WO2021177623A1 - 마이크로 표면 텍스쳐링을 갖는 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템 - Google Patents

마이크로 표면 텍스쳐링을 갖는 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템 Download PDF

Info

Publication number
WO2021177623A1
WO2021177623A1 PCT/KR2021/001834 KR2021001834W WO2021177623A1 WO 2021177623 A1 WO2021177623 A1 WO 2021177623A1 KR 2021001834 W KR2021001834 W KR 2021001834W WO 2021177623 A1 WO2021177623 A1 WO 2021177623A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
power transmission
pattern
transmission system
rotation
Prior art date
Application number
PCT/KR2021/001834
Other languages
English (en)
French (fr)
Inventor
조정산
한상철
박상신
김진탁
김진현
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2021177623A1 publication Critical patent/WO2021177623A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels

Definitions

  • the present invention relates to a power transmission rotating body having micro-surface texturing and a power transmission system including the same.
  • the present invention relates to a power transmission rotating body that minimizes frictional resistance while increasing traction by forming a micro-sized texture or micro-sized pattern on the surface of a power transmission rotating body, and a power transmission system including the same .
  • the power transmission device refers to a device that transmits power generated from a power source such as a motor to the shaft of a machine to be operated.
  • Examples of the power transmission device include a transmission, an accelerator, a speed reducer, and the like.
  • the magnitude, direction, or speed of the transmitted force can be changed.
  • the reducer is connected to the rotation shaft of the motor, there is an advantage in that a low-speed rotation that cannot be generally obtained from a motor can be realized or a large torque can be realized. It is very important to implement the power transmission device to operate as intended while minimizing the loss of transmitted power.
  • the conventional power transmission device uses a precisely designed gear.
  • a commonly used reducer may be a harmonic reducer, a planetary gear reducer, a cycloidal reducer, and the like. These reducers are based on the number of teeth between the drive gear and the driven gear, the size of the teeth and the diameter of the gear, the distance between the rotation shafts of the gear, the position of the rotation shaft, the shape and arrangement of teeth, etc. You can control the gear ratio.
  • the gear device has the effect of transmitting or modulating power through its precise design, while reducing the design flexibility of the power transmission device due to the required precision and limiting its use in various fields.
  • Patent Document 1 discloses a multistage planetary rotating body device.
  • Patent Document 1 includes a plurality of planetary gears, sun gears, and ring gears, but the planetary rotating body has a structure composed of a plurality of parts having different diameters. This teaches that the gear ratio can be controlled by engaging a portion of the planetary rotor with the sun rotor and the other portion of the planetary rotation with the ring rotor.
  • Patent Document 1 when the number of gears increases and the coupling between the gears becomes complicated, the limiting factors such as the number and size of the teeth and the backlash between the meshing gears rapidly increase, making the design very complicated. In addition, as the design becomes more complicated, there is a limit to the actual implementation and commercialization of the planetary gear gear, and it is difficult to manufacture it with a size and a gear ratio having arbitrary free values. In addition, there may be a problem that the power transmission efficiency is lowered.
  • Patent Document 1 Korean Patent Application Laid-Open No. 10-2010-0064701, June 15, 2010, multi-stage planetary gear device
  • Patent Document 2 US Patent Publication No. 2003-0153427, August 14, 2003, CONTINUOUSLY VARIABLE AUTOMATIC TRANSMISSION
  • Patent Document 3 Japanese Patent Laid-Open No. 1981-083642, July 8, 1981, double planetary rotor
  • Patent Document 4 US Patent Publication No. 2011-0165990, July 7, 2011, EPICYCLIC REDUCTION GEAR DEVICE WITH BALANCED PLANET WHEELS
  • Patent Document 5 US Patent No. 9976631, May 22, 2018, TRANSMISSION SYSTEM
  • Patent Document 6 US Patent Publication No. 2008-0103016, May 1, 2008, MODULAR PLANETARY GEAR ASSEMBLY AND DRIVE
  • the robot device is expected to be applicable to various fields because it can repeatedly perform the same task and its accuracy does not deteriorate despite repetitive tasks.
  • the field of cooperative robots that perform tasks through collaboration between humans and robotic devices is growing remarkably.
  • the cooperative robot device may be defined as a robot device capable of performing a task together with a worker, unlike a conventional robot device.
  • Collaborative robot devices have the advantages of not only taking up a small space, but also lowering the cost required for the safety of the workers working together.
  • it is essential that the robot device has a safety factor that can ensure the safety of workers.
  • a robot device including a power source such as a motor and a power transmission device such as a speed reducer power transmission needs to be stopped in an emergency situation.
  • the robot needs to be configured to recognize this and stop the operation.
  • a method of stopping the operation when the robot device is equipped with various sensors and recognizing a dangerous situation can be exemplified, but it not only causes an increase in the cost of the robot device, but also controls the situation through a multi-stage mechanism after a dangerous situation occurs
  • a force opposite to the direction of power transmission may be applied to a power transmission device such as a gear of the robot device, thereby damaging the teeth of the gear.
  • the problem to be solved by the present invention is to provide a power transmission system including a power transmission device capable of controlling a gear ratio as desired while having high power transmission efficiency, and further securing design flexibility to be commercialized.
  • the power transmission device is not damaged and the power transmission system can ensure the safety of the operator.
  • Another object to be solved by the present invention is to provide a rotating body for a power transmission device that can control the gear ratio as desired while having high power transmission efficiency, and further secure design flexibility to be commercialized.
  • a power transmission system for solving the above problems is a first rotating body; and a second rotating body having a ground plane in contact with the first rotating body and transmitting power together with the first rotating body, wherein at least one of the first rotating body and the second rotating body has a micro contact surface. A pattern or texture is formed.
  • At least one of the first rotating body and the second rotating body includes a rotating disk, and a pattern layer disposed in the outer circumferential direction of the rotating disk, a base layer and a protruding pattern protruding from the base layer in the outer circumferential direction It may include a pattern layer.
  • the protrusion pattern may be inclined at a portion where the first rotation body and the second rotation body contact each other to increase the surface area.
  • the first rotating body is a rotating disk and a pattern layer disposed in an outer circumferential direction of the rotating disk, and may include a pattern layer including a protruding pattern.
  • the maximum height of the protrusion pattern is 3,000 ⁇ m or less power transmission system.
  • the maximum width in the rotation direction of the protrusion pattern may be 300 ⁇ m or less.
  • a separation distance between the protrusion patterns in the rotation direction may be 40% or more of the maximum width.
  • a groove extending along the rotational direction may be formed in the ground plane of the second rotating body, and configured to be at least partially inserted into the protruding pattern.
  • the depth of the groove may be smaller than the maximum height of the protrusion pattern.
  • the width in the thickness direction of the groove may be greater than the width in the thickness direction of the protrusion pattern, and the spacing distance of the groove in the thickness direction may be greater than the spacing distance in the thickness direction of the protrusion pattern.
  • An upper surface of at least a portion of the protrusion pattern may be inclined downward along the rotation direction.
  • the protrusion pattern may include a first protrusion pattern inclined in a direction opposite to the rotation direction in an initial state.
  • the protrusion pattern may further include a second protrusion pattern inclined in a positive direction of the rotation direction in an initial state.
  • the number of the first protrusion patterns may be greater than the number of the second protrusion patterns.
  • the power transmission system is a planetary transmission system including a sun rotating body, a plurality of planetary rotating bodies circumscribed with the sun rotating body, a ring rotating body inscribed with the plurality of planetary rotating bodies, and a carrier connected to the plurality of planetary rotating bodies.
  • the first rotating body may be the sun rotating body or the ring rotating body
  • the second rotating body may be the planetary rotating body.
  • the power transmission system may include a sun rotating body, a plurality of planetary rotating bodies circumscribing the sun rotating body, a first part having a first diameter and having a ground plane with the sun rotating body, and more than the first diameter
  • a planetary transmission system comprising: a planetary rotation body including a second portion having a small second diameter and having the same rotation axis as the first portion; and a ring rotation body inscribed with the second portion of the planetary rotation body;
  • the first rotating body may be the sun rotating body or the ring rotating body, and the second rotating body may be the planetary rotating body.
  • the first rotating body is connected to the power input shaft, the second rotating body is connected to the power output shaft, even if the rotational motion of the second rotating body is stopped or the second rotating body is reversely rotated, the The first rotating body may be configured to maintain a forward rotation state.
  • the rotating body for power transmission according to an embodiment of the present invention for solving the other problem is a rotating disk; and a pattern layer disposed in the outer circumferential direction of the rotating disk, the pattern layer including a base layer and a protruding pattern protruding from the base layer in the outer circumferential direction.
  • the pattern layer may be formed of a flexible material, and the protruding pattern may be repeatedly arranged along the rotational direction of the rotating body.
  • the power transmission device is not damaged and a power transmission rotation body capable of securing the safety of a worker or wearer and a power transmission system including the same can be provided.
  • micro-patterns or texturing rather than the conventional power transmission method in which conventional sawtooths or teeth are configured on the contact surface between the rotating bodies, it is possible to increase the gripping force and reduce the rolling resistance at the same time.
  • FIG. 1 is a schematic diagram of a power transmission system including a first rotating body and a second rotating body according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a portion in which the first rotating body and the second rotating body of FIG. 1 are in contact.
  • Figure 3 is a perspective view for explaining the pattern layer on the surface of the first rotating body of Figure 1;
  • Figure 4 is a perspective view for explaining the surface of the second rotating body of Figure 1;
  • FIG. 5 is a perspective view for explaining a pattern layer on the surface of the first rotating body according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view for explaining a pattern layer on the surface of the first rotating body according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view for explaining a pattern layer on the surface of the first rotating body according to another embodiment of the present invention.
  • FIG. 8 is a perspective view for explaining a pattern layer on the surface of the first rotating body according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a power transmission system according to another embodiment of the present invention.
  • FIG. 10 is a perspective view of a power transmission system according to another embodiment of the present invention.
  • FIG. 11 is an exploded perspective view of the power transmission system of FIG. 10 .
  • FIG. 12 is a plan view in a rotational direction of rotating bodies of the power transmission system of FIG. 10 .
  • FIG. 13 is a cross-sectional view of the power transmission system of FIG. 10 .
  • FIG. 14 is a perspective view of a power transmission system according to another embodiment of the present invention.
  • FIG. 15 is an exploded perspective view of the power transmission system of FIG. 14 .
  • FIG. 16 is a cross-sectional view of the power transmission system of FIG. 14 ;
  • FIG. 17 is a perspective view of a power transmission system according to another embodiment of the present invention.
  • FIG. 18 is an exploded perspective view of the power transmission system of FIG. 17 .
  • FIG. 19 is a plan view in the rotational direction of the rotating bodies of the power transmission system of FIG. 17 .
  • FIG. 20 is a cross-sectional view of the power transmission system of FIG. 17 ;
  • 'and/or' includes each and every combination of one or more of the mentioned items.
  • the singular also includes the plural, unless the phrase specifically states otherwise.
  • 'comprises' and/or 'comprising' does not exclude the presence or addition of one or more other components in addition to the stated components.
  • Numerical ranges indicated using 'to' indicate numerical ranges including the values stated before and after them as lower and upper limits, respectively.
  • 'About' or 'approximately' means a value or numerical range within 20% of the value or numerical range recited thereafter.
  • the rotation direction RT, the thickness direction TD, and the outer circumferential direction RD may be defined based on a direction with respect to a certain rotating body, respectively.
  • the rotation direction RT refers to a direction in which the rotating body rotates (rotating direction)
  • the thickness direction TD is a direction perpendicular to the rotation direction RT
  • the thickness or width direction of the rotating body can mean
  • the outer circumferential direction RD means a radial direction with respect to the rotation axis of the rotating body.
  • 'micro size' or 'micro' refers to a size of 1 ⁇ m to several thousand ⁇ m or a structure having such a size.
  • FIG. 1 is a schematic diagram of a power transmission system 11 including a first rotating body 101 and a second rotating body 200 according to an embodiment of the present invention.
  • 2 is an enlarged cross-sectional view of a portion where the first rotating body 101 and the second rotating body 200 of FIG. the drawing shown.
  • the power transmission system 11 may include a first rotating body 101 and a second rotating body 200 rotating in contact with each other.
  • the first rotating body 101 is a drive rotator mechanically connected to a power input shaft, such as a motor
  • the second rotating body 200 is a driven rotating body mechanically connected to a power output shaft. (driven rotator).
  • the torque generated according to the rotation of the first rotating body 101 is generated by friction, grounding, or other physical force generated on the contact surface between the first rotating body 101 and the second rotating body 200 by the second rotating body. (200).
  • At least one of the first rotating body 101 and the second rotating body 200 may include a pattern layer 120 disposed on the surface.
  • 1 illustrates a case in which the pattern layer 120 is disposed on any one of the two rotating bodies, but the present invention is not limited thereto.
  • the patterned layer may be formed on both of the two rotating bodies.
  • at least one of the rotating bodies may include a pattern layer disposed on the surface.
  • the pattern layer 120 is formed on the first rotation body 101 of the power transmission system 11 and the pattern layer is not formed on the second rotation body 200 will be described as an example.
  • the first rotating body 101 may include a first rotating disk 110 and a pattern layer 120 , and may further include a first shaft 190 .
  • the first rotating body 101 may be configured to rotate with the first shaft 190 as a rotation axis. 1 and the like illustrate a case in which the first rotating body 101 rotates in a clockwise direction.
  • the first rotating disk 110 may be a part constituting the body of the first rotating body 101 .
  • the first rotating disk 110 may be made of a material having high strength and rigidity.
  • the material of the first rotation disk 110 is not particularly limited as long as the shape is less deformed even when the torque is transmitted in the rotation direction RT and has excellent durability, but for example, iron, copper, chromium, nickel, aluminum , or an alloy thereof.
  • the first rotating disk 110 may be made of plastic such as polycarbonate.
  • the pattern layer 120 may be disposed on the outer periphery of the first rotating disk 110 .
  • the pattern layer 120 may be made of a material having lower strength and rigidity than that of the first rotating disk 110 . That is, the pattern layer 120 may be made of a material having a predetermined flexibility.
  • the pattern layer 120 may be made of a silicone-based resin, an acrylate-based resin, or a urethane-based resin.
  • the pattern layer 120 may include polyurethane acrylate, polydimethylsiloxane, polyethylene terephthalate, polyurethane, polyethylene naphthalate, or a combination thereof.
  • the modulus of the pattern layer 120 may be about 100 MPa to 800 MPa, or about 200 MPa to 700 MPa, or about 300 MPa to 600 MPa, or about 400 MPa to 500 MPa.
  • the pattern layer 120 has a modulus within the above range, as will be described later, while easily forming deformation occurs by an external force, when the external force is removed, it can be restored to its original shape with a predetermined elasticity. In addition, despite repeated rotation of the first rotating body 101, it may have relatively excellent durability.
  • the second rotation body 200 may include a second rotation disk 210 and may further include a second shaft 290 .
  • the second rotating body 200 may be configured to rotate with the second shaft 290 as a rotation axis. 1 is a case in which the first rotating body 101 and the second rotating body 200 are circumscribed so that the second rotating body 200 is rotated in the opposite direction to the first rotating body 101, that is, in the counterclockwise direction. is foreshadowing
  • the second rotating disk 210 may be a part constituting the body of the second rotating body 200 .
  • the second rotation disk 210 may be made of a material having high strength and rigidity, like the first rotation disk 110 .
  • the second rotation disk 210 may be made of the same or different material from the first rotation disk 110 .
  • the second rotating disk 210 may include iron, copper, chromium, nickel, aluminum, an alloy thereof, or the like, or may be made of plastic such as polycarbonate.
  • the first rotating body 101 and the second rotating body 200 may at least partially contact each other to form a contact patch (tread patch).
  • a contact patch stamp patch
  • the shape of the pattern layer 120 of the first rotating body 101 on the ground plane may be deformed by the second rotating body 200 . Accordingly, the contact area between the first rotating body 101 and the second rotating body 200 may increase.
  • FIG. 3 is a perspective view for explaining the pattern layer 120 on the surface of the first rotating body 101 of FIG. 1 .
  • 4 is a perspective view for explaining the surface of the second rotating body 200 of FIG. 1 .
  • the pattern layer 120 of the first rotating body 101 may include a base layer 121 and a plurality of protruding patterns 123 .
  • the base layer 121 and the protrusion pattern 123 may be integrally formed without a physical boundary with each other.
  • the base layer 121 may completely cover the outer peripheral surface of the first rotation disk 110 in the rotation direction RT.
  • the base layer 121 may be a lower layer portion connecting the plurality of protrusion patterns 123 .
  • the upper surface of the base layer 121 may be partially exposed between the protruding patterns 123 spaced apart from each other.
  • the thickness of the base layer 121 in the outer circumferential direction RD may be appropriately selected according to required durability.
  • the protrusion pattern 123 may be a portion of the structure protruding from the base layer 121 in the outer circumferential direction RD.
  • the protrusion pattern 123 may form a pattern or texturing on the surface of the pattern layer 120 .
  • the height H of the protrusion pattern 123 may be a very important factor in order to increase the traction force between the first rotating body 101 and the second rotating body 200 .
  • the protrusion pattern 123 in the ground region of the first rotating body 101 and the second rotating body 200 is inclined or deformed to lie down, and accordingly, the height (H) of the protruding pattern 123 . ) and approximately the same portion contributes to the improvement of the surface area.
  • the height H of the protrusion pattern 123 is about 1.0 ⁇ m to 3,000 ⁇ m, or about 1.0 ⁇ m to 2,000 ⁇ m, or about 1.0 ⁇ m to 1,000 ⁇ m, or about 2.0 ⁇ m to 900 ⁇ m, or about 3.0 ⁇ m to 800 ⁇ m, or about 4.0 ⁇ m to 700 ⁇ m, or about 5.0 ⁇ m to 600 ⁇ m, or about 6.0 ⁇ m to 500 ⁇ m, or about 7.0 ⁇ m to 400 ⁇ m, or about 8.0 ⁇ m to 300 ⁇ m, or about 9.0 ⁇ m to 200 ⁇ m , or about 10 ⁇ m to 100 ⁇ m, or about 10 ⁇ m to 90 ⁇ m, or about 10 ⁇ m to 80 ⁇ m, or about 10 ⁇ m to 70 ⁇ m, or about 10 ⁇ m to 60 ⁇ m, or about 10 ⁇ m to 50 ⁇ m.
  • the height H of the protrusion pattern 123 is smaller than 1.0 ⁇ m, it is difficult to deform the shape of the protrusion pattern 123 , and even if it occurs, it may be difficult to contribute to an increase in the surface area.
  • the height H of the protrusion pattern 123 is greater than 3,000 ⁇ m, frictional resistance between the first rotating body 101 and the second rotating body 200 may increase, and thus power transmission efficiency may decrease.
  • the protrusion pattern 123 may have a substantially quadrangular truncated pyramid shape. That is, the side surface of the protrusion pattern 123 may be inclined in the rotation direction RT and the thickness direction TD. Accordingly, the width and/or thickness at the upper portion of the protrusion pattern 123 may be different from the width and/or thickness at the lower portion of the protrusion pattern 123 . By configuring the side surface of the protrusion pattern 123 to be inclined, the inclined deformation of the protrusion pattern 123 may be facilitated.
  • the protrusion pattern may have a substantially truncated cone shape, a triangular truncated pyramid shape, or a column shape such as a cylinder, triangular prism, or quadrangular prism, or may have a cone shape, such as a cone, triangular pyramid, or quadrangular pyramid. .
  • a lower width W max of the protrusion pattern 123 in the rotation direction RT may form a maximum width of the protrusion pattern 123 in the rotation direction RT.
  • the lower width W max of the protrusion pattern 123 may be smaller than the height H.
  • the lower width W max of the protrusion pattern 123 is about 300 ⁇ m or less, or about 200 ⁇ m or less, or about 100 ⁇ m or less, or about 50 ⁇ m or less, or about 40 ⁇ m or less, or about 30 ⁇ m or less, or about It may be 20 ⁇ m or less, or about 10 ⁇ m or less.
  • the lower limit of the lower width W max of the protrusion pattern 123 is not particularly limited, but for example, about 0.1 ⁇ m or more, or about 0.2 ⁇ m or more, or about 0.4 ⁇ m or more, or about 0.6 ⁇ m or more, or about 0.8 ⁇ m or more, or about 1.0 ⁇ m or more.
  • the lower limit of the lower width W max of the protruding pattern 123 may be appropriately selected in consideration of the material of the protruding pattern 123 .
  • the upper width W min of the protrusion pattern 123 in the rotation direction RT may form a minimum width of the protrusion pattern 123 in the rotation direction RT. That is, the upper width W min may be smaller than the lower width W max .
  • the upper width (W min ) of the protrusion pattern 123 is about 200 ⁇ m or less, or about 100 ⁇ m or less, or about 50 ⁇ m or less, or about 40 ⁇ m or less, or about 30 ⁇ m or less, or about 20 ⁇ m or less , or about 10 ⁇ m or less.
  • the lower thickness T max of the protrusion pattern 123 in the thickness direction TD may form a maximum thickness of the protrusion pattern 123 in the thickness direction TD.
  • the lower thickness (T max ) of the protrusion pattern 123 may be smaller than the height (H), but the present invention is not limited thereto.
  • the lower thickness T max of the protrusion pattern 123 is about 300 ⁇ m or less, or about 200 ⁇ m or less, or about 100 ⁇ m or less, or about 50 ⁇ m or less, or about 40 ⁇ m or less, or It may be about 30 ⁇ m or less, or about 20 ⁇ m or less, or about 10 ⁇ m or less.
  • the lower limit of the thickness T max of the protrusion pattern 123 is not particularly limited, but for example, about 0.1 ⁇ m or more, or about 0.2 ⁇ m or more, or about 0.4 ⁇ m or more, or about 0.6 ⁇ m or more, or about 0.8 ⁇ m or more, or about 1.0 ⁇ m or more.
  • the lower limit of the lower thickness T max of the protrusion pattern 123 may be appropriately selected in consideration of the material of the protrusion pattern 123 .
  • the upper thickness T min of the protrusion pattern 123 in the thickness direction TD may form a minimum thickness of the protrusion pattern 123 in the thickness direction TD. That is, the upper thickness T min may be smaller than the lower thickness T max .
  • the upper thickness T min of the protrusion pattern 123 may be about 200 ⁇ m or less, or about 100 ⁇ m or less, or about 50 ⁇ m or less, or about 40 ⁇ m or less, or about 30 ⁇ m or less, or about 20 ⁇ m or less. or less, or about 10 ⁇ m or less.
  • the plurality of protrusion patterns 123 may be spaced apart along the rotation direction RT and the thickness direction TD, and may have an approximately regular arrangement. 3 illustrates a state in which the plurality of protrusion patterns 123 are approximately arranged in a grid, of course, the present invention is not limited thereto.
  • the first separation distance L 1 in the rotation direction RT of the protrusion pattern 123 may be about 40% or more, or about 50% or more of the lower width W max of the protrusion pattern 123 .
  • the first separation distance L 1 is too small, it is difficult to deform the protrusion pattern 123 inclining toward the rotation direction RT, and even if it is inclined, the efficiency of increasing the surface area may decrease.
  • the protrusion pattern 123 and the base layer 121 may be damaged due to the inclination deformation.
  • the upper limit of the first separation distance L 1 may be smaller than the height H of the protrusion pattern 123 .
  • the upper limit of the first separation distance (L 1 ) is about 2,500 ⁇ m, or about 2,000 ⁇ m, or about 1,500 ⁇ m, or about 1,000 ⁇ m, or about 900 ⁇ m, or about 900 ⁇ m, or about 700 ⁇ m, or about 600 ⁇ m, or about 500 ⁇ m, or about 400 ⁇ m, or about 300 ⁇ m, or about 200 ⁇ m, or about 100 ⁇ m.
  • the second separation distance L 2 in the thickness direction TD of the protrusion pattern 123 is about 1.0 ⁇ m to 3,000 ⁇ m, or about 1.0 ⁇ m to 2,000 ⁇ m, or about 1.0 ⁇ m to 1,000 ⁇ m, or about 2.0 ⁇ m to 900 ⁇ m, or about 3.0 ⁇ m to 800 ⁇ m, or about 4.0 ⁇ m to 700 ⁇ m, or about 5.0 ⁇ m to 600 ⁇ m, or about 6.0 ⁇ m to 500 ⁇ m, or about 7.0 ⁇ m to 400 ⁇ m, or about 8.0 ⁇ m to 300 ⁇ m, or about 9.0 ⁇ m to 200 ⁇ m, or about 10 ⁇ m to 100 ⁇ m, or about 10 ⁇ m to 90 ⁇ m, or about 10 ⁇ m to 80 ⁇ m, or about 10 ⁇ m to 70 ⁇ m, or about 10 ⁇ m to 60 ⁇ m , or about 10 ⁇ m to 50 ⁇ m.
  • the second separation distance L 2 of the protrusion pattern 123
