WO2021179542A1 - 一种空调器 - Google Patents

一种空调器 Download PDF

Info

Publication number
WO2021179542A1
WO2021179542A1 PCT/CN2020/111294 CN2020111294W WO2021179542A1 WO 2021179542 A1 WO2021179542 A1 WO 2021179542A1 CN 2020111294 W CN2020111294 W CN 2020111294W WO 2021179542 A1 WO2021179542 A1 WO 2021179542A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
compressor
heat
thermoelectric conversion
liquid separator
Prior art date
Application number
PCT/CN2020/111294
Other languages
English (en)
French (fr)
Inventor
吕福俊
傅琳霞
刘志萌
陈朋
王月亮
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021179542A1 publication Critical patent/WO2021179542A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • F25B21/04Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat

Definitions

  • This application relates to the technical field of air conditioning energy saving, for example, to an air conditioner.
  • the air conditioner has become a common household refrigeration equipment, which can discharge the heat of the indoor environment to the outdoor environment under high temperature weather conditions in summer to create a low temperature and comfortable temperature environment indoors; it can also be used in severe cold weather conditions in winter Absorb the heat from the outdoor environment and transport it to the indoor environment, thereby creating a pleasant temperature environment indoors.
  • the core of the air conditioner to realize the heat transfer between the indoor and outdoor environment is the compressor.
  • the compressor can increase the temperature and pressure of the refrigerant through the reciprocating cycle pressurization operation, so as to meet the requirements of heat exchange with the outdoor or indoor environment. Temperature difference conditions.
  • the compressor body is generally made of metal and other materials that are easy to conduct heat. Therefore, when the compressor pressurizes and raises the temperature of the refrigerant, a part of the heat is transferred from the compression chamber to the outer wall of the body, and is gradually lost to the outdoor environment. Therefore, this part of the heat has not been better utilized.
  • the embodiments of the present disclosure provide an air conditioner to solve the technical problem that the heat transferred from the compressor to the outer wall in the related art is not well utilized.
  • the air conditioner includes:
  • Compressor and gas-liquid separator wherein the gas-liquid separator's gas outlet is connected with the compressor's gas return port;
  • thermoelectric conversion device has a cold end side in thermal contact with the compressor to absorb heat from the compressor, and a hot end side in thermal contact with the gas-liquid separator to release heat to the gas-liquid separator.
  • the air conditioner provided by the embodiment of the present disclosure can transfer the heat from the compressor body to the gas-liquid separator by using the thermoelectric conversion device, so as to use this part of the heat to increase the temperature of the refrigerant in the gas-liquid separator, thereby effectively improving the return of the compressor.
  • the air temperature can enhance the compression effect of the compressor; by installing a thermoelectric conversion device, this part of the heat transferred from the compressor to the outer wall is reused, and the waste heat utilization rate is improved.
  • Fig. 1 is an assembly schematic diagram of a compressor and a gas-liquid separator of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 2 is an assembly schematic diagram of a compressor and a gas-liquid separator of an air conditioner provided by another embodiment of the present disclosure
  • thermoelectric conversion device 3 is a schematic diagram of a semiconductor thermoelectric conversion device provided by an embodiment of the present disclosure
  • thermoelectric conversion device 4 is a schematic diagram of a semiconductor thermoelectric conversion device provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a semiconductor thermoelectric conversion device provided by another embodiment of the present disclosure.
