WO2021175149A1 - 一种信号的传输方法、终端、网络设备和存储介质 - Google Patents

一种信号的传输方法、终端、网络设备和存储介质 Download PDF

Info

Publication number
WO2021175149A1
WO2021175149A1 PCT/CN2021/077881 CN2021077881W WO2021175149A1 WO 2021175149 A1 WO2021175149 A1 WO 2021175149A1 CN 2021077881 W CN2021077881 W CN 2021077881W WO 2021175149 A1 WO2021175149 A1 WO 2021175149A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
uplink
downlink
downlink signal
information
Prior art date
Application number
PCT/CN2021/077881
Other languages
English (en)
French (fr)
Inventor
黄秋萍
苏昕
高秋彬
卢艺文
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to JP2022553210A priority Critical patent/JP2023516448A/ja
Priority to US17/909,392 priority patent/US20230107563A1/en
Priority to EP21765448.2A priority patent/EP4117364A4/en
Priority to KR1020227032200A priority patent/KR20220141868A/ko
Publication of WO2021175149A1 publication Critical patent/WO2021175149A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/021Estimation of channel covariance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a signal transmission method, terminal, network device, and storage medium.
  • Multi-point coordination is an important technical means in wireless communication systems. Distributed transmission through multiple distributed transmission receiving points can improve cell edge coverage and reduce the delay and signaling overhead caused by handover.
  • SFN Single Frequency Network, single frequency network
  • HST-SFN High Speed Train-Single
  • Frequency Network, high-speed rail single frequency network a cell contains multiple transmission and reception points (for example, RRH (Remote Radio Head)), and signals are sent from multiple transmission and reception points at the same time.
  • the Doppler frequency shift may have a large range of change, which results in the terminal not being able to demodulate the downlink signal well.
  • one method is to perform Doppler frequency shift pre-compensation on each RRH to eliminate multiple downlink signals received by the UE. Puller expansion.
  • the UE only determines one downlink frequency point, and performs uplink signal transmission based on the downlink frequency point. Due to the different geographic locations and/or receiving beam directions of each RRH, the Doppler shift experienced by the uplink signal to each RRH is different.
  • the RRH Since the RRH does not know what downlink frequency the UE is based on to transmit the uplink signal, the RRH cannot estimate the Doppler shift experienced in the downlink or uplink, and thus cannot effectively perform the pre-compensation of the Doppler shift.
  • embodiments of the present application provide a signal transmission method, terminal, network device, and storage medium.
  • an embodiment of the present application provides a signal transmission method, including:
  • the frequency offset determined based on the uplink signal having the association relationship with the first downlink signal is used to determine the transmission frequency of the second downlink signal.
  • association relationship includes one or a combination of the following:
  • One or more channel characteristics and/or spatial transmission parameters of the uplink signal may be obtained by derivation of the first downlink signal
  • the receiving end of the uplink signal and the sending end of the first downlink signal are the same network device.
  • association relationship is a QCL relationship
  • type of association relationship includes one or more of the following:
  • Type 1 ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ;
  • Type 2 ⁇ Doppler shift, Doppler spread ⁇
  • Type 3 ⁇ Doppler shift, average delay ⁇
  • Type 4 ⁇ Spatial parameter ⁇ or ⁇ spatial related information SpatialRelationInofo ⁇ ;
  • Type 5 ⁇ Doppler shift ⁇
  • Type 6 Frequency related information.
  • the association relationship is determined according to configuration information or trigger information of the uplink signal.
  • the configuration information or trigger information of the uplink signal includes a plurality of information of the first downlink signal that has the association relationship with the uplink signal; accordingly, the method further includes: according to the network The activation signal sent by the side determines the first downlink signal that has the association relationship with the uplink signal; or it further includes that each of the association relationships is associated with a trigger state, and when the uplink signal is triggered , Determine the association relationship according to the trigger state;
  • the configuration information or trigger information of the uplink signal further includes identification information, and the identification information is used to indicate that the first downlink signal that has the association relationship with the uplink signal is located at the location of the first downlink signal. The location of the resource collection.