  • the outer circumferential surface of the second rotating body 200 may have a substantially smooth shape, and the second rotating disk 210 may have a groove 210g formed on the outer circumferential surface. That is, the second rotating body 200 may have a structure that is repeatedly arranged in the rotation direction RT, for example, does not have teeth, but has a structure that is repeatedly arranged in the thickness direction TD.
  • the groove 210g may have a shape extending along the rotation direction RT.
  • the groove 210g is located on the outer circumferential surface of the second rotation disk 210 , extends along the rotation direction RT, and may be repeatedly formed in the thickness direction TD.
  • the protrusion pattern 123 of the first rotating body 101 may be at least partially inserted into the groove 210g.
  • the maximum depth D of the groove 210g may be smaller than the maximum height H of the protrusion pattern 123 . If the depth D of the groove 210g is greater than the height H of the protrusion pattern 123, the protrusion pattern 123 inserted into the groove 210g may not be deformed to be inclined. In addition, the maximum depth D of the groove 210g may be about 30% or more, or about 40% or more, or about 50% or more of the height H of the protrusion pattern 123 . As will be described later, the groove 210g of the second rotating body 200 may contribute to improving the traction between the first rotating body 101 and the second rotating body 200 . When the depth D of the groove 210g is too small, this effect may be weak.
  • the width T of the groove 210g in the thickness direction TD is the protrusion pattern 123 .
  • a plurality of protrusion patterns 123 arranged in the thickness direction TD may be inserted into one groove 210g.
  • the width T of the groove 210g may be about 5 times or more, or about 10 times or more, or about 50 times or more of the maximum thickness T max of the protrusion pattern 123 .
  • the protrusion pattern 123 may be inserted into the groove 210g, and at least a portion may not be inserted into the groove 210g.
  • the protrusion pattern 123 is inclined in the rotation direction RT, and an effect of increasing the surface area may occur due to the side surface of the protrusion pattern 123 in the rotation direction RT.
  • the thickness direction (TD) side of the protrusion pattern 123 faces or contacts the inner wall of the groove 210g, and the thickness direction (TD) side side is in contact with the inner wall of the groove 210g. It can be made to further contribute to the improvement of the surface area.
  • the width T of the groove 210g is too small, the power transmission efficiency may decrease due to the protrusion pattern 123 that does not mesh with the groove 210g.
  • the width T of the groove 210g is too large, the effect of improving the traction by the groove 210g may be weak.
  • the third separation distance L 3 in the thickness direction TD between the grooves 210g adjacent in the thickness direction TD is the second separation distance L 2 in the thickness direction TD of the protrusion pattern 123 .
  • ) can be greater than Accordingly, at least some of the plurality of protruding patterns 123 arranged in the thickness direction TD may be in contact with the protruding surface of the second rotating disk 210 without being inserted into the groove 210g. 4 illustrates a case in which the third separation distance L 3 of the groove 210g is smaller than the width T, but the present invention is not limited thereto.
  • the protrusion pattern 123 may be a structure having a micro size. In addition, it may be designed to have a predetermined flexibility and to be easily deformed in a shape in the rotation direction RT by an external force, but to have excellent durability. Accordingly, the protrusion pattern 123 is inclined in the region near the ground plane of the first rotating body 101 and the second rotating body 200 to increase the surface area, and due to the increased surface area, the attractive force such as van der Waals force can be increased. have. That is, in an exemplary embodiment in which the pattern layer 120 and the second rotation disk 210 contact each other, the side surface of the protruding pattern 123 of the pattern layer 120 has an increased attractive force with the second rotation disk 210 .
  • the power transmission efficiency of the power transmission system 11 may be about 60% or more, or about 70% or more, or about 80% or more, or about 90% or more, or about 95% or more.
  • the power transmission system 11 according to the present embodiment can be expected to have various applications as well as effects in the power transmission process as described above.
  • the power transmission system 11 does not have a toothed or toothed surface as in the prior art, it is possible to prevent jamming problems, vibration problems, and noise problems that inevitably occur in toothed gears.
  • noise and vibration can be reduced.
  • a toothed gear is applied to a robot device that operates in contact with a rehabilitator for human rehabilitation treatment
  • noise and minute vibrations caused by the movement of the joints of the robot device, rotational feeling and operation sense unique to the machine can cause discomfort and alienation to the rehabilitator.
  • the power transmission system 11 according to the present embodiment does not use a toothed gear, this problem can be prevented.
  • the force in the opposite direction to the power transmission direction for example, the rotation of the second rotating body 200 as a driven rotating body is stopped, or even the second rotating body 200 is clockwise. Even when a force to rotate in the direction is applied, without substantial damage to the first rotating body 101 and the second rotating body 200, at least damage can be minimized and power transmission can be blocked. That is, even when the rotation of the second rotating body 200 is stopped, the first rotating body 101 can continue to rotate in the clockwise direction, and the first rotating body 101 and the second rotating body 200 are separated. As a reference, the drivetrains on both sides are momentarily separated to prevent damage to the power transmission system 11 .
  • the power transmission system 11 can increase the gripping force between the rotating bodies while minimizing the rolling friction in the power transmission process, and despite the high gripping force in the rotational direction between the rotating bodies It has the effect of blocking power transmission under certain circumstances.
  • the power transmission system 11 may provide design flexibility. Considering the number of teeth of the power transmission system, the size of the teeth and the diameter of the gears, the number of gears, the distance between the rotation shafts of the gears, the position of the rotation shafts, the shape and arrangement of the teeth, etc. , it is very often designed to have a specific numerical size, material restrictions occur, or excessively costly in the processing process. However, since the power transmission system 11 according to the present embodiment does not use the meshing between the teeth, there is an advantage that a more free design is possible in terms of numerical values, materials, and costs.
  • FIG. 5 is a perspective view for explaining the pattern layer 130 on the surface of the first rotating body according to another embodiment of the present invention.
  • a plurality of protrusion patterns 133 are repeatedly disposed spaced apart in the rotation direction RT, and which protrusion patterns 133 have a thickness
  • the point having a shape extending in the direction TD is different from the pattern layer 120 according to the embodiment of FIG. 1 and the like.
  • a groove may or may not be formed in the second rotating body (not shown).
  • the width in the thickness direction (TD) of the groove (not shown) of the second rotation body is greater or smaller than the thickness (or extension length) in the thickness direction (TD) of the protrusion pattern 133 of the first rotation body.
  • FIG. 6 is a cross-sectional view for explaining the pattern layer 140 on the surface of the first rotating body according to another embodiment of the present invention, and is a cross-sectional view of the pattern layer 140 cut along the rotation direction (RT).
  • the pattern layer 140 of the first rotation body according to the present embodiment is different from the pattern layer 120 according to the embodiment of FIG. 1 in that the upper surface of the protruding pattern 143 is inclined. am.
  • the protrusion pattern 143 may have a substantially quadrangular truncated pyramid shape in which both sides of the rotation direction RT and/or both sides in the thickness direction are inclined, and the upper surface thereof may also be inclined.
  • the upper surface of the protrusion pattern 143 may be inclined downward along the rotation direction RT.
  • the upper surface of the protrusion pattern 143 may be a portion that first contacts the second rotating body (not shown).
  • the upper surface of the protruding pattern 143 is configured to be inclined downward along the rotational direction RT, thereby minimizing unnecessary interference between the protruding pattern 143 and the second rotating body and rolling resistance induced therefrom.
  • two side surfaces of the protrusion pattern 143 in the rotation direction RT may have different inclinations.
  • the protrusion pattern 143 may have a first side surface (right side in FIG. 6 ) positioned in the forward direction (right direction in FIG. 6 ) of the rotation direction RT and in a direction opposite to the rotation direction RT (left direction in FIG. 6 ). ) may have a second side (left side in reference to FIG. 6 ) located in the .
  • the first inclination angle ⁇ 1 of the first side surface may be greater than the second inclination angle ⁇ 2 of the second side surface.
  • the first inclination angle ⁇ 1 and the second inclination angle ⁇ 2 may both be obtuse angles greater than 90 degrees.
  • the size of the first inclination angle ( ⁇ 1 ) and the second inclination angle ( ⁇ 2 ) satisfies the above ranges, and at the same time, the height (H), the lower width (W max ) and the upper width (W min) of the above-described protrusion pattern 143 . ) can be formed in a range that satisfies the
  • the inclination angle of the side surface of the protrusion pattern refers to an angle formed between any side surface and the upper surface of the base layer 141 .
  • the protruding pattern 143 may be inclined to the left. Therefore, by configuring the protrusion pattern 143 to have a shape that is easier to incline to the left side, that is, in the reverse direction of the rotation direction RT, the shape of the protrusion pattern 143 is deformed by the second rotating body (not shown). It is possible to reduce the power lost in the process and further improve the power transmission efficiency.
  • the angle between the upper surface and the second side surface of the protrusion pattern 143 is about 15 degrees or more, or about 20 degrees or more, or about 25 degrees or more, or about 30 degrees or more.
  • the upper surface of the protruding pattern 143 may be inclined at a level having the in-between angle ⁇ 3 , so that the upper surface of the protruding pattern 143 may be in contact with the second rotating body (not shown) at approximately the same time.
  • the upper limit of the angle ⁇ 3 is not particularly limited, but may be about 80 degrees or less, or about 70 degrees or less in terms of ease of forming the protrusion pattern 143 .
  • FIG. 7 is a cross-sectional view for explaining the patterned layer 150 on the surface of the first rotating body according to another embodiment of the present invention, and is a cross-sectional view of the patterned layer 150 taken along the rotational direction (RT).
  • the pattern layer 150 of the first rotation body has an initial state, that is, in a state in which no external force is applied, in which the protruding pattern 153 is inclined in the reverse direction of the rotation direction RT. The point is different from the pattern layer 140 according to the embodiment of FIG. 6 .
  • the protrusion pattern 153 has a first side (right side in FIG. 7 ) positioned in the forward direction (right direction in FIG. 7 ) of the rotation direction RT and in the opposite direction (refer to FIG. 7 ) in the rotation direction RT. It may have a second side (a left side in reference to FIG. 7 ) located in the left direction).
  • the fourth inclination angle ⁇ 4 of the first side surface may form an obtuse angle greater than 90 degrees
  • the fifth inclination angle ⁇ 5 of the second side surface may form an acute angle smaller than 90 degrees.
  • the drive response of the power transmission system may be faster.
  • the angle between the upper surface and the second side surface of the protruding pattern 153 is about 15 degrees or more, or about 20 degrees or more, but the upper surface of the protruding pattern 153 with respect to the base layer 151 has an inclination or no inclination. may not be
  • FIG. 8 is a perspective view for explaining the pattern layer 160 on the surface of the first rotating body according to another embodiment of the present invention.
  • the pattern layer 160 of the first rotating body according to the present embodiment is different from the embodiment of FIG. 7 in that it includes a first protrusion pattern 163 and a second protrusion pattern 165 . .
  • the first protrusion pattern 163 may have substantially the same size and shape as the protrusion pattern 153 according to the embodiment of FIG. 7 . That is, the first protrusion pattern 163 may be inclined in a direction opposite to the rotation direction RT in an initial state. The first protrusion pattern 163 may be repeatedly arranged in the rotation direction RT and the thickness direction TD.
  • the second protrusion pattern 165 may be inclined in the forward direction of the rotation direction RT in the initial state. That is, the second protrusion pattern 165 has a first side surface located in the forward direction of the rotation direction RT and a second side surface located in the opposite direction to the rotation direction RT, and the first side has an acute angle of inclination, The second side may have an obtuse angle of inclination.
  • the second protrusion pattern 165 may have substantially the same size and shape as the first protrusion pattern 163 , except for a different inclination direction from the first protrusion pattern 163 .
  • the second protrusion patterns 165 are repeatedly arranged in the rotation direction RT and the thickness direction TD, and at least one second protrusion pattern ( 165) can be arranged.
  • the first rotating body which is the driving rotating body
  • the second rotating body may be the driving rotating body
  • the number of the first protruding patterns 163 may be greater than the number of the second protruding patterns 165 in terms of power transmission efficiency and response speed in the forward direction. Also, an area occupied by the first protrusion pattern 163 may be larger than an area occupied by the second protrusion pattern 165 .
  • FIG. 9 is a schematic diagram of a power transmission system 12 according to another embodiment of the present invention.
  • the power transmission system 12 according to the present embodiment is different from the embodiment of FIG. 1 in that the first rotating body 101 is in contact with the inner circumferential surface of the second rotating body 200 .
  • the first rotating body 101 includes a first rotating disk 110 , a pattern layer 120 , and a first shaft 190 , with the first shaft 190 as a rotation axis in a clockwise direction. may be configured to rotate.
  • the second rotating body 300 has a larger diameter than the first rotating body 101, the first rotating body 101 is inscribed in the second rotating body 300, the second rotating body 300 It may be configured to rotate in the same direction as the first rotating body 101 , that is, in a clockwise direction.
  • the inner surface of the second rotating body 300 may have the same structure as the above-described pattern layer.
  • the pattern layer 120 of the first rotating body 101 may have various protruding pattern structures as described above.
  • FIG. 10 is a perspective view of a power transmission system 13 according to another embodiment of the present invention.
  • 11 is an exploded perspective view of the power transmission system 13 of FIG. 10 .
  • 12 is a plan view in the rotational direction of the rotating bodies of the power transmission system 13 of FIG. 10 .
  • 13 is a cross-sectional view of the power transmission system 13 of FIG. 10 .
  • the power transmission system 13 includes a sun rotating body 310 (sun rotator), a plurality of planetary rotating bodies 401 (planetary rotator), and a ring rotating body (ring). rotator) and a carrier (carrier).
  • the power transmission system 13 has a structure substantially corresponding to a conventional planetary gear system including a sun gear, a planetary gear, a ring gear and a carrier, but no teeth or teeth are formed on the surface of the rotating body. There is a difference in
  • At least one or more or all of the sun rotating body 310, the planetary rotating body 401, and the ring rotating body 510 include a protruding pattern formed on the surface (ground plane) It may include a pattern layer (not shown).
  • a pattern layer (not shown) may be formed on the outer peripheral surface of the sun rotating body 310 and the inner peripheral surface of the ring rotating body 510 , and the outer peripheral surface of the planetary rotating body 401 may be in a smooth state without teeth.
  • a pattern layer (not shown) is formed on the outer peripheral surface of the planetary rotation body 401 , and the outer peripheral surface of the sun rotation body 310 and the inner peripheral surface of the ring rotation body 510 may be in a smooth state without teeth.
  • the outer peripheral surface of the sun rotating body 310, the outer peripheral surface of the planetary rotating body 401, and the inner peripheral surface of the ring rotating body 510 may be in a state in which a pattern layer (not shown) is formed.
  • the first shaft 390 may be connected to the sun rotating body 310 .
  • the first shaft 390 may be a power input shaft, but the present invention is not limited thereto.
  • a plurality of planetary rotating bodies 401 may be disposed around the sun rotating body 310 . 10 and the like illustrate a case in which three planetary rotors 401 are disposed at an angle of 120 degrees, in another embodiment, the number of planetary rotors 401 may be four or more. With respect to the axis of rotation of the sun rotating body 310 , the plurality of planetary rotating bodies 401 may be angularly arranged at the same separation angle.
  • Any planetary rotating body 401 may have a contact with the sun rotating body 310 and the sun rotating body 310 and a ground plane.
  • the sun rotating body 310 corresponds to the first rotating body according to the embodiment of FIG. 1
  • the planetary rotating body 401 is the embodiment of FIG. It may correspond to the second rotating body according to the example.
  • a ring rotating body 510 may be disposed on the outer side of the planetary rotating body 401 .
  • the rotation axis of the ring rotation body 510 may coincide with the rotation axis of the sun rotation body 310 .
  • the ring rotating body 510 is in contact with the plurality of planetary rotating bodies 401 and may have a planetary rotating body 401 and a ground plane.
  • the planetary rotating body 401 corresponds to the first rotating body according to the embodiment of FIG. 9
  • the ring rotating body 510 is the embodiment of FIG. It may correspond to the second rotating body according to the example.
  • a carrier 650 may be mechanically connected to the rotation shaft of the planetary rotating body 401 .
  • the carrier 650 may be in a state in which the second shaft 690 is mechanically connected.
  • the carrier 650 and the second shaft 690 may rotate, and the axis of rotation may coincide with the axis of rotation of the sun rotating body 310 .
  • the first shaft 390 is mechanically connected to the power input shaft
  • the carrier 650 and the second shaft 690 are mechanically connected to the power output shaft
  • the rotation may be fixed.
  • the power transmission system 13 may be driven as follows. That is, when the first shaft 390 and the sun rotating body 310 rotate clockwise with reference to FIG. 12 , each of the plurality of planetary rotating bodies 401 rotates counterclockwise (ie, the planetary rotating body). At the same time as the rotational movement based on the rotational axis of the 401), it can move in a clockwise direction based on the rotational axis of the sun rotor 310 (that is, the orbital movement about the rotational axis of the sun rotational body 310). . In addition, as the plurality of planetary rotating bodies 401 move in the clockwise direction, the carrier 650 and the second shaft 690 connected thereto may also rotate in the clockwise direction.
  • the second shaft 690 can be configured to rotate in the same direction as the first shaft 390 in a state in which the rotation of the ring rotating body 510 is fixed, and the gear ratio (i) at this time is the following Equation 1 can be expressed as
  • D s means the outer diameter of the sun rotating body 310
  • D r means the inner diameter of the ring rotating body (510).
  • gear ratio (i) when the gear ratio (i) is greater than 1, it means that the reduction ratio is represented, and when the gear ratio (i) is less than 1, it means that the acceleration ratio is represented.
  • first shaft 390 is mechanically connected to the power input shaft
  • the ring rotating body 510 is mechanically connected to the power output shaft
  • the carrier 650 and the second shaft 690 are rotated. can be fixed.
  • the power transmission system 13 may be driven as follows. That is, when the first shaft 390 and the sun rotating body 310 rotate clockwise with reference to FIG. 12 , each of the plurality of planetary rotating bodies 401 may rotate counterclockwise. On the other hand, since the rotation of the carrier 650 is fixed, the planetary rotating body 401 may not be able to move. In addition, as the plurality of planetary rotating bodies 401 rotate in a counterclockwise direction, the ring rotating body 510 may rotate in a counterclockwise direction.
  • the ring rotating body 510 may be configured to rotate in the opposite direction to the first shaft 390, and the gear ratio i at this time ) can be expressed by Equation 2 below.
  • D s means the outer diameter of the sun rotating body 310
  • D r means the inner diameter of the ring rotating body (510).
  • FIG. 14 is a perspective view of a power transmission system 14 according to another embodiment of the present invention.
  • 15 is an exploded perspective view of the power transmission system 14 of FIG. 14 .
  • 16 is a cross-sectional view of the power transmission system 14 of FIG. 14 .
  • a plurality of the power transmission system 13 according to FIG. 10 may be connected in series.
  • the power transmission system 14 includes a first shaft 390 , a first sun rotor 310 mechanically connected to the first shaft 390 , and a circumscribed first sun rotor 310 .
  • the planetary rotation body 402 and the second ring rotation body 520 in contact with the inscribed second carrier 750 and the second carrier 750 mechanically connected to the shafts of the plurality of second planetary rotation bodies 402 and mechanical may include a second shaft 790 connected to each other.
  • the first shaft 390 may be connected to the power input shaft and the second shaft 790 may be connected to the power output shaft.
  • the power transmission system 14 according to the present embodiment may further increase the gear ratio by connecting a plurality of power transmission systems having a similar structure to the planetary gear system in series.
  • the gear ratio i of the power transmission system 14 according to the present embodiment may be expressed by Equation 3 below.
  • i 1 is the gear ratio between the first shaft 390 and the second sun rotating body 610
  • i 2 is the gear ratio between the second sun rotating body 610 and the second shaft 790
  • i 1 and i 2 may be calculated in the same manner as in Equation 1 above. Accordingly, the power transmission system 14 according to the present embodiment can obtain a higher gear ratio than the power transmission system 13 according to the embodiment of FIG. 10 .
  • 17 is a perspective view of a power transmission system 15 according to another embodiment of the present invention.
  • 18 is an exploded perspective view of the power transmission system 15 of FIG. 17 .
  • 19 is a plan view in the rotational direction of the rotating bodies of the power transmission system 15 of FIG. 17 .
  • 20 is a cross-sectional view of the power transmission system 15 of FIG. 17 .
  • the power transmission system 15 includes a first portion 413 and a second portion 423 in which the planetary rotating body 403 has different diameters from each other, It is different from the power transmission system 13 according to the embodiment such as FIG.
  • the sun rotating body 310 may be connected to the first shaft 390 .
  • the first shaft 390 may be a power input shaft.
  • a plurality of planetary rotating bodies 403 may be disposed around the sun rotating body 310 .
  • the sun rotating body 310 may have a ground plane by circumscribing the first portion 413 of the planetary rotating body 403 .
  • the planetary rotating body 403 may include a second portion 423 having a smaller diameter than the first portion 413 .
  • the rotation axes of the first part 413 and the second part 423 may coincide, and the first part 413 and the second part 423 may rotate integrally.
  • first ring rotating body 510 and the second ring rotating body 530 may be disposed on the outside of the planetary rotating body 403 .
  • the rotation axis of the first ring rotation body 510 and the second ring rotation body 530 may coincide with the rotation axis of the sun rotation body 310 .
  • the first ring rotating body 510 may be in contact with the first portion 413 of the planetary rotating body 403 and may have a ground plane.
  • the second ring rotating body 530 may be in contact with the second portion 423 of the planetary rotating body 403 and have a ground plane.
  • the first ring rotating body 510 may be omitted.
  • a carrier 650 may be mechanically connected to the rotation shaft of the planetary rotating body 403 .
  • the carrier 650 may be in a state in which the second shaft 690 is mechanically connected.
  • the first shaft 390 is mechanically connected to the power input shaft
  • the second ring rotating body 530 is mechanically connected to the power output shaft
  • the carrier 650 and the second shaft 690 are mechanically connected. ) can be fixed.
  • the power transmission system 15 may be driven as follows. That is, when the first shaft 390 and the sun rotating body 310 rotate clockwise based on FIG. 19 , each of the plurality of planetary rotating bodies 403 rotates counterclockwise but cannot move. can In addition, as the plurality of planetary rotation bodies 403 rotate in a counterclockwise direction, the first ring rotation body 510 and the second ring rotation body 530 may rotate in a counterclockwise direction.
  • the first part 413 and the second part 423 have the same angular velocity and the diameter decreases, so that the gear ratio of the second ring rotating body 530 to the second part 423 represents the acceleration ratio, Since the first shaft 390 and the second ring rotating body 530 rotate in opposite directions to each other, the difference between the angular velocity vector of the first shaft 390 and the angular velocity vector of the second ring rotating body 530 can be maximized. . That is, even though the plurality of planetary gear systems are not connected in series, the power transmission system 15 can be miniaturized or thinned by having the effect of amplifying the gear ratio.
  • the power transmission system 15 according to the present embodiment in order to implement the power transmission system 15 according to the present embodiment as a toothed gear having a tooth shape, it is very difficult to design a meshing structure between a plurality of gears, so there is a problem that can be implemented only under very limited circumstances. .
  • the present embodiment there is an advantage in that it is possible to increase the gripping force without designing the teeth, and to provide more freedom in design flexibility.

