WO2021179531A1 - 一种黄酮苷类物质及其糖基转移酶基因在调控植物化感作用中的应用 - Google Patents
一种黄酮苷类物质及其糖基转移酶基因在调控植物化感作用中的应用 Download PDFInfo
- Publication number
- WO2021179531A1 WO2021179531A1 PCT/CN2020/108152 CN2020108152W WO2021179531A1 WO 2021179531 A1 WO2021179531 A1 WO 2021179531A1 CN 2020108152 W CN2020108152 W CN 2020108152W WO 2021179531 A1 WO2021179531 A1 WO 2021179531A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- plant
- amino acid
- orientin
- acid sequence
- Prior art date
Links
- UTHYBORRDLSSDS-JOMPHRNESA-N O[C@H]([C@H]([C@H](c(c(O)ccc12)c1OC(c(cc1O)ccc1O)=CC2=O)O[C@@H]1O)O)[C@@H]1O Chemical compound O[C@H]([C@H]([C@H](c(c(O)ccc12)c1OC(c(cc1O)ccc1O)=CC2=O)O[C@@H]1O)O)[C@@H]1O UTHYBORRDLSSDS-JOMPHRNESA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/02—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
- A01N43/04—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
- A01N43/14—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
- A01N43/16—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01P—BIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
- A01P13/00—Herbicides; Algicides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/50—Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
Definitions
- the invention relates to the field of biotechnology, in particular to the application of a flavonoid glycoside substance and its glycosyltransferase gene in the regulation of plant allelopathy.
- Flavonoids are a class of natural metabolites widely distributed in plants, containing a basic C6-C3-C6 skeleton. According to the oxidation degree of the central three-carbon chain, whether it is cyclic, and the B-ring connection position (2- or 3-position), the main natural flavonoids can be divided into flavonoids, flavonols, and dihydroflavonoids Class, dihydroflavonols, anthocyanidins, isoflavones, etc. Most flavonoids combine with sugars in plants to form glycosides, and some of them exist in free form (in the form of aglycon).
- Flavonoids have strong anti-inflammatory and anti-cancer effects, and have great application prospects in the treatment of cardiovascular diseases, coronary heart disease, tumors and other diseases.
- flavonoids play an important role in plant growth and development, anti-oxidation, and biological stress. For example, it regulates the transport of hormones, acts as an ultraviolet absorbing compound to protect plants from UV-B radiation, and inhibits the growth of weeds.
- flavonoids found in rice that inhibit the growth of weeds are mainly tricin. Whether other flavonoids have allelopathic effects, and the genetic mechanism and inhibition of rice allelopathy The grass mechanism is not very clear. It is not clear whether genes that can regulate the expression of flavonoids can regulate the allelopathy of plants.
- the purpose of the present invention is to provide an application of flavonoid glycosides and glycosyltransferase genes in the regulation of plant allelopathy.
- the present invention claims the application of orientin in any of the following:
- the regulation of plant allelopathy is embodied by increasing the content of orientin in the plant, and the allelopathy of the plant is enhanced.
- P2 regulates the resistance of plants to weeds.
- the control of the plant's resistance to weeds is embodied by increasing the content of orientin in the plant, and the plant's resistance to weeds is enhanced.
- the present invention claims a method for cultivating plant varieties with enhanced allelopathy.
- the method for cultivating plant varieties with enhanced allelopathy as claimed in the present invention may include the following steps: increasing the content of orientin in the recipient plant to obtain plant varieties with enhanced allelopathy.
- the present invention claims a method for cultivating plant varieties with reduced allelopathy.
- the method for cultivating plant varieties with reduced allelopathy as claimed in the present invention may include the following steps: reducing the content of orientin in the recipient plant to obtain plant varieties with reduced allelopathy.
- the present invention claims a method for cultivating plant varieties with increased resistance to weeds.
- the method for cultivating plant varieties with enhanced weed resistance as claimed in the present invention may include the following steps: increasing the content of orientin in the recipient plant to obtain plant varieties with enhanced weed resistance.
- the present invention claims a method for cultivating plant varieties with reduced resistance to weeds.
- the method for cultivating plant varieties with reduced weed resistance as claimed in the present invention may include the following steps: reducing the content of orientin in the recipient plant to obtain plant varieties with reduced weed resistance.
- (A2) Increase the activity and/or expression level of the protein capable of catalyzing the conversion of other substances into orientin in the recipient plant.
- reducing the content of orientin in the recipient plant can be achieved as follows:
- (B1) Increase the activity and/or expression level of the protein capable of catalyzing the conversion of orientin into other substances in the recipient plant;
- (B2) Decrease the activity and/or expression level of the protein capable of catalyzing the conversion of other substances into orientin in the recipient plant.
- the (A1) can be realized by the following (a1);
- the (A2) can be realized by the following (a2):
- the other substance may be a substance that cannot enhance the allelopathy of the recipient plant, or a substance that has a weaker degree of enhancement of the allelopathy to the recipient plant than orientin.
- the other substance may be a substance that cannot enhance the resistance of the recipient plant to weeds, or a substance that enhances the resistance of the recipient plant to weeds weaker than orientin.
- said catalyzing the conversion of orientin into other substances is specifically catalyzing the glycosylation of orientin .
- the present invention claims a method for inhibiting the growth of weeds.
- the method for inhibiting the growth of weeds claimed in the present invention may include the following steps (C1) or (C2):
- the working concentration of the orientin may be 500 mg/L and above.
- the working concentration of the orientin is specifically 500 mg/L.
- the leaf washing material can be prepared according to a method including the following steps: adding the leaves of the plant species with enhanced weed resistance to water at a ratio of 12g to 200mL, sealing and shaking at 37°C (220 rpm) extraction for 4 hours, standing at room temperature for 20 hours, freeze-drying to obtain a solid water wash; each 12 mL of the leaf wash solution (working solution) contains the solid water wash extracted from 12 g of leaves.
- the present invention claims the application of Os02g0589400 protein or its related biological materials in any of the following:
- the regulation of plant allelopathy is embodied by reducing the activity and/or content of the Os02g0589400 protein in the plant, and the allelopathy of the plant is enhanced.
- the control of plant resistance to weeds is embodied by reducing the activity and/or content of the Os02g0589400 protein in the plant, and then the plant's resistance to weeds is enhanced.
- the regulation of the content of orientin in the plant is embodied by reducing the activity and/or content of the Os02g0589400 protein in the plant, and the content of orientin in the plant is increased.
- the glycosylated receptor is orientin.
- the glycosylation donor is specifically UDPG.
- the relevant biological material is a nucleic acid molecule capable of expressing the Os02g0589400 protein or an expression cassette containing the nucleic acid molecule, a recombinant vector, a recombinant bacteria or a transgenic cell line.
- the Os02g0589400 protein is any one of the following proteins:
- (D1) A protein whose amino acid sequence is SEQ ID No. 1;
- (D2) A protein in which the amino acid sequence shown in SEQ ID No. 1 has undergone one or several amino acid residue substitutions and/or deletions and/or additions and has the same function;
- (D3) A protein that has 99% or more, 95% or more, 90% or more, 85% or more than 80% homology with the amino acid sequence defined in any one of (D1)-(D2) and has the same function;
- (D4) A fusion protein obtained by attaching a tag to the N-terminus and/or C-terminus of the protein defined in any one of (D1)-(D3).
- the tag refers to a polypeptide or protein expressed by fusion with the target protein by using DNA in vitro recombination technology, so as to facilitate the expression, detection, tracing and/or purification of the target protein.
- the tag may be a Flag tag, His tag, MBP tag, HA tag, myc tag, GST tag and/or SUMO tag, etc.
- the present invention claims a method for cultivating plant varieties with enhanced allelopathy.
- the method for cultivating plant varieties with enhanced allelopathy as claimed in the present invention may include the following steps: reducing the activity and/or content of Os02g0589400 protein in the recipient plant to obtain plant varieties with enhanced allelopathy.
- the Os02g0589400 protein is any one of the aforementioned proteins (D1)-(D4).
- the present invention claims a method for cultivating plant varieties with reduced allelopathy.
- the method for cultivating plant varieties with reduced allelopathy as claimed in the present invention may include the following steps: increasing the activity and/or content of Os02g0589400 protein in the recipient plant to obtain plant varieties with reduced allelopathy.
- the Os02g0589400 protein is any one of the aforementioned proteins (D1)-(D4).
- the present invention claims a method for cultivating plant varieties with increased resistance to weeds.
- the method for cultivating plant varieties with enhanced weed resistance as claimed in the present invention may include the following steps: reducing the activity and/or content of Os02g0589400 protein in the recipient plant to obtain plant varieties with enhanced weed resistance.
- the Os02g0589400 protein is any one of the aforementioned proteins (D1)-(D4).
- the present invention claims a method for cultivating plant varieties with reduced resistance to weeds.
- the method for cultivating plant varieties with reduced weed resistance as claimed in the present invention may include the following steps: increasing the activity and/or content of Os02g0589400 protein in the recipient plant to obtain plant varieties with reduced weed resistance.
- the Os02g0589400 protein is any one of the aforementioned proteins (D1)-(D4).
- the present invention claims a method for cultivating plant varieties with increased orientin content.
- the method for cultivating plant varieties with increased orientin content as claimed in the present invention may include the following steps: reducing the activity and/or content of Os02g0589400 protein in recipient plants to obtain plant varieties with increased orientin content.
- the Os02g0589400 protein is any one of the aforementioned proteins (D1)-(D4).
- the present invention claims a method for cultivating plant varieties with reduced orientin content.
- the method for cultivating plant varieties with reduced orientin content claimed in the present invention may include the following steps: increasing the activity and/or content of Os02g0589400 protein in recipient plants to obtain plant varieties with reduced orientin content.
- the Os02g0589400 protein is any one of the aforementioned proteins (D1)-(D4).
- the present invention claims a method for cultivating transgenic plants with enhanced allelopathy.
- the method for cultivating transgenic plants with enhanced allelopathy as claimed in the present invention may include the following steps: inhibiting expression of nucleic acid molecules capable of expressing the Os02g0589400 protein in the recipient plant to obtain a transgenic plant; the transgenic plant and the recipient Compared with plants, the allelopathy is enhanced; the Os02g0589400 protein is any one of the aforementioned proteins (D1)-(D4).
- the present invention claims a method for cultivating transgenic plants with reduced allelopathy.
- the method for cultivating a transgenic plant with reduced allelopathy as claimed in the present invention may include the following steps: introducing a nucleic acid molecule capable of expressing the Os02g0589400 protein into a recipient plant to obtain a transgenic plant; the transgenic plant is similar to the recipient plant The specific allelopathic effect is weakened; the Os02g0589400 protein is any one of the aforementioned proteins (D1)-(D4).
- the present invention claims a method for cultivating transgenic plants with enhanced weed resistance.
- the method for cultivating transgenic plants with enhanced weed resistance as claimed in the present invention may include the following steps: inhibiting expression of nucleic acid molecules capable of expressing the Os02g0589400 protein in the recipient plant to obtain a transgenic plant; said transgenic plant and said Compared with the recipient plants, the resistance to weeds is enhanced; the Os02g0589400 protein is any one of the aforementioned proteins (D1)-(D4).
- the present invention claims a method for cultivating transgenic plants with reduced weed resistance.
- the method for cultivating a transgenic plant with reduced weed resistance as claimed in the present invention may include the following steps: introducing a nucleic acid molecule capable of expressing the Os02g0589400 protein into a recipient plant to obtain a transgenic plant; the transgenic plant and the recipient Compared with plants, the resistance to weeds is weakened; the Os02g0589400 protein is any one of the aforementioned proteins (D1)-(D4).
