用的资源从而执行干扰协调过程。
根据本公开的实施例,电子设备200还可以通过通信单元240将干扰协调的结果发送至用户设备。可选地,如果需要,电子设备200还可以通过通信单元240将干扰协调的结果发送至受干扰的网络侧设备。
根据本公开的实施例,在用户设备使用特定的时域资源时受干扰的网络侧设备不能忍受受到的干扰的情况下,协调单元250可以使用户设备在特定的时域资源上静默。例如,在用户设备使用f1、s1、t1的情况下受干扰的网络侧设备能够忍受受到的干扰,在用户设备使用f2、s2、t2的情 况下受干扰的网络侧设备不能够忍受受到的干扰,其中f1和f2表示相同的频域资源,s1和s2表示相同的波束,t1和t2表示不同的时域资源,在这种情况下,协调单元250可以使得用户设备在t2上静默,从而避免或者减小对受干扰的网络侧设备造成的干扰。进一步,电子设备200可以通过通信单元240将指示用户设备在t2上静默的调整信息发送至用户设备。
根据本公开的实施例,在用户设备使用特定的频域资源时受干扰的网络侧设备不能忍受受到的干扰的情况下,协调单元250可以执行概率跳频以使得特定的频域资源以低概率被选择。例如,在用户设备使用f1、s1、t1的情况下受干扰的网络侧设备能够忍受受到的干扰,在用户设备使用f2、s2、t2的情况下受干扰的网络侧设备不能够忍受受到的干扰,其中f1和f2表示不同的频域资源,s1和s2表示相同的波束,t1和t2表示相同的时域资源,在这种情况下,协调单元250可以执行概率跳频以使得f2以低概率被选择,而f1以高概率被选择。这样一来,可以大概率避免或者减小用户设备对受干扰的网络侧设备造成的干扰。进一步,电子设备200可以通过通信单元240将概率跳频的信息发送至用户设备和受干扰的网络侧设备。
根据本公开的实施例,在用户设备使用特定的波束时受干扰的网络侧设备不能忍受受到的干扰的情况下,将用户设备使用的波束调整为除特定的波束以外的其它波束。例如,在用户设备使用f1、s1、t1的情况下受干扰的网络侧设备能够忍受受到的干扰,在用户设备使用f2、s2、t2的情况下受干扰的网络侧设备不能够忍受受到的干扰,其中f1和f2表示相同的频域资源,s1和s2表示不同的波束,t1和t2表示相同的时域资源,在这种情况下,协调单元250可以对用户设备与受干扰的网络侧设备之间的通信执行动态波束规划,即将用户设备使用的波束调整为除s2以外的其他波束。这样一来,可以避免或者减小用户设备对受干扰的网络侧设备造成的干扰。进一步,电子设备200可以通过通信单元240将包括调整的波束的调整信息发送至用户设备。进一步,调整信息中还可以包括波束调整的开始时间和结束时间。
根据本公开的实施例,可能存在用户设备的频域资源与波束绑定的情况。也就是说,用户设备的频域资源与波束具有对应关系。在这种情况下,在调整用户设备的频域资源的情况下,用户设备的波束也需要调整;在调整用户设备的波束的情况下,用户设备的频域资源也需要调整。也就是说,用户设备需要确保在调整之后的频域资源与波束也具有对应关系。
例如,用户设备可以被配置有3个BWP,分别为BWP1、BWP2和BWP3以及3个波束,分别为波束1、波束2和波束3,其中,BWP1与波束1绑定,BWP2与波束2绑定,BWP3与波束3绑定。也就是说,在BWP1中操作的控制和/或数据信道仅由波束1发送,在BWP2中操作的控制和/或数据信道仅由波束2发送,在BWP3中操作的控制和/或数据信道仅由波束3发送。在这种情况下,如果用户设备收到了将BWP1调整为BWP2的调整信息,则用户设备需要将波束1也调整为波束2;如果用户设备收到了将波束2调整为波束3的调整信息,则用户设备需要将BWP2调整为BWP3。再如,三个相邻的地面小区使用的频域资源分别为频带1、频带2和频带3,其对应的波束分别为波束1、波束2和波束3。也就是说,当用户设备接入在频带1工作的小区时,该用户设备使用波束1进行发送和/或接收,当用户设备接入在频带2工作的小区时,该用户设备使用波束2进行发送和/或接收,当用户设备接入在频带3工作的小区时,该用户设备使用波束3进行发送和/或接收。在这种情况下,如果用户设备收到了将频带1调整为频带2的调整信息,则用户设备需要将波束1也调整为波束2;如果用户设备收到了将波束2调整为波束3的调整信息,则用户设备需要将频带2调整为频带3。
如上所述,电子设备200可以根据向受干扰的网络侧设备发送干扰影响信息表,并从受干扰的网络侧设备接收反馈信息,从而根据反馈信息执行干扰协调,以减小或避免来自用户设备的上行信息对受干扰的网络侧设备造成的干扰。这样的电子设备200可以是当前为用户设备提供服务的非地面网络侧设备,例如位于卫星设备上的网络侧设备。也就是说,用户设备发送的上行信息是向电子设备200发送的上行信息。