Abstract

마이크로 표면 패턴 또는 텍스쳐링을 갖는 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템이 제공된다. 상기 동력 전달 시스템은 제1 회전체; 및 상기 제1 회전체와 맞닿는 접지면을 가지고 상기 제1 회전체와 함께 동력을 전달하는 제2 회전체를 포함하되, 상기 제1 회전체 및 상기 제2 회전체 중 적어도 하나의 접지면에는 마이크로 패턴이 형성된다.

Description

마이크로 표면 텍스쳐링을 갖는 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템
본 발명은 마이크로 표면 텍스쳐링을 갖는 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템에 관한 것이다. 상세하게, 본 발명은 동력 전달용 회전체의 표면에 마이크로 사이즈의 텍스쳐 내지는 마이크로 사이즈의 패턴을 형성하여 접지력을 높이면서 마찰 저항을 최소화한 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템에 관한 것이다.
동력 전달 장치는 모터 등의 동력원에서 발생한 동력을 운전하려는 기계의 축에 전달하는 장치를 통칭한다. 동력 전달 장치의 예로는 변속기, 가속기, 감속기 등을 들 수 있다. 동력 전달 장치를 이용하면 전달하는 힘의 크기, 방향 또는 속도 등을 변경할 수 있다. 예컨대, 모터의 회전축에 감속기를 연결하면 일반적으로 모터로부터 얻을 수 없는 저속 회전을 구현하거나, 큰 토크를 구현할 수 있는 장점이 있다. 동력 전달 장치는 전달하는 힘의 손실을 최소화하면서 의도된 설계대로 동작되도록 구현하는 것이 매우 중요한 요소이다. 이를 위해 종래의 동력 전달 장치는 정밀하게 설계된 기어(gear)를 이용한다.
일반적으로 사용되는 감속기는 하모닉 감속기, 유성치차 감속기, 사이클로이드 감속기 등을 예시할 수 있다. 이러한 감속기는 구동 기어(drive gear)와 피동 기어(driven gear) 간의 톱니(teeth)의 개수, 톱니의 크기와 기어의 직경, 기어의 회전축 간의 거리, 회전축의 위치, 톱니의 형상과 배열 등을 통해 기어비를 제어할 수 있다.
기어비를 제어하기 위해서는 보다 정밀한 기어의 설계가 필요하며 기어 간의 맞물리는 유격이 매우 중요하다. 기어와 기어 축이 결합되는 부위가 설계대로 정밀하게 가공되지 못할 경우 유격이 발생할 수 있으고, 유격이 클 경우 백래시(backlash)가 발생하고, 반면에 유격이 없을 경우는 재밍(jamming)으로 인한 문제가 발생할 수 있다. 만일 백래쉬가 크면 정밀제어가 어려워지고, 재밍은 동력 전달 효율의 감소를 유발할 수 있다. 또한 이러한 현상은 기어가 손상될 가능성을 높이고 진동 및 소음의 문제를 유발할 수 있다.
이처럼 기어 장치는 그 정밀한 설계를 통해 동력을 전달하거나 변조하는 등의 효과를 갖는 반면, 요구되는 정밀도로 인해 동력 전달 장치의 설계 유연성을 저하시키고 다양한 분야로의 활용을 제한하게 되는 실정이다.
예를 들어 특허문헌 1에는 다단 방식의 유성 회전체 장치가 개시되어 있다. 특허문헌 1은 복수의 유성 기어(planetary gear), 썬 기어(sun gear) 및 링 기어(ring gear)를 포함하되, 유성 회전체가 직경이 상이한 복수의 부분으로 이루어진 구조를 취하고 있다. 이를 통해 유성 회전체의 일부분은 썬 회전체와 맞물리고 유성 회전체의 다른 일부분은 링 회전체와 맞물림으로써 기어비를 제어할 수 있음을 교시한다.
그러나 특허문헌 1과 같이 기어의 개수가 증가하고 기어 간의 결합이 복잡해질 경우 톱니의 개수와 크기 및 맞물리는 기어 간의 백래시 등 제한되는 요소가 급증하여 설계가 무척 복잡해진다. 또, 설계가 복잡해짐에 따라 유성치차 기어를 실제 구현 및 상용화하기에 한계가 있으며 임의의 자유로운 수치를 갖는 크기 및 기어비로 제조하기 곤란하다. 또한 동력 전달 효율이 저하되는 문제가 발생할 수 있다.
따라서 보다 높은 동력 전달 효율을 가지면서도 원하는 대로 기어비를 제어할 수 있고, 나아가 상용화가 가능한 동력 전달 장치의 개발이 요구된다.
(특허문헌 1) 한국공개특허 제10-2010-0064701호, 2010년 6월 15일, 다단방식의 유성기어장치
(특허문헌 2) 미국공개특허 제2003-0153427호, 2003년 8월 14일, CONTINUOUSLY VARIABLE AUTOMATIC TRANSMISSION
(특허문헌 3) 일본공개특허 제1981-083642호, 1981년 7월 8일, 이중 유성 회전체
(특허문헌 4) 미국공개특허 제2011-0165990호, 2011년 7월 7일, EPICYCLIC REDUCTION GEAR DEVICE WITH BALANCED PLANET WHEELS
(특허문헌 5) 미국등록특허 제9976631호, 2018년 5월 22일, TRANSMISSION SYSTEM
(특허문헌 6) 미국공개특허 제2008-0103016호, 2008년 5월 1일, MODULAR PLANETARY GEAR ASSEMBLY AND DRIVE
최근 기술 발전과 더불어 로봇 산업이 크게 발달하고 있다. 로봇 장치는 동일한 내용의 작업을 반복적으로 수행할 수 있고 반복 작업에도 불구하고 그 정확도가 저하되지 않는 장점이 있어 다양한 분야에 응용 가능할 것으로 기대된다. 예를 들어, 인간과 로봇 장치 간의 협업을 통해 업무를 수행하는 협동 로봇(cooperation robot) 분야가 눈에 띄게 성장하고 있다.
협동 로봇 장치는 기존의 로봇 장치와 달리 작업자와 함께 업무를 수행할 수 있는 로봇 장치로 정의될 수 있다. 협동 로봇 장치는 차지하는 공간이 작을 뿐 아니라 함께 작업하는 작업자의 안전에 필요한 비용을 낮출 수 있는 장점이 있다. 협동 로봇 장치를 상용화하기 위해서는 로봇 장치가 작업자의 안전을 보장할 수 있는 안전 요소를 내재하는 것이 필수적이다. 예컨대, 모터 등의 동력원 및 감속기 등의 동력 전달 장치를 포함하여 이루어진 로봇 장치의 경우 긴급 상황에서 동력 전달이 중지되도록 구성될 필요가 있다.
만일 작업자와 협동 로봇 장치가 물체를 주고받는 과정, 작업자와 협동 로봇 장치가 교번적으로 작업을 하는 과정에서 작업자의 신체가 로봇 장치와 부딪히거나 로봇 장치에 끼이는 등의 상황이 발생했을 때 로봇 장치는 이를 인식하고 동작을 멈추도록 구성될 필요가 있다.
이를 위해서 로봇 장치가 다양한 센서를 구비하여 위험 상황을 인지할 경우 동작을 멈추도록 하는 방법을 예시할 수 있으나, 로봇 장치의 비용 상승을 야기할 뿐 아니라 위험 상황 발생 후에 다단의 메커니즘을 통해 그 상황을 해소하도록 구현되는 후제어(post control) 내지는 후대처에 불과하기 때문에 이미 발생한 작업자의 위험을 해소할 수 없는 문제가 있다. 뿐만 아니라 로봇 장치의 기어 등의 동력 전달 장치에 동력 전달 방향과 반대되는 힘이 가해져 기어의 톱니 등이 손상될 수도 있다.
이에 본 발명이 해결하고자 하는 과제는 높은 동력 전달 효율을 가지면서도 원하는 대로 기어비를 제어할 수 있고, 나아가 설계 유연성을 확보하여 상용화가 가능한 동력 전달 장치를 포함하는 동력 전달 시스템을 제공하는 것이다.
동시에 동력 전달 방향과 반대 방향의 힘이 가해지는 경우에도 동력 전달 장치가 손상되지 않고 작업자의 안전을 확보할 수 있는 동력 전달 시스템을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 높은 동력 전달 효율을 가지면서도 원하는 대로 기어비를 제어할 수 있고, 나아가 설계 유연성을 확보하여 상용화가 가능한 동력 전달 장치용 회전체를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 동력 전달 시스템은 제1 회전체; 및 상기 제1 회전체와 맞닿는 접지면을 가지고 상기 제1 회전체와 함께 동력을 전달하는 제2 회전체를 포함하되, 상기 제1 회전체 및 상기 제2 회전체 중 적어도 하나의 접지면에는 마이크로 패턴 또는 텍스쳐가 형성된다.
상기 제1 회전체는 및 상기 제2 회전체 중 적어도 하나는, 회전 디스크, 및 상기 회전 디스크 외주 방향에 배치된 패턴층으로서, 베이스층 및 상기 베이스층으로부터 상기 외주 방향으로 돌출된 돌출 패턴을 포함하는 패턴층을 포함할 수 있다.
여기서 상기 제1 회전체와 상기 제2 회전체가 맞닿는 부분에서 상기 돌출 패턴이 기울어져 표면적이 증가하도록 구성될 수 있다.
상기 제1 회전체는 회전 디스크 및 상기 회전 디스크 외주 방향에 배치된 패턴층으로서, 돌출 패턴을 포함하는 패턴층을 포함할 수 있다.
또, 상기 돌출 패턴의 최대 높이는 3,000㎛ 이하인 동력 전달 시스템.
상기 돌출 패턴의 회전 방향으로의 최대폭은 300㎛ 이하일 수 있다.
또한 상기 돌출 패턴 간의 상기 회전 방향으로의 이격 거리는 상기 최대폭의 40% 이상일 수 있다.
몇몇 실시예에서 상기 제2 회전체의 접지면에는 상기 회전 방향을 따라 연장되되, 상기 돌출 패턴이 적어도 부분적으로 삽입되도록 구성된 홈이 형성될 수 있다.
여기서 상기 홈의 깊이는 상기 돌출 패턴의 최대 높이 보다 작을 수 있다.
또, 상기 홈의 두께 방향으로의 너비는, 상기 돌출 패턴의 상기 두께 방향으로의 폭 보다 크고, 상기 홈의 상기 두께 방향으로의 이격 거리는, 상기 돌출 패턴의 상기 두께 방향으로의 이격 거리 보다 클 수 있다.
적어도 일부의 상기 돌출 패턴의 상면은 회전 방향을 따라 하향 경사질 수 있다.
또, 상기 회전 방향을 따라 절개한 단면에서, 상기 돌출 패턴은 초기 상태에서 상기 회전 방향의 역방향으로 기울어진 제1 돌출 패턴을 포함할 수 있다.
몇몇 실시예에서, 상기 돌출 패턴은 초기 상태에서 상기 회전 방향의 정방향으로 기울어진 제2 돌출 패턴을 더 포함할 수 있다.
여기서 상기 제1 돌출 패턴의 개수는 상기 제2 돌출 패턴의 개수 보다 클 수 있다.
상기 동력 전달 시스템은 썬 회전체, 상기 썬 회전체와 외접하는 복수의 유성 회전체, 상기 복수의 유성 회전체와 내접하는 링 회전체 및 상기 복수의 유성 회전체와 연결된 캐리어를 포함하는 유성 변속 시스템이고, 상기 제1 회전체는 상기 썬 회전체 또는 상기 링 회전체고, 상기 제2 회전체는 상기 유성 회전체일 수 있다.
또는, 상기 동력 전달 시스템은, 썬 회전체, 상기 썬 회전체와 외접하는 복수의 유성 회전체로서, 제1 직경을 가지고 상기 썬 회전체와 접지면을 갖는 제1 부분, 및 상기 제1 직경 보다 작은 제2 직경을 가지고 상기 제1 부분과 회전축이 동일한 제2 부분을 포함하는 유성 회전체, 및 상기 유성 회전체의 상기 제2 부분과 내접하는 링 회전체를 포함하는 유성 변속 시스템이고, 상기 제1 회전체는 상기 썬 회전체 또는 상기 링 회전체고, 상기 제2 회전체는 상기 유성 회전체일 수 있다.
상기 제1 회전체는 동력 입력 축과 연결되고, 상기 제2 회전체는 동력 출력 축과 연결되며, 상기 제2 회전체의 회전 운동이 정지하거나, 또는 상기 제2 회전체가 역회전하더라도, 상기 제1 회전체는 정회전 상태를 유지하도록 구성될 수 있다.
상기 다른 과제를 해결하기 위한 본 발명의 일 실시예에 따른 동력 전달용 회전체는 회전 디스크; 및 상기 회전 디스크의 외주 방향에 배치된 패턴층으로서, 베이스층 및 상기 베이스층으로부터 상기 외주 방향으로 돌출된 돌출 패턴을 포함하는 패턴층을 포함한다.
상기 패턴층은 연성을 갖는 재질로 형성되고, 상기 돌출 패턴은 상기 회전체의 회전 방향을 따라 반복 배열될 수 있다.
기타 실시예의 구체적인 사항들은 상세한 설명에 포함되어 있다.
본 발명의 실시예들에 따르면, 높은 동력 전달 효율을 가지면서도 원하는 대로 기어비를 제어할 수 있고, 나아가 설계 유연성을 확보하여 상용화가 가능한 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템을 제공할 수 있다.
또, 동력 전달 방향과 반대 방향의 힘이 가해지는 경우에도 동력 전달 장치가 손상되지 않고 작업자 또는 착용자의 안전을 확보할 수 있는 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템을 제공할 수 있다.
뿐만 아니라 종래 치형 기어에서 필수적으로 수반되는 소음 및 진동 문제가 최소화된 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템을 제공할 수 있다. 이는 특히 본 실시예에 따른 동력 전달 시스템이 재활 치료용 장치, 의수, 의족 장치 등에 적용될 경우 사용자 또는 착용자의 기계적 거부감을 현저하게 감소시킬 수 있는 장점이 있다.
다시 말해서, 회전체 간의 접촉면에 기존의 톱니 내지는 치형을 구성한 종래의 동력 전달 방식이 아닌, 마이크로 패턴 내지는 텍스쳐링을 형성하여 접지력은 높임과 동시에 구름 저항은 감소시킬 수 있다.
본 발명의 실시예들에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 제1 회전체 및 제2 회전체를 포함하는 동력 전달 시스템의 모식도이다.
도 2는 도 1의 제1 회전체와 제2 회전체가 맞닿는 부분을 확대한 단면도이다.
도 3은 도 1의 제1 회전체 표면의 패턴층을 설명하기 위한 사시도이다.
도 4는 도 1의 제2 회전체 표면을 설명하기 위한 사시도이다.
도 5는 본 발명의 다른 실시예에 따른 제1 회전체 표면의 패턴층을 설명하기 위한 사시도이다.
도 6은 본 발명의 또 다른 실시예에 따른 제1 회전체 표면의 패턴층을 설명하기 위한 단면도이다.
도 7은 본 발명의 또 다른 실시예에 따른 제1 회전체 표면의 패턴층을 설명하기 위한 단면도이다.
도 8은 본 발명의 또 다른 실시예에 따른 제1 회전체 표면의 패턴층을 설명하기 위한 사시도이다.
도 9는 본 발명의 다른 실시예에 따른 동력 전달 시스템의 모식도이다.
도 10은 본 발명의 또 다른 실시예에 따른 동력 전달 시스템의 사시도이다.
도 11은 도 10의 동력 전달 시스템의 분해사시도이다.
도 12는 도 10의 동력 전달 시스템의 회전체들의 회전 방향으로의 평면도이다.
도 13은 도 10의 동력 전달 시스템의 단면도이다.
도 14는 본 발명의 또 다른 실시예에 따른 동력 전달 시스템의 사시도이다.
도 15는 도 14의 동력 전달 시스템의 분해사시도이다.
도 16은 도 14의 동력 전달 시스템의 단면도이다.
도 17은 본 발명의 또 다른 실시예에 따른 동력 전달 시스템의 사시도이다.
도 18은 도 17의 동력 전달 시스템의 분해사시도이다.
도 19는 도 17의 동력 전달 시스템의 회전체들의 회전 방향으로의 평면도이다.
도 20은 도 17의 동력 전달 시스템의 단면도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 즉, 본 발명이 제시하는 실시예들에는 다양한 변경이 가해질 수 있다. 아래 설명하는 실시예들은 실시 형태에 대해 한정하려는 것이 아니며, 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
도면에 도시된 구성요소의 크기, 두께, 폭, 길이 등은 설명의 편의 및 명확성을 위해 과장 또는 축소될 수 있으므로 본 발명이 도시된 형태로 제한되는 것은 아니다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
공간적으로 상대적인 용어인 '위(above)', '상부(upper)', ‘상(on)’, '아래(below)', '아래(beneath)', '하부(lower)' 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의 '아래(below 또는 beneath)'로 기술된 소자는 다른 소자의 '위(above)'에 놓일 수 있다. 따라서, 예시적인 용어인 '아래'는 아래와 위의 방향을 모두 포함할 수 있다.