- the present invention claims a method for cultivating transgenic plants with increased orientin content.
- the method for cultivating a transgenic plant with an increased orientin content as claimed in the present invention may include the following steps: inhibiting the expression of a nucleic acid molecule capable of expressing the Os02g0589400 protein in the recipient plant to obtain a transgenic plant; the transgenic plant and the recipient plant The content of orientin in somatic plants is increased; the Os02g0589400 protein is any one of the aforementioned proteins (D1)-(D4).
- the present invention claims a method for cultivating transgenic plants with reduced orientin content.
- the method for cultivating a transgenic plant with a reduced orientin content claimed in the present invention may include the following steps: introducing a nucleic acid molecule capable of expressing the Os02g0589400 protein into a recipient plant to obtain a transgenic plant; the transgenic plant and the recipient plant Compared with the content of orientin, the content of Os02g0589400 is reduced; the Os02g0589400 protein is any one of the aforementioned proteins (D1)-(D4).
- the present invention claims a method for inhibiting the growth of weeds.
- the method for inhibiting the growth of weeds as claimed in the present invention may include the following steps: externally administering to the seeds of the weeds the leaves of plant varieties cultivated by reducing the activity and/or content of the Os02g0589400 protein in the recipient plant are washed with water ⁇ solution.
- the leaf washing material can be prepared according to a method including the following steps: adding the leaf to water at a ratio of 12g to 200mL, sealing and shaking (220rpm) at 37°C for 4h, standing at room temperature for 20h, freeze-drying, A solid water wash is obtained; every 12 mL of the leaf water wash solution (working solution) contains the solid water wash obtained from 12 g of leaves.
- the "reducing the activity and/or content of the Os02g0589400 protein in the recipient plant” can be achieved by inhibiting the expression of nucleic acid molecules capable of expressing the Os02g0589400 protein in the recipient plant.
- the "increasing the activity and/or content of the Os02g0589400 protein in the recipient plant” can be achieved by introducing a nucleic acid molecule capable of expressing the Os02g0589400 protein into the recipient plant.
- nucleic acid molecule capable of expressing the Os02g0589400 protein may specifically be any of the following DNA molecules:
- (E2) A DNA molecule that hybridizes with the DNA molecule defined by (E1) under stringent conditions and encodes the Os02g0589400 protein;
- (E3) A DNA molecule that has more than 99%, more than 95%, more than 90%, more than 85%, or more than 80% homology with the DNA sequence defined by (E1) or (E2) and encodes the Os02g0589400 protein.
- the stringent conditions can be as follows: 50°C, hybridization in a mixed solution of 7% sodium dodecyl sulfate (SDS), 0.5M Na 3 PO 4 and 1 mM EDTA, at 50°C, 2 ⁇ SSC , Rinsing in 0.1% SDS; also: 50 °C, hybridization in a mixed solution of 7% SDS, 0.5M Na 3 PO 4 and 1 mM EDTA, rinsing in 50 °C, 1 ⁇ SSC, 0.1% SDS; also It is: 50°C, hybridization in a mixed solution of 7% SDS, 0.5M Na 3 PO 4 and 1 mM EDTA, rinsing in 50°C, 0.5 ⁇ SSC, 0.1% SDS; also: 50°C, in 7% SDS Hybridization in a mixed solution of 0.5M Na 3 PO 4 and 1mM EDTA, rinsing at 50°C, 0.1 ⁇ SSC, 0.1% SDS; also: 50°C, hybridization
- the “inhibition of expression of nucleic acid molecules capable of expressing Os02g0589400 protein in recipient plants” can be achieved by any technical means capable of achieving this purpose, such as sequence-specific nucleases (such as CRISPR/Cas9 nucleases)
- sequence-specific nucleases such as CRISPR/Cas9 nucleases
- the nucleic acid molecule is specifically sheared, thereby reducing its expression in the recipient plant.
- the "inhibition of expression of nucleic acid molecules capable of expressing Os02g0589400 protein in recipient plants” is specifically achieved through CRISPER/Cas9 technology; the Os02g0589400 genome fragment is in accordance with 5'-N X -NGG-3' Or a fragment with regular 5'-CCN-N X -3' sequence arrangement is the target sequence; N represents any one of A, G, C and T, 14 ⁇ X ⁇ 30, and X is an integer, N X represents X Consecutive deoxyribonucleotides. More specifically, in a specific embodiment of the present invention, the X is 20.
- the target sequence is specifically 5'-GGAGGCGAGCGATGTTGCGC-3' or 5'-GCGCAACATCGCTCGCCTCC-3'.
- the "introduction of a nucleic acid molecule capable of expressing the Os02g0589400 protein into the recipient plant” can be achieved by any technical means that can achieve this goal.
- the recombinant expression vector can be constructed using existing plant expression vectors.
- the plant expression vectors include binary Agrobacterium vectors and vectors that can be used for plant microprojectile bombardment, such as pCAMBIA-1300-221, pGreen0029, pCAMBIA3301, pCAMBIA1300, pBI121, pBin19, pCAMBIA2301, pCAMBIA1301-UbiN or other derived plant expression vectors .
- the plant expression vector may also include the 3'untranslated region of the foreign gene, that is, the polyadenylation signal and any other DNA fragments involved in mRNA processing or gene expression.
- the polyadenylic acid signal can guide the addition of polyadenylic acid to the 3'end of the mRNA precursor.
- any enhanced, constitutive, tissue-specific or inducible promoter can be added before its transcription initiation nucleotide, such as cauliflower mosaic virus (CAMV) 35S promoter Promoter, ubiquitin gene Ubiquitin promoter (pUbi), stress-inducible promoter rd29A, etc., which can be used alone or in combination with other plant promoters; in addition, when using the gene of the present invention to construct a recombinant expression vector, it can also be used Enhancers include translation enhancers or transcription enhancers.
- enhancer regions can be ATG initiation codons or adjacent region initiation codons, etc., but must be in the same reading frame as the coding sequence to ensure correct translation of the entire sequence.
- the sources of the translation control signals and initiation codons are extensive, and they can be natural or synthetic.
- the translation initiation region can be derived from a transcription initiation region or a structural gene.
- the recombinant expression vector used can be processed, such as adding genes encoding enzymes or luminescent compounds that can produce color changes that can be expressed in plants, and antibiotic markers with resistance Or anti-chemical reagent marker genes and so on. It is also possible to directly screen transformed plants under stress without adding any selectable marker genes.
- the present invention claims the protection of plant varieties or transgenic plants cultivated by the above-mentioned methods.
- the plant varieties or transgenic plants include, but are not limited to, whole plants, seeds, reproducible tissues or organs, and the like.
- the plant variety can be any of the following: plant varieties with enhanced allelopathy, plant varieties with reduced allelopathy, plant varieties with enhanced resistance to weeds, plants with reduced resistance to weeds Varieties, plant varieties with increased orientin content, and plant varieties with reduced orientin content.
- the transgenic plant can be any one of the following: a transgenic plant with enhanced allelopathic effect, a transgenic plant with a reduced allelopathic effect, a transgenic plant with enhanced resistance to weeds, and a transgenic plant with reduced resistance to weeds.
- Transgenic plants, transgenic plants with increased orientin content, and transgenic plants with reduced orientin content are examples of the following: a transgenic plant with enhanced allelopathic effect, a transgenic plant with a reduced allelopathic effect, a transgenic plant with enhanced resistance to weeds, and a transgenic plant with reduced resistance to weeds.
- the present invention claims a compound that inhibits the growth of weeds.
- the compound for inhibiting the growth of weeds claimed in the present invention is specifically orientin.
- the present invention claims a leaf washing material or its solution.
- the leaf washing material or its solution claimed in the present invention is the "leaf washing material of a plant variety cultivated by reducing the activity and/or content of the Os02g0589400 protein in the recipient plant" as described in the twentieth aspect above. Solution.
- the leaf washing material or its solution contains orientin.
- the present invention claims the method for preparing the leaf washing material or its solution described in the twenty-second aspect above.
- the method for preparing the leaf washing material or its solution as claimed in the present invention may include the following steps: adding the leaf to the water at a ratio of 12g to 200mL, sealing and shaking (220rpm) at 37°C for 4h, and standing at room temperature 20 h, freeze-drying to obtain a solid water wash; every 12 mL of the leaf water wash solution (working solution) contains the solid water wash obtained from 12 g of leaves.
- the present invention claims the application of the leaf washing material or its solution in the foregoing twenty-second aspect in inhibiting the growth of weeds.
- the inhibition of the growth of weeds is the inhibition of the growth of weed roots.
- the plant may specifically be rice; the weed may specifically be barnyard grass or lettuce.
- Figure 1 shows the structural formula of orientin.
- FIG. 2 shows the purification of Os02g0589400 protein.
- the red arrow is the size of the recombinant protein after protein purification.
- Figure 3 is a chromatogram of Os02g0589400 in vitro enzyme activity detection.
- Standards are standard products; Empty vector is an empty vector control group.
- Figure 4 shows the secondary mass spectrum of orientin and its products.
- Figure 5 shows the nucleotide (A) and amino acid (B) sequences of the Os02g0589400 mutant.
- Figure 6 shows the content of orientin in the mutant.
- WT is wild-type ZH11 material, 2-1, 2-2, 2-3, 2-4 are Os02g0589400 mutant materials.
- the ordinate is the orientin content.
- Figure 7 shows that orientin can inhibit the growth of barnyard grass or lettuce roots.
- * indicates that the difference is significant at the P ⁇ 0.05 level.
- Figure 8 shows barnyardgrass applied to the mutant and wild-type leaf washings. ** in the figure indicates that the difference is extremely significant at the P ⁇ 0.01 level.
- the following examples facilitate a better understanding of the present invention, but do not limit the present invention.
- the experimental methods in the following examples, unless otherwise specified, are all conventional methods.
- the test materials used in the following examples, unless otherwise specified, are all purchased from conventional biochemical reagent stores.
- the quantitative experiments in the following examples are all set to repeat the experiment three times, and the results are averaged.
- the silica gel column packing is YMC*GEL C18 spherical packing with a particle size of 50 ⁇ m and a pore diameter of 12nm.
- the weight of the filler used in this example is 100 g.
- the mobile phase is water (containing 0.1% formic acid,% means volume percentage) and methanol.
- the mobile phase ratio is 10 column volume of methanol 10%-90%, and 2 column volume of methanol 90%-100%.
- Flow rate: 50mL/min, detection wavelength is 210nm and 254nm.
- UPLC-MS (Agilent 1290UPLC-6540Q-TOF) was used to detect the content of orientin in each component. Take 1 mL each of the components obtained in (3) into a 1.5 mL Eppendorf centrifuge tube, use a centrifugal concentrator to concentrate, add 200 ⁇ L of methanol and vortex to dissolve. Centrifuge at 12,000 rpm for 10 min at 4°C. Then draw 100 ⁇ L of the supernatant into an Agilent sample bottle containing a 200 ⁇ L liner. Then use UPLC-MS for detection. Mobile phase A phase: 0.1% formic acid aqueous solution (% means volume percentage); B phase: acetonitrile.
- Elution gradient 0-2min: 5%B-10%B, 2-12min: 10%B-25%B, 12-18min: 25%B-70%B, 18-23min: 70%B-90% B, 23-25min: 90%B-100%B, 25-30min: 100%B, after running for 5min,% means the volume percentage.
- Flow rate 0.3mL/min, column temperature: 40°C, injection volume: 5 ⁇ L.
- Primer F1 5’-ggatccATGGATGCCTCCCCGCTG-3’;
- Primer R1 5'-aagcttCTAATAACCAGTCCTTGTCGTTG-3'.
