WO2021177153A1 - シンチレータおよびシンチレータ用単結晶の製造方法 - Google Patents

シンチレータおよびシンチレータ用単結晶の製造方法 Download PDF

Info

Publication number
WO2021177153A1
WO2021177153A1 PCT/JP2021/007278 JP2021007278W WO2021177153A1 WO 2021177153 A1 WO2021177153 A1 WO 2021177153A1 JP 2021007278 W JP2021007278 W JP 2021007278W WO 2021177153 A1 WO2021177153 A1 WO 2021177153A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
scintillator
less
raw material
tag
Prior art date
Application number
PCT/JP2021/007278
Other languages
English (en)
French (fr)
Inventor
健太 村上
健之 柳田
範明 河口
大介 中内
雅紀 赤塚
宏之 福嶋
Original Assignee
京セラ株式会社
国立大学法人 奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 国立大学法人 奈良先端科学技術大学院大学 filed Critical 京セラ株式会社
Priority to JP2022505168A priority Critical patent/JP7478399B2/ja
Publication of WO2021177153A1 publication Critical patent/WO2021177153A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Definitions

  • the present disclosure relates to a scintillator used for radiation measurement and a method for producing a single crystal for the scintillator.
  • a scintillator is a substance that emits light when irradiated with radiation such as X-rays and ⁇ -rays, and is used to measure radiation in combination with a photodetector.
  • the main characteristics of the scintillator are the amount of light emitted and the time constant of scintillation attenuation.
  • CT computed tomography
  • PET positron emission tomography
  • the amount of light emitted is high and the scintillation attenuation time constant is high in order to improve image quality, reduce the exposure of the subject, and shorten the examination time.
  • a short scintillator is required.
  • TAG terbium aluminum garnet
  • TAG terbium aluminum gallium garnet
  • FZ floating zone
  • the scintillator of the present disclosure includes a TAG (terbium aluminum garnet) -based single crystal to which Ce is added.
  • the single crystal does not substantially contain Ga, and the ratio of the number of atoms of the constituent elements (Ce, Tb, RE (RE is a constituent element of Tb sites other than Tb and Ce)) Ce / (Tb + Ce + RE) is 0.4%. More than 0.7% or less.
  • the scintillator of the present disclosure includes a TAGG (terbium, aluminum, gallium, garnet) -based single crystal to which Ce is added. Ratio of atomic numbers of single crystal constituent elements (Ce, Tb, RE (RE is a constituent element of Tb site other than Tb and Ce), Al and Ga) Ga / (Ga + Al) is 1% or more and 6% or less, Ce / (Tb + Ce + RE) is 0.3% or more and 1.4% or less.
  • TAGG terbium, aluminum, gallium, garnet
  • a TAG (terbium, aluminum, garnet) -based single crystal to which Ce is added is used as an element (Ce, Tb, RE (RE is Tb site other than Tb and Ce) in the raw material. It is produced using an oxide raw material that does not substantially contain Ga in which the ratio Ce / (Tb + Ce + RE) of the number of atoms of the constituent element)) is 1.5% or more and 2.5% or less.
  • a TAGG terbium, aluminum, gallium, garnet
  • a TAGG terbium, aluminum, gallium, garnet
  • Ce element
  • Site constituent elements Al and Ga
  • Al and Ga Al and Ga
  • atomic number ratio Ga / (Ga + Al) is 2% or more and 10% or less
  • Ce / (Tb + Ce + RE) is 1% or more and 5% or less.
  • a scintillator is a substance that emits light when irradiated with radiation such as X-rays and ⁇ -rays, and is used in combination with a photodetector to measure radiation.
  • the scintillator according to the embodiment of the present disclosure includes a TAG (terbium aluminum garnet) -based single crystal to which Ce is added.
  • the TAG-based single crystal has a garnet-structured crystal structure, has Tb, Al, and O (oxygen) as main component elements, and substantially does not contain Ga.
  • the TAG-based single crystal contains one or more elements that can be solid-solved in the crystal as subcomponent elements, for example, an element RE that can be solid-solved by substituting Tb.
  • the element RE is a constituent element of Tb sites other than Tb and Ce, and examples thereof include rare earth elements such as Y, Gd, and Lu.
  • the ratio of the number of atoms of the constituent elements (Ce, Tb and RE) of the single crystal Ce / (Tb + Ce + RE) is 0.4% or more and 0.7% or less.
  • RE may not be contained in the crystal, or may be contained in two or more kinds. When two or more kinds of RE are contained, the number of atoms of RE is the total number of atoms corresponding to RE.
  • the scintillator of another embodiment of the present disclosure includes a TAGG (terbium, aluminum, gallium, garnet) -based single crystal to which Ce is added.
  • the TAGG-based single crystal has a crystal structure having a garnet structure and has Tb, Al, Ga and O (oxygen) as main component elements.
  • the TAGG-based single crystal contains at least one element that can be solid-solved in the crystal as a subcomponent element, for example, an element RE that can be solid-solved by substituting with Tb.
  • the element RE is a constituent element of Tb sites other than Tb and Ce, and examples thereof include rare earth elements such as Y, Gd, and Lu.
  • the ratio of the number of atoms of the constituent elements (Ce, Tb, RE, Al and Ga) of the single crystal is 1% or more and 6% or less for Ga / (Ga + Al) and 0.3% or more and 1.4% for Ce / (Tb + Ce + RE). % Or less.
  • RE may not be contained in the crystal, or may be contained in two or more kinds. When two or more kinds of RE are contained, the number of atoms of RE is the total number of atoms corresponding to RE.
  • the TAG-based crystal and the TAG-based crystal may contain at least one co-added element other than Ce.
  • co-added elements include Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Zr, Hf, Nb, Ta, Mo, W, Zn, Cd, B, In. , C, Si, Ge, Te and the like.
  • the main characteristics of the scintillator are the amount of light emitted and the time constant of scintillation attenuation.
  • scintillators used for medical image diagnosis such as CT (computed tomography) and PET (positron emission tomography) have a high amount of light emission in order to improve image quality, reduce the exposure of the subject, and shorten the examination time.
  • a scintillator with a short scintillation decay time constant is required.
  • the amount of light emitted from the scintillator represents the number of photons generated from the scintillator per unit energy of the irradiated radiation. Photons / MeV can be used as the unit of issuance amount.
  • the amount of luminescence can be measured by evaluating the luminescence from a scintillator irradiated with radiation by a single photon counting method.
