WO2021175164A1 - 一种吊装系统的自动纠偏控制方法 - Google Patents
一种吊装系统的自动纠偏控制方法 Download PDFInfo
- Publication number
- WO2021175164A1 WO2021175164A1 PCT/CN2021/078136 CN2021078136W WO2021175164A1 WO 2021175164 A1 WO2021175164 A1 WO 2021175164A1 CN 2021078136 W CN2021078136 W CN 2021078136W WO 2021175164 A1 WO2021175164 A1 WO 2021175164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hoisting system
- lateral displacement
- angle
- center line
- advancing
- Prior art date
Links
- 238000012937 correction Methods 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000006073 displacement reaction Methods 0.000 claims abstract description 132
- 230000007423 decrease Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0214—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/08—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
- B66C13/085—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions electrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/18—Control systems or devices
- B66C13/22—Control systems or devices for electric drives
Definitions
- the invention relates to the transportation field of a hoisting system, in particular to an automatic deviation correction control method of a hoisting system.
- Port operations refer to operations such as dispatching ships entering and leaving the port, loading and unloading goods, and removing obstacles. Port operations are basically carried out with large mobile and fixed machinery such as trailers, forklifts, cranes and other hoisting systems as the main tools. Because the performance of the two inverters that drive the tires on both sides of the hoisting system cannot be exactly the same, coupled with the installation accuracy of large machinery and the problem of the flatness of the ground on the job site, it will be easy to deviate in the process of this kind of advancement, and it will be in line with the specified center line. The deviation of forward angle and lateral displacement is produced. Therefore, the correction of the hoisting system is particularly important in the operation.
- the hoisting system of the port and wharf operation relies on the speed difference of the tires on both sides of the body to correct deviation, and considering the safety of the rigid body structure of the hoisting system, the speed difference of the tires on both sides cannot be changed arbitrarily, and it is difficult to use the existing control algorithm to correct the deviation. .
- the technical problem to be solved by the present invention is to provide an automatic deviation correction control method of the hoisting system.
- the automatic deviation correction of the hoisting system can be realized, and the workload of the driver during operation can be effectively reduced.
- the technical solution adopted by the present invention to solve the above-mentioned technical problems is to provide an automatic correction control method of a hoisting system, which includes the following steps:
- the lateral displacement X generated by the deflection of the hoisting system and the advancing angle ⁇ , where the lateral displacement X is the distance between the real-time position of the hoisting system and the center line, and the advancing angle ⁇ is the The angle between the real-time position and the centerline;
- the hoisting system When the lateral displacement X is not 0, and the advancing included angle ⁇ is not 0, it is determined whether the lateral displacement X and the advancing included angle ⁇ meet a preset condition, if the lateral displacement X and If the forward included angle ⁇ does not meet the preset condition, the hoisting system is controlled to correct deviation to the center line. If the lateral displacement X and the forward included angle ⁇ meet the preset condition, the hoisting system is controlled to The center line is reversely corrected;
- the preset condition includes that the lateral displacement X and the forward angle ⁇ of the hoisting system satisfy the following conditions:
- the first side wheel of the hoisting system is equipped with a sensor for detecting the lateral displacement X and the forward angle ⁇ , and R 1 is the radius of rotation of the first side wheel of the hoisting system.
- the hoisting system correcting deviation to the center line includes controlling the hoisting system to correct deviation to the center line to a first position, and the first position satisfies the following conditions:
- the advancing included angle ⁇ is 0, and the lateral displacement X reaches the maximum value.
- the hoisting system is controlled to correct deviation from the center line to a second position, and the second position satisfies the following conditions:
- controlling the hoisting system to correct deviation to the center line in a reverse direction includes controlling the hoisting system to correct deviation to the center line to the first In the third position, when the deviation correction ends, the hoisting system is controlled to keep moving in a straight line, and the third position satisfies the following conditions:
- the advancing included angle ⁇ is zero, and the lateral displacement X is also zero.
- the lateral displacement X satisfies the following conditions:
- X 1 is the lateral displacement of the hoisting system at the first position
- X 0 is the lateral displacement of the hoisting system at the initial position
- R 1 is the radius of rotation of the first side wheel of the hoisting system
- ⁇ 0 is the forward angle of the hoisting system in the initial position.
- the lateral displacement X satisfies the following conditions:
- ⁇ 2 satisfies the following conditions:
- X 2 is the lateral displacement of the hoisting system in the second position
- X 1 is the lateral displacement of the hoisting system in the first position
- R 1 is the rotation of the first side wheel of the hoisting system Radius
- R 2 is the rotation radius of the second side wheel of the hoisting system
- t 2 is the time it takes for the hoisting system to travel from the first position to the second position
- V 1 is the second position of the hoisting system
- the speed of one side wheel V 2 is the speed of the second side wheel of the hoisting system
- ⁇ 2 is the advancing angle of the hoisting system at the second position.
- the travel route of the hoisting system is an S-curve.
- the controlling the hoisting system to correct the deviation of the center line includes using an industrial computer to send a deviation correction control instruction to the hoisting system.
- the hoisting system includes a crane, and the crane includes a tire crane, a straddle carrier, and a stacker.
- the present invention has the following beneficial effects: the automatic correction control method of the hoisting system provided by the present invention covers various application scenarios of the hoisting system in the process of traveling, by acquiring the lateral displacement and the hoisting system
- the forward included angle is used to determine the applicable application scenarios of the hoisting system during the current travel process.
- the lateral displacement X is 0, if the forward included angle ⁇ is also 0, the hoisting system will keep moving in a straight line.
- the hoisting system is controlled to correct deviation to the center line, so that the advancing included angle ⁇ tends to 0; when the lateral displacement X is not 0, and the advancing included angle
- ⁇ is also not 0, it is judged whether the lateral displacement X and the advancing angle ⁇ meet the preset condition, and if the lateral displacement X and the advancing angle ⁇ do not meet the preset condition, control the The hoisting system corrects deviation to the center line.
- the hoisting system is controlled to correct deviation to the center line in the reverse direction until the transverse displacement and the When the advancing included angle is all 0, the correction ends, and the hoisting system is controlled to keep moving in a straight line.
- This control method is particularly efficient and has low computational complexity.