- the positive clones were identified by PCR with primer F2/R2, and the amplified fragment size was 414 bp as positive clones.
- the primers are as follows:
- Primer F2 5'-GGCGACACAGCTCTCATGTCCTCGT-3';
- Primer R2 5'-CCCTCTCGCCCCTTCCAAGTAGCTC-3'.
- the recombinant plasmid is named pEASY-T 3 -Os02g0589400.
- the structure of the recombinant vector pEASY-T 3 -Os02g0589400 is described as: a recombinant plasmid in which the small fragment between the restriction sites BamHI and Hind ⁇ of the pEASY-T 3 vector is replaced with the DNA fragment shown in SEQ ID No.2.
- SEQ ID No. 2 is the CDS sequence of the Os02g0589400 gene, which encodes the protein shown in SEQ ID No. 1.
- the recombinant vector pEASY-T 3 -Os02g0589400 obtained in Example 2 was completely digested with restriction endonucleases BamHI and Hind ⁇ , and the expression vector pMAL-c2X (Hua Yueyang, VECT-570) was cut at the same time.
- the digestion system is: 5 ⁇ g plasmid, 2.5 ⁇ L 10 ⁇ digestion buffer, 2 ⁇ L BamHI, 2 ⁇ L Hind ⁇ , add ddH 2 O to supplement the reaction system to 50 ⁇ L.
- Enzyme digestion reaction conditions 37°C digestion for 4 hours.
- the ligation reaction system is: 1 ⁇ L 10 ⁇ ligase buffer, 0.5 ⁇ L T 4 DNA ligase, 1 ⁇ L pMAL-c2X vector fragment, 3 ⁇ L gene fragment, and add ddH 2 O to supplement the reaction system to 10 ⁇ L.
- the conditions of the ligation reaction were: 12 hours at 4°C.
- the product of the ligation reaction was transformed into E. coli DH5 ⁇ competent cells, and screened on an LB plate containing Ampicillin (Ampicillin concentration 100 ⁇ g/mL).
- Primer F2 5'-GGCGACACAGCTCTCATGTCCTCGT-3';
- Primer R2 5'-CCCTCTCGCCCCTTCCAAGTAGCTC-3'.
- This plasmid is a vector obtained by replacing the sequence between the two restriction sites of the pMAL-c2X vector BamHI and Hind ⁇ with the Os02g0589400 gene (SEQ ID No. 2), named pMAL-Os02g0589400, and is a recombinant prokaryotic expression vector.
- the enzyme activity reaction system is: Tris-HCl (pH 7.0, 50mM, containing 10mM DTT) 38 ⁇ L, 10mM glycosyl acceptor (Os02g0589400 glycosyl acceptor is Orientin) 1 ⁇ L, 100mM glycosyl donor (UDPG) 1 ⁇ L , 10 ⁇ L of Os02g0589400 recombinant protein obtained in step 2 (Os02g0589400 protein concentration is 2.03 ⁇ g/ ⁇ L).
- the reaction was carried out in a water bath at 30°C for 1 hour, and then the reaction was terminated with an equal volume of methanol.
- a sample of the protein obtained from the Escherichia coli transformed into the empty pMAL-c2X vector according to the above step 2 was added as a control.
- Enzyme activity product detection Centrifuge the sample in (1) at 4°C and 12,000 rpm for 10 minutes, and take 30 ⁇ L for detection with UPLC-MS (Agilent 1290UPLC-6540Q-TOF).
- Mobile phase A phase 0.1% formic acid aqueous solution,% means volume percentage content;
- B phase acetonitrile.
- Flow rate 0.3mL/min, column temperature: 40°C, injection volume: 5 ⁇ L.
- Adopt electrospray ion source (ESI), positive ion mode detection, carrier gas is high-purity nitrogen, pressure 40psi, temperature 325°C.
- test results showed that compared with the empty carrier control group, a new chromatographic peak appeared in the reaction system with Os02g0589400 recombinant protein added.
- the molecular weight of this substance was 162 higher than Orientin, indicating that Os02g0589400 could catalyze the glycosylation of Orientin in vitro (as shown in the figure). 3. As shown in Figure 4).
- CRISPR/Cas vector construction kit (BIOGLE, Cat#BGK03) to link the guide RNA (gRNA) target sequence into the CRISPR/Cas plasmid through a one-step reaction and use it for plant transformation.
- the specific process is as follows:
- the Oligo1 sequence corresponding to Os02g0589400 target sequence 1 is as follows:
- Oligo1-R 5'- AAAC CCCGCGCAACATCGCTCGCCTCC CA -3'.
- the Oligo2 sequence corresponding to Os02g0589400 target sequence 2 is as follows:
- Oligo2-R 5'- AAAC CCAGAGAGCGGATGACATGTGAT CA -3'.
- the underlined part is the vector-specific recognition sequence after the vector is digested, and the base in the box is the PAM sequence.
- Oligo dimer (2) Preparation of Oligo dimer.
- the primer was dissolved to 10 ⁇ M, and Oligo dimer was prepared according to the following system: Buffer Aneal 18 ⁇ L, Oligo-F 1 ⁇ L, Oligo-R 1 ⁇ L. After mixing, heat in a PCR machine at 95°C for 3 minutes, and then lower the temperature to 20°C.
- the ligation system is: 2 ⁇ L of CRISPR/Cas vector, 1 ⁇ L of Oligo dimer, 1 ⁇ L of Enzyme mix, and add ddH 2 O to supplement the reaction system to 10 ⁇ L. After mixing, react at room temperature for 1 hour.
- the ligation product was transformed into E. coli DH5 ⁇ competent cells, and the LB plate containing Kanamycin (Kanamycin concentration of 50 ⁇ g/mL) was used for selection.
- the positive clones are identified by PCR and sequenced.
- the sequencing primer is: 5'-CCCAGTCACGACGTTGTAAA-3'.
- Primer F3 5'-CGAGAGCCTGACCTATTGCAT-3';
- Primer R3 5'-CTGCTCCATACAAGCCAACCAC-3'.
- mutant materials were randomly selected as 2-1, 2-2, 2-3, and 2-4, respectively.
- 2-1 and 2-2 are the positive mutants of Oligo1 introduced into Os02g0589400.
- these two mutants insert the base C/T at 129bp, leading to early termination of protein translation;
- 2-3 and 2-4 is a positive mutant of Oligo2 introduced into Os02g0589400.
- mutant 2-3 has a base T deletion at 255bp in the genome sequence
- mutant 2-4 has a deletion of 5 bases after 250bp in the genome sequence. base. Due to the base deletion, protein translation was also terminated prematurely in mutants 2-3 and 2-4 ( Figure 5).
- Elution gradient 0-2min: 5%B-10%B, 2-12min: 10%B-25%B, 12-18min: 25%B-70%B, 18-23min: 70%B-90% B, 23-25min: 90%B-100%B, 25-30min: 100%B, after running for 5min,% means the volume percentage.
- Flow rate 0.3mL/min, column temperature: 40°C, injection volume: 5 ⁇ L.
- the orientin content in the Os02g0589400 mutant was significantly increased, indicating that orientin is the substrate of Os02g0589400, which is consistent with the in vitro biochemical results.
- the reason for the increase in orientin content in the mutant is that gene editing makes the Os02g0589400 gene in the mutant have base insertions or deletions, leading to premature termination of protein translation (Figure 5). Therefore, the Os02g0589400 protein in the mutant loses its function and cannot catalyze the glycosylation of orientin, which eventually leads to the accumulation of orientin content in the mutant ( Figure 6).
- Example 5 The compound orientin was applied with lettuce and barnyardgrass
- the compound orientin is dried to powder with a centrifugal concentrator and weighed, and an appropriate amount of sterile water is added to make the final concentration 10 mg/mL.
- Phenotypic statistics Count the root length of each processed material after 3 days.
- the Os02g0589400 gene knockout rice mutant and wild-type ZH11 materials were planted in a rice growth pond. After about 60 days of planting, the leaves of the mutant and wild-type materials were collected.
- washings are lyophilized, rinse the washings in the 4 centrifuge tubes corresponding to each material with an appropriate amount of distilled water, then combine the washings in each tube, and set the volume of the washings of each material To 12.0 mL, each 12 mL of the leaf washing solution contains the solid water washing solution extracted from 12 g leaves. Then centrifuge at 12,000 rpm for 10 minutes, and transfer the supernatant to a new centrifuge tube. Then put it in the refrigerator at -20°C for later use.
- Phenotypic statistics 3 days later, the root length of each processed material was counted.
- the leaf washing of the mutant can significantly inhibit the growth of barnyardgrass roots. This is due to the increase in the content of Orientin in the mutant ( Figure 6), so the mutant leaf washing is applied externally barnyardgrass will shorten the roots of barnyardgrass, indicating that Orientin plays an important role in inhibiting the growth of barnyardgrass, especially the growth of barnyardgrass roots.
- the allelopathy-related flavonoid glycosides provided by the present invention are orientin, and the Os02g0589400 gene related to the formation of orientin is also provided.
- the compound application experiment showed that orientin can significantly inhibit the growth of barnyardgrass and lettuce roots.
- in vitro enzyme activity experiments show that Os02g0589400 can catalyze orientin to form a glycosylation product. Changing the expression of this gene in rice will cause a significant change in orientin content. It can be seen that the genes of orientin and Os02g0589400 can regulate the allelopathy of plants and have great application value in inhibiting the growth of weeds.
- the invention is of great significance for developing an environmentally friendly green pesticide, cultivating rice varieties with higher allelopathic effects, and regulating orientin biosynthesis, and at the same time provides theoretical guidance for the control of weeds in rice fields .