  • Compressor 11. Air return port; 2. Gas-liquid separator; 21. Air outlet; 3. Thermoelectric conversion device; 21, N/P type semiconductor unit; 211, N type semiconductor; 212, P type semiconductor 213, the guide bar; 22, the power supply unit; 231, the first thermally conductive substrate; 232, the second thermally conductive substrate.
  • Fig. 1 is an assembly schematic diagram of a compressor and a gas-liquid separator of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 2 is an assembly schematic diagram of a compressor and a gas-liquid separator of an air conditioner provided by another embodiment of the present disclosure.
  • the embodiment of the present disclosure provides an air conditioner, including an indoor unit and an outdoor unit, wherein the outdoor unit is equipped with components such as a compressor 1 and a gas-liquid separator 2, and the air outlet 21 of the gas-liquid separator 2 and the air return port of the compressor 1 11 Connected points; here, when the air conditioner is running in cooling, dehumidification, and heating modes, the refrigerant circulation mode is that the gas-liquid mixed refrigerant after heat exchange is first returned to the gas-liquid separator 2, and the gas-liquid separator 2 The gaseous refrigerant and the liquid refrigerant are separated, and then the gaseous refrigerant is transported to the return end of the compressor 1 through the gas outlet 21. Therefore, the refrigerant quantity and refrigerant temperature of the gaseous refrigerant delivered by the gas-liquid separator 2 can directly affect the compressor 1. The compression effect.
  • the outdoor unit of the air conditioner is also provided with a thermoelectric conversion device 3.
  • the thermoelectric conversion device 3 includes a cold end side and a hot end side. High to be able to absorb heat to the outside. Among them, the thermoelectric effect is used to transfer heat between the cold end side and the hot end side.
  • An optional thermoelectric effect here is the "Peltier effect”.
  • the Peltier effect refers to when the current flows through different conductors. In the circuit, in addition to irreversible Joule heat, heat absorption and heat release will occur at the joints of different conductors as the direction of the current is different; therefore, the cold end of the thermoelectric conversion device 3 in this embodiment is attracted by At the joint where the heat phenomenon occurs, the hot end side is the joint where the heat is released.
  • the cold end side of the thermoelectric conversion device 3 is in thermal contact with the compressor 1, so that the cold end side can be used to absorb heat from the compressor 1.
  • the hot end side of the thermoelectric conversion device 3 is in thermal contact with the gas-liquid separator 2 , So that the hot end side can be used to release heat to the gas-liquid separator 2.
  • the heat can be transferred to the refrigerant inside the gas-liquid separator 2, and not only can more liquid refrigerant be heated Evaporating into a gaseous state increases the output of the gaseous refrigerant, and can also continue to increase the temperature of the gaseous refrigerant, thereby also increasing the temperature of the refrigerant delivered to the compressor 1, which effectively enhances the compression effect of the compressor 1 on the refrigerant.
  • FIG. 3 is a schematic diagram of a semiconductor thermoelectric conversion device provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a semiconductor thermoelectric conversion device provided by another embodiment of the present disclosure
  • FIG. 5 is a semiconductor thermoelectric conversion device provided by another embodiment of the present disclosure Schematic diagram of the conversion device.
  • the thermoelectric conversion device 3 is a semiconductor-type thermoelectric conversion device.
  • the semiconductor-type thermoelectric device includes an N/P-type semiconductor unit 21 and a power supply unit 22, wherein the N/P-type semiconductor unit 21 includes at least one N-type semiconductor 211 and at least one P-type semiconductor 212; taking the semiconductor thermoelectric conversion device shown in FIG. 3 as an example, the N/P-type semiconductor unit 21 includes an N-type semiconductor 211 and a P-type semiconductor arranged side by side Each of the two ends of the N-type semiconductor 211 and the P-type semiconductor 212 is defined as the first side and the second side respectively.