  • the amount of light emitted indicates the amount of light emitted measured by irradiating the scintillator with gamma rays of about 662 keV from a 137 Cs radiation source.
  • the scintillation decay time constant is obtained from the fluorescence decay curve (scintillation decay curve) of the scintillator during irradiation.
  • the emission intensity of a scintillator is generally exponentially attenuated.
  • the scintillation attenuation curve can be measured by, for example, Time-Correlated Single Photon Counting (TCSPC) using pulsed X-rays as an excitation source.
  • TCSPC Time-Correlated Single Photon Counting
  • the scintillation attenuation curve can be approximated by a single component exponential function or the sum of multiple component exponential functions. The following formula can be used as an approximate formula.
  • Y (t) ⁇ ⁇ A i exp ( ⁇ t / ⁇ i ) ⁇ + C ⁇ ⁇ ⁇ Equation [1]
  • Y (t) represents the emission intensity of the scintillator at time t.
  • i is a positive integer indicating 1, 2, 3, ..., I is 1 in the case of a single-component exponential function, and i is 2 in the case of a two-component exponential function.
  • is a mathematical symbol and means to calculate the sum of the functions in parentheses when i changes from 1 to n (the number of components).
  • a i is a value related to the ratio of the function of the i component to the entire attenuation curve, and C is a constant.
  • ⁇ i becomes the scintillation attenuation time constant of the i component.
  • the scintillation attenuation time constant in the present invention is the start of attenuation of the emission intensity corresponding to the instrument response function (IRF) from the scintillation attenuation curve obtained by the time-correlated single photon counting method using pulsed X-rays.
  • IRF instrument response function
  • the portion excluding the component within 3 nanoseconds is approximated by two components, and among the two scintillation attenuation time constants of the obtained fast component and slow component, the scintillation decay time constant of the fast component is shown.
  • the scintillator crystal of the present disclosure consists of a single crystal.
  • the single crystal can be produced by a method such as an FZ (floating zone) method or a CZ (Czochralski) method.
  • FZ floating zone
  • CZ Czochralski
  • a single crystal is produced using the FZ method.
  • a raw material is formed into a rod shape, hung in the vertical direction and held, and a part thereof is heated and melted to form a melted portion.
  • This is a method for producing a single crystal by precipitating a single crystal from the melt by moving the melt portion in one direction.
  • a TAGG (terbium, aluminum, gallium, garnet) -based single crystal to which Ce is added has an element ratio Ga / (Ga + Al) of 2% in the raw material. It is produced using an oxide raw material having a Ce / (Tb + Ce + RE) of 1% or more and 5% or less.
  • Oxides of Ce, Tb, Al and Ga as primary raw materials eg, CeO 2 , Tb 4 O 7 , Al 2 O 3 and Ga 2 O 3
  • oxides of subcomponent elements oxidation of co-added elements
  • a single crystal may be produced from a secondary raw material containing a TAG-based polycrystal or a TAGG-based polycrystal obtained by mixing and firing each element in a desired ratio.
  • the raw material may contain an oxide of a constituent element (for example, a rare earth element such as Y, Gd, Lu) that can be solid-solved by substituting with Tb in the crystal.
  • oxides of co-added elements other than Ce may be contained.
  • the ratio Ce / (Tb + Ce + RE) of each element in the TAG crystal is 0.4% or more and 0.7% or less, particularly preferably 0.6% or more and 0.7% or less, the amount of light emitted is high and scintillation. It is a scintillator with a short decay time constant.
  • the ratio Ga / (Ga + Al) of each element in the TAGG-based crystal is 1% or more and 6% or less, particularly preferably 1% or more and 3% or less, and Ce / (Tb + Ce + RE) is 0.3% or more and 1.4% or less. Particularly preferably, when it is 0.4% or more and 0.8% or less, the amount of light emitted is high and the scintillator has a short scintillation decay time constant.
  • the scintillator according to the present disclosure can be used as a gamma ray detector in combination with an arbitrary light receiving element such as a silicon photodiode. That is, by converting the light emitted from the scintillator into an electric signal by the light receiving element, the presence / absence and amount of gamma rays can be captured as an electric signal.
  • an arbitrary light receiving element such as a silicon photodiode. That is, by converting the light emitted from the scintillator into an electric signal by the light receiving element, the presence / absence and amount of gamma rays can be captured as an electric signal.
  • the scintillator according to the present disclosure can be processed into a shape suitable for combination with a light receiving element and used.
  • a known cutting machine such as a blade saw or wire saw, a grinding machine, or a polishing machine can be used without any limitation.
  • the shape is not particularly limited. It is desirable that the light emitting surface has a light emitting surface facing the light receiving element and the light emitting surface is flat, and optical polishing may be performed. By having the light emitting surface, the light generated from the scintillator can be efficiently incident on the light receiving element.
  • the shape of the light emitting surface is not limited, and a shape suitable for the application, such as a quadrangle having a side length of several mm to several hundred mm square or a circular shape having a diameter of several mm to several hundred mm, should be appropriately selected and used. Can be done. It is preferable that the size of the light receiving surface of the silicon photodiode is smaller than the size of the light receiving surface because the amount of light emitted without reaching the light receiving surface is reduced.
  • a light reflecting film made of aluminum, barium sulfate, polytetrafluoroethylene, or the like on a surface that does not face the light receiving element, it is possible to prevent the dissipation of light generated by the scintillator.
  • any one can be used as the light receiving element.
  • a Geiger mode APD active photodiode
  • MPPC Multi-Pixel Photon Counter
  • SiPM Si-Photo-Multiplier
  • the scintillator of the present disclosure can be used as a gamma ray detector by bonding to the light receiving surface of the light receiving element with an arbitrary optical adhesive or engineering grease.