본 명세서에서, '및/또는'은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다. 또, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 본 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. '내지'를 사용하여 나타낸 수치 범위는 그 앞과 뒤에 기재된 값을 각각 하한과 상한으로서 포함하는 수치 범위를 나타낸다. '약' 또는 '대략'은 그 뒤에 기재된 값 또는 수치 범위의 20% 이내의 값 또는 수치 범위를 의미한다.
본 명세서에서, 회전 방향(RT), 두께 방향(TD) 및 외주 방향(RD)은 각각 어느 회전체에 대한 방향을 기준으로 정의될 수 있다. 회전 방향(RT)은 회전체가 회전하는 방향(rotating direction)을 의미하고, 두께 방향(TD)은 회전 방향(RT)에 대해 수직한 방향으로서 회전체의 두께 내지는 폭 방향(thickness direction, width direction)을 의미할 수 있다. 또, 회전체가 원형인 경우 외주 방향(RD)은 회전체의 회전축에 대한 방사 방향(radial direction)을 의미한다.
또, 본 명세서에서 '마이크로 사이즈' 또는 '마이크로'는 1㎛ 내지 수천 ㎛ 크기 또는 이러한 크기를 갖는 구조물을 의미한다.
이하 첨부된 도면을 참조하여 본 발명에 대하여 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 제1 회전체(101) 및 제2 회전체(200)를 포함하는 동력 전달 시스템(11)의 모식도이다. 도 2는 도 1의 제1 회전체(101)와 제2 회전체(200)가 맞닿는 부분을 확대한 단면도로서, 제1 회전체(101)와 제2 회전체(200)의 접지 영역 부근을 나타낸 도면이다.
도 1 및 도 2를 참조하면, 본 실시예에 따른 동력 전달 시스템(11)은 서로 맞닿아 회전하는 제1 회전체(101) 및 제2 회전체(200)를 포함할 수 있다. 제1 회전체(101)는 동력 입력 축, 예컨대 모터 등의 동력원과 기계적으로 연결되는 구동 회전체(drive rotator)이고, 제2 회전체(200)는 동력 출력 축과 기계적으로 연결되는 피동 회전체(driven rotator)일 수 있다. 제1 회전체(101)의 회전에 따라 발생하는 토크는 제1 회전체(101)와 제2 회전체(200) 간의 맞닿는 면에서 발생하는 마찰, 접지, 또는 기타 물리적 힘에 의해 제2 회전체(200)로 전달될 수 있다.
예시적인 실시예에서, 제1 회전체(101) 및 제2 회전체(200) 중 적어도 하나는 표면에 배치된 패턴층(120)을 포함할 수 있다. 도 1은 두 개의 회전체 중 어느 하나에 패턴층(120)이 배치된 경우를 예시하고 있으나 본 발명이 이에 제한되지 않으며, 다른 실시예에서 두 개의 회전체 모두에 패턴층이 형성될 수 있다. 또 다른 실시예에서, 세 개의 이상의 회전체를 포함하는 경우에도 회전체들 중 적어도 하나 이상은 표면에 배치된 패턴층을 포함할 수 있다. 이하에서, 동력 전달 시스템(11) 중 제1 회전체(101)에 패턴층(120)이 형성되고, 제2 회전체(200)에 패턴층이 형성되지 않은 경우를 예로 하여 설명한다.
제1 회전체(101)는 제1 회전 디스크(110) 및 패턴층(120)을 포함하고, 제1 샤프트(190)를 더 포함할 수 있다. 제1 회전체(101)는 제1 샤프트(190)를 회전축으로 하여 회전하도록 구성될 수 있다. 도 1 등은 제1 회전체(101)가 시계 방향으로 회전하는 경우를 예시하고 있다.
제1 회전 디스크(110)는 제1 회전체(101)의 바디를 이루는 부분일 수 있다. 제1 회전 디스크(110)는 강도와 강성이 높은 재질로 이루어질 수 있다. 회전 방향(RT)으로의 토크의 전달에도 형상의 변형이 적고, 우수한 내구성을 가질 수 있으면 제1 회전 디스크(110)의 재질은 특별히 제한되지 않으나, 예를 들어 철, 구리, 크롬, 니켈, 알루미늄, 또는 이들의 합금 등으로 이루어질 수 있다. 다른 예를 들어, 제1 회전 디스크(110)는 폴리카보네이트 등의 플라스틱으로 이루어질 수도 있다.
제1 회전 디스크(110)의 외주에는 패턴층(120)이 배치될 수 있다. 패턴층(120)은 제1 회전 디스크(110)에 비해 강도 및 강성이 낮은 재질로 이루어질 수 있다. 즉, 패턴층(120)은 소정의 유연성을 갖는 재질로 이루어질 수 있다.
예시적인 실시예에서, 패턴층(120)은 실리콘계 수지, 아크릴레이트계 수지 또는 우레탄계 수지 등으로 이루어질 수 있다. 예를 들어, 패턴층(120)은 폴리우레탄아크릴레이트, 폴리디메틸실록산, 폴리에틸렌테레프탈레이트, 폴리우레탄, 폴리에틸렌나프탈레이트 또는 이들의 조합을 포함할 수 있다. 또, 패턴층(120)의 모듈러스는 약 100MPa 내지 800MPa, 또는 약 200MPa 내지 700MPa, 또는 약 300MPa 내지 600MPa, 또는 약 400MPa 내지 500MPa일 수 있다. 패턴층(120)이 상기 범위에 있는 모듈러스를 가질 경우 후술할 것과 같이 외력에 의해 용이한 형성 변형이 발생하면서도 외력이 제거될 경우 소정의 탄성을 가지고 최초 형상으로 원복될 수 있다. 또한 제1 회전체(101)의 반복 회전에도 불구하고 상대적으로 우수한 내구성을 가질 수 있다.
또, 제2 회전체(200)는 제2 회전 디스크(210)를 포함하고, 제2 샤프트(290)를 더 포함할 수 있다. 제2 회전체(200)는 제2 샤프트(290)를 회전축으로 하여 회전하도록 구성될 수 있다. 도 1 등은 제1 회전체(101)와 제2 회전체(200)가 외접하여 제2 회전체(200)가 제1 회전체(101)와 반대 방향, 즉 반시계 방향으로 회전하는 경우를 예시하고 있다.
제2 회전 디스크(210)는 제2 회전체(200)의 바디를 이루는 부분일 수 있다. 제2 회전 디스크(210)는 제1 회전 디스크(110)와 마찬가지로 강도와 강성이 높은 재질로 이루어질 수 있다. 제2 회전 디스크(210)는 제1 회전 디스크(110)와 동일하거나 상이한 재질로 이루어질 수 있다. 예를 들어, 제2 회전 디스크(210)는 철, 구리, 크롬, 니켈, 알루미늄 또는 이들의 합금 등을 포함하거나, 폴리카보네이트 등의 플라스틱으로 이루어질 수 있다.
제1 회전체(101)와 제2 회전체(200)는 적어도 부분적으로 서로 맞닿아 접지면(contact patch, tread patch)을 형성할 수 있다. 특히 상기 접지면에서 제1 회전체(101)의 패턴층(120)은 제2 회전체(200)에 의해 형상이 변형될 수 있다. 이에 따라 제1 회전체(101)와 제2 회전체(200)가 맞닿는 면적이 증가할 수 있다.
이하, 도 3 및 도 4를 더 참조하여 본 실시예에 따른 동력 전달 시스템(11)의 제1 회전체(101)와 제2 회전체(200)의 접지면 및 이들의 동력 전달 과정에 대해 보다 상세하게 설명한다. 도 3은 도 1의 제1 회전체(101) 표면의 패턴층(120)을 설명하기 위한 사시도이다. 도 4는 도 1의 제2 회전체(200) 표면을 설명하기 위한 사시도이다.
도 3 및 도 4를 더 참조하면, 제1 회전체(101)의 패턴층(120)은 베이스층(121) 및 복수의 돌출 패턴(123)을 포함할 수 있다. 베이스층(121) 및 돌출 패턴(123)은 서로 물리적 경계 없이 일체로 이루어질 수 있다. 베이스층(121)은 제1 회전 디스크(110)의 외주 표면을 회전 방향(RT)으로 완전히 커버할 수 있다. 또, 베이스층(121)은 복수의 돌출 패턴(123)을 연결하는 하층 부분일 수 있다. 서로 이격된 돌출 패턴(123) 사이에는 베이스층(121)의 상면이 부분적으로 노출된 상태일 수 있다. 베이스층(121)의 외주 방향(RD)으로의 두께는 요구되는 내구성에 따라 적절하게 선택될 수 있다.
돌출 패턴(123)은 베이스층(121)으로부터 외주 방향(RD)으로 돌출된 구조물 부분일 수 있다. 돌출 패턴(123)은 패턴층(120) 표면의 패턴을 형성하거나 텍스쳐링을 형성할 수 있다.
본 실시예에 있어서 돌출 패턴(123)의 높이(H)는 제1 회전체(101)와 제2 회전체(200) 간의 접지력을 높이기 위해 매우 중요한 요소일 수 있다. 도 2에 도시된 것과 같이 제1 회전체(101)와 제2 회전체(200)의 접지 영역에서 돌출 패턴(123)은 기울어지거나 눕도록 변형되며, 이에 따라 돌출 패턴(123)의 높이(H)와 대략 상응하는 부분이 표면적 향상에 기여하게 된다. 이러한 관점에서 돌출 패턴(123)의 높이(H)는 약 1.0㎛ 내지 3,000㎛, 또는 약 1.0㎛ 내지 2,000㎛, 또는 약 1.0㎛ 내지 1,000㎛, 또는 약 2.0㎛ 내지 900㎛, 또는 약 3.0㎛ 내지 800㎛, 또는 약 4.0㎛ 내지 700㎛, 또는 약 5.0㎛ 내지 600㎛, 또는 약 6.0㎛ 내지 500㎛, 또는 약 7.0㎛ 내지 400㎛, 또는 약 8.0㎛ 내지 300㎛, 또는 약 9.0㎛ 내지 200㎛, 또는 약 10㎛ 내지 100㎛, 또는 약 10㎛ 내지 90㎛, 또는 약 10㎛ 내지 80㎛, 또는 약 10㎛ 내지 70㎛, 또는 약 10㎛ 내지 60㎛, 또는 약 10㎛ 내지 50㎛일 수 있다. 돌출 패턴(123)의 높이(H)가 1.0㎛ 보다 작으면 돌출 패턴(123)의 형상 변형이 발생하기 어렵고, 발생하더라도 표면적 증가에 기여하기 어려울 수 있다. 반면 돌출 패턴(123)의 높이(H)가 3,000㎛ 보다 크면 제1 회전체(101)와 제2 회전체(200) 간의 마찰 저항이 증가하여 동력 전달 효율이 감소할 수 있다.
예시적인 실시예에서, 돌출 패턴(123)은 대략 사각뿔대 형상을 가질 수 있다. 즉, 돌출 패턴(123)의 측면은 회전 방향(RT) 및 두께 방향(TD)으로 기울어진 상태일 수 있다. 이에 따라 돌출 패턴(123)의 상부에서의 폭 및/또는 두께와 하부에서의 폭 및/또는 두께는 상이할 수 있다. 돌출 패턴(123)의 측면을 기울어지도록 구성하여 돌출 패턴(123)의 기울어짐 변형을 용이하게 할 수 있다. 다른 실시예에서, 돌출 패턴은 대략 원뿔대, 삼각뿔대 등의 형상을 갖거나, 원기둥, 삼각기둥 또는 사각기둥 등의 기둥 형상을 갖거나, 또는 원뿔, 삼각뿔, 또는 사각뿔 등의 뿔 형상을 가질 수도 있다.
예를 들어, 돌출 패턴(123)의 회전 방향(RT)으로의 하부폭(W max)은 돌출 패턴(123)의 회전 방향(RT)으로의 최대폭을 형성할 수 있다. 또, 돌출 패턴(123)의 하부폭(W max)은 높이(H) 보다 작을 수 있다. 돌출 패턴(123)의 하부폭(W max)은 약 300㎛ 이하, 또는 약 200㎛ 이하, 또는 약 100㎛ 이하, 또는 약 50㎛ 이하, 또는 약 40㎛ 이하, 또는 약 30㎛ 이하, 또는 약 20㎛ 이하, 또는 약 10㎛ 이하일 수 있다. 돌출 패턴(123)의 하부폭(W max)이 지나치게 크면 돌출 패턴(123)의 회전 방향(RT)으로의 기울어짐 변형이 용이하지 않거나, 기울어짐 변형에 따라 돌출 패턴(123)에 손상이 발생할 수 있다. 돌출 패턴(123)의 하부폭(W max)의 하한은 특별히 제한되지 않으나, 예를 들어 약 0.1㎛ 이상, 또는 약 0.2㎛ 이상, 또는 약 0.4㎛ 이상, 또는 약 0.6㎛ 이상, 또는 약 0.8㎛ 이상, 또는 약 1.0㎛ 이상일 수 있다. 돌출 패턴(123)의 하부폭(W max)이 지나치게 작으면 돌출 패턴(123)의 내구성이 저하되고 제1 회전체(101)의 반복 회전에 따라 돌출 패턴(123)이 베이스층(121)으로부터 탈락되는 등의 손상될 수 있다. 따라서 돌출 패턴(123)의 하부폭(W max)의 하한은 돌출 패턴(123)의 재질 등을 고려하여 적절하게 선택될 수 있다.
또, 돌출 패턴(123)의 회전 방향(RT)으로의 상부폭(W min)은 돌출 패턴(123)의 회전 방향(RT)으로의 최소폭을 형성할 수 있다. 즉, 상부폭(W min)은 하부폭(W max) 보다 작을 수 있다. 예를 들어 돌출 패턴(123)의 상부폭(W min)은 약 200㎛ 이하, 또는 약 100㎛ 이하, 또는 약 50㎛ 이하, 또는 약 40㎛ 이하, 또는 약 30㎛ 이하, 또는 약 20㎛ 이하, 또는 약 10㎛ 이하일 수 있다.
한편, 돌출 패턴(123)의 두께 방향(TD)으로의 하부 두께(T max)는 돌출 패턴(123)의 두께 방향(TD)으로의 최대 두께를 형성할 수 있다. 또, 돌출 패턴(123)의 하부 두께(T max)는 높이(H) 보다 작을 수 있으나 본 발명이 이에 제한되는 것은 아니다. 비제한적인 예를 들어, 돌출 패턴(123)의 하부 두께(T max)는 약 300㎛ 이하, 또는 약 200㎛ 이하, 또는 약 100㎛ 이하, 또는 약 50㎛ 이하, 또는 약 40㎛ 이하, 또는 약 30㎛ 이하, 또는 약 20㎛ 이하, 또는 약 10㎛ 이하일 수 있다. 돌출 패턴(123)의 하부 두께(T max)의 하한은 특별히 제한되지 않으나, 예를 들어 약 0.1㎛ 이상, 또는 약 0.2㎛ 이상, 또는 약 0.4㎛ 이상, 또는 약 0.6㎛ 이상, 또는 약 0.8㎛ 이상, 또는 약 1.0㎛ 이상일 수 있다. 돌출 패턴(123)의 하부 두께(T max)의 하한은 돌출 패턴(123)의 재질 등을 고려하여 적절하게 선택될 수 있다.
또, 돌출 패턴(123)의 두께 방향(TD)으로의 상부 두께(T min)는 돌출 패턴(123)의 두께 방향(TD)으로의 최소 두께를 형성할 수 있다. 즉, 상부 두께(T min)는 하부 두께(T max) 보다 작을 수 있다. 예를 들어, 돌출 패턴(123)의 상부 두께(T min)는 약 200㎛ 이하, 또는 약 100㎛ 이하, 또는 약 50㎛ 이하, 또는 약 40㎛ 이하, 또는 약 30㎛ 이하, 또는 약 20㎛ 이하, 또는 약 10㎛ 이하일 수 있다.
또, 몇몇 실시예에서 복수의 돌출 패턴(123)은 회전 방향(RT) 및 두께 방향(TD)을 따라 이격 배치되며, 대략 규칙적인 배열을 가질 수 있다. 도 3은 복수의 돌출 패턴(123)이 대략 격자 배열된 상태를 예시하고 있으나 본 발명이 이에 제한되지 않음은 물론이다.
돌출 패턴(123)의 회전 방향(RT)으로의 제1 이격 거리(L 1)는 돌출 패턴(123)의 하부폭(W max)의 약 40% 이상, 또는 약 50% 이상일 수 있다. 제1 이격 거리(L 1)가 지나치게 작을 경우 돌출 패턴(123)이 회전 방향(RT) 측으로 기울어지는 변형이 발생하기 곤란하고, 기울어지더라도 표면적이 증가하는 효율이 감소할 수 있다. 또, 제1 이격 거리(L 1)가 지나치게 작을 경우 기울어짐 변형에 따라 돌출 패턴(123) 및 베이스층(121)에 손상이 발생할 수 있다. 반면, 제1 이격 거리(L 1)가 지나치게 크면 돌출 패턴(123)의 전체적인 개수가 감소하고, 돌출 패턴(123)의 변형에 따라 표면적이 증가하는 정도가 감소할 수 있다. 예를 들어, 제1 이격 거리(L 1)의 상한은 돌출 패턴(123)의 높이(H) 보다 작을 수 있다. 상세한 예를 들어, 제1 이격 거리(L 1)의 상한은 약 2,500㎛, 또는 약 2,000㎛, 또는 약 1,500㎛, 또는 약 1,000㎛, 또는 약 900㎛, 또는 약 900㎛, 또는 약 700㎛, 또는 약 600㎛, 또는 약 500㎛, 또는 약 400㎛, 또는 약 300㎛, 또는 약 200㎛, 또는 약 100㎛일 수 있다.