  • the first end of the P-type semiconductor 212 on the first side is electrically connected to the negative electrode of the power supply unit 22, and the second end of the N-type semiconductor 211 and the P-type semiconductor 212 on the second side each pass through the conductive and thermally conductive guide bar 213 Electric connection.
  • the first side of the N-type semiconductor 211 and the P-type semiconductor 212 can release heat, so they are used as the hot end side of the semiconductor thermoelectric conversion device; the N-type semiconductor 211 and P
  • the second side of the type semiconductor 212 can emit heat, and thus is the cold end side of the semiconductor-type thermoelectric conversion device.
  • the first side of the N/P-type semiconductor unit 21 is in thermally conductive contact with the gas-liquid separator 2, and the second side is in thermally conductive contact with the compressor 1, so as to utilize heat in the first side of the N/P-type semiconductor unit 21.
  • the transfer between the second side and the second side realizes the transfer of heat between the compressor 1 and the gas-liquid separator 2.
  • the power supply unit 22 is electrically connected to the power supply circuit of the air conditioner, so that the electric energy supplied by the air conditioner is used as the electric energy source of the semiconductor thermoelectric conversion device.
  • the semiconductor thermoelectric conversion device includes an N/P type semiconductor unit 21.
  • the semiconductor-type thermoelectric conversion device includes a plurality of N/P-type semiconductor units 21.
  • a plurality of N/P-type semiconductor units 21 are connected in series, wherein the cold end sides of the plurality of N/P-type semiconductor units 21 are in thermally conductive contact with the compressor 1, and the hot end sides are respectively in contact with the compressor 1.
  • the gas-liquid separator 2 is in thermal contact, so that a plurality of connected N/P-type semiconductor units 21 can be used to transfer heat at the same time, and the heat transfer efficiency between the compressor 1 and the gas-liquid separator 2 can be improved.
  • the heterogeneous semiconductors between the two connected N/P-type semiconductor units 21 are connected.
  • between the two N/P-type semiconductor units 21 is one of the N/P-type semiconductor units.
  • the P-type semiconductor 212 of 21 is electrically connected to the N-type semiconductor 211 of another N/P-type semiconductor unit 21, which can ensure that the circuit is a series path and the cold ends of multiple N/P-type semiconductor units 21 are located
  • the same side and the hot end side are located on the same side, which facilitates the installation of multiple N/P-type semiconductor units 21 between the compressor 1 and the gas-liquid separator 2.
  • a plurality of N/P type semiconductor units 21 are arranged at intervals.
  • a plurality of N/P-type semiconductor units 21 are arranged at intervals along the radial direction of the compressor 1, so that the plurality of N/P-type semiconductor units 21 are evenly distributed between the compressor 1 and the gas-liquid separator 2. Carry out heat transfer to reduce the occurrence of uneven heat exchange problems such as local overheating of the compressor 1 or the gas-liquid separator 2.
  • the volume and size of the N/P type semiconductor unit 21 in this embodiment are relatively small. When it is arranged between the compressor 1 and the gas-liquid separator 2, it is possible that the length of the N/P type semiconductor unit 21 cannot meet the requirements of simultaneous compression and compression. Machine 1 and gas-liquid separator 2 heat conduction contact requirements. In view of this situation, as shown in FIG. 5, a plurality of N/P type semiconductor units 21 are arranged end to end, wherein the head end of each N/P type semiconductor unit 21 is the heat absorption end and the tail end is the heat release end.
  • the N/P type semiconductor unit 21 at the end can be in thermal contact with the compressor 1, and the N/P type semiconductor unit 21 at the end can be in thermal contact with the gas-liquid separator 2, and then Through the circuit to achieve heat transfer.