  • the light receiving element to which the scintillator is adhered may be covered with a light-shielding material of any material that does not allow light to pass through, for the purpose of preventing light from entering the environment.
  • the light receiving element can be used with high sensitivity by applying a voltage, and the detection of gamma rays can be confirmed by observing the output electrical signal.
  • the electric signal output from the light receiving element may be input to a preamplifier, a waveform shaping amplifier, a pulse height analyzer, or the like and measured by a single photon counting method. It is also possible to connect to an arbitrary current measuring device (for example, a picoammeter) to check the change in the current value, and confirm the change in the amount of received light by the change in the current value.
  • Condition 5 is a TAGG single crystal described in Non-Patent Document 1
  • condition 14 is a commercially available Ce-doped LYSO (lutetium yttrium silicate) single crystal.
  • the single crystal for scintillator was prepared by the FZ method according to the following procedure.
  • the raw material powders having the compositions shown in Table 1 were mixed in a mortar, formed into a rod shape, and pressed by a hydrostatic press at a pressure of 20 kN for 10 minutes.
  • a raw material rod was obtained by sintering in an electric furnace at 1400 ° C. for 8 hours.
  • the raw material rod was single crystallized by an FZ method tabletop single crystal growing apparatus (manufactured by Canon Machinery, Desktop IR Furnace) equipped with a heating mechanism using a halogen lamp.
  • the raw material rod was melted while being confirmed by a camera image, and single crystal growth was carried out while setting the lamp output to such that the solid solution interface could be confirmed.
  • the rotation speed of the raw material rod was 3 rpm, and the pulling speed was 3 mm / h.
  • the obtained single crystal rod was cut and polished, and processed into a thin plate having a thickness of 2 mm to prepare a sample for evaluation.
  • Table 1 shows the amount of light emitted from each single crystal, the scintillation decay time constant, the results of analysis of the crystal composition under condition 8 by ICP-OES (IPC emission spectrometry), and the crystal composition under each condition predicted from it.
  • ICP-OES IPC emission spectrometry
  • a commercially available Ce-doped LYSO single crystal condition 14 was also measured.
  • the amount of luminescence was measured by a single photon counting method.
  • the prototype evaluation sample was adhered to the optical window of a photomultiplier tube (R7600U-200, manufactured by Hamamatsu Photonics) using optical grease (TSK5353, manufactured by Applied Koken).
  • the sample was irradiated with gamma rays from a 137 Cs radiation source to emit light.
  • the signal from the photomultiplier tube is amplified and shaped by a preamplifier (ORTEC, Model 113 Scintillation Preamplifier) and waveform shaping amplifier (ORTEC, Model 570 Spectroscopy Amplifier), and passed through a multi-channel analyzer (AMPTEK, Pocket MCA8000A).
  • AMPTEK Pocket MCA8000A
  • a pulse wave height spectrum was obtained.
  • the amount of light emitted was measured by comparing the peak position of the photoelectric absorption peak observed in the obtained pulse wave height spectrum with the peak position of the photoelectric absorption peak of the T
  • the scintillation decay time constant approximates the scintillation decay curve obtained by a time-correlated single photon counting method device (Hamamatsu Photonics, Non-Patent Document 2) using pulsed X-ray as an excitation source to the exponential function of Eq. [1]. I got it.
  • the scintillation attenuation time constant obtained here is divided into two components in the approximation to the exponential function, excluding the component within 3 nanoseconds from the start of attenuation of the emission intensity corresponding to the device response function from the scintillation attenuation curve. Of the two scintillation decay time constants of the fast component and the slow component obtained by approximation, it refers to the scintillation decay time constant of the fast component.
  • FIG. 1 shows the amount of light emitted from each single crystal and the scintillation attenuation time constant.
  • Conditions 2 to 4 and 6 to 13 have a scintillation attenuation time constant and a light emission amount as compared with the single crystal of condition 1 and the known comparative examples of condition 5 (Non-Patent Document 1) and condition 14 (commercially available LYSO single crystal). It turns out that at least one of the above is superior.
  • conditions 2 to 4, 8 to 10 and 12 have a high emission amount (50,000 or more), and conditions 7 to 12 have a small scintillation attenuation time constant (29 or less). Therefore, it can be seen that the conditions 8 to 10 and 12 are particularly excellent in both the scintillation attenuation time constant and the amount of light emitted.
  • the gamma ray detector of the present disclosure was prototyped by combining the single crystal for scintillator of condition 9 in Table 1 and the silicon light receiving element.
  • the silicon light receiving element an MPPC (manufactured by Hamamatsu Photonics, S13360-6075CS) composed of a plurality of Geiger mode APDs was used.
  • the polished surface of the single crystal for scintillator of condition 9 is adhered to the light receiving surface of MPPC using optical grease (Applied Optical Research Institute, TSK5353), and the surface not facing the light receiving surface is covered with a light reflecting film made of polytetrafluoroethylene. Therefore, it was used as a detection unit.
  • the MPPC of the detection unit was connected to a commercially available circuit system (manufactured by ANSEN) capable of applying voltage and reading signals, and shielded the whole from light.
  • the MPPC gain fluctuates with changes in temperature.
  • the circuit system has a function of controlling the gain to be constant by slightly changing the voltage applied to the MPPC in response to a temperature change near room temperature.
  • the signal lines from the circuit system are connected in the order of a preamplifier (ORTEC, Model 113 Scintillation Preamplifier), a waveform shaping amplifier (ORTEC, Model 570 Spectroscopy Amplifier), and a multi-channel analyzer (AMPTEK, Pocket MCA8000A).
  • ORTEC Model 113 Scintillation Preamplifier
  • ORTEC Model 570 Spectroscopy Amplifier
  • AMPTEK Pocket MCA8000A