- Figure 1 is a schematic diagram of the operation of a hoisting system in the prior art
- Figure 2 is a schematic diagram of the deflection of the hoisting system in the prior art
- Figure 3A, Figure 3B, Figure 3C, Figure 3D, Figure 3E, Figure 3F, Figure 3G, Figure 3H, Figure 3I are schematic diagrams of deviations of hoisting systems in the prior art
- FIG. 4 is a flowchart of an automatic deviation correction control method of a hoisting system in an embodiment of the present invention
- Figure 5 is a schematic diagram of automatic correction control of the hoisting system in the embodiment of the present invention.
- 6A, 6B, and 6C are test effect diagrams of the automatic deviation correction control of the hoisting system in the embodiment of the present invention.
- the hoisting system in this embodiment can be used in port logistics.
- the hoisting system includes a crane.
- the crane includes but is not limited to a tire crane, a straddle carrier, and a stacker.
- the following uses a tire crane as an example to illustrate the hoisting system of the present invention The working principle of the automatic correction control method.
- Fig. 1 is a schematic diagram of the operation of the hoisting system in the prior art.
- the right wheel of the tire crane is set as the first side wheel
- the left wheel of the tire crane is set as the second side wheel
- the speed of the right wheel of the tire crane is set to V 1
- the speed of the left wheel is set to V 2 .
- the right wheel of the tire crane can also be set as the second side wheel
- the left wheel of the tire crane can be set as the first side wheel, which will not be repeated here.
- the tire crane should travel along the planned parallel route, but due to the inconsistency of the inverter performance and the problem of road smoothness, the speed of the tires on both sides is not equal, that is, V 1 ⁇ V 2 ;
- the right wheel of the tire crane that is, the radius of movement of the first side wheel is set to R 1
- the first side wheel is equipped with a sensor for detecting the lateral displacement X and the forward angle ⁇
- the left wheel of the tire crane that is, the radius of movement of the second side wheel is set to R 2
- the second side wheel is not equipped with a sensor for detecting the lateral displacement X and the forward angle ⁇ .
- the sensor can also be installed on the left wheel of the hoisting system, that is, the second side wheel, which will not be repeated here.
- V 2 t R 2 ⁇
- V 1 t R 1 ⁇
- FIG. 2 is a schematic diagram of the deflection of the hoisting system in the prior art. Take the track line as the Y axis and perpendicular to the track line as the X axis to establish a Cartesian coordinate system.
- the running time t the forward direction is deflected by ⁇
- the lateral displacement is O'A
- the forward angle If the values of ⁇ and ⁇ are equal, the following formula can be obtained:
- Figures 3A to 3I are schematic diagrams of the deviation of the hoisting system in the prior art.
- the deflection of the tyre crane causes the lateral displacement X and the forward included angle ⁇ .
- the combination of the lateral displacement X and the forward included angle ⁇ can produce nine situations. Take the track line as the Y axis and perpendicular to the track line as the X axis to establish In the Cartesian coordinate system, the following deflection conditions can be obtained.
- Figure 3A The lateral displacement X is positive, and the forward angle ⁇ is positive;
- Figure 3B The lateral displacement X is positive, and the forward angle ⁇ is negative;
- Figure 3C The lateral displacement X is negative, and the forward angle ⁇ is positive;
- Figure 3D The lateral displacement X is negative, and the forward angle ⁇ is negative;
- Figure 3E The lateral displacement X is zero, and the forward angle ⁇ is positive;
- Figure 3F The lateral displacement X is zero, and the forward angle ⁇ is negative;
- Figure 3G Lateral The displacement X is positive, and the advancing angle ⁇ is zero;
- Figure 3H the lateral displacement X is negative, and the advancing angle ⁇ is zero;
- Fig. 3I the lateral displacement X is zero, and the advancing angle ⁇ is zero.
- the tire crane continues to deflect outward, and the correction method should be to correct toward the center line, so that the lateral displacement X and the forward angle ⁇ tend to zero.
- the lateral displacement X of the tire crane is zero, and the forward angle ⁇ is not zero. Therefore, the tire should be hoisted to the center line to correct deviation in time so that the forward angle ⁇ tends to zero.
- the forward angle ⁇ of the tire hoist is zero, and the lateral displacement X is not zero. Therefore, the tire needs to be hoisted to the center line to correct deviation.
- FIG. 4 is a flowchart of the automatic deviation correction control method of the hoisting system in the embodiment of the present invention.
- This embodiment provides an automatic deviation correction control method of a hoisting system, which includes the following steps:
- the lateral displacement X generated by the deflection of the hoisting system and the advancing angle ⁇ , where the lateral displacement X is the distance between the real-time position of the hoisting system and the center line, and the advancing angle ⁇ is the The angle between the real-time position and the centerline;
- the hoisting system When the lateral displacement X is not 0, and the advancing included angle ⁇ is not 0, it is determined whether the lateral displacement X and the advancing included angle ⁇ meet a preset condition, if the lateral displacement X and If the forward included angle ⁇ does not meet the preset condition, the hoisting system is controlled to correct deviation to the center line. If the lateral displacement X and the forward included angle ⁇ meet the preset condition, the hoisting system is controlled to The center line is reversely corrected;
- the preset condition includes that the lateral displacement X and the forward angle ⁇ of the hoisting system satisfy the following conditions:
- the first side wheel of the hoisting system is equipped with a sensor for detecting the lateral displacement X and the forward angle ⁇ , and R 1 is the radius of rotation of the first side wheel of the hoisting system.
- Controlling the hoisting system to correct deviation to the center line includes controlling the hoisting system to correct deviation to the center line to a first position, and the first position satisfies the following conditions:
- the advancing included angle ⁇ is 0, and the lateral displacement X reaches the maximum value.
- controlling the hoisting system to correct deviation toward the center line in a reverse direction including controlling the hoisting system to correct deviation toward the center line to a third position, At this time, the deviation correction ends, and the hoisting system is controlled to keep moving in a straight line, and the third position meets the following conditions:
- the advancing included angle ⁇ is zero, and the lateral displacement X is also zero.
- the lateral displacement X satisfies the following conditions:
- X 1 is the lateral displacement of the hoisting system at the first position
- X 0 is the lateral displacement of the hoisting system at the initial position
- R 1 is the radius of rotation of the first side wheel of the hoisting system
- ⁇ 0 is the forward angle of the hoisting system in the initial position.
- the lateral displacement X satisfies the following conditions:
- ⁇ 2 satisfies the following conditions:
- X 2 is the lateral displacement of the hoisting system in the second position
- X 1 is the lateral displacement of the hoisting system in the first position
- R 1 is the rotation of the first side wheel of the hoisting system Radius
- R 2 is the rotation radius of the second side wheel of the hoisting system
- t 2 is the time it takes for the hoisting system to travel from the first position to the second position
- V 1 is the second position of the hoisting system
- the speed of one side wheel V 2 is the speed of the second side wheel of the hoisting system
- ⁇ 2 is the advancing angle of the hoisting system at the second position.