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Environmental Sciences (AREA)
- Pest Control & Pesticides (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Agronomy & Crop Science (AREA)
- Dentistry (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
一种黄酮苷类物质及其糖基转移酶基因在调控植物化感作用中的应用,涉及荭草苷在如下任一中的应用:调控植物化感作用,调控植物对杂草抗性,抑制杂草生长;以及Os02g0589400蛋白或其相关生物材料在如下任一中的应用:调控植物化感作用,调控植物对杂草抗性,调控植物中荭草苷含量,催化荭草苷糖基化,作为或制备糖基化转移酶,抑制杂草生长。实验证明,荭草苷和Os02g0589400能够调控植物的化感作用,可用于抑制杂草生长。上述方法对于开发一种对环境友好型的绿色农药、培育具有较高能力化感作用的水稻品种以及对荭草苷生物合成的调控具有重要意义,同时为水稻田中杂草的控制提供了理论指导。
Description
本发明涉及生物技术领域,具体涉及一种黄酮苷类物质及其糖基转移酶基因在调控植物化感作用中的应用。
黄酮类化合物是一类是广泛分布于植物中的天然代谢产物,含有C6-C3-C6基本骨架。根据中央三碳链的氧化程度、是否构成环状以及B-环连接位置(2-或3-位)等特点,可将主要的天然黄酮类化合物分为黄酮类、黄酮醇类、二氢黄酮类、二氢黄酮醇类、花色素类、异黄酮类等。大部分黄酮类化合物在植物体内与糖结合成苷类,也有一部分以游离态(苷元形式)存在。黄酮类化合物有很强的抗炎和抗癌作用,在心血管疾病、冠心病、肿瘤等疾病治疗中有很大的应用前景。此外,黄酮类化合物在植物生长发育、抗氧化、生物胁迫等方面起着重要作用。如调节激素的运输,作为一种紫外线吸收化合物保护植物免受UV-B辐射,抑制杂草生长等。
目前在水稻中发现的有抑制杂草生长(化感作用)的黄酮类物质主要是麦黄酮(tricin),而关于其他黄酮类物质是否具有化感作用,以及水稻化感作用的遗传机制和抑草机制却不是很清楚。能够调控黄酮类物质表达的基因是否能够调控植物的化感作用也不是很清楚。
发明公开
本发明的目的是提供一种黄酮苷类物质及其糖基转移酶基因在调控植物化感作用中的应用。
第一方面,本发明要求保护荭草苷在如下任一中的应用:
P1、调控植物化感作用。
所述调控植物化感作用体现为提高所述植物体内荭草苷的含量,则所述植物的化感作用增强。
P2、调控植物对杂草抗性。
所述调控植物对杂草抗性体现为提高所述植物体内荭草苷的含量,则所述植物对杂草抗性增强。
P3、抑制杂草生长。
第二方面,本发明要求保护一种培育化感作用增强的植物品种的方法。
本发明要求保护的培育化感作用增强的植物品种的方法,可包括如下步骤:使受体植物中荭草苷的含量提高,得到化感作用增强的植物品种。
第三方面,本发明要求保护一种培育化感作用减弱的植物品种的方法。
本发明要求保护的培育化感作用减弱的植物品种的方法,可包括如下步骤:使受体植物中荭草苷的含量降低,得到化感作用减弱的植物品种。
第四方面,本发明要求保护一种培育对杂草抗性增强的植物品种的方法。
本发明要求保护的培育对杂草抗性增强的植物品种的方法,可包括如下步骤:使受体植物中荭草苷的含量提高,得到对杂草抗性增强的植物品种。
第五方面,本发明要求保护一种培育对杂草抗性减弱的植物品种的方法。
本发明要求保护的培育对杂草抗性减弱的植物品种的方法,可包括如下步骤:使受体植物中荭草苷的含量降低,得到对杂草抗性减弱的植物品种。
在前文中,使所述受体植物中荭草苷的含量提高可通过如下实现:
(A1)降低所述受体植物中能够催化荭草苷转化为其他物质的蛋白质的活性和/或表达量;和/或
(A2)提高所述受体植物中能够催化其他物质转化为荭草苷的蛋白质的活性和/或表达量。
在前文中,使所述受体植物中荭草苷的含量降低可通过如下实现:
(B1)提高所述受体植物中能够催化荭草苷转化为其他物质的蛋白质的活性和/或表达量;和/或
(B2)降低所述受体植物中能够催化其他物质转化为荭草苷的蛋白质的活性和/或表达量。
进一步地,所述(A1)可通过如下(a1)实现;所述(A2)可通过如下(a2)实现:
(a1)对所述受体植物中能够催化荭草苷转化为其他物质的蛋白质的编码基因进行抑制表达;
(a2)向所述受体植物中导入能够催化其他物质转化为荭草苷的蛋白质的编码基因。
所述(B1)可通过如下(b1)实现;所述(B2)可通过如下(b2)实现:
(b1)向所述受体植物中导入能够催化荭草苷转化为其他物质的蛋白质的编码基因;
(b2)对所述受体植物中能够催化其他物质转化为荭草苷的蛋白质的编码基因进行抑制表达。
其中,所述其他物质可为不能增强所述受体植物的化感作用的物质,或者为对所述受体植物化感作用的增强程度弱于荭草苷的物质。或,所述其他物质可为不能增强所述受体植物对杂草抗性的物质,或者为对所述受体植物对杂草抗性的增强程度弱于荭草苷的物质。
在本发明中,所述(A1)、所述(a1)、所述(B1)和所述(b1)中,所述催化荭草苷转化为其他物质具体为催化荭草苷发生糖基化。
第六方面,本发明要求保护一种抑制杂草生长的方法。
本发明要求保护的抑制杂草生长的方法,可包括如下步骤(C1)或(C2):
(C1)向所述杂草外施荭草苷;
(C2)向所述杂草的种子外施利用前文第四方面所述的方法培育得到的对杂草抗性增强的植物品种的叶片水洗物溶液。
在步骤(C1)中,所述荭草苷的工作浓度可为500mg/L及以上。
在本发明的具体实施方式中,所述荭草苷的工作浓度具体为500mg/L。
在步骤(C2)中,所述叶片水洗物可按照包括如下步骤的方法制备得到:将所述对杂草抗性增强的植物品种的叶片按照12g比200mL的比例加入到水中,37℃密封震荡(220rpm)提取4h,室温静置20h,冷冻干燥,得到固态水洗物;每12mL的所述叶片水洗物溶液(工作液)中含有从12g叶片中提取得到的所述固态水洗物。
第七方面,本发明要求保护Os02g0589400蛋白或其相关生物材料在如下任一中的应用:
Q1、调控植物化感作用。
所述调控植物化感作用体现为降低所述植物体内Os02g0589400蛋白的活性和/或含量,则所述植物的化感作用增强。
Q2、调控植物对杂草抗性。
所述调控植物对杂草抗性体现为降低所述植物体内Os02g0589400蛋白的活性和/或含量,则所述植物对杂草抗性增强。
Q3、调控植物中荭草苷(orientin)含量。
所述调控植物中荭草苷含量体现为降低所述植物体内Os02g0589400蛋白的活性和/或含量,则所述植物中荭草苷含量升高。
Q4、催化荭草苷糖基化;
Q5、作为或制备糖基化转移酶;
在本发明中,所述糖基化的受体为荭草苷(orientin)。
在本发明的具体实施方式中,所述糖基化的供体具体为UDPG。
(6)抑制杂草生长。
所述相关生物材料为能够表达所述Os02g0589400蛋白的核酸分子或含有所述核酸分子的表达盒、重组载体、重组菌或转基因细胞系。
所述Os02g0589400蛋白为如下任一所示蛋白质:
(D1)氨基酸序列为SEQ ID No.1的蛋白质;
(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;
(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;
(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
上述蛋白质中,所述标签是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和/或纯化。所述标签可为Flag标签、His标签、MBP标签、HA标签、myc标签、GST标签和/或SUMO标签等。
第八方面,本发明要求保护一种培育化感作用增强的植物品种的方法。
本发明要求保护的培育化感作用增强的植物品种的方法,可包括如下步骤:使受体植物中Os02g0589400蛋白的活性和/或含量降低,得到化感作用增强的植物品种。所述Os02g0589400蛋白为前文(D1)-(D4)中任一所示蛋白质。
第九方面,本发明要求保护一种培育化感作用减弱的植物品种的方法。
本发明要求保护的培育化感作用减弱的植物品种的方法,可包括如下步骤:使受体植物中Os02g0589400蛋白的活性和/或含量提高,得到化感作用减弱的植物品种。所述Os02g0589400蛋白为前文(D1)-(D4)中任一所示蛋白质。
第十方面,本发明要求保护一种培育对杂草抗性增强的植物品种的方法。
本发明要求保护的培育对杂草抗性增强的植物品种的方法,可包括如下步骤:使受体植物中Os02g0589400蛋白的活性和/或含量降低,得到对杂草抗性增强的植物品种。所述Os02g0589400蛋白为前文(D1)-(D4)中任一所示蛋白质。
第十一方面,本发明要求保护一种培育对杂草抗性减弱的植物品种的方法。
本发明要求保护的培育对杂草抗性减弱的植物品种的方法,可包括如下步骤:使受体植物中Os02g0589400蛋白的活性和/或含量提高,得到对杂草抗性减弱的植物品种。所述Os02g0589400蛋白为前文(D1)-(D4)中任一所示蛋白质。
第十二方面,本发明要求保护一种培育荭草苷含量提高的植物品种的方法。
本发明要求保护的培育荭草苷含量提高的植物品种的方法,可包括如下步骤:使受体植物中Os02g0589400蛋白的活性和/或含量降低,得到荭草苷含量提高的植物品种。所述Os02g0589400蛋白为前文(D1)-(D4)中任一所示蛋白质。
第十三方面,本发明要求保护一种培育荭草苷含量降低的植物品种的方法。
本发明要求保护的培育荭草苷含量降低的植物品种的方法,可包括如下步骤:使受体植物中Os02g0589400蛋白的活性和/或含量提高,得到荭草苷含量降低的植物品种。所述Os02g0589400蛋白为前文(D1)-(D4)中任一所示蛋白质。
第十四方面,本发明要求保护一种培育化感作用增强的转基因植物的方法。
本发明要求保护的培育化感作用增强的转基因植物的方法,可包括如下步骤:对受体植物中能够表达Os02g0589400蛋白的核酸分子进行抑制表达,得到转基因植物;所述转基因植物与所述受体植物相比化感作用增强;所述Os02g0589400蛋白为前文(D1)-(D4)中任一所示蛋白质。
第十五方面,本发明要求保护一种培育化感作用减弱的转基因植物的方法。
本发明要求保护的培育化感作用减弱的转基因植物的方法,可包括如下步骤:向受体植物中导入能够表达Os02g0589400蛋白的核酸分子,得到转基因植物;所述转基因植物与所述受体植物相比化感作用减弱;所述Os02g0589400蛋白为前文(D1)-(D4)中任一所示蛋白质。
第十六方面,本发明要求保护一种培育对杂草抗性增强的转基因植物的方法。
本发明要求保护的培育对杂草抗性增强的转基因植物的方法,可包括如下步骤:对受体植物中能够表达Os02g0589400蛋白的核酸分子进行抑制表达,得到转基因植物;所述转基因植物与所述受体植物相比对杂草抗性增强;所述Os02g0589400 蛋白为前文(D1)-(D4)中任一所示蛋白质。
第十七方面,本发明要求保护一种培育对杂草抗性减弱的转基因植物的方法。
本发明要求保护的培育对杂草抗性减弱的转基因植物的方法,可包括如下步骤:向受体植物中导入能够表达Os02g0589400蛋白的核酸分子,得到转基因植物;所述转基因植物与所述受体植物相比对杂草抗性减弱;所述Os02g0589400蛋白为前文(D1)-(D4)中任一所示蛋白质。
第十八方面,本发明要求保护一种培育荭草苷含量提高的转基因植物的方法。
本发明要求保护的培育荭草苷含量提高的转基因植物的方法,可包括如下步骤:对受体植物中能够表达Os02g0589400蛋白的核酸分子进行抑制表达,得到转基因植物;所述转基因植物与所述受体植物相比荭草苷含量提高;所述Os02g0589400蛋白为前文(D1)-(D4)中任一所示蛋白质。
第十九方面,本发明要求保护一种培育荭草苷含量降低的转基因植物的方法。
本发明要求保护的培育荭草苷含量降低的转基因植物的方法,可包括如下步骤:向受体植物中导入能够表达Os02g0589400蛋白的核酸分子,得到转基因植物;所述转基因植物与所述受体植物相比荭草苷含量降低;所述Os02g0589400蛋白为前文(D1)-(D4)中任一所示蛋白质。
第二十方面,本发明要求保护一种抑制杂草生长的方法。
本发明所要求保护的抑制杂草生长的方法,可包括如下步骤:向所述杂草的种子外施通过使受体植物中Os02g0589400蛋白的活性和/或含量降低培育得到的植物品种的叶片水洗物溶液。
进一步地,所述叶片水洗物可按照包括如下步骤的方法制备得到:将所述叶片按照12g比200mL的比例加入到水中,37℃密封震荡(220rpm)提取4h,室温静置20h,冷冻干燥,得到固态水洗物;每12mL的所述叶片水洗物溶液(工作液)中含有从12g叶片中提取得到的所述固态水洗物。
在上述各方面中,所述“使受体植物中Os02g0589400蛋白的活性和/或含量降低”可通过对所述受体植物中能够表达所述Os02g0589400蛋白的核酸分子进行抑制表达来实现。