Abstract

本開示のシンチレータは、Ceを添加したTAG(テルビウム・アルミニウム・ガーネット)系単結晶を含み、単結晶はGaを実質的に含まず、構成元素(Ce、TbおよびRE(REはTbおよびCe以外のTbサイトの構成元素))の原子数の比率Ce/(Tb+Ce+RE)が0.4%以上0.7%以下である。

Description

シンチレータおよびシンチレータ用単結晶の製造方法
 本開示は、放射線の計測に使用されるシンチレータおよびシンチレータ用単結晶の製造方法に関する。
 シンチレータは、X線やγ線などの放射線を照射すると発光する物質のことであり、光検出器と組み合わせて、放射線の計測に使用される。シンチレータの主要な特性として、発光量とシンチレーション減衰時定数がある。特に、CT(computed tomography)、PET(positron emission tomography)などの医用画像診断用途には、画質の向上、被験者の被ばく量低減、検査時間の短縮のため、発光量が高くてシンチレーション減衰時定数が短いシンチレータが求められる。
 シンチレータ用材料の候補として、ガーネット系材料が着目されている。非特許文献1では、FZ(フローティングゾーン)法により、Ceを添加したTAG(テルビウム・アルミニウム・ガーネット)とTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)とを作製し、特性を評価している。
D.Nakauchi,G.Okada,N.Kawano,N.Kawaguchi,T.Yanagida,Effects of Ga substitution in Ce:Tb3GaxAl5-xO12single crystals for scintillator applications,Jpn. J. Appl. Phys. 57,02CB02 (2018). T.Yanagida,Y.Fujimoto,T.Ito,K.Uchiyama,K.Mori,Development of X-ray induced afterglow characterization system, Appl. Phys. Exp. 7, 062401 (2014).
 本開示のシンチレータは、Ceを添加したTAG(テルビウム・アルミニウム・ガーネット)系単結晶を含む。単結晶は、Gaを実質的に含まず、構成元素(Ce、Tb、RE(REはTbおよびCe以外のTbサイトの構成元素))の原子数の比率Ce/(Tb+Ce+RE)が0.4%以上0.7%以下である。
 本開示のシンチレータは、Ceを添加したTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)系単結晶を含む。単結晶の構成元素(Ce、Tb、RE(REはTbおよびCe以外のTbサイトの構成元素)、AlおよびGa)の原子数の比率Ga/(Ga+Al)は1%以上6%以下、Ce/(Tb+Ce+RE)は0.3%以上1.4%以下である。
 本開示のシンチレータ用単結晶の製造方法は、Ceを添加したTAG(テルビウム・アルミニウム・ガーネット)系単結晶を、原料中の元素(Ce、Tb、RE(REはTbおよびCe以外のTbサイトの構成元素))の原子数の比率Ce/(Tb+Ce+RE)が1.5%以上2.5%以下であるGaを実質的に含まない酸化物原料を用いて製造する。
 本開示のシンチレータ用単結晶の製造方法は、Ceを添加したTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)系単結晶を、原料中の元素(Ce、Tb、RE(REはTbおよびCe以外のTbサイトの構成元素)、AlおよびGa)、AlおよびGa)の原子数の比率Ga/(Ga+Al)が2%以上10%以下、Ce/(Tb+Ce+RE)が1%以上5%以下である酸化物原料を用いて製造する。
本開示に係るシンチレータ用単結晶の発光量とシンチレーション減衰時定数とを示すグラフである。 パルス波高スペクトルの例を示すグラフである。
 以下、本開示に係るシンチレータについて説明する。シンチレータとは、X線やγ線などの放射線を照射すると発光する物質のことであり、光検出器と組み合わせて、放射線の計測に使用される。
 本開示の一実施形態に係るシンチレータは、Ceを添加したTAG(テルビウム・アルミニウム・ガーネット)系単結晶を含む。TAG系単結晶はガーネット構造の結晶構造を有し、主成分元素としてTb、AlおよびO(酸素)を有しており、Gaを実質的に含まない。TAG系単結晶は、副成分元素として結晶中に固溶可能な元素を1種以上、例えば、Tbと置換固溶可能な元素REを含む。元素REは、TbおよびCe以外のTbサイトの構成元素であり、例えば、Y、Gd、Luなどの希土類元素が挙げられる。単結晶の構成元素(Ce、TbおよびRE)の原子数の比率Ce/(Tb+Ce+RE)は、0.4%以上0.7%以下である。REは、結晶中に含有されていなくてもよいし、2種以上含有されていてもよい。REが2種以上含有されている場合、REの原子数は、REに該当する原子の総数となる。