  • the configuration information or trigger information of the uplink signal and the first downlink signal includes identification information for indicating the association relationship
  • the configuration information or trigger information of the first downlink signal includes identification information, all uplink signals are configured in the same resource set, and each uplink signal in the resource set corresponds to the identification information one-to-one;
  • the first downlink signal and the uplink signal are respectively configured in different resource sets, and there is a predefined one-to-one correspondence between the uplink resources included in the different resource sets and the first downlink resource.
  • the association relationship is determined according to configuration information or trigger information of the first downlink signal.
  • the configuration information of the first downlink signal includes information about a plurality of uplink signals having the association relationship with the first downlink signal; accordingly, the method further includes: sending according to the network side The activation signal determines the uplink signal that has the association relationship with the first downlink signal; or it further includes that each of the association relationships is associated with a trigger state, and when the first downlink signal is triggered When, determine the association relationship according to the trigger state;
  • the configuration information or trigger information of the first downlink signal also includes identification information, and the identification information is used to indicate that the uplink signal that has the association relationship with the first downlink signal is located at the location of the uplink signal. The location of the resource collection.
  • each uplink signal based on the transmission frequency of each uplink signal includes any one or a combination of the following:
  • Each of the uplink signals is configured on different time resources
  • Each of the uplink signals is configured on different frequency domain resources, and a guard interval is left between each other;
  • Each of the uplink signals is not simultaneously transmitted with uplink signals for other purposes.
  • the uplink signal includes but is not limited to one or more of the following: SRS, RACH, PUSCH, PUCCH, DMRS corresponding to PUSCH, and DMRS corresponding to PUCCH.
  • the first downlink signal includes but is not limited to one or more of the following: SSB, TRS, and NZP-CSI RS.
  • the first downlink signal is determined based on one or more of the following information:
  • the type of the downlink signal is the type of the downlink signal.
  • the embodiments of the present application provide another signal transmission method, including:
  • the frequency offset is determined based on the uplink signal, and the transmission frequency of the second downlink signal is determined.
  • the determining the frequency offset based on the uplink signal and determining the transmission frequency of the second downlink signal includes:
  • the frequency adjustment value is used to determine the transmission frequency of the second downlink signal.
  • association relationship includes one or a combination of the following:
  • One or more channel characteristics and/or spatial transmission parameters of the uplink signal may be obtained through derivation of the downlink signal
  • the receiving end of the uplink signal and the sending end of the downlink signal are the same network device.
  • association relationship is a QCL relationship
  • type of association relationship includes one or more of the following:
  • Type 1 ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ;
  • Type 2 ⁇ Doppler shift, Doppler spread ⁇
  • Type 3 ⁇ Doppler shift, average delay ⁇
  • Type 4 ⁇ Spatial parameter ⁇ / ⁇ spatial related information SpatialRelationInofo ⁇ ;
  • Type 5 ⁇ Doppler shift ⁇
  • Type 6 Frequency related information.
  • the association relationship is indicated by configuration information or trigger information of the uplink signal.
  • the processor is further configured to: the configuration information of the uplink signal includes information of a plurality of the first downlink signals having the association relationship with the uplink signal; accordingly, the method It also includes: the network side sends an activation signal for the terminal to determine the first downlink signal that has the association relationship with the uplink signal; or, each of the association relationships is associated with one or more trigger states , The network side sends a trigger signal to trigger the uplink signal, so that the terminal can determine the association relationship according to the trigger state;
  • the configuration information or trigger information of the uplink signal further includes identification information, and the identification information is used to indicate that the first downlink signal that has the association relationship with the uplink signal is located at the location of the first downlink signal. The location of the resource collection.
  • the configuration information or trigger information of the uplink signal and the first downlink signal includes identification information for indicating the association relationship
  • the configuration information or trigger information of the first downlink signal includes identification information, all uplink signals are configured in the same resource set, and each uplink signal in the resource set corresponds to the identification information one-to-one;
  • the first downlink signal and the uplink signal are respectively configured in different resource sets, and there is a predefined one-to-one correspondence between the uplink resources included in the resource set and the first downlink resources.
  • the association relationship is indicated by configuration information or trigger information of the first downlink signal.