- the hoisting system when the hoisting system rectifies to the third position toward the center line, the lateral displacement X is 0, and the advancement angle ⁇ is 0, the rectification ends, and the hoisting system is controlled to maintain Travel in a straight line.
- Figure 5 is a schematic diagram of the automatic deviation correction control of the hoisting system in the embodiment of the present invention, which is the schematic situation of the deviation in Figure 3A.
- the following figure 5 is used to illustrate the automatic deviation correction control method of the hoisting system provided by the present invention Specific operations.
- the forward angle of the tyre crane is zero; the lateral displacement reaches the maximum.
- the tire crane is rectified at the same speed.
- the tire crane continues to rotate ⁇ 2 with O'as the center, and the lateral displacement is BB'. It reaches the second position B, and the tire crane is at the forward angle of point B. Is ⁇ 2 , it can be clearly concluded that the value of the rotation angle ⁇ 2 and the forward angle ⁇ 2 are equal, and the following formula can be obtained:
- BB' AA'-R 1 (1-cos ⁇ 2 )
- the travel route of the hoisting system is an S-curve.
- 3E and 3F correspond to the application scenario where the lateral displacement X is 0 and the forward included angle ⁇ is not zero, and the hoisting system is controlled to correct deviation to the center line so that the forward included angle ⁇ tends to zero.
- 3G and 3H correspond to when the lateral displacement X is not 0, and if the forward included angle ⁇ is 0, the hoisting system is controlled to correct deviation to the center line.
- the application scenario in FIG. 5 covers various situations when the lateral displacement X is not 0, and the advancing included angle ⁇ is not 0, which can well solve the deviation correction problem of the hoisting system.
- FIGS. 6A, 6B, and 6C are test results of automatic deviation correction control of the hoisting system in the embodiment of the present invention.
- the picture information is obtained, the relationship between the current position of the tire crane and the center line is calculated, and the forward angle data and lateral displacement data of the tire crane are obtained.
- Industrial computer IPC, Industry
- Personal Computer can send deviation correction control instructions to the hoisting system.
- Figure 6C shows the IPC sending a correction control command to the hoisting system
- Figure 6A shows the change in the lateral displacement of the hoisting system following the correction control command
- Figure 6B shows the hoisting system following the
- the change of the forward angle generated by the correction control command can clearly see that the hoisting system is in a non-correction state at the initial stage, and the lateral displacement in Fig. 6A and the forward angle in Fig. 6B are both seriously deviated from the center. Line, the lateral displacement is greater than 15cm, and the forward angle is greater than 9°.
- the correction command to the center line and the reverse correction command to the center line in Figure 6C are both 0.
- the center line correction command in Figure 6C is 1.
- the reverse correction command to the center line is 0, and the hoisting system is controlled to correct the center line.
- the lateral displacement is continuously reduced, and the forward angle is also continuously reduced.