图7是示出根据本公开的实施例的干扰协调过程的信令流程图。在图7中,NTN-gNB可以由电子设备200来实现,NTN-UE当前由NTN-gNB提供服务,受干扰的gNB可以是其他NTN-gNB,也可以是TN-gNB。如图7所示,在步骤S701中,NTN-gNB向NTN-UE发送请求信息,以请求NTN-UE的位置、波束辐射特征和发送功率等信息。接下来,在步骤S702中,NTN-UE向NTN-gNB发送其位置、波束辐射特征和发送功率等信息。接下来,在步骤S703中,NTN-gNB根据NTN-UE的位置、波束辐射特征和发送功率来确定NTN-UE的被干扰区域。接下来,在步骤S704中,NTN-gNB根据NTN-UE的被干扰区域确定被干扰区域中的受干扰的gNB。接下来,在步骤S705中,NTN-gNB生成干扰影响信息表,其中可以针对所有的受干扰的gNB生成相同的干扰影响信息表,也可以针对每 个受干扰的gNB都生成不同的干扰影响信息表。接下来,在步骤S706中,NTN-gNB向各个受干扰的gNB发送干扰影响信息表。接下来,在步骤S707中,各个受干扰的gNB生成反馈信息。接下来,在步骤S708中,各个受干扰的gNB将反馈信息发送至NTN-gNB。接下来,如果在步骤S708中发送的反馈信息表示受干扰的gNB存在不能忍受干扰的情况,则在步骤S709中,NTN-gNB根据接收到的反馈信息执行干扰协调,例如调整NTN-UE使用的资源信息。接下来,在步骤S710中,NTN-gNB将调整的结果发送至NTN-UE。可选地,NTN-gNB还可以将调整的结果发送至受干扰的gNB。此外,如果在步骤S708中发送的反馈信息表示受干扰的gNB不存在不能忍受干扰的情况,则流程终止,即NTN-gNB不必执行干扰协调。如图7所示,通过在gNB之间传递干扰影响信息表,可以有效地避免或减小来自NTN-UE的上行信息的干扰。
根据本公开的实施例,电子设备200也可以是当前为用户设备提供服务的地面网络侧设备。地面网络侧设备可以是地面的基站设备,也可以是为卫星设备提供服务的地面站。在这种情况下,用户设备发送的上行信息是发送至即将为用户设备提供服务的非地面网络侧设备的上行信息。
根据本公开的实施例,作为地面网络侧设备的电子设备200可以将干扰影响信息表发送至各个受干扰的网络侧设备,并从受干扰的网络侧设备接收反馈信息。进一步,电子设备200可以通过通信单元240将接收到的反馈信息发送至即将为用户设备提供服务的非地面网络侧设备。接下来,即将为用户设备提供服务的非地面网络侧设备可以根据反馈信息提前执行干扰协调。在本公开中,即将为用户设备提供服务的非地面网络侧设备执行干扰协调的方式可以与电子设备200执行干扰协调的方式相同,在此不再赘述。
图8是示出根据本公开的实施例的由地面站协助非地面网络侧设备执行干扰协调过程的场景的示意图。如图8所示,非地面网络侧设备位于位置1,尚未对用户设备提供服务。地面站可以通过与受干扰的gNB进行信息交互从而获得反馈信息,并将反馈信息发送至处于位置1的非地面网络侧设备。接下来,位于位置1的非地面网络侧设备可以执行干扰协调过程。当非地面网络侧设备从位置1移动到位置2时,开始为用户设备提供服务。也就是说,在非地面网络侧设备为用户设备提供服务时,已经执行了干扰协调过程。
图9是示出根据本公开的实施例的由地面站协助非地面网络侧设备 执行干扰协调过程的信令流程图。图9中的地面站可以由电子设备200来实现,地面站当前正在为NTN-UE提供服务。如图9所示,在步骤S901中,地面站向NTN-UE发送请求信息,以请求NTN-UE的位置、波束辐射特征和发送功率等信息。接下来,在步骤S902中,NTN-UE向地面站发送其位置、波束辐射特征和发送功率等信息。接下来,在步骤S903中,地面站根据NTN-UE的位置、波束辐射特征和发送功率来确定NTN-UE的被干扰区域。接下来,在步骤S904中,地面站根据NTN-UE的被干扰区域确定被干扰区域中的受干扰的gNB。接下来,在步骤S905中,地面站生成干扰影响信息表,其中可以针对所有的受干扰的gNB生成相同的干扰影响信息表,也可以针对每个受干扰的gNB都生成不同的干扰影响信息表。接下来,在步骤S906中,地面站向各个受干扰的gNB发送干扰影响信息表。接下来,在步骤S907中,各个受干扰的gNB生成反馈信息。接下来,在步骤S908中,各个受干扰的gNB将反馈信息发送至地面站。接下来,在步骤S909中,地面站将各个受干扰的gNB的反馈信息发送至即将为NTN-UE提供服务的NTN-gNB。接下来,如果在步骤S909中发送的反馈信息表示受干扰的gNB存在不能忍受干扰的情况,则在步骤S910中,NTN-gNB根据接收到的反馈信息执行干扰协调,例如调整NTN-UE使用的资源信息。接下来,在步骤S911中,NTN-gNB将调整的结果发送至NTN-UE。可选地,NTN-gNB还可以将调整的结果发送至受干扰的gNB。此外,如果在步骤S909中发送的反馈信息表示受干扰的gNB不存在不能忍受干扰的情况,则流程终止,即NTN-gNB不必执行干扰协调。如图9所示,通过地面站的协助,即将为NTN-UE提供服务的NTN-gNB可以提前执行干扰协调过程,从而在NTN-gNB为NTN-UE提供服务时有效地避免或减小来自NTN-UE的上行信息的干扰。
如上所述,根据本公开的实施例,在非地面网络侧设备尚未为用户设备提供服务的情况下,可以通过地面网络侧设备的协助,提前执行干扰协调过程,从而使得在非地面网络侧设备为用户设备提供服务的情况下,避免或减小用户设备发送至该非地面网络侧设备的上行信息对其他网络侧设备造成干扰。