  • the heat can not only be transferred along the circuit through thermoelectric conversion, but also can be transferred between multiple N/P-type semiconductor units 21. Since the N/P-type semiconductor 212 can conduct electricity, it is in order to abut the end to end. Problems such as a short circuit between the two N/P-type semiconductor units 21 appear, and components such as a heat-conducting plate are arranged between the N/P-type semiconductor units 21 that abut each other. Optionally, the heat-conducting plate is easy to conduct heat and insulation Made of materials.
  • a plurality of N/P-type semiconductor units 21 are connected in parallel, and the same-type semiconductors among the plurality of N/P-type semiconductor units 21 are connected, for example, the P-type semiconductors 212 of two N/P-type semiconductor units 21 are respectively connected.
  • a plurality of N/P type semiconductor units 21 connected in parallel can also realize the synchronous heat transfer and improve the heat transfer efficiency between the compressor 1 and the gas-liquid separator 2.
  • the thermoelectric conversion device 3 of the present application further includes a first thermally conductive substrate 231, and a second thermally conductive substrate 232 abuts against the compression
  • the heat-conducting substrate is made of a material with high thermal conductivity, and the cold end of the thermoelectric conversion device 3 is in thermal contact with the compressor 1 through the first heat-conducting substrate 231, which can effectively enlarge the thermoelectric conversion device 3 and compress The contact area of the machine 1 enables heat to be conducted more concentratedly.
  • the outer wall of the compressor 1 against the first heat-conducting substrate 231 has an arc shape, so the first heat-conducting substrate 231 also adopts a matching arc-shaped plate to ensure that the first heat-conducting substrate 231 is compressed The tightness between the machines 1.
  • the thermoelectric conversion device 3 of the present application further includes a second thermally conductive substrate 232, and the second thermally conductive substrate 232 is attached to The housing of the gas-liquid separator 2; here, the second thermally conductive substrate 232 can be made of the same material as the first thermally conductive substrate 231, which can effectively increase the contact area between the thermoelectric conversion device 3 and the gas-liquid separator 2, so that the heat can be Conducted more concentratedly.
  • the outer wall of the gas-liquid separator 2 against the second heat-conducting substrate 232 has an arc shape, so the second heat-conducting substrate 232 also adopts a matching arc-shaped plate to ensure that the second heat-conducting substrate 232 and The tightness of the abutment between the gas-liquid separator 2.
  • the air conditioner when the thermoelectric conversion device 3 is installed between the compressor 1 and the gas-liquid separator 2, it will be affected by the effect of gravity, and the compressor 1 itself is also prone to large vibrations during operation. All factors can easily cause the thermoelectric conversion device 3 to deviate from the initial set heat exchange position. Therefore, in order to reduce the occurrence of misalignment and deviation, the air conditioner also includes a limit structure to fix the thermoelectric conversion device 3 between the compressor 1 and the gas-liquid separator 2.
  • the limiting structure is a welding structure for welding at least one of the first thermally conductive substrate 231 and the second thermally conductive substrate 232 to the corresponding compressor 1 or the gas-liquid separator 2, and the thermoelectric conversion device 3 can also be connected to the The limit structure is welded and fixed.
  • the limiting structure is a slot provided on the outer wall of the compressor 1 and the gas-liquid separator 2
  • the first heat-conducting substrate 231 can be held in the slot on the outer wall of the compressor 1
  • the second heat-conducting substrate 232 can be held in In the card slot on the outer wall of the gas-liquid separator 2.
  • thermoelectric conversion device 3 between the compressor 1 and the gas-liquid separator 2 should also be covered by the scope of protection of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