- the hoisting system is at the end of the first stage, the lateral displacement is less than 5cm, and the forward angle is less than 3°.
- the preset conditions for controlling the hoisting system to correct deviation toward the center line are met, so the deviation correction command changes.
- the correction command to the center line is 0, and the reverse correction command to the center line is 1, and it enters the reverse correction stage, which is the second stage.
- the angle between the lateral displacement and the forward movement is stabilized at around 0, the correction task is completed, and the third stage is entered, that is, the straight forward stage without correction, and the correction ends at this time.
- the hoisting system Judging from the correction test situation of the above hoisting system in the initial stage, the first stage, the second stage and the third stage, through the correction of 10 seconds in the first stage, the reverse correction of 3.5 seconds in the second stage, the third stage In the stage, the hoisting system basically keeps moving along the centerline. That is to say, the automatic correction method of the hoisting system provided in this embodiment can automatically correct the hoisting system whose initial lateral displacement is 15 cm away from the center line to the center line within 17 seconds. It can be seen that the automatic hoisting system provided by this embodiment is The correction control method makes the forward angle and lateral displacement of the hoisting system have been well corrected.
- the automatic deviation correction control method of the hoisting system covers various application scenarios of the hoisting system during the travel process.
- the hoisting system is judged by obtaining the lateral displacement and the forward angle of the hoisting system.
- the applicable application scenario in the current process of the system when the lateral displacement X is 0, if the forward angle ⁇ is also 0, the hoisting system is kept moving in a straight line, and if the forward angle ⁇ is not 0, the hoisting system is controlled to correct deviation to the center line, so that the advancing included angle ⁇ tends to 0; when the lateral displacement X is not 0, and the advancing included angle ⁇ is not 0, then Determine whether the lateral displacement X and the advancing angle ⁇ meet a preset condition, and if the lateral displacement X and the advancing angle ⁇ do not satisfy the preset condition, control the hoisting system to correct deviation to the center line , If the lateral displacement X and the advancing angle ⁇ satisfy the preset condition, the hoisting system is
- This control method is particularly efficient and has low computational complexity.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control And Safety Of Cranes (AREA)
Abstract
一种吊装系统的自动纠偏控制方法,包括以下步骤:获取吊装系统偏转产生的横向位移X和前进夹角α;当所述横向位移X不为0,且所述前进夹角α也不为0时,则判断所述横向位移X和所述前进夹角α是否满足预设条件,若所述横向位移X和所述前进夹角α不满足预设条件,则控制所述吊装系统向所述中心线纠偏,若所述横向位移X和所述前进夹角α满足预设条件,则控制所述吊装系统向所述中心线反向纠偏。该吊装系统的自动纠偏控制方法,可实现自动纠偏,从而实现吊装系统的自动纠偏控制,继而有效减轻司机在作业时的工作量。
Description
本发明涉及吊装系统运输领域,尤其涉及一种吊装系统的自动纠偏控制方法。
港口作业是指船舶进出港口进行调度、装卸货物、排除障碍等作业。港口作业基本上是以拖车、铲车、吊机等大型流动、固定机械等吊装系统为主要工具进行的。因为吊装系统分别驱动两侧轮胎的两个变频器性能无法达到完全相同,加之大型机械的安装精度以及作业现场地面平整度问题,会导致该种前进的过程中容易走偏,与规定的中心路线产生前进角度和横向位移的偏差。因此,吊装系统的纠偏在作业中尤为重要。人工作业下,司机常常需要进行人工纠偏;而吊装系统的自动纠偏功能是码头降低事故风险和提高作业效率的重要手段。港口码头作业的吊装系统,依靠本体两侧轮胎的速度差进行纠偏,而考虑到吊装系统刚体结构的安全性,两侧轮胎的速度差并非可以随意改变,很难采用现有的控制算法进行纠偏。