또, 돌출 패턴(123)의 두께 방향(TD)으로의 제2 이격 거리(L 2)는 약 1.0㎛ 내지 3,000㎛, 또는 약 1.0㎛ 내지 2,000㎛, 또는 약 1.0㎛ 내지 1,000㎛, 또는 약 2.0㎛ 내지 900㎛, 또는 약 3.0㎛ 내지 800㎛, 또는 약 4.0㎛ 내지 700㎛, 또는 약 5.0㎛ 내지 600㎛, 또는 약 6.0㎛ 내지 500㎛, 또는 약 7.0㎛ 내지 400㎛, 또는 약 8.0㎛ 내지 300㎛, 또는 약 9.0㎛ 내지 200㎛, 또는 약 10㎛ 내지 100㎛, 또는 약 10㎛ 내지 90㎛, 또는 약 10㎛ 내지 80㎛, 또는 약 10㎛ 내지 70㎛, 또는 약 10㎛ 내지 60㎛, 또는 약 10㎛ 내지 50㎛일 수 있다. 돌출 패턴(123)의 제2 이격 거리(L 2)는 후술할 제2 회전 디스크(210)의 홈(210g)과 소정의 관계에 있을 수 있다.
한편, 몇몇 실시예에서 제2 회전체(200)의 외주면은 대략 매끈한 형상이되, 제2 회전 디스크(210)는 외주 표면에 형성된 홈(210g)을 가질 수 있다. 즉, 제2 회전체(200)는 회전 방향(RT)으로 반복 배열된 구조물, 예컨대 톱니를 갖지 않되, 두께 방향(TD)으로 반복 배열된 구조를 가질 수 있다.
홈(210g)은 회전 방향(RT)을 따라 연장된 형상일 수 있다. 홈(210g)은 제2 회전 디스크(210)의 외주면 상에 위치하되, 회전 방향(RT)을 따라 연장되고 두께 방향(TD)으로 반복 형성될 수 있다. 홈(210g)에는 제1 회전체(101)의 돌출 패턴(123)이 적어도 부분적으로 삽입될 수 있다.
홈(210g)의 최대 깊이(D)는 돌출 패턴(123)의 최대 높이(H) 보다 작을 수 있다. 만일 홈(210g)의 깊이(D)가 돌출 패턴(123)의 높이(H) 보다 클 경우 홈(210g)에 삽입되는 돌출 패턴(123)이 기울어지도록 변형이 이루어지지 않을 수 있다. 또, 홈(210g)의 최대 깊이(D)는 돌출 패턴(123)의 높이(H)의 약 30% 이상, 또는 약 40% 이상, 또는 약 50% 이상일 수 있다. 후술할 바와 같이 제2 회전체(200)의 홈(210g)은 제1 회전체(101)와 제2 회전체(200) 간의 접지력 향상에 기여할 수 있다. 홈(210g)의 깊이(D)가 지나치게 작을 경우 이러한 효과가 미약할 수 있다.
또, 돌출 패턴(123)이 회전 방향(RT) 및 두께 방향(TD)으로 배열된 예시적인 실시예에서, 홈(210g)의 두께 방향(TD)으로의 너비(T)는 돌출 패턴(123)의 두께 방향(TD)으로의 최대 두께(T max) 보다 클 수 있다. 이에 따라 하나의 홈(210g)에 두께 방향(TD)으로 배열된 복수의 돌출 패턴(123)이 삽입될 수 있다. 예를 들어, 홈(210g)의 너비(T)는 돌출 패턴(123)의 최대 두께(T max)의 약 5배 이상, 또는 약 10배 이상, 또는 약 50배 이상일 수 있다.
돌출 패턴(123)의 적어도 일부는 홈(210g)에 삽입되고, 적어도 일부는 홈(210g)에 삽입되지 않을 수 있다. 전술한 바와 같이 돌출 패턴(123)은 회전 방향(RT)으로 기울어지며 돌출 패턴(123)의 회전 방향(RT) 측 측면에 의해 표면적이 증가하는 효과가 발생할 수 있다. 뿐만 아니라 홈(210g)에 삽입된 돌출 패턴(123)은 돌출 패턴(123)의 두께 방향(TD) 측 측면이 홈(210g)의 내측벽과 마주보거나 접촉하며, 두께 방향(TD) 측 측면이 표면적 향상에 더욱 기여하도록 할 수 있다. 따라서, 만일 홈(210g)의 너비(T)가 지나치게 작을 경우 홈(210g)과 맞물리지 못하는 돌출 패턴(123)으로 인해 동력 전달 효율의 감소가 발생할 수 있다. 반면 홈(210g)의 너비(T)가 지나치게 클 경우 홈(210g)에 의한 접지력 향상 효과가 미약할 수 있다.
또, 두께 방향(TD)으로 인접한 홈(210g) 간의 두께 방향(TD)으로의 제3 이격 거리(L 3)는 돌출 패턴(123)의 두께 방향(TD)으로의 제2 이격 거리(L 2) 보다 클 수 있다. 이에 따라 두께 방향(TD)으로 배열된 복수의 돌출 패턴(123) 중 적어도 일부는 홈(210g)에 삽입되지 않고 제2 회전 디스크(210)의 돌출면과 맞닿을 수 있다. 도 4는 홈(210g)의 제3 이격 거리(L 3)가 너비(T) 보다 작은 경우를 예시하고 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 실시예에 따른 돌출 패턴(123)은 마이크로 사이즈를 갖는 구조물일 수 있다. 또, 소정의 유연성을 가지고 외력에 의해 회전 방향(RT)으로의 형상 변형이 용이하되 우수한 내구성을 갖도록 설계될 수 있다. 이에 따라 제1 회전체(101)와 제2 회전체(200)의 접지면 부근 영역에서 돌출 패턴(123)이 기울어져 표면적이 증가하고, 증가한 표면적에 의해 반데르발스 힘 등 인력이 증가할 수 있다. 즉, 패턴층(120)과 제2 회전 디스크(210)가 맞닿는 예시적인 실시예에서, 패턴층(120)의 돌출 패턴(123)의 측면은 제2 회전 디스크(210)와 증가된 인력을 가지기 때문에 제1 회전체(101)와 제2 회전체(200) 사이의 마찰력 내지는 접지력이 증가하고, 손실되는 동력을 최소화하면서 동력을 전달할 수 있다. 또 제1 회전체(101)와 제2 회전체(200) 간의 회전 비율, 즉 기어비가 최초 의도된 대로 동작하는 것을 담보할 수 있다. 본 실시예에 따른 동력 전달 시스템(11)의 동력 전달 효율은 약 60% 이상, 또는 약 70% 이상, 또는 약 80% 이상, 또는 약 90% 이상, 또는 약 95% 이상일 수 있다.
또 본 실시예에 따른 동력 전달 시스템(11)은 상기와 같은 동력 전달 과정에서의 효과 뿐만 아니라 다양한 응용을 기대할 수 있다.
예를 들어, 동력 전달 시스템(11)이 종래와 같이 톱니 내지는 치형 표면을 갖지 않기 때문에 톱니형 기어에서 필연적으로 발생하는 재밍 문제, 진동 문제 및 소음 문제를 방지할 수 있다.
특히 동력 전달 시스템(11)이 로봇 장치, 특히 인간과 함께 작업을 수행하는 인간 협동 로봇 장치에 적용될 경우 소음과 진동을 저하시킬 수 있다. 비제한적인 예시로서, 인간의 재활 치료를 위해 재활자와 맞닿아 동작하는 로봇 장치에 톱니형 기어를 적용할 경우 로봇 장치의 관절이 움직임에 따라 발생하는 소음과 미세한 진동, 기계 특유의 회전감과 조작감은 재활자에게 불쾌감과 이질감을 줄 수 있다. 그러나 본 실시예에 따른 동력 전달 시스템(11)은 톱니형 기어를 사용하지 않음에 따라 이러한 문제를 방지할 수 있다.
또, 톱니형 기어를 이용할 경우 진동과 소음을 최소화하고 동력 전달 시스템의 내구성을 높이기 위해 백래시를 정밀하게 설계할 것이 요구된다. 그러나 백래시가 정밀할수록 비정형 상황에서의 대처 유연성과 설계 유연성의 저하가 동반된다. 예를 들어, 협동 로봇 장치에서 로봇 장치의 손 관절, 즉 동력 출력 측에 인간이 힘을 가하거나 인간의 신체가 끼어서 동력 전달 장치의 동력 전달 방향과 반대 방향의 힘을 가하는 경우, 종래의 치형 기어의 톱니가 손상되거나, 동력 전달이 중단되지 않아 인간이 크게 다칠 우려가 있다.
그러나 본 실시예에 따른 동력 전달 시스템(11)은 동력 전달 방향과 반대 방향의 힘, 예컨대 피동 회전체인 제2 회전체(200)의 회전이 멈추거나, 심지어 제2 회전체(200)가 시계 방향으로 회전하도록 하는 힘이 가해지는 경우에도, 제1 회전체(101)와 제2 회전체(200)의 실질적인 손상 없이, 적어도 손상을 최소화하며 동력 전달이 차단될 수 있다. 즉, 제2 회전체(200)의 회전이 멈추는 경우에도 제1 회전체(101)는 시계 방향으로의 회전을 지속할 수 있고, 제1 회전체(101)와 제2 회전체(200)를 기준으로 양 측의 구동계가 순간적으로 분리되어 동력 전달 시스템(11)의 손상을 방지할 수 있다.
다시 말해서, 본 실시예에 따른 동력 전달 시스템(11)은 동력 전달 과정에 있어서 구름(rolling) 마찰을 최소화하면서도 회전체 간의 접지력을 높일 수 있고, 회전체 간의 회전 방향으로의 접지력이 높음에도 불구하고 특정 상황 하에서 동력 전달을 차단할 수 있는 효과가 있다.
한편, 본 실시예에 따른 동력 전달 시스템(11)은 설계 상의 유연성을 제공할 수 있다. 동력 전달 시스템의 톱니의 개수, 톱니의 크기와 기어의 직경, 기어의 개수, 기어의 회전축 간의 거리, 회전축의 위치, 톱니의 형상과 배열 등을 고려하다 보면 이론상 가능하다 하더라도 실질적으로 구현이 곤란하거나, 특정한 수치의 크기를 갖도록 설계되거나, 소재 상의 제약이 발생하거나, 가공 과정에서 비용이 과다하게 소요되는 경우가 매우 많다. 그러나 본 실시예에 따른 동력 전달 시스템(11)은 톱니 간의 맞물림을 이용하지 않기 때문에 수치, 소재 및 비용 측면에서 보다 자유로운 설계가 가능한 장점이 있다.
이하, 본 발명의 다른 실시예들에 대하여 설명한다. 다만 전술한 실시예에 따른 제1 회전체(101), 제2 회전체(200) 및 동력 전달 시스템(11)과 실질적으로 동일하거나 유사한 구성에 대한 설명은 생략하며, 이는 첨부된 도면으로부터 본 기술분야에 속하는 통상의 기술자에게 명확히 이해될 수 있을 것이다.
도 5는 본 발명의 다른 실시예에 따른 제1 회전체 표면의 패턴층(130)을 설명하기 위한 사시도이다.
도 5를 참조하면, 본 실시예에 따른 제1 회전체의 패턴층(130)은 복수의 돌출 패턴(133)이 회전 방향(RT)으로 이격하여 반복 배치되되, 어느 돌출 패턴(133)은 두께 방향(TD)으로 연장된 형상인 점이 도 1 등의 실시예에 따른 패턴층(120)과 상이한 점이다.
도면으로 표현하지 않았으나, 제2 회전체(미도시)에는 홈이 형성되거나 형성되지 않을 수 있다. 또, 제2 회전체의 홈(미도시)의 두께 방향(TD)으로의 너비는 제1 회전체의 돌출 패턴(133)의 두께 방향(TD)으로의 두께(또는 연장 길이) 보다 크거나 작을 수 있다.
도 6은 본 발명의 또 다른 실시예에 따른 제1 회전체 표면의 패턴층(140)을 설명하기 위한 단면도로서, 패턴층(140)을 회전 방향(RT)을 따라 절개한 단면도이다.
도 6을 참조하면, 본 실시예에 따른 제1 회전체의 패턴층(140)은 돌출 패턴(143)의 상면이 경사를 갖는 점이 도 1 등의 실시예에 따른 패턴층(120)과 상이한 점이다.
돌출 패턴(143)은 회전 방향(RT) 측 양 측면 및/또는 두께 방향 측 양 측면이 기울어진 대략 사각뿔대 형상이되, 그 상면 또한 기울어진 상태일 수 있다. 예시적인 실시예에서, 돌출 패턴(143)의 상면은 회전 방향(RT) 측을 따라 하향 경사지도록 기울어질 수 있다. 돌출 패턴(143)의 상면은 제2 회전체(미도시)와 가장 먼저 접촉하는 부분일 수 있다. 이 때 돌출 패턴(143)의 상면이 회전 방향(RT)을 따라 하향 경사지게 구성하여 돌출 패턴(143)과 제2 회전체 간의 불필요한 간섭 및 이로부터 유발되는 구름 저항을 최소화할 수 있다.
한편, 예시적인 실시예에서 돌출 패턴(143)의 회전 방향(RT) 측의 두 개의 측면은 서로 상이한 경사를 가질 수 있다. 예를 들어, 돌출 패턴(143)은 회전 방향(RT)의 정방향(도 6 기준 우측 방향)에 위치한 제1 측면(도 6 기준 우측면) 및 회전 방향(RT)의 반대 방향(도 6 기준 좌측 방향)에 위치한 제2 측면(도 6 기준 좌측면)을 가질 수 있다.
이 경우, 제1 측면의 제1 경사각(θ 1)은 제2 측면의 제2 경사각(θ 2) 보다 클 수 있다. 또, 제1 경사각(θ 1) 및 제2 경사각(θ 2)은 모두 90도 보다 큰 둔각일 수 있다. 제1 경사각(θ 1) 및 제2 경사각(θ 2)의 크기는 상기 범위를 만족함과 동시에, 전술한 돌출 패턴(143)의 높이(H), 하부폭(W max) 및 상부폭(W min)을 만족하는 범위에서 형성될 수 있다. 본 명세서에서, 돌출 패턴의 측면의 경사각은 어느 측면과 베이스층(141)의 상면이 이루는 각도를 의미한다.
패턴층(140)을 포함하는 제1 회전체(미도시)가 도 6을 기준으로 우측 방향으로 회전하도록 구성될 경우, 돌출 패턴(143)은 좌측으로 기울어질 수 있다. 따라서 돌출 패턴(143)이 좌측, 즉 회전 방향(RT)의 역방향으로 기울어지기에 보다 용이한 형상을 갖도록 구성함으로써, 제2 회전체(미도시)에 의해 돌출 패턴(143)의 형상이 변형되는 과정에서 손실되는 힘을 감소시키고, 나아가 동력 전달 효율을 개선할 수 있다.
한편, 몇몇 실시예에서, 돌출 패턴(143)의 상면과 제2 측면이 형성하는 사이각(θ 3)은 약 15도 이상, 또는 약 20도 이상, 또는 약 25도 이상, 또는 약 30도 이상일 수 있다. 돌출 패턴(143)의 상면이 상기 사이각(θ 3)을 갖는 수준으로 경사를 형성함으로써, 돌출 패턴(143)의 상면이 제2 회전체(미도시)와 대략 동시에 접촉하도록 할 수 있다. 사이각(θ 3)의 상한은 특별히 제한되지 않으나 돌출 패턴(143) 형성의 용이성 측면에서 약 80도 이하, 또는 약 70도 이하일 수 있다.
도 7은 본 발명의 또 다른 실시예에 따른 제1 회전체 표면의 패턴층(150)을 설명하기 위한 단면도로서, 패턴층(150)을 회전 방향(RT)을 따라 절개한 단면도이다.
도 7을 참조하면, 본 실시예에 따른 제1 회전체의 패턴층(150)은 초기 상태, 즉 외력이 가해지지 않은 상태에서 돌출 패턴(153)이 회전 방향(RT)의 역방향으로 기울어져 있는 점이 도 6의 실시예에 따른 패턴층(140)과 상이한 점이다.
예시적인 실시예에서, 돌출 패턴(153)은 회전 방향(RT)의 정방향(도 7 기준 우측 방향)에 위치한 제1 측면(도 7 기준 우측면) 및 회전 방향(RT)의 반대 방향(도 7 기준 좌측 방향)에 위치한 제2 측면(도 7 기준 좌측면)을 가질 수 있다.
이 경우, 제1 측면의 제4 경사각(θ 4)은 90도 보다 큰 둔각을 형성하고, 제2 측면의 제5 경사각(θ 5)은 90도 보다 작은 예각을 형성할 수 있다. 패턴층(150)을 포함하는 제1 회전체(미도시)가 도 7을 기준으로 우측 방향으로 회전하도록 구성될 경우, 돌출 패턴(153)은 좌측으로 기울어질 수 있다. 따라서 돌출 패턴(153)이 좌측, 즉 회전 방향(RT)의 역방향으로 기울어지기에 보다 용이한 형상을 갖도록 구성함으로써 동력 전달 효율을 개선할 수 있다.
나아가, 도 6에 따른 실시예와 다르게 돌출 패턴(153)이 이미 기울어진 형상을 가짐으로써 동력 전달 시스템의 구동 응답(drive response)을 더욱 빠르게 할 수 있다.
돌출 패턴(153)의 상면과 제2 측면이 형성하는 사이각은 약 15도 이상, 또는 약 20도 이상이되, 베이스층(151)을 기준으로 돌출 패턴(153)의 상면은 경사를 갖거나 갖지 않을 수 있다.
도 8은 본 발명의 또 다른 실시예에 따른 제1 회전체 표면의 패턴층(160)을 설명하기 위한 사시도이다.
도 8을 참조하면, 본 실시예에 따른 제1 회전체의 패턴층(160)은 제1 돌출 패턴(163) 및 제2 돌출 패턴(165)을 포함하는 점이 도 7의 실시예와 상이한 점이다.
제1 돌출 패턴(163)은 도 7의 실시예에 따른 돌출 패턴(153)과 실질적으로 동일한 크기 및 형상을 가질 수 있다. 즉, 제1 돌출 패턴(163)은 초기 상태에서 회전 방향(RT)의 역방향으로 기울어진 상태일 수 있다. 제1 돌출 패턴(163)은 회전 방향(RT) 및 두께 방향(TD)으로 반복 배열될 수 있다.