 本開示の他の実施形態のシンチレータは、Ceを添加したTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)系単結晶を含む。TAGG系単結晶は、ガーネット構造の結晶構造を有し、主成分元素として、Tb、Al、GaおよびO(酸素)を有する。TAGG系単結晶は、副成分元素として、結晶中に固溶可能な元素を1種以上、例えば、Tbと置換固溶可能な元素REを含む。元素REは、TbおよびCe以外のTbサイトの構成元素であり、例えば、Y、Gd、Luなどの希土類元素が挙げられる。単結晶の構成元素(Ce、Tb、RE、AlおよびGa)の原子数の比率が、Ga/(Ga+Al)が1%以上6%以下、Ce/(Tb+Ce+RE)が0.3%以上1.4%以下である。REは、結晶中に含有されていなくてもよいし、2種以上含有されていてもよい。REが2種以上含有されている場合、REの原子数は、REに該当する原子の総数となる。
 TAG系結晶およびTAGG系結晶は、Ce以外の共添加元素を少なくとも1種含んでいてもよい。このような共添加元素としては、例えば、Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Zr、Hf、Nb、Ta、Mo、W、Zn、Cd、B、In、C、Si、Ge、Teなどが挙げられる。
 シンチレータの主要な特性として、発光量とシンチレーション減衰時定数がある。特に、CT(computed tomography)、PET(positron emission tomography)などの医用画像診断用途に使用されるシンチレータには、画質の向上、被験者の被ばく量低減、および検査時間の短縮のため、発光量が高く、シンチレーション減衰時定数の短いシンチレータが求められる。
 シンチレータの発光量(Light Yield)とは、照射した放射線の単位エネルギーあたりにシンチレータから生じる光子数のことを表す。発行量の単位としては、photons/MeVを用いることができる。発光量は、放射線を照射したシンチレータからの発光を単一光子計数法によって評価することで測定できる。一実施形態に係るシンチレータにおいて、発光量は、137Cs線源からの約662keVのガンマ線をシンチレータに照射して測定した発光量のことを示す。
 シンチレーション減衰時定数は、放射照射時のシンチレータの蛍光減衰曲線(シンチレーション減衰曲線)から得られる。シンチレータの発光強度は、一般に指数関数的に減衰する。シンチレーション減衰曲線は、例えば励起源としてパルスX線を用いた時間相関単一光子計数法(Time-Correlated Single Photon Counting、TCSPC)によって測定することができる。シンチレーション減衰曲線は単一成分の指数関数、または複数成分の指数関数の和で近似することができる。近似式として下記の式を用いることができる。
  Y(t)=Σ{Aexp(-t/τ)}+C   ・・・式[1]
 式中、Y(t)は時間tにおけるシンチレータの発光強度を表す。iは正の整数で1、2、3・・・を示し、単一成分の指数関数の場合にiは1に、2成分の指数関数の場合にiは2になる。Σは数学記号で、iが1からn(成分の数)になる時の括弧内の関数の和を計算することを意味する。Aは減衰曲線全体に対するi成分目の関数の占める割合に関係する値で、Cは定数を示す。τがi成分目のシンチレーション減衰時定数になる。
 本発明におけるシンチレーション減衰時定数は、パルスX線を用いた時間相関単一光子計数法によって得られたシンチレーション減衰曲線から、装置応答関数(Instrument Response Function、IRF)に相当する発光強度の減衰の開始から3ナノ秒以内の成分を除いた部分について、2成分で近似し、得られた早い成分および遅い成分の2つのシンチレーション減衰時定数の内、早い成分のシンチレーション減衰時定数のことを示す。
 本開示のシンチレータ用結晶は単結晶からなる。単結晶は、FZ(フローティングゾーン)法、CZ(チョクラルスキ)法などの方法で製造できる。本開示では、FZ法を用いて単結晶を製造した。FZ法は、原材料を棒状に成形し、鉛直方向にぶら下げて保持し、その一部を加熱溶融させて融液部を形成する。融液部を一方向に移動させることにより融液から単結晶を析出させることで単結晶を製造する方法である。
 本開示の一実施形態のシンチレータ用単結晶の製造方法は、Gaが実質的に含まれないCeを添加したTAG(テルビウム・アルミニウム・ガーネット)系単結晶を、原料中の元素の比率Ce/(Tb+Ce+RE)が1.5%以上2.5%以下であるGaを実質的に含まない酸化物原料を用いて製造する。
 本開示の他の実施形態のシンチレータ用単結晶の製造方法は、Ceを添加したTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)系単結晶を、原料中の元素の比率Ga/(Ga+Al)が2%以上10%以下、Ce/(Tb+Ce+RE)が1%以上5%以下である酸化物原料を用いて製造する。