本申请涉及空调节能技术领域,公开一种空调器。空调器包括压缩机和气液分离器,其中气液分离器的出气端与压缩机的回气口相连通;热电转换装置,其冷端侧与压缩机导热接触以从压缩机吸收热量的冷端侧、热端侧与气液分离器导热接触以向气液分离器放出热量。本公开实施例提供的空调器可以利用热电转换装置将压缩机机体上的热量传递至气液分离器,以利用这部分热量提升气液分离器内的冷媒温度,进而可以有效提高压缩机的回气温度、增强压缩机的压缩效果;通过设置热电转换装置,实现了对压缩机传递至外壁的这部分热量的再利用,提高了废热利用率。

Description

一种空调器
本申请基于申请号为202010162889.9、申请日为2020年03月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调节能技术领域,例如涉及一种空调器。
背景技术
目前,空调器已成为一种普遍的家用制冷设备,其能够在夏季高温天气条件下将室内环境的热量排出到室外环境中,以在室内营造低温舒适的温度环境;又可以在冬季严寒天气条件吸收室外环境的热量并输送到室内环境中现,从而在室内营造出温度宜人的温度环境。而空调器实现热量在室内和室外环境之间输送的核心就是压缩机,压缩机在内部通过往复循环的加压操作,能够提升冷媒的温度和压力,从而满足与室外或室内环境进行热交换的温差条件。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
压缩机机体一般是采用金属等易导热的材料制成,因而在压缩机在对冷媒进行加压升温的压缩操作时,会有一部分热量从压缩腔传递到机体外壁上,并逐渐散失到室外环境中,因而这部分热量并没有得到较好的利用。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种空调器,以解决相关技术中压缩机传递至外壁的热量没有得到较好利用的技术问题。
在一些实施例中,空调器包括:
压缩机和气液分离器,其中气液分离器的出气端与压缩机的回气口相连通;
热电转换装置,其冷端侧与压缩机导热接触以从压缩机吸收热量的冷端侧、热端侧与气液分离器导热接触以向气液分离器放出热量。
本公开实施例提供的空调器,可以实现以下技术效果:
本公开实施例提供的空调器可以利用热电转换装置将压缩机机体上的热量传递至气液分离器,以利用这部分热量提升气液分离器内的冷媒温度,进而可以有效提高压缩机的回气温度、增强压缩机的压缩效果;通过设置热电转换装置,实现了对压缩机传递至外壁 的这部分热量的再利用,提高了废热利用率。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的空调器的压缩机和气液分离器的装配示意图;
图2是本公开又一实施例提供的空调器的压缩机和气液分离器的装配示意图;
图3是本公开实施例提供的半导体式热电转换装置的示意图;
图4是本公开又一实施例提供的半导体式热电转换装置的示意图;
图5是本公开又一实施例提供的半导体式热电转换装置的示意图。
其中,1、压缩机;11、回气口;2、气液分离器;21、出气端;3、热电转换装置;21、N/P型半导体单元;211、N型半导体;212、P型半导体;213、导流条;22、供电单元;231、第一导热基板;232、第二导热基板。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
图1是本公开实施例提供的空调器的压缩机和气液分离器的装配示意图,图2是本公开又一实施例提供的空调器的压缩机和气液分离器的装配示意图。
本公开实施例提供了一种空调器,包括室内机和室外机,其中室外机安装有压缩机1和气液分离器2等部件,气液分离器2的出气端21与压缩机1的回气口11相连通分;这里空调器在运行制冷、除湿和制热等模式时,冷媒循环方式是换热后的气液两态混合冷媒先回流至气液分离器2,由气液分离器2将其中的气态冷媒和液态冷媒相分离,之后将气态冷媒经由出气端21输送至压缩机1的回气端,因而气液分离器2输送的气态冷媒的冷媒量及冷媒温度能够直接影响到压缩机1的压缩效果。
在本实施例中,空调器的室外机还设置有热电转换装置3,热电转换装置3包括冷端侧和热端侧,冷端侧温度较低以能够从外侧吸热、热端侧温度较高以能够向外侧吸热。其中冷端侧和热端侧之间通过热电效应实现热量的转移,这里一种可选应用的热电效应为“珀尔帖效应”,珀尔帖效应是指当在电流流经由不同的导体组成的回路时,除产生不可逆的焦耳热外,在不同导体的接头处随着电流方向的不同会分别出现吸热、放热现象;因 而本实施例中热电转换装置3的冷端侧为存在吸热现象的接头处,热端侧为存在放热现象的接头处。