  • the processor is further configured to: the configuration information of the first downlink signal further includes information of a plurality of uplink signals having the association relationship with the first downlink signal; accordingly, The method further includes: the network side sends an activation signal for the terminal to determine the uplink signal that has the association relationship with the first downlink signal; or, each of the association relationships is associated with a trigger state, The network side sends a trigger signal to trigger the first downlink signal, so that the terminal can determine the association relationship according to the trigger state;
  • the configuration information or trigger information of the first downlink signal also includes identification information, and the identification information is used to indicate that the uplink signal that has the association relationship with the first downlink signal is located at the location of the uplink signal. The location of the resource collection.
  • the transmission mode of each of the uplink signals includes any one or a combination of the following:
  • Each of the uplink signals is configured on different time resources
  • Each of the uplink signals is configured on different frequency domain resources, and a guard interval is left between each other;
  • Each of the uplink signals is not simultaneously transmitted with uplink signals for other purposes.
  • the uplink signal includes but is not limited to one or more of the following: SRS, RACH, PUSCH, PUCCH, DMRS corresponding to PUSCH, and DMRS corresponding to PUCCH.
  • the downlink signal includes but is not limited to one or more of the following: SSB, TRS, and NZP-CSI RS.
  • the network side indicates the first downlink signal to the terminal based on one or more of the following information:
  • the type of the downlink signal is the type of the downlink signal.
  • an embodiment of the present application provides a terminal, including:
  • the first receiving module is configured to receive a plurality of first downlink signals
  • the first determining module is configured to determine the downlink receiving frequency corresponding to each of the first downlink signals, and respectively determine each uplink receiving frequency associated with each first downlink signal based on the downlink receiving frequency corresponding to each first downlink signal.
  • the transmission frequency of the signal is configured to determine the downlink receiving frequency corresponding to each of the first downlink signals, and respectively determine each uplink receiving frequency associated with each first downlink signal based on the downlink receiving frequency corresponding to each first downlink signal.
  • the first sending module is configured to send each uplink signal based on the transmission frequency of each uplink signal
  • the frequency offset determined based on the uplink signal having the association relationship with the first downlink signal is used to determine the transmission frequency of the second downlink signal.
  • an embodiment of the present application provides a terminal including a memory, a processor, and a program stored in the memory and capable of running on the processor, and the processor implements the following steps when the program is executed:
  • the frequency offset determined based on the uplink signal having the association relationship with the first downlink signal is used to determine the transmission frequency of the second downlink signal.
  • association relationship includes one or a combination of the following:
  • One or more channel characteristics and/or spatial transmission parameters of the uplink signal may be obtained by derivation of the first downlink signal
  • the receiving end of the uplink signal and the sending end of the first downlink signal are the same network device.
  • association relationship is a QCL relationship
  • type of association relationship includes one or more of the following:
  • Type 1 ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ;
  • Type 2 ⁇ Doppler shift, Doppler spread ⁇
  • Type 3 ⁇ Doppler shift, average delay ⁇
  • Type 4 ⁇ Spatial parameter ⁇ or ⁇ spatial related information SpatialRelationInofo ⁇ ;
  • Type 5 ⁇ Doppler shift ⁇
  • Type 6 Frequency related information.
  • the association relationship is determined according to configuration information or trigger information of the uplink signal.
  • the configuration information or trigger information of the uplink signal includes a plurality of information about the first downlink signal having the association relationship with the uplink signal; accordingly, the method further includes: according to the network The activation signal sent by the side determines the first downlink signal that has the association relationship with the uplink signal; or it further includes that each of the association relationships is associated with a trigger state, and when the uplink signal is triggered , Determine the association relationship according to the trigger state;
  • the configuration information or trigger information of the uplink signal further includes identification information, and the identification information is used to indicate that the first downlink signal that has the association relationship with the uplink signal is located at the location of the first downlink signal. The location of the resource collection.
  • the configuration information or trigger information of the uplink signal and the first downlink signal includes identification information for indicating an association relationship
  • the configuration information or trigger information of the first downlink signal includes identification information, all uplink signals are configured in the same resource set, and each uplink signal in the resource set corresponds to the identification information one-to-one;
  • the first downlink signal and the uplink signal are respectively configured in different resource sets, and there is a predefined one-to-one correspondence between the uplink resources included in the different resource sets and the first downlink resource.
  • the association relationship is determined according to configuration information or trigger information of the first downlink signal.