 1次原料としてCe、Tb、AlおよびGaの酸化物(例えば、CeO、Tb、Al、およびGa)、ならびに副成分元素の酸化物、共添加元素の酸化物を使用する。各元素が所望の比率となるように混合および焼成して得られたTAG系多結晶またはTAGG系多結晶を含む2次原料を原料として、単結晶を製造してもよい。原料中に、結晶中でTbと置換固溶可能な構成元素(例えばY、Gd、Luなどの希土類元素)の酸化物を含んでいてもよい。さらに、Ce以外の共添加元素の酸化物を含んでいてもよい。
 上記構成により、発光量が高く、シンチレーション減衰時定数の短いシンチレータを提供することができる。すなわち、TAG系結晶中の各元素の比率Ce/(Tb+Ce+RE)が0.4%以上0.7%以下、特に好ましくは0.6%以上0.7%以下であれば発光量が高く、シンチレーション減衰時定数の短いシンチレータとなる。TAGG系結晶中の各元素の比率Ga/(Ga+Al)が1%以上6%以下、特に好ましくは1%以上3%以下で、Ce/(Tb+Ce+RE)が0.3%以上1.4%以下、特に好ましくは0.4%以上0.8%以下であれば発光量が高く、シンチレーション減衰時定数の短いシンチレータとなる。
 本開示に係るシンチレータはシリコンフォトダイオードなどの任意の受光素子と組み合わせてガンマ線検出器とすることができる。すなわち、シンチレータから発せられた光を、受光素子によって電気信号に変換することによって、ガンマ線の有無および量を電気信号として捉えることができる。
 本開示に係るシンチレータは、受光素子との組み合わせに適した形状に加工して用いることができる。加工に際しては、公知のブレードソー、ワイヤーソーなどの切断機、研削機、あるいは研磨盤を何ら制限無く用いる事ができる。形状は特に制限されない。受光素子に対向する光出射面を有し、当該光出射面は平坦であることが望ましく、光学研磨が施してもよい。光出射面を有することによって、シンチレータから生じた光を効率よく受光素子に入射できる。
 光出射面の形状は限定されず、一辺の長さが数mm~数百mm角の四角形、あるいは直径が数mm~数百mmの円形など、用途に応じた形状を適宜選択して用いることができる。シリコンフォトダイオードの受光面の大きさよりも小さい方が、受光面に届かずに散逸する発光が少なくなるため好ましい。受光素子に対向しない面に、アルミニウム、硫酸バリウム、ポリテトラフルオロエチレンなどからなる光反射膜を施すことにより、シンチレータで生じた光の散逸を防止することができる。
 受光素子には任意のものを用いることができる。大きな利得が実現できるガイガーモードAPD(アバランシェ・フォトダイオード)を用いることで高感度にシンチレータの光を受光できる。一例を挙げると浜松ホトニクス社製MPPC(Multi-Pixel Photon Counter)を用いることができる。MPPCはSiPM(Si-Photo-Multiplier)とも呼ばれる素子で、ガイガーモードAPDをマルチピクセル化したものである。
 本開示のシンチレータは受光素子の受光面に任意の光学接着剤や工学グリースで接合して、ガンマ線検出器として用いることができる。シンチレータを接着した受光素子は、環境中の光の入射を防ぐ目的で、光を通しにくい任意の材質の遮光材で覆ってもよい。
 受光素子は、電圧を印加することで高感度に用いることができ、出力される電気信号を観測することで、ガンマ線の検出を確認できる。受光素子から出力される電気信号は、前置増幅器、波形成形増幅器、多重波高分析器等に入力し、単一光子計数法によって測定してもよい。任意の電流測定器(例えばピコアンメーター)に接続して電流値の変化を調べ、受光量の変化を電流値の変化によって確認することもできる。
 以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
 条件1~条件13のシンチレータ用単結晶を表1に示す原料組成で、FZ法により作製した。このうち、条件1、5、14は比較例である。条件5は、非特許文献1に記載のTAGG単結晶で、条件14は市販のCeドープLYSO(ルテチウム・イットリウム・シリケート)単結晶である。
Figure JPOXMLDOC01-appb-T000001
 FZ法によるシンチレータ用単結晶の作製は次の手順で行った。表1に示す組成の原料粉末を乳鉢で混合後、棒状に成形して静水圧プレスにより、20kNの圧力で10分間加圧した。次に電気炉により、1400℃、8時間の条件で焼結して原料棒を得た。原料棒は、ハロゲンランプによる加熱機構を備えたFZ法卓上型単結晶育成装置(キヤノンマシナリー製、Desktop IR Furnace)により単結晶化した。原料棒をカメラ画像で確認しながら溶融し、固溶界面が確認できる程度のランプ出力に設定しながら単結晶育成を行った。その際の原料棒の回転数は3rpm、引き下げ速度は3mm/hとした。得られた単結晶棒は、切断、研磨し、厚み2mm薄板状に加工し、評価用サンプルとした。