因此有必要提供一种吊装系统的自动纠偏控制方法,可以实现吊装系统的自动纠偏,减轻司机在作业时的工作量。
发明内容
本发明所要解决的技术问题是提供吊装系统的自动纠偏控制方法,通过控制所述吊装系统的横向位移和前进夹角,可以实现吊装系统的自动纠偏,有效减轻司机在作业时的工作量。
本发明为解决上述技术问题而采用的技术方案是提供一种吊装系统的自动纠偏控制方法,包括以下步骤:
获取吊装系统偏转产生的横向位移X和前进夹角α,所述横向位移X为所述吊装系统的实时位置和中心线之间的距离,所述前进夹角α为所述吊装系统的所述实时位置和所述中心线之间的夹角;
当所述横向位移X为0时,若所述前进夹角α也为0,则使得所述吊装系统保持直线行进,若所述前进夹角α不为0,则控制所述吊装系统向所述中心线纠偏, 使得所述前进夹角α趋于0;
当所述横向位移X不为0时,若所述前进夹角α为0,则控制所述吊装系统向所述中心线纠偏;
当所述横向位移X不为0,且所述前进夹角α也不为0时,则判断所述横向位移X和所述前进夹角α是否满足预设条件,若所述横向位移X和所述前进夹角α不满足预设条件,则控制所述吊装系统向所述中心线纠偏,若所述横向位移X和所述前进夹角α满足预设条件,则控制所述吊装系统向所述中心线反向纠偏;
所述预设条件包括所述吊装系统的所述横向位移X和所述前进夹角α满足以下条件:
X≤R
1(1-cos α)
其中,所述吊装系统的第一侧轮安装有用于检测横向位移X和前进夹角α的传感器,R
1是所述吊装系统的第一侧轮的旋转半径。
优选地,所述当所述横向位移X不为0,且所述前进夹角α也不为0时,若所述横向位移X和所述前进夹角α不满足预设条件,则控制所述吊装系统向所述中心线纠偏,包括控制所述吊装系统向所述中心线纠偏直至第一位置,所述第一位置满足以下条件:
所述前进夹角α为0,所述横向位移X达到最大值。
优选地,控制所述吊装系统向所述中心线纠偏至第二位置,所述第二位置满足以下条件:
X=R
1(1-cos α)
所述吊装系统从所述第一位置行进至所述第二位置时,所述前进夹角α的绝对值逐渐增大,所述横向位移X逐渐减小。
优选地,若所述横向位移X和所述前进夹角α满足预设条件,则控制所述吊装系统向所述中心线反向纠偏,包括控制所述吊装系统向所述中心线纠偏至第三位置,此时纠偏结束,控制所述吊装系统保持直线行进,所述第三位置满足以下条件:
所述前进夹角α为0,所述横向位移X也为0。
优选地,当所述吊装系统向所述中心线纠偏至第一位置时,所述横向位移X满足以下条件:
X
1=X
0+R
1(1-cos α
0)
其中,X
1是所述吊装系统在所述第一位置的横向位移,X
0是所述吊装系统在初始位置的横向位移,R
1是所述吊装系统的第一侧轮的旋转半径,α
0是所述吊装系统在初始位置的前进夹角。
优选地,当所述吊装系统向所述中心线纠偏至第二位置时,所述横向位移X满足以下条件:
X
2=X
1-R
1(1-cos α
2)
并且,α
2满足以下条件:
其中,X
2是所述吊装系统在所述第二位置的横向位移,X
1是所述吊装系统在所述第一位置的横向位移,R
1是所述吊装系统的第一侧轮的旋转半径,R
2是所述吊装系统的第二侧轮的旋转半径,t
2为所述吊装系统从第一位置行进到所述第二位置所花的时间,V
1是所述吊装系统的第一侧轮的速度,V
2是所述吊装系统的第二侧轮的速度,α
2是所述吊装系统在所述第二位置的前进夹角。
优选地,当所述吊装系统在初始位置的横向位移满足以下条件时:
X>R
1(1-cos α)
所述吊装系统的行进路线呈S曲线。
优选地,所述控制所述吊装系统向所述中心线纠偏包括使用工业电脑向所述吊装系统发送纠偏控制指令。
优选地,所述吊装系统包括起重机,所述起重机包括轮胎吊、跨运车以及堆高车。
本发明对比现有技术有如下的有益效果:本发明提供的吊装系统的自动纠偏控制方法,覆盖了所述吊装系统在行进过程中的各种应用场景,通过获取所述吊装系统的横向位移和前进夹角,判断所述吊装系统当前行进过程中适用的应用场景,当所述横向位移X为0时,若所述前进夹角α也为0,则使得所述吊装系统保持直线行进,若所述前进夹角α不为0,则控制所述吊装系统向所述中心线纠偏,使得所述前进夹角α趋于0;当所述横向位移X不为0,且所述前进夹角α也不为0时,则判断所述横向位移X和所述前进夹角α是否满足预设条件,若所述横向位移X和所述前进夹角α不满足预设条件,则控制所述吊装系统向所述中心线纠偏,若所述横向位 移X和所述前进夹角α满足预设条件,则控制所述吊装系统向所述中心线反向纠偏,直到所述横向位移和所述前进夹角都为0时,则纠偏结束,控制所述吊装系统保持直线行进,该控制方法特别高效且运算量低,一旦所述横向位移X和所述前进夹角α满足预设条件,则立即触发控制所述吊装系统向所述中心线反向纠偏,能够在十几秒的时间内快速将所述吊装系统纠偏回到中心线,从而可以实现吊装系统的自动纠偏,继而有效减轻司机在作业时的工作量,为港口码头无人作业奠定了基础。
图1为现有技术中吊装系统的运行示意图;
图2为现有技术中吊装系统的偏转示意图;
图3A、图3B、图3C、图3D、图3E、图3F、图3G、图3H、图3I为现有技术中吊装系统的偏移示意图;
图4为本发明实施例中吊装系统的自动纠偏控制方法的流程图;
图5为本发明实施例中吊装系统的自动纠偏控制示意图;
图6A、图6B和图6C为本发明实施例中吊装系统的自动纠偏控制的测试效果图。
下面结合附图和实施例对本发明作进一步的描述。
在以下描述中,为了提供本发明的透彻理解,阐述了很多具体的细节。然而,本发明可以在没有这些具体的细节的情况下实践,这对本领域普通该技术人员来说将是显而易见的。因此,具体的细节阐述仅仅是示例性的,具体的细节可以由奔放的精神和范围而变化并且仍被认为是在本发明的精神和范围内。
本实施例中的吊装系统可用于港口物流,所述吊装系统包括起重机,所述起重机包括但不限于轮胎吊、跨运车以及堆高车,下文以轮胎吊为例来说明本发明的吊装系统的自动纠偏控制方法的工作原理。
现在参看图1,图1是现有技术中吊装系统的运行示意图。轮胎吊右侧轮设为第一侧轮,轮胎吊左侧轮设为第二侧轮,轮胎吊右侧轮速度设为V
1,左侧轮速度设为V
2。在实际使用中,也可以将轮胎吊右侧轮设为第二侧轮,将轮胎吊左侧轮设为第一侧轮,在此不再赘述。
在作业过程中,轮胎吊本应沿规划的平行路线行走,但是由于变频器性能不完全一样且路面平整度问题,两侧轮胎速度并不相等,即V
1≠V
2;轮胎吊会以O为圆心,作圆周运动。如图1中所示,轮胎吊的右侧轮,即第一侧轮的运动半径设为R
1,第一侧轮安装有用于检测横向位移X和前进夹角α的传感器。轮胎吊的左侧轮,即第二侧轮的运动半径设为R
2,第二侧轮未安装有用于检测横向位移X和前进夹角α的传感器。在实际使用中,也可以将传感器安装在吊装系统的左侧轮,即第二侧轮上,在此不再赘述。
轮胎吊车身宽度为H,则运动角度为α时,可得如下公式:
R
2-R
1=H
V
2t=R
2α
V
1t=R
1α
从上述公式可以得到以下公式:
现在参看图2,图2为现有技术中吊装系统的偏转示意图。以轨道线为Y轴,以垂直于轨道线为X轴,建立直角坐标系,轮胎吊在不纠偏的情况下,运行时间t,前进方向偏转了θ,横向位移为O’A,前进夹角α和θ值相等,则可得如下公式:
O’A=R
1(1-cos α)
现在参看图3A~图3I,为现有技术中吊装系统的偏移示意图。轮胎吊的偏转导致产生了横向位移X和前进夹角α,横向位移X和前进夹角α两者组合可产生九种情况,以轨道线为Y轴,以垂直于轨道线为X轴,建立直角坐标系,则可以得到如下几种偏转情况。图3A:横向位移X为正,前进夹角α为正;图3B:横向位移X为正,前进夹角α为负;图3C:横向位移X为负,前进夹角α为正;图3D:横向位移X为负,前进夹角α为负;图3E:横向位移X为零,前进夹角α为正;图3F:横向位移X为零,前进夹角α为负;图3G:横向位移X为正,前进夹角α为零;图3H:横向位移X为负,前进夹角α为零;图3I:横向位移X为零,前进夹角α为零。
如图3A和图3D所示,轮胎吊继续向外偏转,纠偏方法应当为向中心线方向纠正,使得横向位移X和前进夹角α趋于零。