在上述各方面中,所述“使受体植物中Os02g0589400蛋白的活性和/或含量提高”可通过向所述受体植物中导入能够表达所述Os02g0589400蛋白的核酸分子来实现。
在上述各方面中,所述“能够表达所述Os02g0589400蛋白的核酸分子”具体可为如下任一所述的DNA分子:
(E1)SEQ ID No.2所示的DNA分子;
(E2)在严格条件下与(E1)限定的DNA分子杂交且编码所述Os02g0589400蛋白的DNA分子;
(E3)与(E1)或(E2)限定的DNA序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且编码所述Os02g0589400蛋白的DNA分子。
上述基因中,所述严格条件可为如下:50℃,在7%十二烷基硫酸钠(SDS)、0.5M Na
3PO
4和1mM EDTA的混合溶液中杂交,在50℃,2×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M Na
3PO
4和1mM EDTA的混合溶液中杂交,在50℃,1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M Na
3PO
4和1mM EDTA的混合溶液中杂交,在50℃,0.5×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M Na
3PO
4和1mM EDTA的混合溶液中杂交,在50℃,0.1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M Na
3PO
4和1mM EDTA的混合溶液中杂交,在65℃,0.1×SSC,0.1%SDS中漂洗;也可为:在6×SSC,0.5%SDS的溶液中,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次。
在前文中,所述“对受体植物中能够表达Os02g0589400蛋白的核酸分子进行抑制表达”可通过任何能够实现这一目的的技术手段实现,如通过序列特异核酸酶(如CRISPR/Cas9核酸酶)对所述核酸分子进行特异性剪切,从而降低其在所述受体植株中的表达。
在本发明中,所述“对受体植物中能够表达Os02g0589400蛋白的核酸分子进行抑制表达”具体是通过CRISPER/Cas9技术实现的;以Os02g0589400基因组片段中符合5’-N
X-NGG-3’或5’-CCN-N
X-3’序列排列规则的片段为靶序列;N表示A、G、C和T中的任一种,14≤X≤30,且X为整数,N
X表示X个连续的脱氧核糖核苷酸。更加具体的,在本发明的一个具体实施例中,所述X为20。相应的,所述靶序列具体为5'-GGAGGCGAGCGATGTTGCGC-3'或5'-GCGCAACATCGCTCGCCTCC-3'。
在前文中,所述“向受体植物中导入能够表达Os02g0589400蛋白的核酸分子”可通过任何能够实现这一目的的技术手段实现。
所述重组表达载体可用现有的植物表达载体构建。所述植物表达载体包括双元农杆菌载体和可用于植物微弹轰击的载体等,如pCAMBIA-1300-221、pGreen0029、pCAMBIA3301、pCAMBIA1300、pBI121、pBin19、pCAMBIA2301、pCAMBIA1301-UbiN或其它衍生植物表达载体。所述植物表达载体还可包含外源基因的3’端非翻译区域,即包含聚腺苷酸信号和任何其它参与mRNA加工或基因表达的DNA片段。所述聚腺苷酸信号可引导聚腺苷酸加入到mRNA前体的3’端。使用所述基因构建重组表达载体时,在其转录起始核苷酸前可加上任何一种增强型、组成型、组织特异型或诱导型启动子,例如花椰菜花叶病毒(CAMV)35S启动子、泛素基因Ubiquitin启动子(pUbi)、胁迫诱导型启动子rd29A等,它们可单独使用或与其它的植物启动子结合使用;此外,使用本发明的基因构建重组表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用重组表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因、具有抗性的抗生素标记物或是抗化学试剂标 记基因等。也可不加任何选择性标记基因,直接以逆境筛选转化植株。
第二十一方面,本发明要求保护通过上述各方法培育所得的植物品种或转基因植物。
所述植物品种或转基因植物包括但不限于完整植株、种子、可繁殖的组织或器官等。
依据培育方法的不同,所述植物品种可为如下任一:化感作用增强的植物品种、化感作用减弱的植物品种、对杂草抗性增强的植物品种、对杂草抗性减弱的植物品种、荭草苷含量提高的植物品种、荭草苷含量降低的植物品种。
依据培育方法的不同,所述转基因植物可为如下任一:化感作用增强的转基因植物、培育化感作用减弱的转基因植物、对杂草抗性增强的转基因植物、对杂草抗性减弱的转基因植物、荭草苷含量提高的转基因植物、荭草苷含量降低的转基因植物。
第二十二方面,本发明要求保护一种抑制杂草生长的化合物。
本发明所要求保护的抑制杂草生长的化合物具体为荭草苷。
第二十三方面,本发明要求保护一种叶片水洗物或其溶液。
本发明所要求保护的叶片水洗物或其溶液为前文第二十方面中所述的“通过使受体植物中Os02g0589400蛋白的活性和/或含量降低培育得到的植物品种的叶片水洗物”或其溶液。
所述叶片水洗物或其溶液中含有荭草苷。
第二十三方面,本发明要求保护前文第二十二方面中所述的叶片水洗物或其溶液的制备方法。
本发明所要求保护的所述叶片水洗物或其溶液的制备方法,可包括如下步骤:将所述叶片按照12g比200mL的比例加入到水中,37℃密封震荡(220rpm)提取4h,室温静置20h,冷冻干燥,得到固态水洗物;每12mL的所述叶片水洗物溶液(工作液)中含有从12g叶片中提取得到的所述固态水洗物。
第二十四方面,本发明要求保护前文第二十二方面所述的叶片水洗物或其溶液在抑制杂草生长中的应用。
在本发明的具体实施方式中,所述抑制杂草生长为抑制杂草根的生长。
在上述各方面中,所述植物具体可为水稻;所述杂草具体可为稗草或生菜。
在上述各方面中,所述荭草苷的结构式如图1所示。
图1为orientin结构式。
图2为Os02g0589400蛋白纯化。其中红色箭头为蛋白纯化后重组蛋白的大小。
图3为Os02g0589400体外酶活产物检测的色谱图。Standards为标准品;Empty vector为空载体对照组。
图4为orientin及其产物的二级质谱图。
图5为Os02g0589400突变体核苷酸(A)及氨基酸(B)序列。
图6为突变体中orientin含量。WT为野生型ZH11材料,2-1、2-2、2-3、2-4为Os02g0589400突变体材料。纵坐标为orientin含量。
图7为orientin能够抑制稗草或者生菜根的生长。图中,*表示在P<0.05水平上差异显著。
图8为突变体及野生型叶片水洗物外施稗草,图中**表示P<0.01水平上差异极显著。
实施发明的最佳方式
以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。
实施例1、化合物纯化
(1)收集播种后约60天的水稻(籼稻)新鲜叶片,用冷冻干燥机干燥后研磨为粉末状。加入8倍体积75%的乙醇,超声提取3次,每次20min。
(2)过滤提取液,并用旋转蒸发仪浓缩至无醇味,依次加入等体积的石油醚、二氯甲烷、正丁醇分别萃取3次。
(3)将获得的正丁醇相用旋转蒸发仪浓缩后利用中低压快速制备液相色谱仪(Biotage Isolera
TM Prime)采用湿法上样进行粗分。硅胶柱填料为YMC*GEL C18球形填料,填料粒径为50μm,孔径为12nm。本实施例中所用填料重量为100g。流动相为水(含0.1%的甲酸,%表示体积百分含量)、甲醇。流动相比例为甲醇10%-90%10柱体积,甲醇90%-100%2柱体积。流速:50mL/min,检测波长为210nm和254nm。通过初分,共获得10个组分,编号1-10。
(4)用UPLC-MS(Agilent 1290UPLC-6540Q-TOF)检测各个组分中荭草苷(orientin)的含量。将(3)中获得的组分各取1mL于1.5mL的Eppendorf离心管中,用离心浓缩仪器进行浓缩后加入200μL甲醇并涡旋溶解。4℃,12,000rpm离心10min。再吸取上清100μL于含有容量为200μL衬管的Agilent进样瓶中。然后用UPLC-MS进行检测。流动相A相:0.1%甲酸水溶液(%表示体积百分含量);B相:乙腈。洗脱梯度:0-2min:5%B-10%B,2-12min:10%B-25%B,12-18min:25%B-70%B,18-23min:70%B-90%B,23-25min:90%B-100%B,25-30min:100%B,后运行5min,%均表示体积百分含量。流速0.3mL/min,柱温:40℃,进样量:5μL。采用电喷雾离子源(ESI),正离子模式检测,载气为高纯氮气,压力40psi,温度325℃。通过检测发现,组分2-7中含有荭草苷。
(5)合并含有目的化合物(orientin)的组分2-7并用旋转蒸发仪浓缩。然后利用HPLC半制备液相色谱(Agilent 1260)制备orientin。具体制备过程 为:吸取(4)中获得的浓缩组分0.2mL于Agilent进样瓶中,并加入0.8mL的70%甲醇溶液(%均表示体积百分含量)稀释。充分混匀后利用HPLC半制备色谱进行样品制备。色谱柱:Agilent Eclipse XDB-C18,规格9.4(内径)×250mm(长度),填料孔径5μm;柱温:40℃;流速:1.5mL/min;检测波长:210nm,254nm,330nm;进样量:20μL;流动相:A相(H
2O+0.1%甲酸,%表示体积百分含量)、B相(甲醇);流动相等梯度洗脱程序:A:35%,B:65%,运行60min。将保留时间RT=20.2min的组分接出并保存于-20℃。待所有样品制备完后,将所有的接出组分用离心浓缩仪进行逐步合并,然后使样品完全干燥,获得orientin单品。
(6)将得到的orientin化合物单品用1mL的D2O:CD3OD=5:3(体积比)溶液溶解后,利用核磁共振技术(NMR)(BRUKER 800MHz NMR)进行结构鉴定。orientin的核磁结果见表1和图1。
表1 化合物orientin的核磁结果
实施例2、Os02g0589400基因克隆
(1)提取粳稻中花11(Oryza sativa L.ssp.japonica cv.Zhonghua11,ZH11)幼苗期叶片的基因组DNA。
(2)根据水稻注释网站(Rice Genome Annotation Project)已有的Os02g0589400序列信息,用含有BamHI和HindШ酶切位点的引物F1/R1以ZH11基因组DNA为模板扩增含有酶切位点的Os02g0589400基因CDS序列。
引物F1:5’-ggatccATGGATGCCTCCCCGCTG-3’;
引物R1:5’-aagcttCTAATAACCAGTCCTTGTCGTTG-3’。
(3)将阳性克隆利用引物F2/R2进行PCR鉴定,扩增片段大小为414bp为阳性克隆。引物如下:
引物F2:5′-GGCGACACAGCTCTCATGTCCTCGT-3′;
引物R2:5′-CCCTCTCGCCCCTTCCAAGTAGCTC-3′。
(4)将阳性克隆委托公司进行测序,并将获得的序列与水稻注释网站序列信息一致的阳性克隆提取质粒,重组质粒命名为pEASY-T
3-Os02g0589400。
重组载体pEASY-T
3-Os02g0589400的结构描述为:将pEASY-T
3载体的酶切位点BamHI和HindШ之间的小片段替换为SEQ ID No.2所示DNA片段后的重组质粒。SEQ ID No.2为Os02g0589400基因的CDS序列,编码SEQ ID No.1所示蛋白质。
实施例3、Os02g0589400基因的应用
一、原核表达载体构建
(1)用限制性内切酶BamHI和HindШ将实施例2得到的重组载体pEASY-T
3-Os02g0589400完全酶切,同时酶切表达载体pMAL-c2X(华越洋,VECT-570)。酶切体系为:5μg质粒、2.5μL 10×酶切缓冲液、2μL BamHI、2μL HindШ,加ddH
2O补充反应体系至50μL。酶切反应条件为:37℃酶切4小时。
(2)用琼脂糖电泳对酶切产物进行分离,回收大小约为1.3Kb包含Os02g0589400的片段,以及6.6Kb左右的pMAL-c2X载体片段,分别溶解于30μL ddH
2O中。
(3)将步骤(2)获得的基因片段与载体骨架片段进行连接反应。连接反应体系为:1μL 10×连接酶缓冲液、0.5μL T
4DNA连接酶、1μL pMAL-c2X载体片段、3μL基因片段,加ddH
2O补充反应体系至10μL。连接反应条件为:4℃连接12小时。
(4)将连接反应的产物转化大肠杆菌DH5α感受态细胞,用含有Ampicillin的LB平板(Ampicillin浓度为100μg/mL)进行筛选。