 各単結晶の発光量とシンチレーション減衰時定数、ICP-OES(IPC発光分析)による、条件8の結晶組成の分析結果、およびそれから予測される各条件の結晶組成を表1に記載した。比較例として、市販のCeドープLYSO単結晶(条件14)の測定も行った。
 発光量は単一光子計数法により測定した。試作した評価用サンプルは、光電子増倍管(浜松ホトニクス製、R7600U-200)の光学窓に、光学グリース(応用光研製、TSK5353)を用いて接着した。サンプルに137Cs線源によるガンマ線を照射して発光させた。光電子増倍管からの信号は、前置増幅器(ORTEC製、Model 113 Scintillation Preamplifier)、波形整形増幅器(ORTEC製、Model 570 Spectroscopy Amplifier)によって増幅整形し、マルチチャネルアナライザ(AMPTEK製、Pocket MCA8000A)を通してパルス波高スペクトルを得た。得られたパルス波高スペクトルにおいて観察された光電吸収ピークのピーク位置を、条件5のTAG単結晶の光電吸収ピークのピーク位置と比較することで、発光量を測定した。
 基準として用いた条件5のTAG単結晶の発光量は、20℃に保持したシリコンAPDを用いたパルス波高スペクトル測定によって得られた光電吸収ピークを、59Fe線源によるガンマ線を同シリコンAPDで直接検出して得られたピークと比較する方法により算出した。Si中で1個の電子正孔対を作るのに必要な光子のエネルギーは3.6eVであることから、55Fe線源からの5.9keVのガンマ線を照射すると、5900/3.6=1640個の電子正孔対が生成する。この直接検出ピークの値との比較により、発生した電子正孔対の数を求め、用いたシリコンAPDの波長感度特性から発光量を測定した。
 シンチレーション減衰時定数は、励起源としてパルスX線を用いた時間相関単一光子計数法装置(浜松フォトニクス、非特許文献2)により得られたシンチレーション減衰曲線を式[1]の指数関数に近似することで得られた。ここで得られたシンチレーション減衰時定数は、指数関数への近似において、シンチレーション減衰曲線から装置応答関数に相当する発光強度の減衰の開始から3ナノ秒以内の成分を除いた部分について、2成分で近似して得られた早い成分及び遅い成分の2つのシンチレーション減衰時定数の内、早い成分のシンチレーション減衰時定数のことを指す。
 図1に、各単結晶の発光量とシンチレーション減衰時定数とを示す。条件2~4、6~13は、条件1の単結晶および公知の比較例である条件5(非特許文献1)および条件14(市販のLYSO単結晶)よりも、シンチレーション減衰時定数および発光量の少なくともいずれかが優れていることがわかる。特に、条件2~4、8~10および12は、発光量が高く(50000以上)、条件7~12はシンチレーション減衰時定数が小さい(29以下)。したがって、条件8~10および12はシンチレーション減衰時定数および発光量ともに特に優れていることがわかる。
 次に、本開示のガンマ線検出器の実施例について説明する。
 表1の条件9のシンチレータ用単結晶とシリコン受光素子を組み合わせることとで本開示のガンマ線検出器を試作した。シリコン受光素子には、複数のガイガーモードAPDで構成されるMPPC(浜松ホトニクス製、S13360-6075CS)を用いた。条件9のシンチレータ用単結晶の研磨面を、MPPCの受光面に光学グリース(応用光研、TSK5353)を用いて接着し、受光面に対向しない面をポリテトラフルオロエチレンからなる光反射膜で覆うことで、検出部とした。
 検出部のMPPCは、電圧印加、信号読み出しが可能な市販の回路系(ANSeeN製)に接続し、全体を遮光した。MPPCのゲイン(電圧利得)は温度変化によって変動する。当該回路系は室温付近における温度変化に対し、MPPCへの印加電圧をわずかに変化させることで、ゲインが一定になるように制御する機能を有している。当該回路系からの信号線は、前置増幅器(ORTEC製、Model 113 Scintillation Preamplifier)、波形整形増幅器(ORTEC製、Model 570 Spectroscopy Amplifier)、マルチチャネルアナライザ(AMPTEK製、Pocket MCA8000A)の順で接続し、本開示のガンマ線検出器の実施例とした。
 作製したガンマ線検出器に、約53Vの電圧を印加しながら、137Cs線源による662keVのエネルギーを有するガンマ線および241Amからの59.5keVのエネルギーを有するガンマ線を照射し、得られた信号からそれぞれ波高分布スペクトルを作成した。その際、高強度の信号が波高分布スペクトルの描画範囲に収まるように、波形整形増幅器の増幅率を適宜調整した。その結果、得られた波高分布スペクトルから、それぞれ明瞭な光電吸収ピークが確認できた。いずれのエネルギーのガンマ線の場合も、ピーク面積が照射時間(照射線量)に比例して増加することが確認できた。これらのことから本開示のガンマ線検出器が、662keVといった比較的高いエネルギーおよび59.5keVといった比較的低いエネルギーのガンマ線の計測に、好適に使用できることがわかる。