如图3B和图3C所示,轮胎吊趋近中心线,在不作任何纠偏的情况下,横向位移X趋于零,但是前进夹角α得不到纠正。因此需要在合适的情况下,及时将前进夹角α纠正为零,同时使得轮胎吊的横向位X移为零。
如图3E和图3F所示,轮胎吊横向位移X为零,前进夹角α不为零,需及时将轮胎吊向中心线纠偏,使得前进夹角α趋于零。
如图3G和图3H所示,轮胎吊前进夹角α为零,横向位移X不为零,因此,需要将轮胎吊向中心线纠偏。
如图3I所示,轮胎吊前进夹角α和横向位移X皆为零,不需要纠偏。
现在参看图4,图4为本发明实施例中吊装系统的自动纠偏控制方法的流程图。本实施例提供了一种吊装系统的自动纠偏控制方法,包括以下步骤:
获取吊装系统偏转产生的横向位移X和前进夹角α,所述横向位移X为所述吊装系统的实时位置和中心线之间的距离,所述前进夹角α为所述吊装系统的所述实时位置和所述中心线之间的夹角;
当所述横向位移X为0时,若所述前进夹角α也为0,则使得所述吊装系统保持直线行进,若所述前进夹角α不为0,则控制所述吊装系统向所述中心线纠偏,使得所述前进夹角α趋于0;
当所述横向位移X不为0时,若所述前进夹角α为0,则控制所述吊装系统向所述中心线纠偏;
当所述横向位移X不为0,且所述前进夹角α也不为0时,则判断所述横向位移X和所述前进夹角α是否满足预设条件,若所述横向位移X和所述前进夹角α不满足预设条件,则控制所述吊装系统向所述中心线纠偏,若所述横向位移X和所述前进夹角α满足预设条件,则控制所述吊装系统向所述中心线反向纠偏;
所述预设条件包括所述吊装系统的所述横向位移X和所述前进夹角α满足以下条件:
X≤R
1(1-cos α)
其中,所述吊装系统的第一侧轮安装有用于检测横向位移X和前进夹角α的传感器,R
1是所述吊装系统的第一侧轮的旋转半径。
在具体实施中,所述当所述横向位移X不为0,且所述前进夹角α也不为0时,若所述横向位移X和所述前进夹角α不满足预设条件,则控制所述吊装系统向所述中心线纠偏,包括控制所述吊装系统向所述中心线纠偏直至第一位置,所述第一位置满足以下条件:
所述前进夹角α为0,所述横向位移X达到最大值。
控制所述吊装系统向所述中心线纠偏至第二位置,所述第二位置满足以下条件:
X=R
1(1-cos α)
所述吊装系统从所述第一位置行进至所述第二位置时,所述前进夹角α的绝对值逐渐增大,所述横向位移X逐渐减小。
若所述横向位移X和所述前进夹角α满足预设条件,则控制所述吊装系统向所述中心线反向纠偏,包括控制所述吊装系统向所述中心线纠偏至第三位置,此时纠偏结束,控制所述吊装系统保持直线行进,所述第三位置满足以下条件:
所述前进夹角α为0,所述横向位移X也为0。
当所述吊装系统向所述中心线纠偏至第一位置时,所述横向位移X满足以下条件:
X
1=X
0+R
1(1-cos α
0)
其中,X
1是所述吊装系统在所述第一位置的横向位移,X
0是所述吊装系统在初始位置的横向位移,R
1是所述吊装系统的第一侧轮的旋转半径,α
0是所述吊装系统在初始位置的前进夹角。
在具体实施中,当所述吊装系统向所述中心线纠偏至第二位置时,所述横向位移X满足以下条件:
X
2=X
1-R
1(1-cos α
2)
并且,α
2满足以下条件:
其中,X
2是所述吊装系统在所述第二位置的横向位移,X
1是所述吊装系统在所述第一位置的横向位移,R
1是所述吊装系统的第一侧轮的旋转半径,R
2是所述吊装系统 的第二侧轮的旋转半径,t
2为所述吊装系统从第一位置行进到所述第二位置所花的时间,V
1是所述吊装系统的第一侧轮的速度,V
2是所述吊装系统的第二侧轮的速度,α
2是所述吊装系统在所述第二位置的前进夹角。
在具体实施中,当所述吊装系统向所述中心线纠偏至第三位置时,所述横向位移X为0,且所述前进夹角α为0,则纠偏结束,控制所述吊装系统保持直线行进。
现在参看图5,图5为本发明实施例中吊装系统的自动纠偏控制示意图,也就是图3A中的偏移示意情况,下面以图5来举例说明本发明提供的吊装系统的自动纠偏控制方法的具体操作。
以轮胎吊右侧轮即第一侧轮为控制目标,设轮胎吊初始位置的横向位移为X
0,前进夹角为α
0,对偏转的轮胎吊进行纠偏,轮胎吊右侧轮和左侧轮前进速度分别为V
1、V
2,R
1是轮胎吊的第一侧轮的旋转半径,R
2是轮胎吊的第二侧轮的旋转半径,H是轮胎吊车身宽度,可以得到以下公式:
经时间t
1后,轮胎吊以O’为圆心,旋转了θ
1,横向位移为AA’,到达第一位置A点,在A点时轮胎吊和X轴垂直,前进夹角为0,可以明显得出旋转角度θ
1和初始前进夹角α
0的值相等,可以得到以下公式:
AA’=X
0+R
1(1-cos α
0)
此时,轮胎吊前进夹角为零;横向位移达到最大。轮胎吊以相同速度进行纠偏,再经时间t
2,轮胎吊继续以O’为圆心,旋转了θ
2,横向位移为BB’,到达第二位置B点,轮胎吊在B点的前进夹角是α
2,可以明显得出旋转角度θ
2和前进夹角α
2的值相等,可以得到以下公式:
BB’=AA’-R
1(1-cos α
2)
若在B点需要反向纠偏,即以O”为圆心,半径为R
1,当前进夹角为0,横向位 移也为0时,轮胎吊以O”为圆心,旋转了θ
3,到达第三位置C点,可以明显得出旋转角度θ
3和前进夹角α
2的值相等;此过程时间为t
3,横向位移为BB’,可以得到以下公式:
BB’=R
1(1-cos α
2)
轮胎吊纠偏过程中,在t
2阶段,当满足以下条件时,
BB’=R
1(1-cos α
2)
即为反向纠偏时刻,可以得到以下公式:
最终达到同时纠正横向位移与前进夹角的目的,可以看到在图5中,所述吊装系统在初始位置的横向位移满足了以下条件:
X>R
1(1-cos α)
因此所述吊装系统的行进路线呈S曲线。
需要说明的是,图5中吊装系统的纠偏过程,已经涵盖了图3中的各种应用场景,例如图5中的0点对应的图3A和图3D(图3D和图3A位于中心线的对称位置,纠偏策略相同)中的应用场景,图5中的A点到C点的某个位置,对应的图3B和图3C(图3C和图3B位于中心线的对称位置,纠偏策略相同)中的应用场景,图5中的C点对应的图3I中的应用场景。图3E和图3F对应所述横向位移X为0,所述前进夹角α不为0的应用场景,控制所述吊装系统向所述中心线纠偏,使得所述前进夹角α趋于0。图3G和图3H对应所述横向位移X不为0时,若所述前进夹角α为0,则控制所述吊装系统向所述中心线纠偏。
因此,图5中的应用场景涵盖了所述横向位移X不为0,且所述前进夹角α也不为0时的各种情况,能够很好的解决吊装系统的纠偏问题。
现在参看图6A、6B和6C,图6A、6B和6C为本发明实施例中吊装系统的自动纠偏控制测试效果图。基于安装在轮胎吊一侧前端支架上的纠偏摄像头,获取图片信息,计算出轮胎吊当前位置与中心线之间的关系,获取轮胎吊前进夹角数据和横 向位移数据,工业电脑(IPC,Industry Personal Computer)可以向所述吊装系统发送纠偏控制指令。图6C表示的是IPC向所述吊装系统发送纠偏控制指令,图6A表示的是所述吊装系统随着所述纠偏控制指令产生的横向位移的变化,图6B表示的是所述吊装系统随着所述纠偏控制指令产生的前进夹角的变化,可以明显看出,所述吊装系统在初始阶段时处于无纠偏状态,图6A中的横向位移和图6B中的前进夹角都严重偏离了中心线,横向位移大于15cm,前进夹角大于9°,图6C中的向中心线纠偏命令与向中心线反向纠偏命令皆为0。当吊装系统进入第一阶段时,横向位移不为零,也不满足控制所述吊装系统向所述中心线反向纠偏的预设条件,因此,图6C中的向中心线纠偏命令为1,向中心线反向纠偏命令为0,控制所述吊装系统向中心线纠偏,在吊装系统处于第一阶段的过程中,横向位移不断减小,前进夹角也在不断变小。当吊装系统处于第一阶段末时,横向位移小于5cm,前进夹角小于3°,此时满足控制所述吊装系统向所述中心线反向纠偏的预设条件,因此纠偏命令发生变化,图6C中的向中心线纠偏命令为0,向中心线反向纠偏命令为1,进入反向纠偏阶段,即第二阶段。在第二阶段末,横向位移与前进夹角都稳定在0附近,完成纠偏任务,进入到第三阶段,即无纠偏直走阶段,此时纠偏结束。