由此可见,根据本公开的实施例,通过在网络侧设备之间交互干扰影响信息表以及相应的反馈信息,可以更加准确有效地执行干扰协调过程,从而减小或者避免从用户设备至非地面网络侧设备的上行信息对其他网络侧设备造成干扰。
<3.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信系统中的作为网络侧设备的电子设备200执行的无线通信方法。
图10是示出根据本公开的实施例的由无线通信系统中的作为网络侧设备的电子设备200执行的无线通信方法的流程图。
如图10所示,在步骤S1010中,确定用户设备的被干扰区域,被干扰区域包括受到用户设备发送的上行信息的干扰的区域。
接下来,在步骤S1020中,根据用户设备的被干扰区域确定受干扰的网络侧设备。
接下来,在步骤S1030中,生成干扰影响信息表,干扰影响信息表包括在用户设备使用各个资源的情况下对受干扰的网络侧设备造成的干扰的水平。
接下来,在步骤S1040中,向受干扰的网络侧设备发送干扰影响信息表。
优选地,在步骤S1010中确定用户设备的被干扰区域包括:根据用户设备的位置、波束和发送功率来确定用户设备的被干扰区域。
优选地,被干扰区域为二维区域或三维区域,当被干扰区域为二维区域时,受干扰的网络侧设备包括被干扰区域中的地面网络侧设备,当被干扰区域为三维区域时,受干扰的网络侧设备包括被干扰区域中的地面网络侧设备和非地面网络侧设备。
优选地,用户设备使用的资源包括:用户设备使用的时域资源、用户设备使用的频域资源以及用户设备使用的波束。
优选地,干扰的水平包括用户设备的发送功率。
优选地,干扰的水平包括受干扰的网络侧设备受到的干扰的值。
优选地,无线通信方法还包括:从受干扰的网络侧设备接收针对干扰影响信息表的反馈信息,反馈信息包括在用户设备使用各个资源的情况下受干扰的网络侧设备受到的干扰的值,或者反馈信息包括在用户设备使用各个资源的情况下受干扰的网络侧设备对干扰的忍受程度。
优选地,无线通信方法还包括:根据反馈信息,确定在用户设备使用各个资源的情况下受干扰的网络侧设备对干扰的忍受程度;在受干扰的 网络侧设备不能忍受受到的干扰的情况下,调整用户设备使用的资源;以及向用户设备发送调整的结果。
优选地,调整用户设备使用的资源包括:在用户设备使用特定的时域资源时受干扰的网络侧设备不能忍受受到的干扰的情况下,使用户设备在特定的时域资源上静默;在用户设备使用特定的频域资源时受干扰的网络侧设备不能忍受受到的干扰的情况下,执行概率跳频以使得特定的频域资源以低概率被选择;以及在用户设备使用特定的波束时受干扰的网络侧设备不能忍受受到的干扰的情况下,将用户设备使用的波束调整为除特定的波束以外的其它波束。
优选地,电子设备是为用户设备提供服务的非地面网络侧设备。
优选地,电子设备是为用户设备提供服务的地面网络侧设备,并且无线通信方法还包括:将反馈信息发送至即将为用户设备提供服务的非地面网络侧设备。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备200,因此前文中关于电子设备200的全部实施例均适用于此。
<4.应用示例>
本公开内容的技术能够应用于各种产品。
例如,网络侧设备可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于基站的应用示例>
(第一应用示例)
图11是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1100包括一个或多个天线1110以及基站设备1120。基站设备1120和每个天线1110可以经由RF线缆彼此连接。
天线1110中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1120发送和接收无线信号。如图11所示,eNB 1100可以包括多个天线1110。例如,多个天线1110可以与eNB 1100使用的多个频带兼容。虽然图11示出其中eNB 1100包括多个天线1110的示例,但是eNB 1100也可以包括单个天线1110。
基站设备1120包括控制器1121、存储器1122、网络接口1123以及无线通信接口1125。
控制器1121可以为例如CPU或DSP,并且操作基站设备1120的较高层的各种功能。例如,控制器1121根据由无线通信接口1125处理的信号中的数据来生成数据分组,并经由网络接口1123来传递所生成的分组。控制器1121可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1121可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1122包括RAM和ROM,并且存储由控制器1121执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1123为用于将基站设备1120连接至核心网1124的通信接口。控制器1121可以经由网络接口1123而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1100与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1123还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1123为无线通信接口,则与由无线通信接口1125使用的频带相比,网络接口1123可以使用较高频带用于无线通信。