  • the processor is further configured to: the configuration information of the first downlink signal includes information of a plurality of uplink signals having the association relationship with the first downlink signal; accordingly, the The method further includes: determining the uplink signal having the association relationship with the first downlink signal according to the activation signal sent by the network side; or further including: each of the association relationship is associated with a trigger state, when all When the first downlink signal is triggered, the association relationship is determined according to the trigger state;
  • the configuration information or trigger information of the first downlink signal also includes identification information, and the identification information is used to indicate that the uplink signal that has the association relationship with the first downlink signal is located at the location of the uplink signal. The location of the resource collection.
  • each uplink signal based on the transmission frequency of each uplink signal includes any one or a combination of the following:
  • Each of the uplink signals is configured on different time resources
  • Each of the uplink signals is configured on different frequency domain resources, and a guard interval is left between each other;
  • Each of the uplink signals is not simultaneously transmitted with uplink signals for other purposes.
  • the uplink signal includes but is not limited to one or more of the following: SRS, RACH, PUSCH, PUCCH, DMRS corresponding to PUSCH, and DMRS corresponding to PUCCH.
  • the first downlink signal includes but is not limited to one or more of the following: SSB, TRS, and NZP-CSI RS.
  • the first downlink signal is determined based on one or more of the following information:
  • the type of the downlink signal is the type of the downlink signal.
  • an embodiment of the present application provides a network device, including:
  • the second sending module is configured to send a first downlink signal to the terminal, so that the terminal can determine the uplink signal associated with the first downlink signal according to the downlink receiving frequency corresponding to the first downlink signal.
  • a second receiving module configured to receive an uplink signal that is sent by the terminal based on the transmission frequency and has the associated relationship with the first downlink signal
  • the second determining module is configured to determine the frequency offset based on the uplink signal, and determine the transmission frequency of the second downlink signal.
  • the embodiments of the present application provide another network device, including a memory, a processor, and a program stored in the memory and capable of running on the processor, and the processor implements the following steps when the program is executed:
  • the frequency offset is determined based on the uplink signal, and the transmission frequency of the second downlink signal is determined.
  • the determining the frequency offset based on the uplink signal and determining the transmission frequency of the second downlink signal includes:
  • the frequency adjustment value is used to determine the transmission frequency of the second downlink signal.
  • association relationship includes one or a combination of the following:
  • One or more channel characteristics and/or spatial transmission parameters of the uplink signal may be obtained through derivation of the downlink signal
  • the receiving end of the uplink signal and the sending end of the downlink signal are the same network device.
  • association relationship is a QCL relationship
  • type of association relationship includes one or more of the following:
  • Type 1 ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ;
  • Type 2 ⁇ Doppler shift, Doppler spread ⁇
  • Type 3 ⁇ Doppler shift, average delay ⁇
  • Type 4 ⁇ Spatial parameter ⁇ or ⁇ spatial related information SpatialRelationInofo ⁇ ;
  • Type 5 ⁇ Doppler shift ⁇
  • Type 6 Frequency related information.
  • the association relationship is indicated by configuration information or trigger information of the uplink signal.
  • the processor is further configured to:
  • the configuration information of the uplink signal includes a plurality of information of the first downlink signal that has the association relationship with the uplink signal; accordingly, the method further includes: the network side sends an activation signal for the The terminal determines the first downlink signal that has the association relationship with the uplink signal; or, each of the association relationships is associated with one or more trigger states, and the network side sends a trigger signal to trigger the uplink signal, For the terminal to determine the association relationship according to the trigger state;
  • the configuration information or trigger information of the uplink signal further includes identification information, and the identification information is used to indicate that the first downlink signal that has the association relationship with the uplink signal is located at the location of the first downlink signal. The location of the resource collection.
  • the configuration information or trigger information of the uplink signal and the first downlink signal includes identification information for indicating an association relationship
  • the configuration information or trigger information of the first downlink signal includes identification information, all uplink signals are configured in the same resource set, and each uplink signal in the resource set corresponds to the identification information one-to-one;
  • the first downlink signal and the uplink signal are respectively configured in different resource sets, and there is a predefined one-to-one correspondence between the uplink resources included in the resource set and the first downlink resources.
  • the association relationship is indicated by configuration information or trigger information of the first downlink signal.