由以上吊装系统在初始阶段、第一阶段、第二阶段以及第三阶段的纠偏测试情况来看,通过在第一阶段10秒的纠偏,在第二阶段3.5秒的反向纠偏,在第三阶段所述吊装系统基本保持沿着中心线行进。也就是说本实施例提供的吊装系统的自动纠偏方法,可以将初始横向位移偏离中心线15厘米的吊装系统在17秒内自动纠偏回到中心线,可见通过本实施例提供的吊装系统的自动纠偏控制方法,使得吊装系统的前进夹角和横向位移都得到了很好的纠正。
综上,本实施例提供的吊装系统的自动纠偏控制方法,覆盖了所述吊装系统在行进过程中的各种应用场景,通过获取所述吊装系统的横向位移和前进夹角,判断所述吊装系统当前行进过程中适用的应用场景,当所述横向位移X为0时,若所述前进夹角α也为0,则使得所述吊装系统保持直线行进,若所述前进夹角α不为0,则控制所述吊装系统向所述中心线纠偏,使得所述前进夹角α趋于0;当所述横向位移X不为0,且所述前进夹角α也不为0时,则判断所述横向位移X和所述前进夹角α是否满足预设条件,若所述横向位移X和所述前进夹角α不满足预设条件,则控制所述吊装系统向所述中心线纠偏,若所述横向位移X和所述前进夹角α满足预设 条件,则控制所述吊装系统向所述中心线反向纠偏,直到所述横向位移和所述前进夹角都为0时,则纠偏结束,控制所述吊装系统保持直线行进,该控制方法特别高效且运算量低,一旦所述横向位移X和所述前进夹角α满足预设条件,则立即触发控制所述吊装系统向所述中心线反向纠偏,能够在十几秒的时间内快速将所述吊装系统纠偏回到中心线,从而可以实现吊装系统的自动纠偏,继而有效减轻司机在作业时的工作量,为港口码头无人作业奠定了基础。
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。
Claims (9)
- 一种吊装系统的自动纠偏控制方法,其特征在于,包括以下步骤:获取吊装系统偏转产生的横向位移X和前进夹角α,所述横向位移X为所述吊装系统的实时位置和中心线之间的距离,所述前进夹角α为所述吊装系统的所述实时位置和所述中心线之间的夹角;当所述横向位移X为0时,若所述前进夹角α也为0,则使得所述吊装系统保持直线行进,若所述前进夹角α不为0,则控制所述吊装系统向所述中心线纠偏,使得所述前进夹角α趋于0;当所述横向位移X不为0时,若所述前进夹角α为0,则控制所述吊装系统向所述中心线纠偏;当所述横向位移X不为0,且所述前进夹角α也不为0时,则判断所述横向位移X和所述前进夹角α是否满足预设条件,若所述横向位移X和所述前进夹角α不满足预设条件,则控制所述吊装系统向所述中心线纠偏,若所述横向位移X和所述前进夹角α满足预设条件,则控制所述吊装系统向所述中心线反向纠偏;所述预设条件包括所述吊装系统的所述横向位移X和所述前进夹角α满足以下条件:X≤R 1(1-cosα)其中,所述吊装系统的第一侧轮安装有用于检测横向位移X和前进夹角α的传感器,R 1是所述吊装系统的第一侧轮的旋转半径。
- 根据权利要求1所述的吊装系统的自动纠偏控制方法,其特征在于,所述当所述横向位移X不为0,且所述前进夹角α也不为0时,若所述横向位移X和所述前进夹角α不满足预设条件,则控制所述吊装系统向所述中心线纠偏,包括控制所述吊装系统向所述中心线纠偏直至第一位置,所述第一位置满足以下条件:所述前进夹角α为0,所述横向位移X达到最大值。
- 根据权利要求2所述的吊装系统的自动纠偏控制方法,其特征在于,控制所述吊装系统向所述中心线纠偏至第二位置,所述第二位置满足以下条件:X=R 1(1-cosα)所述吊装系统从所述第一位置行进至所述第二位置时,所述前进夹角α的绝对值逐渐增大,所述横向位移X逐渐减小。
- 根据权利要求1所述的吊装系统的自动纠偏控制方法,其特征在于,若所述横向位移X和所述前进夹角α满足预设条件,则控制所述吊装系统向所述中心线反向纠偏,包括控制所述吊装系统向所述中心线纠偏至第三位置,此时纠偏结束,控制所述吊装系统保持直线行进,所述第三位置满足以下条件:所述前进夹角α为0,所述横向位移X也为0。
- 根据权利要求2所述的吊装系统的自动纠偏控制方法,其特征在于,当所述吊装系统向所述中心线纠偏至第一位置时,所述横向位移X满足以下条件:X 1=X 0+R 1(1-cosα 0)其中,X 1是所述吊装系统在所述第一位置的横向位移,X 0是所述吊装系统在初始位置的横向位移,R 1是所述吊装系统的第一侧轮的旋转半径,α 0是所述吊装系统在初始位置的前进夹角。
- 根据权利要求1所述的吊装系统的自动纠偏控制方法,其特征在于,当所述吊装系统在初始位置的横向位移满足以下条件时:X>R 1(1-cosα)所述吊装系统的行进路线呈S曲线。
- 根据权利要求1所述的吊装系统的自动纠偏控制方法,其特征在于,所述控制所述吊装系统向所述中心线纠偏包括使用工业电脑向所述吊装系统发送纠偏控 制指令。
- 根据权利要求1所述的吊装系统的自动纠偏控制方法,其特征在于,所述吊装系统包括起重机,所述起重机包括轮胎吊、跨运车以及堆高车。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/798,977 US11782450B2 (en) | 2020-03-04 | 2021-02-26 | Automatic deviation correction control method for hoisting system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010141160.3A CN110980525B (zh) | 2020-03-04 | 2020-03-04 | 一种吊装系统的自动纠偏控制方法 |
CN202010141160.3 | 2020-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021175164A1 true WO2021175164A1 (zh) | 2021-09-10 |
Family
ID=70081442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/078136 WO2021175164A1 (zh) | 2020-03-04 | 2021-02-26 | 一种吊装系统的自动纠偏控制方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11782450B2 (zh) |
CN (1) | CN110980525B (zh) |
WO (1) | WO2021175164A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110980525B (zh) * | 2020-03-04 | 2020-05-19 | 上海驭矩信息科技有限公司 | 一种吊装系统的自动纠偏控制方法 |
CN111153328B (zh) * | 2020-04-02 | 2020-07-24 | 上海驭矩信息科技有限公司 | 一种基于lqr的吊装系统的防摇控制方法及系统 |
CN116692686A (zh) * | 2023-05-24 | 2023-09-05 | 江苏润邦工业装备有限公司 | 一种轮胎式起重机大车自动纠偏方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203976241U (zh) * | 2014-06-12 | 2014-12-03 | 上海海镭激光科技有限公司 | 轮胎吊行走定位纠偏及集卡对位防吊起系统 |
CN105776027A (zh) * | 2016-05-12 | 2016-07-20 | 中南大学 | 桥式起重机大车行走过程中的纠偏控制方法及系统 |
CN106275066A (zh) * | 2016-08-30 | 2017-01-04 | 北京智行者科技有限公司 | 一种智能车的转向控制方法及装置 |
CN107544520A (zh) * | 2017-10-25 | 2018-01-05 | 上海联适导航技术有限公司 | 一种用于四轮载具自动驾驶的控制方法 |
CN107943020A (zh) * | 2017-10-17 | 2018-04-20 | 上海辛格林纳新时达电机有限公司 | 一种轮胎吊大车自动纠偏方法 |