반면 제2 돌출 패턴(165)은 초기 상태에서 회전 방향(RT)의 정방향으로 기울어진 상태일 수 있다. 즉, 제2 돌출 패턴(165)은 회전 방향(RT)의 정방향에 위치한 제1 측면 및 회전 방향(RT)의 반대 방향에 위치한 제2 측면을 가지되, 제1 측면은 예각의 경사각을 가지고, 제2 측면은 둔각의 경사각을 가질 수 있다. 제2 돌출 패턴(165)은 제1 돌출 패턴(163)과 기울어진 방향이 다른 점을 제외하고는 제1 돌출 패턴(163)과 실질적으로 동일한 크기 및 형상을 가질 수 있다. 제2 돌출 패턴(165)은 회전 방향(RT) 및 두께 방향(TD)으로 반복 배열되되, 두께 방향(TD)으로 이격된 제1 돌출 패턴(163)들 사이에는 적어도 하나의 제2 돌출 패턴(165)이 배치될 수 있다.
도면으로 표현하지 않았으나, 패턴층(160)을 포함하는 제1 회전체(미도시) 및 제2 회전체(미도시)를 포함하는 동력 전달 시스템에 있어서, 필요에 따라 역방향으로의 구동이 필요할 수 있다. 예를 들어, 구동 회전체인 제1 회전체가 반대 방향으로 회전하거나, 또는 다른 예를 들어 제2 회전체가 구동 회전체가 될 수도 있다.
따라서 제1 회전체의 표면에 제2 돌출 패턴(165)을 포함하는 패턴층(160)을 배치하여 역방향으로의 구동 및 동력 전달 효율을 개선할 수 있다. 다만 몇몇 실시예에서, 정방향으로의 동력 전달 효율 및 응답 속도 측면에서 제1 돌출 패턴(163)의 개수는 제2 돌출 패턴(165)의 개수 보다 많을 수 있다. 또, 제1 돌출 패턴(163)이 차지하는 면적은 제2 돌출 패턴(165)이 차지하는 면적 보다 클 수 있다.
도 9는 본 발명의 다른 실시예에 따른 동력 전달 시스템(12)의 모식도이다.
도 9를 참조하면, 본 실시예에 따른 동력 전달 시스템(12)은 제1 회전체(101)가 제2 회전체(200)의 내주면에 접하는 점이 도 1의 실시예와 상이한 점이다.
예시적인 실시예에서, 제1 회전체(101)는 제1 회전 디스크(110), 패턴층(120) 및 제1 샤프트(190)를 포함하고, 제1 샤프트(190)를 회전축으로 하여 시계 방향으로 회전하도록 구성될 수 있다. 또, 제2 회전체(300)는 제1 회전체(101) 보다 큰 직경을 가지고, 제1 회전체(101)는 제2 회전체(300)에 내접하여, 제2 회전체(300)가 제1 회전체(101)와 동일 방향, 즉 시계 방향으로 회전하도록 구성될 수 있다. 다른 실시예에서 제2 회전체(300)의 내측면은 전술한 패턴층과 같은 구조를 가질 수도 있다.
도면으로 표현하지 않았으나, 제1 회전체(101)의 패턴층(120)은 전술한 것과 같은 다양한 돌출 패턴 구조를 가질 수 있다.
도 10은 본 발명의 또 다른 실시예에 따른 동력 전달 시스템(13)의 사시도이다. 도 11은 도 10의 동력 전달 시스템(13)의 분해사시도이다. 도 12는 도 10의 동력 전달 시스템(13)의 회전체들의 회전 방향으로의 평면도이다. 도 13은 도 10의 동력 전달 시스템(13)의 단면도이다.
도 10 내지 도 13을 참조하면, 본 실시예에 따른 동력 전달 시스템(13)은 썬 회전체(310)(sun rotator), 복수의 유성 회전체(401)(planetary rotator), 링 회전체(ring rotator) 및 캐리어(carrier)를 포함할 수 있다.
즉, 동력 전달 시스템(13)은 썬 기어, 유성 기어, 링 기어 및 캐리어를 포함하는 종래의 유성치차 기어 시스템과 대략 상응하는 구조를 가지되, 회전체의 표면에 톱니 내지는 치형이 형성되지 않은 점에 차이가 있다.
도면으로 표현하지 않았으나, 예시적인 실시예에서 썬 회전체(310), 유성 회전체(401) 및 링 회전체(510) 중 적어도 하나 이상 또는 전부는 그 표면(접지면)에 형성된 돌출 패턴을 포함하는 패턴층(미도시)을 포함할 수 있다. 예를 들어, 썬 회전체(310)의 외주면과 링 회전체(510)의 내주면은 패턴층(미도시)이 형성되고, 유성 회전체(401)의 외주면은 톱니 없이 매끈한 상태일 수 있다. 다른 예를 들어, 유성 회전체(401)의 외주면은 패턴층(미도시)이 형성되고 썬 회전체(310)의 외주면 및 링 회전체(510)의 내주면은 톱니 없이 매끈한 상태일 수 있다. 또 다른 예를 들어, 썬 회전체(310)의 외주면, 유성 회전체(401)의 외주면 및 링 회전체(510)의 내주면은 패턴층(미도시)이 형성된 상태일 수 있다.
썬 회전체(310)에는 제1 샤프트(390)가 연결된 상태일 수 있다. 제1 샤프트(390)는 동력 입력 축일 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
썬 회전체(310)의 주변에는 복수의 유성 회전체(401)가 배치될 수 있다. 도 10 등은 세 개의 유성 회전체(401)가 120도의 이격 각도로 배치된 경우를 예시하나, 다른 실시예에서 유성 회전체(401)는 네 개 또는 그 이상일 수 있다. 썬 회전체(310)의 회전축을 중심으로, 복수의 유성 회전체(401)는 동일한 이격 각도로 각배열될 수 있다.
어느 유성 회전체(401)는 썬 회전체(310)와 외접하며 썬 회전체(310)와 접지면을 가질 수 있다. 썬 회전체(310)와 유성 회전체(401) 간의 관계에서, 썬 회전체(310)는 도 1의 실시예에 따른 제1 회전체에 상응하고, 유성 회전체(401)는 도 1의 실시예에 따른 제2 회전체에 상응할 수 있다.
또, 유성 회전체(401)의 외측에는 링 회전체(510)가 배치될 수 있다. 링 회전체(510)의 회전축은 썬 회전체(310)의 회전축과 일치할 수 있다. 링 회전체(510)는 복수의 유성 회전체(401)들과 내접하며 유성 회전체(401)와 접지면을 가질 수 있다. 유성 회전체(401)와 링 회전체(510) 간의 관계에서, 유성 회전체(401)는 도 9의 실시예에 따른 제1 회전체에 상응하고, 링 회전체(510)는 도 9의 실시예에 따른 제2 회전체에 상응할 수 있다.
유성 회전체(401)의 회전축에는 캐리어(650)가 기계적으로 연결될 수 있다. 또, 캐리어(650)는 제2 샤프트(690)가 기계적으로 연결된 상태일 수 있다. 캐리어(650) 및 제2 샤프트(690)는 회전 운동할 수 있고, 그 회전축은 썬 회전체(310)의 회전축과 일치할 수 있다.
예시적인 실시예에서, 제1 샤프트(390)는 동력 입력 축과 기계적으로 연결되고, 캐리어(650) 및 제2 샤프트(690)는 동력 출력 축과 기계적으로 연결되며, 링 회전체(510)의 회전은 고정될 수 있다.
이 경우 동력 전달 시스템(13)은 다음과 같이 구동할 수 있다. 즉, 도 12를 기준으로 제1 샤프트(390) 및 썬 회전체(310)가 시계 방향으로 회전할 경우, 복수의 유성 회전체(401) 각각은 반시계 방향으로 회전 운동(즉, 유성 회전체(401)의 회전축을 기준으로 자전 운동)함과 동시에 썬 회전체(310)의 회전축을 기준으로 시계 방향으로 이동 운동(즉, 썬 회전체(310)의 회전축을 중심으로 공전 운동)할 수 있다. 또, 복수의 유성 회전체(401)가 시계 방향으로 이동 운동함에 따라 이에 연결된 캐리어(650) 및 제2 샤프트(690) 또한 시계 방향으로 회전할 수 있다.
다시 말해서, 링 회전체(510)의 회전을 고정한 상태에서 제2 샤프트(690)가 제1 샤프트(390)와 동일한 방향으로 회전하도록 구성할 수 있고, 이 때의 기어비(i)는 다음 수식 1로 표현될 수 있다.
[수식 1]
i = (D s+D r)/D s
여기서 D s는 썬 회전체(310)의 외경을 의미하고, D r은 링 회전체(510)의 내경을 의미한다. 본 명세서에서, 기어비(i)가 1보다 클 경우 감속비를 나타냄을 의미하고, 기어비(i)가 1보다 작을 경우 가속비를 나타냄을 의미한다.
다른 실시예에서, 제1 샤프트(390)는 동력 입력 축과 기계적으로 연결되고, 링 회전체(510)는 동력 출력 축과 기계적으로 연결되며, 캐리어(650) 및 제2 샤프트(690)의 회전은 고정될 수 있다.
이 경우 동력 전달 시스템(13)은 다음과 같이 구동할 수 있다. 즉, 도 12를 기준으로 제1 샤프트(390) 및 썬 회전체(310)가 시계 방향으로 회전할 경우, 복수의 유성 회전체(401) 각각은 반시계 방향으로 회전 운동할 수 있다. 반면, 캐리어(650)의 회전이 고정되어 유성 회전체(401)는 이동 운동하지 못할 수 있다. 또, 복수의 유성 회전체(401)가 반시계 방향으로 회전 운동함에 따라 링 회전체(510)는 반시계 방향으로 회전할 수 있다.
다시 말해서, 캐리어(650)와 제2 샤프트(690)의 회전을 고정한 상태에서 링 회전체(510)가 제1 샤프트(390)와 반대 방향으로 회전하도록 구성할 수 있고, 이 때의 기어비(i)는 다음 수식 2로 표현될 수 있다.
[수식 2]
i = D r/D s
여기서 D s는 썬 회전체(310)의 외경을 의미하고, D r은 링 회전체(510)의 내경을 의미한다.
도 14는 본 발명의 또 다른 실시예에 따른 동력 전달 시스템(14)의 사시도이다. 도 15는 도 14의 동력 전달 시스템(14)의 분해사시도이다. 도 16은 도 14의 동력 전달 시스템(14)의 단면도이다.
도 14 내지 도 16을 참조하면, 본 실시예에 따른 동력 전달 시스템(14)은 도 10 등에 따른 동력 전달 시스템(13) 복수 개가 직렬 연결될 수 있다.
예시적인 실시예에서, 동력 전달 시스템(14)은 제1 샤프트(390), 제1 샤프트(390)와 기계적으로 연결된 제1 썬 회전체(310), 제1 썬 회전체(310)와 외접하는 복수의 제1 유성 회전체(401), 복수의 제1 유성 회전체(401)와 내접하는 제1 링 회전체(510), 복수의 제1 유성 회전체(401)의 축과 기계적으로 연결된 제1 캐리어(650), 제1 캐리어(650)와 기계적으로 연결된 제2 썬 회전체(610), 제2 썬 회전체(610)와 외접하는 복수의 제2 유성 회전체(402), 복수의 제2 유성 회전체(402)와 내접하는 제2 링 회전체(520), 복수의 제2 유성 회전체(402)의 축과 기계적으로 연결된 제2 캐리어(750) 및 제2 캐리어(750)와 기계적으로 연결된 제2 샤프트(790)를 포함할 수 있다. 제1 샤프트(390)는 동력 입력 축과 연결되고 제2 샤프트(790)는 동력 출력 축과 연결될 수 있다.
본 실시예에 따른 동력 전달 시스템(14)은 유성치차 기어 시스템과 유사한 구조의 동력 전달 시스템을 복수개 직렬 연결하여 기어비를 더욱 높일 수 있다. 예를 들어, 본 실시예에 따른 동력 전달 시스템(14)의 기어비(i)는 하기 수식 3으로 표현될 수 있다.
[수식 3]
i = i 1 × i 2
여기서 i 1은 제1 샤프트(390)와 제2 썬 회전체(610) 사이의 기어비이고, i 2는 제2 썬 회전체(610)와 제2 샤프트(790) 사이의 기어비이다. 또, i 1 및 i 2는 각각 전술한 수식 1과 같은 방법으로 계산될 수 있다. 이에 따라 본 실시예에 따른 동력 전달 시스템(14)은 도 10의 실시예에 따른 동력 전달 시스템(13)에 비해 높은 기어비를 얻을 수 있다.
도 17은 본 발명의 또 다른 실시예에 따른 동력 전달 시스템(15)의 사시도이다. 도 18은 도 17의 동력 전달 시스템(15)의 분해사시도이다. 도 19는 도 17의 동력 전달 시스템(15)의 회전체들의 회전 방향으로의 평면도이다. 도 20은 도 17의 동력 전달 시스템(15)의 단면도이다.
도 17 내지 도 20을 참조하면, 본 실시예에 따른 동력 전달 시스템(15)은 유성 회전체(403)가 서로 상이한 직경을 갖는 제1 부분(413) 및 제2 부분(423)을 포함하고, 유성 회전체(403)의 제2 부분(423)과 내접하는 제2 링 회전체(530)를 더 포함하는 점이 도 10 등의 실시예에 따른 동력 전달 시스템(13)과 상이한 점이다.
구체적으로, 썬 회전체(310)는 제1 샤프트(390)와 연결될 수 있다. 제1 샤프트(390)는 동력 입력 축일 수 있다.
썬 회전체(310)의 주변에는 복수의 유성 회전체(403)가 배치될 수 있다. 썬 회전체(310)는 유성 회전체(403)의 제1 부분(413)과 외접하여 접지면을 가질 수 있다. 또, 유성 회전체(403)는 제1 부분(413) 보다 작은 직경을 갖는 제2 부분(423)을 포함할 수 있다. 제1 부분(413)과 제2 부분(423)의 회전축은 일치하며, 제1 부분(413)과 제2 부분(423)은 일체로 회전할 수 있다.
또, 유성 회전체(403)의 외측에는 제1 링 회전체(510) 및 제2 링 회전체(530)가 배치될 수 있다. 제1 링 회전체(510) 및 제2 링 회전체(530)의 회전축은 썬 회전체(310)의 회전축과 일치할 수 있다. 제1 링 회전체(510)는 유성 회전체(403)의 제1 부분(413)과 내접하며 접지면을 가질 수 있다. 또, 제2 링 회전체(530)는 유성 회전체(403)의 제2 부분(423)과 내접하며 접지면을 가질 수 있다. 몇몇 실시예에서 제1 링 회전체(510)는 생략될 수도 있다.
유성 회전체(403)의 회전축에는 캐리어(650)가 기계적으로 연결될 수 있다. 또, 캐리어(650)는 제2 샤프트(690)가 기계적으로 연결된 상태일 수 있다.
예시적인 실시예에서, 제1 샤프트(390)는 동력 입력 축과 기계적으로 연결되고, 제2 링 회전체(530)는 동력 출력 축과 기계적으로 연결되며, 캐리어(650) 및 제2 샤프트(690)의 회전은 고정될 수 있다.
이 경우 동력 전달 시스템(15)은 다음과 같이 구동할 수 있다. 즉, 도 19를 기준으로 제1 샤프트(390) 및 썬 회전체(310)가 시계 방향으로 회전할 경우, 복수의 유성 회전체(403) 각각은 반시계 방향으로 회전 운동하되 이동 운동은 하지 못할 수 있다. 또, 복수의 유성 회전체(403)가 반시계 방향으로 회전 운동함에 따라 제1 링 회전체(510) 및 제2 링 회전체(530)는 반시계 방향으로 회전할 수 있다.
특히 제1 부분(413)과 제2 부분(423)이 동일한 각속도를 가지면서 직경이 감소하여 제2 부분(423)에 대한 제2 링 회전체(530)에 대한 기어비가 가속비를 나타내되, 제1 샤프트(390)와 제2 링 회전체(530)가 서로 반대 방향으로 돌기 때문에 제1 샤프트(390)의 각속도 벡터와 제2 링 회전체(530)의 각속도 벡터 간의 차이를 극대화할 수 있다. 즉, 복수의 유성치차 시스템을 직렬 연결하지 않음에도 불구하고 기어비의 증폭 효과를 가질 수 있어서 동력 전달 시스템(15)을 소형화 내지는 박형화할 수 있다.
도면으로 표현하지 않았으나, 썬 회전체(310), 유성 회전체(403)의 제1 부분(413)과 제2 부분(423), 제1 링 회전체(510) 및 제2 링 회전체(530) 중 적어도 하나 이상 또는 전부는 그 표면(접지면)에 형성된 패턴층(미도시)을 포함할 수 있다. 이에 따라 전술한 회전체들은 톱니 구조 없이도 동력을 효율적으로 전달할 수 있다.
또한 본 실시예에 따른 동력 전달 시스템(15)을 치형을 갖는 톱니 기어로 구현하기 위해서는 복수의 기어 간의 맞물림 구조를 설계하기가 매우 까다롭고, 따라서 매우 제한적인 상황 하에서만 구현될 수 있는 문제가 있다. 그러나 본 실시예에 따를 경우 톱니의 설계 없이도 접지력을 높일 수 있고, 보다 자유로운 설계 유연성을 부여할 수 있는 장점이 있다.
이상에서 본 발명의 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 본 발명의 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다.
따라서 본 발명의 범위는 이상에서 예시된 기술 사상의 변경물, 균등물 내지는 대체물을 포함하는 것으로 이해되어야 한다. 예를 들어, 본 발명의 실시예에 구체적으로 나타난 각 구성요소는 변형하여 실시할 수 있다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (13)