这里,热电转换装置3的冷端侧与压缩机1导热接触,从而可以利用冷端侧从压缩机1吸收热量,通过吸收压缩机1机体的热量,不仅可以减少因热量逸散到室外环境而造成的热量浪费,同时在一些高温恶劣天气状况下,还可以有效降低压缩机1的机体温度,从而保障压缩机1的稳定运行;热电转换装置3的热端侧与气液分离器2导热接触,从而可以利用热端侧以向气液分离器2放出热量,这里通过向气液分离器2释放热量,可以将热量传导气液分离器2内部的冷媒,不仅能够使更多的液态冷媒受热蒸发为气态、提高气态冷媒输出量,还能够继续提升气态冷媒的温度,从而也可以提高输送至压缩机1的冷媒温度,有效增强了压缩机1对冷媒的压缩效果。
图3是本公开实施例提供的半导体式热电转换装置的示意图,图4是本公开又一实施例提供的半导体式热电转换装置的示意图,图5是本公开又一实施例提供的半导体式热电转换装置的示意图。
在一些可选的实施例中,热电转换装置3为半导体式热电转换装置,如图3所示,半导体式热电装置包括N/P型半导体单元21以及供电单元22,其中N/P型半导体单元21包括至少一个N型半导体211和至少一个P型半导体212;以图3示出的半导体式热电转换装置为例,该N/P型半导体单元21包括并排设置的N型半导体211和P型半导体212各一个,这里定义N型半导体211和P型半导体212的端部两侧分别为第一侧和第二侧,其中N型半导体211处于第一侧的第一端与供电单元22的正极电连接,P型半导体212处于第一侧的第一端与供电单元22的负极电连接,N型半导体211和P型半导体212各自处于第二侧的第二端通过可导电导热的导流条213电连接。
在该N/P型半导体单元21的电路通电后,N型半导体211和P型半导体212的第一侧能够放出热量,因而是作为半导体式热电转换装置的热端侧;N型半导体211和P型半导体212的第二侧能够放出热量,因而是作为半导体式热电转换装置的冷端侧。本实施例中是将N/P型半导体单元21的第一侧与气液分离器2导热接触,第二侧与压缩机1导热接触,以利用热量在N/P型半导体单元21的第一侧和第二侧之间的传递,实现将热量在压缩机1和气液分离器2之间的传递。
这里,供电单元22与空调器的供电电路电连接,因而是将空调器供电的电能作为半导体式热电转换装置的电能来源。
在一些可选的实施例中,半导体式热电转换装置包括一个N/P型半导体单元21。
在又一可选的实施例中,半导体式热电转换装置包括多个N/P型半导体单元21。
可选的,如图4所示,多个N/P型半导体单元21串联连接,其中,多个N/P型半导体单元21的冷端侧分别与压缩机1导热接触,热端侧分别与气液分离器2导热接触,这样可以利用多个相连的N/P型半导体单元21同时进行热量的传递,提高压缩机1和气液分离器2之间的热传导效率。
在本实施例中,相连的两个N/P型半导体单元21之间的异型半导体相连,如图4中的两个N/P型半导体单元21之间是以其中一个N/P型半导体单元21的P型半导体212与另外一个N/P型半导体单元21的N型半导体211电连接的方式实现相连,可以保证电路为一串联通路且多个N/P型半导体单元21的冷端侧位于同一侧、热端侧位于同一侧,方便多个N/P型半导体单元21在压缩机1和气液分离器2之间的安装设置。
多个N/P型半导体单元21间隔排布。可选的,多个N/P型半导体单元21是沿压缩机1的径向方向间隔排布,以利用多个N/P型半导体单元21均匀的在压缩机1和气液分离器2之间进行热量传递,减少出现压缩机1或者气液分离器2局部过热等换热不均问题的出现。
本实施例中的N/P型半导体单元21的体积和尺寸较小,在设置于压缩机1和气液分离器2之间时,有可能N/P型半导体单元21的长度无法满足同时与压缩机1和气液分离器2导热接触的要求。针对这种情况,如图5所示,多个N/P型半导体单元21首尾抵靠设置,其中每一N/P型半导体单元21首端为吸热端、尾端为放热端,因此通过首尾抵靠设置的方式,可以使得最首端的N/P型半导体单元21能够与压缩机1导热接触,以及最尾端的N/P型半导体单元21能与气液分离器2导热接触,进而通过对该电路实现热量的传递。
这里,热量不仅可以是通过热电转换的方式沿电路传递,同时也可以在多个N/P型半导体单元21之间进行传递,由于N/P型半导体212均能导电,因此为了首尾抵靠的两个N/P型半导体单元21之间产生短路等问题的出现,相互抵靠的N/P型半导体单元21之间设置有导热板等部件,可选的,导热板选用易导热且绝缘的材料制成。
又一可选的,多个N/P型半导体单元21并联连接,多个N/P型半导体单元21之间的同型半导体相连,例如两个N/P型半导体单元21的P型半导体212分别与供电单元22的负极相连,N型半导体211分别与供电单元22的正极相连。在本实施例中,多个并联连接的N/P型半导体单元21也能够实现热量同步的传递,并提高压缩机1和气液分离器2之间的热传导效率。