(5)将阳性克隆进行PCR鉴定(引物F2/R2)。Os02g0589400阳性克隆的 扩增片段为414bp。
引物F2:5’-GGCGACACAGCTCTCATGTCCTCGT-3’;
引物R2:5’-CCCTCTCGCCCCTTCCAAGTAGCTC-3’。
(6)将获得的阳性克隆委托公司测序,并提取质粒。该质粒为将pMAL-c2X载体BamHI和HindШ两个酶切位点之间的序列替换为Os02g0589400基因(SEQ ID No.2)得到的载体,命名为pMAL-Os02g0589400,为重组原核表达载体。
二、Os02g0589400原核表达
(1)将获得的重组原核表达载体pMAL-Os02g0589400转入大肠杆菌NovaBlue(华越洋,WR4478)感受态细胞中。同时转入pMAL-c2X空载体作为对照。用含有Ampicillin的LB平板筛选阳性克隆,然后用PCR进行阳性克隆鉴定,引物为前文的F2/R2,扩增片段大小414bp。
(2)将阳性克隆接种于20mL LB液体培养基(含100μg/mL Ampicillin)中,37℃,220rpm振荡培养12-14h。
(3)按1:1000的比例(体积比)将(2)中的菌夜转接至400mL LB液体培养基(含100μg/mL Ampicillin)中,37℃,220rpm,培养至OD
600=0.6-0.8。
(4)将菌夜取出置于冰上制冷后加入160μL浓度为500mM的IPTG,使IPTG的终浓度为0.2mM。
(5)16℃,100rpm振荡培养24h,以诱导蛋白表达。
(6)4℃,10,000rpm离心10min收集菌体。然后用柱缓冲液重悬菌体,置于-20℃冷冻过夜。柱缓冲液(1L)配方如下:NaCl 11.7g;DTT 154mg;0.5M EDTA 2mL;1M Tris-HCl(pH=7.4)40mL;余量为水。
(7)次日待样品融化后,用超声破碎仪破碎细胞,然后10,000rpm离心10min。
(8)利用直链淀粉柱纯化目的蛋白。具体纯化过程如下:
a、利用柱缓冲液(配方见上)活化亲和柱填料(流速为1mL/min)。
b、将(7)中获得的粗蛋白上清液缓慢加入已活化的直链淀粉柱中,将流速调至约0.5mL/min,以使目的蛋白与亲和柱填料充分结合。
c、待样品都流过填料后,加入柱缓冲液冲洗多次,以去除未结合的杂蛋白。
d、加入15mL含有麦芽糖的柱缓冲液(1L柱缓冲液中含有3.6g麦芽糖)洗脱目的蛋白,重复该步骤一次。
e、将洗脱液分次加入超滤管中,每次4℃,5000rpm离心15min。
f、加入1mL 100mM Tris-HCl 4℃,5000rpm离心15min,倒掉废液。将目的蛋白溶液转入1.5mL Eppendorf离心管中。
g、吸取获得的目的蛋白溶液2μL,加入1mL Bradford(Quick Start
TM Bradford 1×Dye Reagent,BioRAD,CAS 67-56-1),利用分光光度计测量待测蛋白在595nm(OD
595)处的吸收峰。并将目的蛋白的吸收值换算为蛋白浓度, 得出纯化获得的Os02g0589400重组蛋白的浓度为2.03μg/μL。
h经SDS-PAGE电泳后,用考马斯亮蓝染色确认重组蛋白Os02g0589400大小约为90KD(图2)。
三、Os02g0589400的体外酶活
(1)酶活反应体系为:Tris-HCl(pH 7.0,50mM,含有10mM DTT)38μL,10mM糖基受体(Os02g0589400的糖基受体为Orientin)1μL,100mM糖基供体(UDPG)1μL,步骤二获得的Os02g0589400重组蛋白10μL(Os02g0589400蛋白浓度为2.03μg/μL)。30℃水浴反应1h,然后用等体积甲醇中止反应。以加入从转入pMAL-c2X空载体的大肠杆菌中按照上述步骤二操作所得蛋白的样品为对照。
(2)酶活产物检测:将(1)中样品4℃,12,000rpm离心10min离心,取30μL用UPLC-MS(Agilent 1290UPLC-6540Q-TOF)进行检测。流动相A相:0.1%甲酸水溶液,%表示体积百分含量;B相:乙腈。洗脱梯度:0-2min:5%B-10%B,2-12min:10%B-25%B,12-18min:25%B-70%B,18-23min:70%B-90%B,23-25min:90%B-100%B,25-30min:100%B,后运行5min,%均表示体积百分含量。流速0.3mL/min,柱温:40℃,进样量:5μL。采用电喷雾离子源(ESI),正离子模式检测,载气为高纯氮气,压力40psi,温度325℃。
检测结果表明,与空载体对照组相比,加入Os02g0589400重组蛋白的反应体系中出现一个新的色谱峰,该物质的分子量比Orientin多162,说明在体外Os02g0589400能催化Orientin发生糖基化(如图3、图4所示)。
实施例4、Os02g0589400在水稻中的作用
一、利用CRISPR/Cas技术创制Os02g0589400水稻突变体
利用CRISPR/Cas载体构建试剂盒(BIOGLE,Cat#BGK03)将guide RNA(gRNA)靶点序列,通过一步反应连入CRISPR/Cas质粒中,并将其用于植物转化。具体流程如下:
(1)利用CRISPR-P网站(http://crispr.hzau.edu.cn/CRISPR2/)设计gRNA靶点序列(Oligo),该靶点序列后序列特征序列为NGG序列(即PAM序列),靶点序列长度为20bp。
Os02g0589400的靶序列1:
5'-
GGAGGCGAGCGATGTTGCGC-3'。
对应Os02g0589400靶序列1的Oligo1序列如下:
Oligo1-R:5'-
AAACCCCGCGCAACATCGCTCGCCTCC
CA-3'。
Os02g0589400的靶序列2:
5'-ATCACATGTCATCCGCTCTC-3'。
对应Os02g0589400靶序列2的Oligo2序列如下:
Oligo2-R:5'-
AAACCCAGAGAGCGGATGACATGTGAT
CA-3'。
其中,下划线部分为载体酶切后载体特异性识别序列,方框中碱基为PAM序列。
(2)制备Oligo二聚体。将引物溶解为10μM,按照以下体系制备Oligo二聚体:Buffer Aneal 18μL,Oligo-F 1μL,Oligo-R 1μL。混匀后在PCR仪中95℃加热3min,然后降温至20℃。
(3)将Oligo二聚体与CRISPR/Cas载体连接。连接体系为:CRISPR/Cas载体2μL,Oligo二聚体1μL,Enzyme mix 1μL,加ddH
2O补充反应体系至10μL。混匀后室温反应1h。
(4)将连接产物转化大肠杆菌DH5α感受态细胞,用含有Kanamycin的LB平板(Kanamycin浓度为50μg/mL)进行筛选。
(5)将阳性克隆进行PCR鉴定并测序。测序引物为:5'-CCCAGTCACGACGTTGTAAA-3'。
(6)将阳性克隆质粒转化农杆菌EHA105感受态细胞,用含有Rifampin和Kanamycin抗性的YEB平板(100mg/L Rif,100mg/L Kan)进行筛选。挑取单菌落,进行菌液PCR鉴定,引物F3/R3,扩增片段大小481bp。
引物F3:5'-CGAGAGCCTGACCTATTGCAT-3';
引物R3:5'-CTGCTCCATACAAGCCAACCAC-3'。
(7)将阳性克隆菌液按1:100比例(体积比)接种于50mL YEB液体培养基(含100mg/L Rif,100mg/L Kan)中,28℃,220rpm振荡培养至OD
600=0.5。
(8)4,000rpm离心10min集菌,并用等体积的AAM-AS培养基重悬菌体。然后侵染水稻ZH11愈伤组织,待长出转基因苗后,用潮霉素(Hyg)抗性基因引物筛选阳性植株。引物F3/R3(序列见上),扩增片段大小481bp。
随机选取四个阳性的突变体材料分别记作2-1、2-2、2-3和2-4。其中,2-1、2-2为导入Os02g0589400的Oligo1的阳性突变体,与野生型序列相比,这两个突变体在129bp插入碱基C/T,导致蛋白翻译提前终止;2-3和2-4为导入Os02g0589400的Oligo2的阳性突变体,与野生型相比,突变体2-3在基因组序列255bp处有碱基T缺失,而突变体2-4在基因组序列250bp后缺失5个碱基。由于碱基缺失,在突变体2-3和2-4中蛋白翻译也提前终止(图5)。
二、Os02g0589400突变体化合物检测
(1)取材:分别取Os02g0589400突变体2-1、2-2、2-3和2-4及野生型水稻四叶期叶片,每个突变体材料各含四个生物学重复。取样后立即置于液氮中冷冻,然后用低温真空冷冻机干燥。待样品完全干燥后准确称取20mg于2.0mL Eppendorf管中。加入一粒不锈钢钢珠,用MM400球磨仪(Roach,Germany) 振动频率为20Hz,打磨10min。
(2)代谢物提取。将样品用球磨仪打碎后,加入1mL预存于-20℃的提取液(甲醇)及5μL伞形酮内酯(2mg/mL)(内标),37℃220rpm振荡提取2h。然后将提取液12,000rpm高速离心10min。吸取上清500μL于Agilent进样瓶中,然后用UPLC-MS(Agilent 1290UPLC-6540Q-TOF)进行检测。流动相A相:0.1%甲酸水溶液,%表示体积百分含量;B相:乙腈。洗脱梯度:0-2min:5%B-10%B,2-12min:10%B-25%B,12-18min:25%B-70%B,18-23min:70%B-90%B,23-25min:90%B-100%B,25-30min:100%B,后运行5min,%均表示体积百分含量。流速0.3mL/min,柱温:40℃,进样量:5μL。采用电喷雾离子源(ESI),正离子模式检测,载气为高纯氮气,压力40psi,温度325℃。
(3)Os02g0589400突变体化合物含量分析
与野生型相比,Os02g0589400突变体中orientin含量显著升高,说明orientin是Os02g0589400的底物,这与体外生化的结果一致。突变体中orientin含量升高的原因是利用基因编辑使突变体中Os02g0589400基因有碱基插入或缺失,导致蛋白翻译提前终止(图5)。因此在突变体中Os02g0589400蛋白功能丧失,不能催化orientin糖基化,最终导致突变体中orientin含量积累(图6)。
实施例5、化合物orientin外施生菜和稗草
一、化合物orientin外施生菜和稗草实验流程
外施实验选用生菜和稗草的原因是:生菜是文献中报道的做化感实验外施的常用指示作物,而稗草是水稻田中主要的杂草。
(1)将化合物orientin用离心浓缩仪干燥至粉末状并称重,加入适量无菌水,使其终浓度为10mg/mL。
(2)配制0.8%琼脂500mL,并将其置于高压灭菌锅中灭菌。
(3)将灭好菌的琼脂置于超净台冷却至室温(注意:不要使培养基凝固),然后准确吸取4.75mL培养基于已灭菌的10mL离心管中。加入250μL 10mg/mL化合物溶液,使化合物的终浓度为500mg/L。将含有化合物的培养基快速倒于10cm×10cm的方形皿中,迅速摇晃方形皿,使培养基均匀的平铺于方形皿中。以在4.75mL培养基中加入250μL无菌水的培养基作为对照。
(4)将稗草和生菜种子分别用蒸馏水洗数次,然后置于无菌滤纸上干燥。
(5)待培养基凝固后,用无菌镊子放入生菜和稗草种子,每个培养皿中放入26粒种子(分为两行,每行13粒种子)。每个处理包含3个生物学重复。
(6)将放有稗草和生菜的方形皿置于28℃培养箱中黑暗培养3天。
(7)表型统计:3天后统计每个处理材料的根长。
二、化合物外施稗草和生菜表型
如图7所示,按照Orientin 500mg/L的浓度外施稗草和生菜,与对照相比,处理组中稗草和生菜的根长均变短。说明Orientin能显著抑制稗草和生菜的根的生长,如果适当增加Orientin的浓度,抑制效果会更加明显。
实施例6、Os02g0589400基因敲除水稻突变体叶片水洗物外施稗草
一、突变体及野生型材料叶片收集
将Os02g0589400基因敲除水稻突变体及野生型ZH11材料种植于水稻生长池,待种植约60天后,收取突变体及野生型材料的叶片。
二、突变体及野生型材料叶片水洗物提取
(1)分别取突变体2-1、2-2、2-3(见实施例4)及野生型ZH11叶片12g。
(2)将称好的叶片置于250mL锥形瓶中,加入200mL蒸馏水,用封口膜封好瓶口。将材料置于37℃摇床220rpm震摇提取4h后,将材料取出并置于室温静置约20h(注:叶片水洗物提取总时间约为24h)。
(3)将每个材料的叶片水洗物分装于4个50.0mL无菌离心管带盖中,然后置于-20℃冷冻保存。
(4)取出于-20℃冷冻保存的水洗物,并置于冷冻干燥机干燥,得到固态水洗物。
(5)待水洗物将冻干后,将每个材料对应的4个离心管中的水洗物用适量蒸馏水润洗,然后合并各个管中的水洗物,并将每个材料的水洗物定容至12.0mL,使每12mL的所述叶片水洗物溶液中含有从12g叶片中提取得到的固态水洗物。然后12,000rpm离心10min,转移上清至新的离心管中。然后置于-20℃冰箱备用。