  1. 제1 회전체; 및 상기 제1 회전체와 맞닿는 접지면을 가지고 상기 제1 회전체와 함께 동력을 전달하는 제2 회전체를 포함하되, 상기 제1 회전체 및 상기 제2 회전체 중 적어도 하나의 접지면에는 마이크로 패턴 또는 텍스쳐링이 형성된 동력 전달 시스템.
  2. 제1항에 있어서,
    상기 제1 회전체는 및 상기 제2 회전체 중 적어도 하나는,
    회전 디스크, 및
    상기 회전 디스크 외주 방향에 배치된 패턴층으로서, 베이스층 및 상기 베이스층으로부터 상기 외주 방향으로 돌출된 돌출 패턴을 포함하는 패턴층을 포함하고,
    상기 제1 회전체와 상기 제2 회전체가 맞닿는 부분에서 상기 돌출 패턴이 기울어져 표면적이 증가하도록 구성된 동력 전달 시스템.
  3. 제1항에 있어서,
    상기 제1 회전체는 회전 디스크 및 상기 회전 디스크 외주 방향에 배치된 패턴층으로서, 돌출 패턴을 포함하는 패턴층을 포함하고,
    상기 돌출 패턴의 최대 높이는 3,000㎛ 이하인 동력 전달 시스템.
  4. 제3항에 있어서,
    상기 돌출 패턴의 회전 방향으로의 최대폭은 300㎛ 이하이고,
    상기 돌출 패턴 간의 상기 회전 방향으로의 이격 거리는 상기 최대폭의 40% 이상인 동력 전달 시스템.
  5. 제4항에 있어서,
    상기 제2 회전체의 접지면에는 상기 회전 방향을 따라 연장되되, 상기 돌출 패턴이 적어도 부분적으로 삽입되도록 구성된 홈이 형성되고,
    상기 홈의 깊이는 상기 돌출 패턴의 최대 높이 보다 작고,
    상기 홈의 두께 방향으로의 너비는, 상기 돌출 패턴의 상기 두께 방향으로의 폭 보다 크고,
    상기 홈의 상기 두께 방향으로의 이격 거리는, 상기 돌출 패턴의 상기 두께 방향으로의 이격 거리 보다 큰 동력 전달 시스템.
  6. 제2항에 있어서,
    적어도 일부의 상기 돌출 패턴의 상면은 회전 방향을 따라 하향 경사진 동력 전달 시스템.
  7. 제6항에 있어서,
    상기 회전 방향을 따라 절개한 단면에서, 상기 돌출 패턴은 초기 상태에서 상기 회전 방향의 역방향으로 기울어진 제1 돌출 패턴을 포함하는 동력 전달 시스템.
  8. 제7항에 있어서,
    상기 돌출 패턴은 초기 상태에서 상기 회전 방향의 정방향으로 기울어진 제2 돌출 패턴을 더 포함하되, 상기 제1 돌출 패턴의 개수는 상기 제2 돌출 패턴의 개수 보다 큰 동력 전달 시스템.
  9. 제1항에 있어서,
    상기 동력 전달 시스템은 썬 회전체, 상기 썬 회전체와 외접하는 복수의 유성 회전체, 상기 복수의 유성 회전체와 내접하는 링 회전체 및 상기 복수의 유성 회전체와 연결된 캐리어를 포함하는 유성 변속 시스템이고,
    상기 제1 회전체는 상기 썬 회전체 또는 상기 링 회전체고,
    상기 제2 회전체는 상기 유성 회전체인 동력 전달 시스템.
  10. 제1항에 있어서,
    상기 동력 전달 시스템은,
    썬 회전체,
    상기 썬 회전체와 외접하는 복수의 유성 회전체로서, 제1 직경을 가지고 상기 썬 회전체와 접지면을 갖는 제1 부분, 및 상기 제1 직경 보다 작은 제2 직경을 가지고 상기 제1 부분과 회전축이 동일한 제2 부분을 포함하는 유성 회전체, 및
    상기 유성 회전체의 상기 제2 부분과 내접하는 링 회전체를 포함하는 유성 변속 시스템이고,
    상기 제1 회전체는 상기 썬 회전체 또는 상기 링 회전체고,
    상기 제2 회전체는 상기 유성 회전체인 동력 전달 시스템.
  11. 제1항에 있어서,
    상기 제1 회전체는 동력 입력 축과 연결되고,
    상기 제2 회전체는 동력 출력 축과 연결되며,
    상기 제2 회전체의 회전 운동이 정지하거나, 또는 상기 제2 회전체가 역회전하더라도, 상기 제1 회전체는 정회전 상태를 유지하도록 구성된 동력 전달 시스템.
  12. 회전 디스크; 및
    상기 회전 디스크의 외주 방향에 배치된 패턴층으로서, 베이스층 및 상기 베이스층으로부터 상기 외주 방향으로 돌출된 돌출 패턴을 포함하는 패턴층을 포함하는 동력 전달용 회전체.
  13. 제12항에 있어서,
    상기 패턴층은 연성을 갖는 재질로 형성되고, 상기 돌출 패턴은 상기 회전체의 회전 방향을 따라 반복 배열되는 동력 전달용 회전체.
PCT/KR2021/001834 2020-03-03 2021-02-14 마이크로 표면 텍스쳐링을 갖는 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템 WO2021177623A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0026273 2020-03-03
KR1020200026273A KR102333607B1 (ko) 2020-03-03 2020-03-03 마이크로 표면 텍스쳐링을 갖는 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템