在一些可选的实施例中,为提高热电转换装置3与压缩机1之间的吸热效率,本申请的热电转换装置3还包括第一导热基板231,第二导热基板232贴靠于压缩机1的外壳;这里,导热基板采用导热系数高的材料制成,热电转换装置3的冷端侧通过第一导热基板231与压缩机1导热接触,这样可以有效增大热电转换装置3与压缩机1的接触面积,使得热量能够被更加集中地进行传导。
可选的,压缩机1上贴靠第一导热基板231的机体外壁为弧形形状,因此第一导热基板231也采用与其相适配的弧形板型,以保证第一导热基板231与压缩机1之间贴靠的紧密性。
在一些可选的实施例中,为提高热电转换装置3与气液分离器2之间的放热效率,本申请的热电转换装置3还包括第二导热基板232,第二导热基板232贴靠于气液分离器2 的外壳;这里,第二导热基板232可以采用与第一导热基板231相同的材质制成,能有效增大热电转换装置3与气液分离器2的接触面积,使得热量能够被更加集中的进行传导。
可选的,气液分离器2上贴靠第二导热基板232的外壁为弧形形状,因此第二导热基板232也采用与其相适配的弧形板型,以保证第二导热基板232与气液分离器2之间贴靠的紧密性。
在一些可选的实施例中,热电转换装置3设置在压缩机1和气液分离器2之间时会收到重力作用的影响,同时压缩机1自身运行时还容易产生较大的振动,这些因素都容易导致热电转换装置3错位偏离初始设定的换热位置。因此为了减少错位偏离等情况的出现,空调器还包括限位结构,用以将热电转换装置3固定于压缩机1和气液分离器2之间。
可选的,限位结构为将第一导热基板231和第二导热基板232中的至少一个焊接到对应的压缩机1或气液分离器2上的焊接结构,同时热电转换装置3也可与限位结构焊接固定。
或者,限位结构为设置在压缩机1和气液分离器2外壁上的卡槽,第一导热基板231能够卡持在压缩机1外壁上的卡槽中,第二导热基板232能够卡持在气液分离器2外壁上的卡槽中。
这里,上述两种限位结构主要是作为示例性说明,其它能够用于将热电转换装置3限位在压缩机1和气液分离器2之间的结构形式应该也涵盖在本申请的保护范围之内。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种空调器,其特征在于,包括:
    压缩机和气液分离器,其中所述气液分离器的出气端与所述压缩机的回气口相连通;
    热电转换装置,其冷端侧与所述压缩机导热接触以从所述压缩机吸收热量的冷端侧、热端侧与所述气液分离器导热接触以向所述气液分离器放出热量。
  2. 根据权利要求1所述的空调器,其特征在于,所述热电转换装置还包括贴靠于所述压缩机的外壳的第一导热基板,所述热电转换装置的冷端侧通过所述第一导热基板与所述压缩机导热接触。
  3. 根据权利要求1或2所述的空调器,其特征在于,所述热电转换装置还包括贴靠于所述气液分离器的外壳的第二导热基板,所述热电转换装置的热端侧通过所述第二导热基板与所述气液分离器导热接触。
  4. 根据权利要求1所述的空调器,其特征在于,所述热电转换装置为一个或多个,其中多个所述热电转换装置间隔排布。
  5. 根据权利要求1至4任一项所述的空调器,其特征在于,所述热电转换装置为半导体式热电转换装置,所述半导体式热电装置包括一个或多个N/P型半导体单元。
  6. 根据权利要求5所述的空调器,其特征在于,多个所述N/P型半导体单元串联连接,相连的两个N/P型半导体单元之间的异型半导体相连。
  7. 根据权利要求6所述的空调器,其特征在于,所述多个N/P型半导体单元间隔排布。
  8. 根据权利要求6所述的空调器,其特征在于,多个所述N/P型半导体单元首尾抵靠设置,其中每一所述N/P型半导体单元首端为吸热端、尾端为放热端。
  9. 根据权利要求5所述的空调器,其特征,多个所述N/P型半导体单元并联连接,多个所述N/P型半导体单元之间的同型半导体相连。
  10. 根据权利要求1所述的空调器,其特征在于,还包括限位结构,用以将所述热电转换装置固定于所述压缩机和气液分离器之间。
PCT/CN2020/111294 2020-03-10 2020-08-26 一种空调器 WO2021179542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010162889.9 2020-03-10
CN202010162889.9A CN111336727A (zh) 2020-03-10 2020-03-10 一种空调器