三、叶片水洗物外施稗草流程
将上述获得的水洗物外施稗草,具体如下:
(1)配制0.8%琼脂500mL,并将其置于灭菌锅中高压灭菌。
(2)将灭好菌的琼脂置于超净台冷却至室温后准确吸取5.00mL培养基于已灭菌的10mL离心管中。加入1mL已制备的叶片水洗物溶液,充分颠倒混匀并快速倒于10cm×10cm的方形皿中,迅速摇晃方形皿,使培养基均匀的平铺于方形皿中。以在5mL培养基中加入1mL无菌水的培养基作为对照。
(3)待培养基凝固后,用无菌镊子放入稗草种子,每个培养皿中放入26粒种子(分为两行,每行13粒种子)。每个处理包含3个生物学重复。
(4)将放有稗草的方形皿置于28℃培养箱中黑暗培养3天。
(5)表型统计:3天后统计每个处理材料的根长。
四、叶片水洗物外施稗草表型
如图8所示,与野生型相比,突变体的叶片水洗物能极显著抑制稗草根的生长,这是由于突变体中Orientin的含量上升(图6),所以突变体叶片水洗物外施稗草时会使稗草的根变短,说明Orientin在抑制稗草生长,尤其是稗草 根的生长方面发挥着重要作用。
工业应用
本发明提供的与化感有关的黄酮苷类物质为荭草苷(orientin),同时还提供了与荭草苷(orientin)形成相关的Os02g0589400基因。化合物外施实验表明orientin具有显著抑制稗草和生菜根生长的作用。另外,体外酶活实验表明Os02g0589400能够催化orientin形成一种糖基化的产物。在水稻中改变这个基因的表达量会引起orientin含量的显著改变。可见,荭草苷(orientin)和Os02g0589400基因能够调控植物的化感作用,在抑制杂草生长方面具有很大的应用价值。本发明对于开发一种对环境友好型的绿色农药、培育具有较高能力化感作用的水稻品种以及对荭草苷生物合成的调控具有重要意义,同时为水稻田中杂草的控制提供了理论指导。
Claims (50)
- 荭草苷在如下任一中的应用:P1、调控植物化感作用;P2、调控植物对杂草抗性;P3、抑制杂草生长。
- 根据权利要求1所述的应用,其特征在于:所述调控植物化感作用体现为提高所述植物体内荭草苷的含量,则所述植物的化感作用增强;所述调控植物对杂草抗性体现为提高所述植物体内荭草苷的含量,则所述植物对杂草抗性增强。
- 根据权利要求1或2所述的应用,其特征在于:所述植物为水稻;所述杂草为稗草或生菜。
- 一种培育化感作用增强的植物品种的方法,包括如下步骤:使受体植物中荭草苷的含量提高,得到化感作用增强的植物品种。
- 一种培育化感作用减弱的植物品种的方法,包括如下步骤:使受体植物中荭草苷的含量降低,得到化感作用减弱的植物品种。
- 一种培育对杂草抗性增强的植物品种的方法,包括如下步骤:使受体植物中荭草苷的含量提高,得到对杂草抗性增强的植物品种。
- 一种培育对杂草抗性减弱的植物品种的方法,包括如下步骤:使受体植物中荭草苷的含量降低,得到对杂草抗性减弱的植物品种。
- 根据权利要求4或6所述的方法,其特征在于:所述方法中,使所述受体植物中荭草苷的含量提高通过如下实现:(A1)降低所述受体植物中能够催化荭草苷转化为其他物质的蛋白质的活性和/或表达量;和/或(A2)提高所述受体植物中能够催化其他物质转化为荭草苷的蛋白质的活性和/或表达量。
- 根据权利要求5或7所述的方法,其特征在于:所述方法中,使所述受体植物中荭草苷的含量降低通过如下实现:(B1)提高所述受体植物中能够催化荭草苷转化为其他物质的蛋白质的活性和/或表达量;和/或(B2)降低所述受体植物中能够催化其他物质转化为荭草苷的蛋白质的活性和/或表达量。
- 根据权利要求8所述的方法,其特征在于:所述(A1)通过如下(a1)实现;所述(A2)通过如下(a2)实现:(a1)对所述受体植物中能够催化荭草苷转化为其他物质的蛋白质的编码基因进行抑制表达;(a2)向所述受体植物中导入能够催化其他物质转化为荭草苷的蛋白质的 编码基因。
- 根据权利要求9所述的方法,其特征在于:所述(B1)通过如下(b1)实现;所述(B2)通过如下(b2)实现:(b1)向所述受体植物中导入能够催化荭草苷转化为其他物质的蛋白质的编码基因;(b2)对所述受体植物中能够催化其他物质转化为荭草苷的蛋白质的编码基因进行抑制表达。
- 根据权利要求10或11所述的方法,其特征在于:所述其他物质为不能增强所述受体植物的化感作用的物质,或者为对所述受体植物化感作用的增强程度弱于荭草苷的物质。
- 根据权利要求10或11所述的方法,其特征在于:所述其他物质为不能增强所述受体植物对杂草抗性的物质,或者为对所述受体植物对杂草抗性的增强程度弱于荭草苷的物质。
- 根据权利要求8-11中任一所述的方法,其特征在于:所述(A1)、所述(a1)、所述(B1)和所述(b1)中,所述催化荭草苷转化为其他物质为催化荭草苷发生糖基化。
- 一种抑制杂草生长的方法,包括如下步骤(C1)或(C2):(C1)向所述杂草外施荭草苷;(C2)向所述杂草的种子外施利用权利要求6、8、10、12、13或14所述方法培育得到的对杂草抗性增强的植物品种的叶片水洗物溶液。
- 根据权利要求15所述的方法,其特征在于:步骤(C1)中,所述荭草苷的工作浓度为500mg/L以上。
- 根据权利要求15所述的方法,其特征在于:步骤(C2)中,所述叶片水洗物是按照包括如下步骤的方法制备得到的:将所述对杂草抗性增强的植物品种的叶片按照12g比200mL的比例加入到水中,37℃密封震荡提取4h,室温静置20h,冷冻干燥,得到固态水洗物;每12mL的所述叶片水洗物溶液中含有从12g叶片中提取得到的所述固态水洗物。
- 根据权利要求4-17中任一所述的方法,其特征在于:所述植物为水稻;所述杂草为稗草或生菜。
- Os02g0589400蛋白或其相关生物材料在如下任一中的应用:Q1、调控植物化感作用;Q2、调控植物对杂草抗性;Q3、调控植物中荭草苷含量;Q4、催化荭草苷糖基化;Q5、作为或制备糖基化转移酶;Q6、抑制杂草生长。所述相关生物材料为能够表达所述Os02g0589400蛋白的核酸分子或含有所 述核酸分子的表达盒、重组载体、重组菌或转基因细胞系;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 根据权利要求19所述的应用,其特征在于:所述调控植物化感作用体现为降低所述植物体内Os02g0589400蛋白的活性和/或含量,则所述植物的化感作用增强;所述调控植物对杂草抗性体现为降低所述植物体内Os02g0589400蛋白的活性和/或含量,则所述植物对杂草抗性增强;所述调控植物中荭草苷含量体现为降低所述植物体内Os02g0589400蛋白的活性和/或含量,则所述植物中荭草苷含量升高;所述糖基化的受体为荭草苷;和/或,所述糖基化的供体为UDPG。
- 根据权利要求20所述的应用,其特征在于:所述“能够表达所述Os02g0589400蛋白的核酸分子”为如下任一所述的DNA分子:(E1)SEQ ID No.2所示的DNA分子;(E2)在严格条件下与(E1)限定的DNA分子杂交且编码所述Os02g0589400蛋白的DNA分子;(E3)与(E1)或(E2)限定的DNA序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且编码所述Os02g0589400蛋白的DNA分子。
- 根据权利要求20或21所述的应用,其特征在于:所述植物为水稻;所述杂草为稗草或生菜。
- 一种培育化感作用增强的植物品种的方法,包括如下步骤:使受体植物中Os02g0589400蛋白的活性和/或含量降低,得到化感作用增强的植物品种;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 一种培育化感作用减弱的植物品种的方法,包括如下步骤:使受体植 物中Os02g0589400蛋白的活性和/或含量提高,得到化感作用减弱的植物品种;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 一种培育对杂草抗性增强的植物品种的方法,包括如下步骤:使受体植物中Os02g0589400蛋白的活性和/或含量降低,得到对杂草抗性增强的植物品种;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 一种培育对杂草抗性减弱的植物品种的方法,包括如下步骤:使受体植物中Os02g0589400蛋白的活性和/或含量提高,得到对杂草抗性减弱的植物品种;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 一种培育荭草苷含量提高的植物品种的方法,包括如下步骤:使受体植物中Os02g0589400蛋白的活性和/或含量降低,得到荭草苷含量提高的植物品种;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取 代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 一种培育荭草苷含量降低的植物品种的方法,包括如下步骤:使受体植物中Os02g0589400蛋白的活性和/或含量提高,得到荭草苷含量降低的植物品种;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 一种培育化感作用增强的转基因植物的方法,包括如下步骤:对受体植物中能够表达Os02g0589400蛋白的核酸分子进行抑制表达,得到转基因植物;所述转基因植物与所述受体植物相比化感作用增强;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 一种培育化感作用减弱的转基因植物的方法,包括如下步骤:向受体植物中导入能够表达Os02g0589400蛋白的核酸分子,得到转基因植物;所述转基因植物与所述受体植物相比化感作用减弱;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签 后得到的融合蛋白。
- 一种培育对杂草抗性增强的转基因植物的方法,包括如下步骤:对受体植物中能够表达Os02g0589400蛋白的核酸分子进行抑制表达,得到转基因植物;所述转基因植物与所述受体植物相比对杂草抗性增强;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 一种培育对杂草抗性减弱的转基因植物的方法,包括如下步骤:向受体植物中导入能够表达Os02g0589400蛋白的核酸分子,得到转基因植物;所述转基因植物与所述受体植物相比对杂草抗性减弱;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 一种培育荭草苷含量提高的转基因植物的方法,包括如下步骤:对受体植物中能够表达Os02g0589400蛋白的核酸分子进行抑制表达,得到转基因植物;所述转基因植物与所述受体植物相比荭草苷含量提高;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 一种培育荭草苷含量降低的转基因植物的方法,包括如下步骤:向受体植物中导入能够表达Os02g0589400蛋白的核酸分子,得到转基因植物;所述转基因植物与所述受体植物相比荭草苷含量降低;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 一种抑制杂草生长的方法,包括如下步骤:向所述杂草的种子外施通过使受体植物中Os02g0589400蛋白的活性和/或含量降低培育得到的植物品种的叶片水洗物溶液;所述Os02g0589400蛋白为如下任一所示蛋白质:(D1)氨基酸序列为SEQ ID No.1的蛋白质;(D2)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(D3)与(D1)-(D2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;(D4)在(D1)-(D3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
- 根据权利要求23、25、27或35所述的方法,其特征在于:所述“使受体植物中Os02g0589400蛋白的活性和/或含量降低”是通过对所述受体植物中能够表达所述Os02g0589400蛋白的核酸分子进行抑制表达来实现的。
- 根据权利要求24、26或28所述的方法,其特征在于:所述“使受体植物中Os02g0589400蛋白的活性和/或含量提高”是通过向所述受体植物中导入能够表达所述Os02g0589400蛋白的核酸分子来实现的。
- 根据权利要求35所述的方法,其特征在于:所述叶片水洗物是按照包括如下步骤的方法制备得到的:将所述叶片按照12g比200mL的比例加入到水中,37℃密封震荡提取4h,室温静置20h,冷冻干燥,得到固态水洗物;每12mL的所述叶片水洗物溶液中含有从12g叶片中提取得到的所述固态水洗物。