Publications (1)

Publication Number Publication Date
WO2021177623A1 true WO2021177623A1 (ko) 2021-09-10

Family

ID=77614101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001834 WO2021177623A1 (ko) 2020-03-03 2021-02-14 마이크로 표면 텍스쳐링을 갖는 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템

Country Status (2)

Country Link
KR (1) KR102333607B1 (ko)
WO (1) WO2021177623A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326784U (ko) * 1976-08-15 1978-03-07
JPS62177359A (ja) * 1986-01-27 1987-08-04 Ishizakigumi:Kk プ−リ−用ラツギング
KR20020058132A (ko) * 2000-12-29 2002-07-12 장인순 고 비율 차동유성 감속장치
JP3682056B1 (ja) * 2004-03-29 2005-08-10 慎也 畑内 動力伝達機構
KR20100064701A (ko) * 2008-12-05 2010-06-15 재단법인 포항지능로봇연구소 다단방식의 유성기어장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149154U (ko) * 1977-04-28 1978-11-24
JPS5683642A (en) 1979-12-13 1981-07-08 Nachi Fujikoshi Corp Double planetary transmission gear

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326784U (ko) * 1976-08-15 1978-03-07
JPS62177359A (ja) * 1986-01-27 1987-08-04 Ishizakigumi:Kk プ−リ−用ラツギング
KR20020058132A (ko) * 2000-12-29 2002-07-12 장인순 고 비율 차동유성 감속장치
JP3682056B1 (ja) * 2004-03-29 2005-08-10 慎也 畑内 動力伝達機構
KR20100064701A (ko) * 2008-12-05 2010-06-15 재단법인 포항지능로봇연구소 다단방식의 유성기어장치

Also Published As

Publication number Publication date
KR20210111408A (ko) 2021-09-13
KR102333607B1 (ko) 2021-12-01
KR102333607B9 (ko) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2016148463A1 (ko) 로봇 암
EP2567793B1 (en) Industrial robot
CN107436159B (zh) 用于工业装置的传感器化覆盖物
US5611248A (en) Two-axis robot
WO2021177623A1 (ko) 마이크로 표면 텍스쳐링을 갖는 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템
WO2016117874A1 (ko) 와이어를 이용한 로봇 관절 장치 및 와이어를 이용한 모듈형 로봇 관절 시스템
WO2021162232A1 (ko) 초소형 복강경 수술 로봇
SE9500683D0 (sv) Robotutrustning
WO2020226263A1 (ko) 전력 케이블 풀러 및 전력 케이블 풀러 시스템
WO2010038969A2 (ko) 플랜지면 자동 가공장치
US20030010148A1 (en) Offset rotary joint unit equipped with rotation correction mechanism
ATE105224T1 (de) Antrieb mindestens zweier konzentrischer wellen zum bewegen einer robotor-abtriebseinrichtung.
EP0621112A1 (en) Industrial robot having joints using a hollow reduction gear
WO2012076029A1 (en) Method for safe robot motion with hazardous work piece
WO2020246808A1 (ko) 피니싱 작업을 위한 매니퓰레이터 및 그의 제어 방법
WO2014021568A1 (ko) 다수 공구용 지그
WO2022092874A1 (ko) 병렬 메커니즘
WO2019124771A1 (ko) 공작기계의 주축 구동장치
WO2021162430A1 (ko) 판형 조화 감속기
JP6687928B2 (ja) 関節駆動装置及び多軸マニュピレータ
WO2011071306A2 (ko) 피가공물 디버링 장치
WO2012030083A2 (ko) 단일 종류의 회전동력원과 기어결합체를 이용한 변속장치
KR102382158B1 (ko) 마이크로 표면 텍스쳐링과 치형 구조를 갖는 동력 전달용 회전체 및 이를 포함하는 동력 전달 시스템
WO2019124571A1 (ko) 다관절 로봇
KR100487152B1 (ko) 다관절 로봇

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764416

Country of ref document: EP

Kind code of ref document: A1