Publications (1)

Publication Number Publication Date
WO2021179542A1 true WO2021179542A1 (zh) 2021-09-16

Family

ID=71179986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111294 WO2021179542A1 (zh) 2020-03-10 2020-08-26 一种空调器

Country Status (2)

Country Link
CN (1) CN111336727A (zh)
WO (1) WO2021179542A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114459098A (zh) * 2022-03-31 2022-05-10 美的集团武汉暖通设备有限公司 空调器的控制方法、空调器以及计算机可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111336727A (zh) * 2020-03-10 2020-06-26 青岛海尔空调器有限总公司 一种空调器
CN113513821B (zh) * 2021-05-11 2022-11-04 宁波奥克斯电气股份有限公司 一种空调器散热控制方法及装置、空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160170A (zh) * 1995-03-02 1997-09-24 萨墨福尼克斯株式会社 热电变换装置
JP2003042604A (ja) * 2001-07-25 2003-02-13 Denso Corp 蒸気圧縮式ヒートポンプサイクル及び空調装置
CN2769735Y (zh) * 2005-02-05 2006-04-05 珠海格力电器股份有限公司 带有气液分离器辅助电加热的空调器
CN101033878A (zh) * 2006-03-07 2007-09-12 株式会社电装 空气调节装置
CN202195551U (zh) * 2011-08-23 2012-04-18 珠海格力电器股份有限公司 热泵空调器
CN103375949A (zh) * 2012-04-27 2013-10-30 珠海格力电器股份有限公司 压缩机及包括该压缩机的空调
CN108895721A (zh) * 2018-07-26 2018-11-27 青岛海尔空调器有限总公司 压缩机及包括该压缩机的空调器
CN208620678U (zh) * 2018-07-30 2019-03-19 东莞市艾瑞科热能设备有限公司 一种空调制冷系统
CN111336727A (zh) * 2020-03-10 2020-06-26 青岛海尔空调器有限总公司 一种空调器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19644864A1 (de) * 1996-10-31 1998-05-07 Reinhard Wollherr Wasserstoff-Brennstoffzellen-Akku
CN1249392C (zh) * 2001-10-08 2006-04-05 中国科学院生态环境研究中心 半导体元件制冷的低温色谱富集和分离装置
CN106440432B (zh) * 2016-09-15 2019-03-05 华中科技大学 一种热电回热系统
CN210035712U (zh) * 2019-05-21 2020-02-07 天津博鳌伟业科技有限公司 一种中央空调用压缩机散热装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160170A (zh) * 1995-03-02 1997-09-24 萨墨福尼克斯株式会社 热电变换装置
JP2003042604A (ja) * 2001-07-25 2003-02-13 Denso Corp 蒸気圧縮式ヒートポンプサイクル及び空調装置
CN2769735Y (zh) * 2005-02-05 2006-04-05 珠海格力电器股份有限公司 带有气液分离器辅助电加热的空调器
CN101033878A (zh) * 2006-03-07 2007-09-12 株式会社电装 空气调节装置
CN202195551U (zh) * 2011-08-23 2012-04-18 珠海格力电器股份有限公司 热泵空调器
CN103375949A (zh) * 2012-04-27 2013-10-30 珠海格力电器股份有限公司 压缩机及包括该压缩机的空调
CN108895721A (zh) * 2018-07-26 2018-11-27 青岛海尔空调器有限总公司 压缩机及包括该压缩机的空调器
CN208620678U (zh) * 2018-07-30 2019-03-19 东莞市艾瑞科热能设备有限公司 一种空调制冷系统
CN111336727A (zh) * 2020-03-10 2020-06-26 青岛海尔空调器有限总公司 一种空调器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114459098A (zh) * 2022-03-31 2022-05-10 美的集团武汉暖通设备有限公司 空调器的控制方法、空调器以及计算机可读存储介质

Also Published As

Publication number Publication date
CN111336727A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021179542A1 (zh) 一种空调器
CN103199316B (zh) 电池组及其散热结构
CN101922778B (zh) 一种半导体制冷空调装置
CN204612090U (zh) 一种利用压缩机余热进行温差发电的空调机
CN201844486U (zh) 一种半导体制冷空调装置
CN106659096A (zh) 一种用于电力设备的换热装置
CN102536745A (zh) 热管散热装置
CN103424018A (zh) 具有增压泵的液体相变传热式泵送冷却系统
CN102128517A (zh) 冷热交换装置
CN103438491A (zh) 带有热水自循环系统的采用热泵的热水供应和加热系统
CN205784105U (zh) 带有固态风扇的半导体制冷模块和包括该模块的冷藏箱
CN111780456A (zh) 一种基于温差发电的半导体制冷散热装置
CN110486853A (zh) 一种空调外机
CN107154753B (zh) 温差发电机的导热结构以及温差发电机
CN206547246U (zh) 一种用于电力设备的换热装置
CN202648340U (zh) 高温热泵除湿烘干机
CN209312749U (zh) 半导体器件散热装置
CN104154482A (zh) 蒸汽压缩式制冷/热电转换组合型led照明装置
CN214436449U (zh) 一种游戏机散热底座
JP2002256970A (ja) コージェネレーションシステム
CN205448399U (zh) 一种采用热电制冷的宠物空调
KR100579560B1 (ko) 열병합 시스템의 배기가스 열교환기
CN202978778U (zh) 嵌入式空调废热发电器
CN109194197B (zh) 温差发电设备
CN108076616B (zh) 光伏离心机系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923988

Country of ref document: EP

Kind code of ref document: A1