  • the processor is further configured to:
  • the configuration information of the first downlink signal further includes information about a plurality of uplink signals having the association relationship with the first downlink signal; accordingly, the method further includes: the network side sends an activation signal for The terminal determines the uplink signal that has the association relationship with the first downlink signal; or, each of the association relationships is associated with a trigger state, and the network side sends a trigger signal to trigger the first downlink signal. Signal for the terminal to determine the association relationship according to the trigger state;
  • the configuration information or trigger information of the first downlink signal also includes identification information, and the identification information is used to indicate that the uplink signal that has the association relationship with the first downlink signal is located at the location of the uplink signal. The location of the resource collection.
  • each of the uplink signals includes any one or a combination of the following:
  • Each of the uplink signals is configured on different time resources
  • Each of the uplink signals is configured on different frequency domain resources, and a guard interval is left between each other;
  • Each of the uplink signals is not simultaneously transmitted with uplink signals for other purposes.
  • the uplink signal includes but is not limited to one or more of the following: SRS, RACH, PUSCH, PUCCH, DMRS corresponding to PUSCH, and DMRS corresponding to PUCCH.
  • the downlink signal includes but is not limited to one or more of the following: SSB, TRS, and NZP-CSI RS.
  • a downlink signal is the first downlink signal:
  • the type of the downlink signal is the type of the downlink signal.
  • an embodiment of the present application provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented.
  • an embodiment of the present application provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in the second aspect are implemented.
  • the terminal determines the corresponding downlink reception frequency for each received first downlink signal, and determines each uplink reception frequency based on the downlink reception frequency.
  • each first downlink signal and each uplink signal respectively have a preset association relationship, and each transmission receiving point can independently perform frequency offset estimation and pre-compensation. Since each transmission and reception point is pre-compensated for downlink Doppler frequency offset, the error of channel estimation is reduced and the performance of downlink transmission is improved.
  • FIG. 1 is a schematic flowchart of a signal transmission method provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of a signal transmission method provided by another embodiment of this application.
  • FIG. 3 is a schematic diagram of the composition of a terminal provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a terminal provided by another embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a terminal provided by still another embodiment of this application.
  • FIG. 6 is a schematic diagram of the composition of a network device provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of the composition of a network device provided by another embodiment of this application.
  • multiple transmission and reception points may be some RRHs
  • BBU Base Band Unit, baseband processing unit
  • these multiple TRPs use the same Cell ID.
  • backhaul backhaul
  • a typical transmission scheme in the HST-SFN scenario is to send downlink signals from all TRPs connected to a BBU at the same time, that is to say, all TRPs transmit the same codeword, layer (layer), DMRS (Demodulation reference signals, demodulation) Reference signal) port, multiple TRPs are equivalent to forming more paths.
  • layer layer
  • DMRS Demodulation reference signals, demodulation
  • multiple TRPs are equivalent to forming more paths.
  • the train runs between two adjacent transmission and receiving points TRP, one of the signals from the two TRPs has a negative Doppler frequency shift, and the other has a positive Doppler frequency shift, which will produce Doppler frequency.
  • the Doppler frequency shift may have a large range of change, which results in the terminal not being able to demodulate the downlink signal well.
  • one method is to perform Doppler frequency shift pre-compensation on each TRP to eliminate multiple downlink signals received by the UE. Puller expansion.
  • the UE detects SSB (Synchronization Signal block, sometimes also written as SS/PBCH block, Synchronization Signal/Physical Broadcast Channel Block), and obtains the downlink frequency based on the detected SSB.
  • the uplink frequency point is obtained based on the downlink frequency point, and the uplink signal is transmitted on the uplink frequency point.
  • SSB Synchronization Signal block
  • the downlink frequency point obtained by the UE includes the downlink Doppler frequency shift, and the uplink Doppler frequency shift is further superimposed during the uplink transmission. Therefore, in the single-point transmission, the uplink signal is The frequency during TRP reception has a Doppler frequency offset of 2 times relative to the uplink frequency on the TRP side.
  • the downlink frequency of each TRP is the same, but the Doppler frequency offset at the UE is different due to different geographic locations. However, the UE only determines one downlink frequency point and performs uplink signal transmission based on the downlink frequency point.