无线通信接口1125支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1110来提供到位于eNB 1100的小区中的终端的无线连接。无线通信接口1125通常可以包括例如基带(BB)处理器1126和RF电路1127。BB处理器1126可以执行例如编码/解码、调制/解 调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1121,BB处理器1126可以具有上述逻辑功能的一部分或全部。BB处理器1126可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1126的功能改变。该模块可以为插入到基站设备1120的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1127可以包括例如混频器、滤波器和放大器,并且经由天线1110来传送和接收无线信号。
如图11所示,无线通信接口1125可以包括多个BB处理器1126。例如,多个BB处理器1126可以与eNB 1100使用的多个频带兼容。如图11所示,无线通信接口1125可以包括多个RF电路1127。例如,多个RF电路1127可以与多个天线元件兼容。虽然图11示出其中无线通信接口1125包括多个BB处理器1126和多个RF电路1127的示例,但是无线通信接口1125也可以包括单个BB处理器1126或单个RF电路1127。
(第二应用示例)
图12是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1230包括一个或多个天线1240、基站设备1250和RRH 1260。RRH 1260和每个天线1240可以经由RF线缆而彼此连接。基站设备1250和RRH 1260可以经由诸如光纤线缆的高速线路而彼此连接。
天线1240中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1260发送和接收无线信号。如图12所示,eNB 1230可以包括多个天线1240。例如,多个天线1240可以与eNB 1230使用的多个频带兼容。虽然图12示出其中eNB 1230包括多个天线1240的示例,但是eNB 1230也可以包括单个天线1240。
基站设备1250包括控制器1251、存储器1252、网络接口1253、无线通信接口1255以及连接接口1257。控制器1251、存储器1252和网络接口1253与参照图11描述的控制器1121、存储器1122和网络接口1123相同。
无线通信接口1255支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1260和天线1240来提供到位于与RRH 1260对应的扇区中的终端的无线通信。无线通信接口1255通常可以包括例如BB处理器 1256。除了BB处理器1256经由连接接口1257连接到RRH 1260的RF电路1264之外,BB处理器1256与参照图11描述的BB处理器1126相同。如图12所示,无线通信接口1255可以包括多个BB处理器1256。例如,多个BB处理器1256可以与eNB 1230使用的多个频带兼容。虽然图12示出其中无线通信接口1255包括多个BB处理器1256的示例,但是无线通信接口1255也可以包括单个BB处理器1256。
连接接口1257为用于将基站设备1250(无线通信接口1255)连接至RRH 1260的接口。连接接口1257还可以为用于将基站设备1250(无线通信接口1255)连接至RRH 1260的上述高速线路中的通信的通信模块。
RRH 1260包括连接接口1261和无线通信接口1263。
连接接口1261为用于将RRH 1260(无线通信接口1263)连接至基站设备1250的接口。连接接口1261还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1263经由天线1240来传送和接收无线信号。无线通信接口1263通常可以包括例如RF电路1264。RF电路1264可以包括例如混频器、滤波器和放大器,并且经由天线1240来传送和接收无线信号。如图12所示,无线通信接口1263可以包括多个RF电路1264。例如,多个RF电路1264可以支持多个天线元件。虽然图12示出其中无线通信接口1263包括多个RF电路1264的示例,但是无线通信接口1263也可以包括单个RF电路1264。