- 根据权利要求23-38中任一所述的方法,其特征在于:所述“能够表达所述Os02g0589400蛋白的核酸分子”为如下任一所述的DNA分子:(E1)SEQ ID No.2所示的DNA分子;(E2)在严格条件下与(E1)限定的DNA分子杂交且编码所述Os02g0589400蛋白的DNA分子;(E3)与(E1)或(E2)限定的DNA序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且编码所述Os02g0589400蛋白的DNA分子。
- 根据权利要求29、31、33或36所述的方法,其特征在于:所述“对 受体植物中能够表达Os02g0589400蛋白的核酸分子进行抑制表达”是通过序列特异核酸酶对所述核酸分子进行特异性剪切,从而降低所述核酸分子在所述受体植株中的表达。
- 根据权利要30、32、34或37所述的方法,其特征在于:所述“向受体植物中导入能够表达Os02g0589400蛋白的核酸分子”是通过向所述受体植物中导入含有所述能够表达Os02g0589400蛋白的核酸分子的重组表达载体实现的。
- 根据权利要求23-41中任一所述的方法,其特征在于:所述植物为水稻;所述杂草为稗草或生菜。
- 采用权利要求4-7、23-28中任一所述方法培育得到的植物品种。
- 采用权利要求29-34中任一所述方法培育得到的转基因植物。
- 一种抑制杂草生长的化合物,为荭草苷。
- 根据权利要求45所述的化合物,其特征在于:所述杂草为稗草或生菜。
- 一种叶片水洗物或其溶液,为权利要求35、36或38中所述的“通过使受体植物中Os02g0589400蛋白的活性和/或含量降低培育得到的植物品种的叶片水洗物”或其溶液。
- 权利要求47所述的叶片水洗物或其溶液的制备方法,包括如下步骤:将所述叶片按照12g比200mL的比例加入到水中,37℃密封震荡提取4h,室温静置20h,冷冻干燥,得到固态水洗物;每12mL的所述叶片水洗物溶液中含有从12g叶片中提取得到的所述固态水洗物。
- 权利要求47所述的叶片水洗物或其溶液在抑制杂草生长中的应用。
- 根据权利要求49所述的应用,其特征在于:所述杂草为稗草或生菜。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010169608.2 | 2020-03-12 | ||
CN202010169631.1 | 2020-03-12 | ||
CN202010169608.2A CN113462714B (zh) | 2020-03-12 | 2020-03-12 | 荭草苷在调控植物化感作用中的应用 |
CN202010169631.1A CN113388014B (zh) | 2020-03-12 | 2020-03-12 | Os02g0589400蛋白在调控植物化感作用中的应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021179531A1 true WO2021179531A1 (zh) | 2021-09-16 |
Family
ID=77671176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/108152 WO2021179531A1 (zh) | 2020-03-12 | 2020-08-10 | 一种黄酮苷类物质及其糖基转移酶基因在调控植物化感作用中的应用 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021179531A1 (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109264836B (zh) * | 2018-09-25 | 2020-09-18 | 浙江大学 | 一种互花米草中的黄酮类化感物质在抑制藻类生长中的应用 |
-
2020
- 2020-08-10 WO PCT/CN2020/108152 patent/WO2021179531A1/zh active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109264836B (zh) * | 2018-09-25 | 2020-09-18 | 浙江大学 | 一种互花米草中的黄酮类化感物质在抑制藻类生长中的应用 |
Non-Patent Citations (6)
Title |
---|
BESSON EIJSABETH, DELLAMONICA GEORGETTE, CHOPIN JEAN, MARKHAM KENNETH R, KIMT MUJO, KOHT HEN&K, FUKAMIT HIROSHI: "C-GLYCOSYLFLAVONES FROM ORYZA SATIVA", PHYTOCHEMISITRY, vol. 24, no. 5, 1 January 1985 (1985-01-01), pages 1061 - 1064, XP055846127, DOI: 10.1016/S0031-9422(00)83183-0 * |
DATABASE Nucleotide 7 August 2018 (2018-08-07), ANONYMOUS: "PREDICTED: Oryza sativa Japonica Group putative UDP-rhamnose:rhamnosyltransferase 1 (LOC4329821), mRNA", XP055846124, retrieved from NCBI Database accession no. XM_015771898 * |
DATABASE Protein 10 October 2015 (2015-10-10), ANONYMOUS: "Os02g0589400 [Oryza sativa Japonica Group]", XP055846121, retrieved from NCBI Database accession no. BAS79491 * |
KIM BACKKI; WOO SUNMIN; KIM MI-JUNG; KWON SOON-WOOK; LEE JOOHYUN; SUNG SANG HYUN; KOH HEE-JONG: "Identification and quantification of flavonoids in yellow grain mutant of rice (Oryza sativa L.)", FOOD CHEMISTRY, vol. 241, 30 August 2017 (2017-08-30), pages 154 - 162, XP085196648, ISSN: 0308-8146, DOI: 10.1016/j.foodchem.2017.08.089 * |
KONG C. H., WANG P., GU Y., XU X. H., WANG M. L.: "Fate and Impact on Microorganisms of Rice Allelochemicals in Paddy Soil", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 56, no. 13, 1 July 2008 (2008-07-01), pages 5043 - 5049, XP055846109, ISSN: 0021-8561, DOI: 10.1021/jf8004096 * |
KONG C. H., ZHAO H., XU X. H., WANG P., GU Y.: "Activity and Allelopathy of Soil of Flavone O-Glycosides from Rice", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 55, no. 15, 1 July 2007 (2007-07-01), pages 6007 - 6012, XP055846091, ISSN: 0021-8561, DOI: 10.1021/jf0703912 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05507199A (ja) | 植物チオエステラーゼ | |
Yang et al. | A small heat shock protein, GmHSP17. 9, from nodule confers symbiotic nitrogen fixation and seed yield in soybean | |
Shanmugabalaji et al. | Dual targeting of a mature plastoglobulin/fibrillin fusion protein to chloroplast plastoglobules and thylakoids in transplastomic tobacco plants | |
Gao et al. | The B-box transcription factor IbBBX29 regulates leaf development and flavonoid biosynthesis in sweet potato | |
CN113383777B (zh) | 麦黄酮-5-o-葡萄糖糖苷在调控植物对杂草抗性中的应用 | |
WO2021179530A1 (zh) | 一种黄酮苷类物质及其糖基转移酶基因在调控植物对杂草抗性中的应用 | |
Xiao et al. | An Agrobacterium-mediated transient expression method contributes to functional analysis of a transcription factor and potential application of gene editing in Chenopodium quinoa | |
WO2019101179A1 (zh) | 抗除草剂基因及其在植物育种中的应用 | |
EP3524615B1 (en) | Gene for increasing plant weight and method for using the same | |
WO2021179531A1 (zh) | 一种黄酮苷类物质及其糖基转移酶基因在调控植物化感作用中的应用 | |
CN115702641B (zh) | 一种黄酮苷在水稻抗草中的作用 | |
KR101730074B1 (ko) | 플라보놀 합성 유전자 및 이로 형질전환된 형질전환 식물 | |
CN109337884B9 (zh) | 一种丙酮酸激酶基因及其应用 | |
Kaushik | Standardisation of an agroinfiltration protocol for eggplant fruits and proving its usefulness by over-expressing the SmHQT gene | |
CN114807183B (zh) | 一种青稞矢车菊素氧甲基转移酶基因的新用途 | |
CN115992109A (zh) | 石吊兰素糖基转移酶蛋白及其编码基因与应用 | |
CN113388014B (zh) | Os02g0589400蛋白在调控植物化感作用中的应用 | |
CN113388593B (zh) | Os07g0503900蛋白在调控植物对杂草抗性中的应用 | |
AU2009202608B2 (en) | Protein exhibiting activity of pyrethrin biosynthetic enzyme, gene encoding the protein, and vector bearing the gene | |
Walz et al. | Heterologous expression of IAP1, a seed protein from bean modified by indole-3-acetic acid, in Arabidopsis thaliana and Medicago truncatula | |
CN113462714B (zh) | 荭草苷在调控植物化感作用中的应用 | |
CN106967735B (zh) | 红花CtCHS1基因、其编码蛋白质及应用 | |
CN109295024B (zh) | 降低OsSAMS1蛋白及其编码基因表达在提高植物对水稻矮缩病毒抗性中的应用 | |
CN110938640A (zh) | 一种α-香树精合成酶基因EjAAS1及应用 | |
CN118291566A (zh) | 一种茶树类黄酮糖苷的生物合成及抗虫应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20924464 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20924464 Country of ref document: EP Kind code of ref document: A1 |