CN109399464A (zh) * | 2018-12-29 | 2019-03-01 | 三海洋重工有限公司 | 龙门式起重机大车姿态控制方法及装置 |
CN110980525A (zh) * | 2020-03-04 | 2020-04-10 | 上海驭矩信息科技有限公司 | 一种吊装系统的自动纠偏控制方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU431093A1 (ru) * | 1971-09-08 | 1974-06-05 | Одесский ордена Трудового Красного Знамени политехнический институт | Мостовой кран |
KR950009344B1 (ko) * | 1992-09-15 | 1995-08-21 | 주식회사삼성중공업 | 무궤도식 크레인 자동주향방법 및 그 장치 |
US5304806A (en) * | 1992-11-25 | 1994-04-19 | Adac Laboratories | Apparatus and method for automatic tracking of a zoomed scan area in a medical camera system |
JP2009059059A (ja) * | 2007-08-30 | 2009-03-19 | Mitsubishi Heavy Ind Ltd | 搬送車両および搬送車両の自動走行制御方法 |
CN101891119B (zh) * | 2010-07-19 | 2012-10-10 | 青岛港(集团)有限公司 | 一种轮胎式集装箱门式起重机的自动纠偏方法 |
CN102431897B (zh) * | 2011-11-25 | 2014-04-30 | 林汉丁 | 起重机吊装垂直度偏差测量显示装置及吊装法 |
CA3021174C (en) * | 2017-10-26 | 2019-01-08 | Rovibec Inc. | Autonomous vehicle for pushing feed, methods and systems thereof |
CN108178066B (zh) * | 2017-12-28 | 2019-10-22 | 河南工学院 | 一种双梁起重机小车的纠偏方法 |
-
2020
- 2020-03-04 CN CN202010141160.3A patent/CN110980525B/zh active Active
-
2021
- 2021-02-26 WO PCT/CN2021/078136 patent/WO2021175164A1/zh active Application Filing
- 2021-02-26 US US17/798,977 patent/US11782450B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203976241U (zh) * | 2014-06-12 | 2014-12-03 | 上海海镭激光科技有限公司 | 轮胎吊行走定位纠偏及集卡对位防吊起系统 |
CN105776027A (zh) * | 2016-05-12 | 2016-07-20 | 中南大学 | 桥式起重机大车行走过程中的纠偏控制方法及系统 |
CN106275066A (zh) * | 2016-08-30 | 2017-01-04 | 北京智行者科技有限公司 | 一种智能车的转向控制方法及装置 |
CN107943020A (zh) * | 2017-10-17 | 2018-04-20 | 上海辛格林纳新时达电机有限公司 | 一种轮胎吊大车自动纠偏方法 |
CN107544520A (zh) * | 2017-10-25 | 2018-01-05 | 上海联适导航技术有限公司 | 一种用于四轮载具自动驾驶的控制方法 |
CN109399464A (zh) * | 2018-12-29 | 2019-03-01 | 三海洋重工有限公司 | 龙门式起重机大车姿态控制方法及装置 |
CN110980525A (zh) * | 2020-03-04 | 2020-04-10 | 上海驭矩信息科技有限公司 | 一种吊装系统的自动纠偏控制方法 |
Also Published As
Publication number | Publication date |
---|---|
US20230060836A1 (en) | 2023-03-02 |
CN110980525A (zh) | 2020-04-10 |
CN110980525B (zh) | 2020-05-19 |
US11782450B2 (en) | 2023-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021175164A1 (zh) | 一种吊装系统的自动纠偏控制方法 | |
US11891775B2 (en) | Work machinery | |
AU2019200000B2 (en) | Control apparatus of work vehicle, work vehicle, and control method of work vehicle | |
US7032763B1 (en) | System and method for automatically guiding a gantry crane | |
WO2017090465A1 (ja) | 建設機械の制御装置 | |
CN107065864A (zh) | 磁条导航的单驱单向自动导引运输车纠偏控制系统及方法 | |
WO2018180646A1 (ja) | クレーンの制御システム及び制御方法 | |
JP2627472B2 (ja) | 移動体の障害物回避方法 | |
JP7216582B2 (ja) | 車両の走行制御システム | |
JP2739030B2 (ja) | 履帯式車両の走行制御装置 | |
JP4220852B2 (ja) | トランスファークレーン | |
JP4269170B2 (ja) | 軌道追従制御方法および装置 | |
CN115280257A (zh) | 翻斗卡车的控制系统 | |
JP2007072572A (ja) | 物品搬送設備 | |
JPH08245164A (ja) | 起伏ジブを有するクレーンのジブ案内方法 | |
JP2019139666A (ja) | 無人搬送車およびその制御方法 | |
TWI770965B (zh) | 無人自走車之導引控制方法 | |
JPH07144877A (ja) | タイヤ式クレーンの停止位置補正装置 | |
JP2009059059A (ja) | 搬送車両および搬送車両の自動走行制御方法 | |
KR970003505B1 (ko) | 무궤도 크레인의 자동조향장치 및 방법 | |
CN114701566B (zh) | 一种井工煤矿锚杆机履带行走设备智能调直系统及方法 | |
JP2007145490A (ja) | 移動体制御装置、これを用いた移動体、及び移動体制御方法 | |
WO2023084941A1 (ja) | クレーン制御システム、クレーン制御方法、及びアンテナ調整方法 | |
JPH0330337Y2 (zh) | ||
JP2003221127A (ja) | コンテナヤードおよびクレーン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21764207 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21764207 Country of ref document: EP Kind code of ref document: A1 |