在图11和图12所示的eNB 1100和eNB 1230中,通过使用图2所描述的区域确定单元210、受干扰设备确定单元220、生成单元230和协调单元250可以由控制器1121和/或控制器1251实现。功能的至少一部分也可以由控制器1121和控制器1251实现。例如,控制器1121和/或控制器1251可以通过执行相应的存储器中存储的指令而执行确定用户设备的被干扰区域、确定受干扰的网络侧设备、生成干扰影响信息表以及执行干扰协调的功能。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进 行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (23)

  1. 一种电子设备,包括处理电路,被配置为:
    确定用户设备的被干扰区域,所述被干扰区域包括受到所述用户设备发送的上行信息的干扰的区域;
    根据所述用户设备的被干扰区域确定受干扰的网络侧设备;
    生成干扰影响信息表,所述干扰影响信息表包括在所述用户设备使用各个资源的情况下对所述受干扰的网络侧设备造成的干扰的水平;以及
    向所述受干扰的网络侧设备发送所述干扰影响信息表。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    根据所述用户设备的位置、波束和发送功率来确定所述用户设备的被干扰区域。
  3. 根据权利要求1所述的电子设备,其中,所述被干扰区域为二维区域或三维区域,
    当所述被干扰区域为二维区域时,所述受干扰的网络侧设备包括所述被干扰区域中的地面网络侧设备,
    当所述被干扰区域为三维区域时,所述受干扰的网络侧设备包括所述被干扰区域中的地面网络侧设备和非地面网络侧设备。
  4. 根据权利要求1所述的电子设备,其中,所述用户设备使用的资源包括:所述用户设备使用的时域资源、所述用户设备使用的频域资源以及所述用户设备使用的波束。
  5. 根据权利要求1所述的电子设备,其中,所述干扰的水平包括所述用户设备的发送功率。
  6. 根据权利要求1所述的电子设备,其中,所述干扰的水平包括所述受干扰的网络侧设备受到的干扰的值。
  7. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    从所述受干扰的网络侧设备接收针对所述干扰影响信息表的反馈信息,所述反馈信息包括在所述用户设备使用各个资源的情况下所述受干扰的网络侧设备受到的干扰的值,或者所述反馈信息包括在所述用户设备使 用各个资源的情况下所述受干扰的网络侧设备对干扰的忍受程度。
  8. 根据权利要求7所述的电子设备,其中,所述处理电路还被配置为:
    根据所述反馈信息,确定在所述用户设备使用各个资源的情况下所述受干扰的网络侧设备对干扰的忍受程度;
    在所述受干扰的网络侧设备不能忍受受到的干扰的情况下,调整所述用户设备使用的资源;以及
    向所述用户设备发送调整的结果。
  9. 根据权利要求8所述的电子设备,其中,所述处理电路还被配置为:
    在所述用户设备使用特定的时域资源时所述受干扰的网络侧设备不能忍受受到的干扰的情况下,使所述用户设备在所述特定的时域资源上静默;
    在所述用户设备使用特定的频域资源时所述受干扰的网络侧设备不能忍受受到的干扰的情况下,执行概率跳频以使得所述特定的频域资源以低概率被选择;以及
    在所述用户设备使用特定的波束时所述受干扰的网络侧设备不能忍受受到的干扰的情况下,将所述用户设备使用的波束调整为除所述特定的波束以外的其它波束。
  10. 根据权利要求1-9中任一项所述的电子设备,其中,所述电子设备是为所述用户设备提供服务的非地面网络侧设备。
  11. 根据权利要求7所述的电子设备,其中,所述电子设备是为所述用户设备提供服务的地面网络侧设备,并且所述处理电路还被配置为:
    将所述反馈信息发送至即将为所述用户设备提供服务的非地面网络侧设备。
  12. 一种由电子设备执行的无线通信方法,包括:
    确定用户设备的被干扰区域,所述被干扰区域包括受到所述用户设备发送的上行信息的干扰的区域;
    根据所述用户设备的被干扰区域确定受干扰的网络侧设备;
    生成干扰影响信息表,所述干扰影响信息表包括在所述用户设备使用 各个资源的情况下对所述受干扰的网络侧设备造成的干扰的水平;以及
    向所述受干扰的网络侧设备发送所述干扰影响信息表。
  13. 根据权利要求12所述的无线通信方法,其中,确定所述用户设备的被干扰区域包括:
    根据所述用户设备的位置、波束和发送功率来确定所述用户设备的被干扰区域。
  14. 根据权利要求12所述的无线通信方法,其中,所述被干扰区域为二维区域或三维区域,
    当所述被干扰区域为二维区域时,所述受干扰的网络侧设备包括所述被干扰区域中的地面网络侧设备,
    当所述被干扰区域为三维区域时,所述受干扰的网络侧设备包括所述被干扰区域中的地面网络侧设备和非地面网络侧设备。
  15. 根据权利要求12所述的无线通信方法,其中,所述用户设备使用的资源包括:所述用户设备使用的时域资源、所述用户设备使用的频域资源以及所述用户设备使用的波束。
  16. 根据权利要求12所述的无线通信方法,其中,所述干扰的水平包括所述用户设备的发送功率。
  17. 根据权利要求12所述的无线通信方法,其中,所述干扰的水平包括所述受干扰的网络侧设备受到的干扰的值。