Claims (8)

  1.  Ceを添加したTAG(テルビウム・アルミニウム・ガーネット)系単結晶を含み、該単結晶はGaを実質的に含まず、構成元素(Ce、TbおよびRE(REはTbおよびCe以外のTbサイトの構成元素))の原子数の比率Ce/(Tb+Ce+RE)が0.4%以上0.7%以下である、シンチレータ。
  2.  Ceを添加したTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)系単結晶を含み、該単結晶の構成元素(Ce、Tb、RE(REはTbおよびCe以外のTbサイトの構成元素)、AlおよびGa)の原子数の比率Ga/(Ga+Al)が1%以上6%以下、Ce/(Tb+Ce+RE)が0.3%以上1.4%以下である、シンチレータ。
  3.  Ga/(Ga+Al)が1%以上3%以下、Ce/(Tb+Ce+RE)が0.4%以上0.8%以下である、請求項2に記載のシンチレータ。
  4.  請求項1から3のいずれかに記載のシンチレータと受光素子を組み合わせたガンマ線検出器。
  5.  前記受光素子が、ガイガーモードAPDである、請求項4に記載のガンマ線検出器。
  6.  Gaが実質的に含まれないCeを添加したTAG(テルビウム・アルミニウム・ガーネット)系単結晶を、原料中の元素(Ce、TbおよびRE(REはTbおよびCe以外のTbサイトの構成元素))の原子数の比率Ce/(Tb+Ce+RE)が1.5%以上2.5%以下であるGaを実質的に含まない酸化物原料を用いて製造する、シンチレータ用単結晶の製造方法。
  7.  Ceを添加したTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)系単結晶を、原料中の元素(Ce、Tb、RE(REはTbおよびCe以外のTbサイトの構成元素)、AlおよびGa)の原子数の比率Ga/(Ga+Al)が2%以上10%以下、Ce/(Tb+Ce+RE)が1%以上5%以下である酸化物原料を用いて製造する、シンチレータ用単結晶の製造方法。
  8.  FZ法により前記TAG系単結晶または前記TAGG系単結晶を製造する、請求項6または7に記載のシンチレータ用単結晶の製造方法。
PCT/JP2021/007278 2020-03-05 2021-02-26 シンチレータおよびシンチレータ用単結晶の製造方法 WO2021177153A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022505168A JP7478399B2 (ja) 2020-03-05 2021-02-26 シンチレータおよびシンチレータ用単結晶の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-037477 2020-03-05
JP2020037477 2020-03-05

Publications (1)

Publication Number Publication Date
WO2021177153A1 true WO2021177153A1 (ja) 2021-09-10

Family

ID=77613071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007278 WO2021177153A1 (ja) 2020-03-05 2021-02-26 シンチレータおよびシンチレータ用単結晶の製造方法

Country Status (2)

Country Link
JP (1) JP7478399B2 (ja)
WO (1) WO2021177153A1 (ja)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B1 JUN ET AL.: "Co-Precipitated Synthesis and Photoluminescence Properties of Ce3+ Activated Terbium Aluminum Garnet (Tbl-xCex)3AI5012 (0?x?0.05) Yellow Phosphors", KEY ENGINEERING MATERIALS, vol. 602, no. 603, 12 March 2014 (2014-03-12), pages 1028 - 1033 *
MENG QINGHUAN ET AL.: "Synthesis and luminescent properties of Tb3AI5012:Ce3+ phosphors for warm white light emitting diodes", JOURNAL OF MOLECULAR STRUCTURE, vol. 1151, no. 5, 14 September 2017 (2017-09-14), pages 112 - 116, XP085208513, DOI: 10.1016/j.molstruc.2017.09.037 *
NAKAUCHI DAISUKE ET AL.: "Effects of Ga substitution in Ce:Tb3GaxA15-x012 single crystals for scintillator applications", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 57, 1 December 2017 (2017-12-01), pages 1 - 5, XP055851977 *
ONISHI YUYA ET AL.: "Photoluminescence properties of Tb3A15012:Ce3+ garnet synthesized by the metal organic decomposition method", OPTICAL MATERIALS, vol. 64, 21 January 2017 (2017-01-21), pages 557 - 563, XP029918635, DOI: 10.1016/j.optmat.2017.01.024 *

Also Published As

Publication number Publication date
JPWO2021177153A1 (ja) 2021-09-10
JP7478399B2 (ja) 2024-05-07

Similar Documents

Publication Publication Date Title
RU2622124C2 (ru) Кристалл со структурой граната для сцинтиллятора и использующий его детектор излучения
JP6092732B2 (ja) 残光が少なく、高密度、高速のシンチレーター物質
Shah et al. LaBr/sub 3: Ce scintillators for gamma-ray spectroscopy
Lempicki et al. A new lutetia-based ceramic scintillator for X-ray imaging
Shah et al. CeBr/sub 3/scintillators for gamma-ray spectroscopy
RU2670919C2 (ru) Люминофор и детектор излучения
JP5674385B2 (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
RU2666445C1 (ru) Кристаллический материал, способ изготовления кристалла, детектор излучения, прибор неразрушющего контроля и прибор визуализации
JP2016531170A (ja) 三元金属ハロゲン化物シンチレータ
JP5548629B2 (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
JP6078223B2 (ja) シンチレータ用ガーネット型単結晶およびこれを用いる放射線検出器
Prusa et al. Tailoring and optimization of LuAG: Ce epitaxial film scintillation properties by Mg co-doping
JP5937287B1 (ja) 混合酸化物材料
Arai et al. Development of rare earth doped CaS phosphors for radiation detection
EP1279717B1 (en) Phosphor, radiation detector containing the same, and x-ray ct apparatus
JP2013043960A (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
JP6188024B2 (ja) 発光体及び放射線検出器
Chewpraditkul et al. Optical and scintillation properties of LuGd2Al2Ga3O12: Ce, Lu2GdAl2Ga3O12: Ce, and Lu2YAl2Ga3O12: Ce single crystals: A comparative study
JP6776671B2 (ja) 蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法
WO2021177153A1 (ja) シンチレータおよびシンチレータ用単結晶の製造方法
Litichevskyi et al. Scintillation panels based on zinc selenide and oxide scintillators
US11390803B2 (en) Scintillator and method for manufacturing the same
RU2328755C1 (ru) Способ получения прозрачной керамики и сцинтиллятор на основе этой керамики
JP2013040274A (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
Shah et al. LaBr/sub 3: Ce scintillators for gamma ray spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764259

Country of ref document: EP

Kind code of ref document: A1