  18. 根据权利要求12所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述受干扰的网络侧设备接收针对所述干扰影响信息表的反馈信息,所述反馈信息包括在所述用户设备使用各个资源的情况下所述受干扰的网络侧设备受到的干扰的值,或者所述反馈信息包括在所述用户设备使用各个资源的情况下所述受干扰的网络侧设备对干扰的忍受程度。
  19. 根据权利要求18所述的无线通信方法,其中,所述无线通信方法还包括:
    根据所述反馈信息,确定在所述用户设备使用各个资源的情况下所述受干扰的网络侧设备对干扰的忍受程度;
    在所述受干扰的网络侧设备不能忍受受到的干扰的情况下,调整所述 用户设备使用的资源;以及
    向所述用户设备发送调整的结果。
  20. 根据权利要求19所述的无线通信方法,其中,调整所述用户设备使用的资源包括:
    在所述用户设备使用特定的时域资源时所述受干扰的网络侧设备不能忍受受到的干扰的情况下,使所述用户设备在所述特定的时域资源上静默;
    在所述用户设备使用特定的频域资源时所述受干扰的网络侧设备不能忍受受到的干扰的情况下,执行概率跳频以使得所述特定的频域资源以低概率被选择;以及
    在所述用户设备使用特定的波束时所述受干扰的网络侧设备不能忍受受到的干扰的情况下,将所述用户设备使用的波束调整为除所述特定的波束以外的其它波束。
  21. 根据权利要求12-20中任一项所述的无线通信方法,其中,所述电子设备是为所述用户设备提供服务的非地面网络侧设备。
  22. 根据权利要求18所述的无线通信方法,其中,所述电子设备是为所述用户设备提供服务的地面网络侧设备,并且所述无线通信方法还包括:
    将所述反馈信息发送至即将为所述用户设备提供服务的非地面网络侧设备。
  23. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求12-22中任一项所述的无线通信方法。
PCT/CN2021/078972 2020-03-11 2021-03-04 电子设备、无线通信方法和计算机可读存储介质 WO2021179976A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180010056.3A CN114982353A (zh) 2020-03-11 2021-03-04 电子设备、无线通信方法和计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010165599.XA CN113395778A (zh) 2020-03-11 2020-03-11 电子设备、无线通信方法和计算机可读存储介质
CN202010165599.X 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021179976A1 true WO2021179976A1 (zh) 2021-09-16

Family

ID=77615340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078972 WO2021179976A1 (zh) 2020-03-11 2021-03-04 电子设备、无线通信方法和计算机可读存储介质

Country Status (2)

Country Link
CN (2) CN113395778A (zh)
WO (1) WO2021179976A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541088A (zh) * 2008-03-19 2009-09-23 中国移动通信集团公司 一种蜂窝小区间干扰的消除方法、装置及系统
CN102598811A (zh) * 2009-10-13 2012-07-18 高通股份有限公司 无线通信系统中对功率决定导频的选择性传输
CN103379645A (zh) * 2012-04-13 2013-10-30 华为技术有限公司 干扰管理方法及基站
CN106470486A (zh) * 2015-08-19 2017-03-01 中国移动通信集团公司 一种在高低轨道卫星间的频率复用方法及装置
CN106793047A (zh) * 2017-02-22 2017-05-31 京信通信技术(广州)有限公司 一种上行功率控制方法及基站
US20180124796A1 (en) * 2016-11-03 2018-05-03 Samsung Electronics Co., Ltd. Method and apparatus for managing ue-to-ue interference in wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541088A (zh) * 2008-03-19 2009-09-23 中国移动通信集团公司 一种蜂窝小区间干扰的消除方法、装置及系统
CN102598811A (zh) * 2009-10-13 2012-07-18 高通股份有限公司 无线通信系统中对功率决定导频的选择性传输
CN103379645A (zh) * 2012-04-13 2013-10-30 华为技术有限公司 干扰管理方法及基站
CN106470486A (zh) * 2015-08-19 2017-03-01 中国移动通信集团公司 一种在高低轨道卫星间的频率复用方法及装置
US20180124796A1 (en) * 2016-11-03 2018-05-03 Samsung Electronics Co., Ltd. Method and apparatus for managing ue-to-ue interference in wireless communication system
CN106793047A (zh) * 2017-02-22 2017-05-31 京信通信技术(广州)有限公司 一种上行功率控制方法及基站

Also Published As

Publication number Publication date
CN113395778A (zh) 2021-09-14
CN114982353A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US11064493B2 (en) Communication control apparatus, communication control method, radio communication apparatus, and radio communication method
KR102226635B1 (ko) 송수신 포인트와 송수신 포인트 연결에서의 시분할 듀플렉스 멀티플렉싱을 위한 시스템 및 방법
JP7147790B2 (ja) 電子機器、無線通信装置、及び無線通信方法
JP6406242B2 (ja) 通信制御装置、通信制御方法及び無線通信装置
US10772093B2 (en) Communication control device, communication control method, and communication device
CN105704822B (zh) 频谱资源管理装置和方法、无线通信设备和方法
US20210258957A1 (en) Electronic device, user equipment and wireless communication method in wireless communication system
US11201651B2 (en) Electronic apparatus and server in wireless communication system, and wireless communication method
CN109845375A (zh) 无线通信中基于准予的和无准予的话务复用上的干扰缓解
US11711133B2 (en) Electronic device, wireless communication method and computer readable storage medium related to transmission configuration indication (TCI) state
WO2019242537A1 (zh) 电子设备、用户设备、无线通信方法和存储介质
CN113678381B (zh) 基站设备、通信方法和存储介质
JP2019004278A (ja) 通信装置、通信制御方法及びコンピュータプログラム
AU2018336384A1 (en) Electronic apparatus, method and computer-readable storage medium for wireless communication system
CN112770351B (zh) 通信方法、装置和系统
CN108882243A (zh) 用于无线通信系统的电子设备、方法和存储介质
JP6059648B2 (ja) 無線通信システム、集中制御装置、及び無線通信方法
WO2021179976A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2023030242A1 (zh) 电子设备、通信方法和计算机程序产品
US20240137196A1 (en) Utilizing unused frequency division duplex uplink for time division duplex operations in wireless networks
KR20200064926A (ko) 분산 안테나를 사용하는 통신 시스템에서 수행되는 신호 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768947

Country of ref document: EP

Kind code of ref document: A1