  • the Doppler shift experienced by the uplink signal to each TRP is different. Because the TRP does not know what downlink frequency the UE is based on to transmit the uplink signal, the TRP cannot estimate the Doppler shift experienced in the downlink or uplink, and thus cannot effectively perform the pre-compensation of the Doppler shift.
  • each embodiment of the present application provides a frequency-based A pre-compensated signal transmission solution for multiple transmission reception points, that is, the terminal determines the transmission frequency (frequency point) of the uplink signal transmitted to each transmission reception point TRP according to the downlink signal transmitted by each transmission reception point TRP, and uses the The transmission frequency is used for the transmission of each uplink signal, so that each transmission and reception point can obtain the Doppler shift of the terminal relative to itself, so that the frequency pre-compensation can be performed at each transmission and reception point to eliminate the Doppler on the terminal side.
  • the terminal determines the transmission frequency (frequency point) of the uplink signal transmitted to each transmission reception point TRP according to the downlink signal transmitted by each transmission reception point TRP, and uses the The transmission frequency is used for the transmission of each uplink signal, so that each transmission and reception point can obtain the Doppler shift of the terminal relative to itself, so that the frequency pre-compensation can be performed at each transmission and reception point to eliminate the Doppler on the terminal side.
  • the methods provided in the embodiments of the present application may be applicable to systems including but not limited to 5G systems (such as NR (New Radio) systems), LTE systems, 6G systems, satellite systems, car networking systems, and their evolved version systems.
  • 5G systems such as NR (New Radio) systems
  • LTE systems Long Term Evolution
  • 6G systems 6G systems
  • satellite systems car networking systems
  • car networking systems and their evolved version systems.
  • the network device may be a base station, and the base station may include multiple transmission reception points TRP or TRP groups.
  • TRP transmission reception points
  • the TRP group one of the TRPs may send the first downlink signal, the UE sends the uplink signal associated with it, and the base station determines the pre-compensation frequency of all TRPs in the TRP group.
  • the TRP may be an RRH
  • the TRP group may be an RRH group.
  • the network-side equipment provided by the embodiments of this application may include, but is not limited to, one or more of the following: commonly used base stations, evolved node base stations (eNB), network-side equipment in 5G systems (for example, the following Equipment such as next generation node base station (gNB), transmission and reception point (TRP)).
  • commonly used base stations evolved node base stations (eNB)
  • eNB evolved node base stations
  • 5G systems for example, the following Equipment such as next generation node base station (gNB), transmission and reception point (TRP)).
  • gNB next generation node base station
  • TRP transmission and reception point
  • the terminal provided in the embodiments of the present application may be referred to as user equipment UE or the like.
  • Terminals can include, but are not limited to, handheld devices and vehicle-mounted devices.
  • it may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA), etc.
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • Fig. 1 is a schematic flow chart of a signal transmission method provided by an embodiment of the application.
  • the execution subject of the method may be a terminal (for example, user equipment UE), and the method includes at least the following steps:
  • Step 100 Receive a plurality of first downlink signals
  • the UE receives the first downlink signal respectively issued by multiple transmission receiving points TRP, that is, for example, in the HST-SFN scenario, including multiple transmission receiving points TRP, each TRP will enter the HST-SFN
  • the UEs in the scenario send their respective first downlink signals.
  • each TRP All the first downlink signals delivered to the UE have an association relationship with an uplink signal, and the UE sends the uplink signal based on the association relationship.
  • Step 101 Determine the downlink reception frequency corresponding to each of the first downlink signals, and respectively determine the transmission frequency of each uplink signal associated with each first downlink signal based on the downlink reception frequency corresponding to each first downlink signal ;
  • the UE may first determine the downlink reception frequency corresponding to each first downlink signal.
  • the downlink receiving frequency in the embodiment of the present application may be the frequency at which the first downlink signal reaches the UE, or the downlink frequency point corresponding to the first downlink signal determined by the UE. Note that due to factors such as device influence, inaccurate channel estimation, algorithms, etc., the downlink reception frequency of the first downlink signal determined by the UE may deviate from the actual frequency at which the downlink signal arrives at the UE.
  • a frequency point refers to a reference frequency, that is, a frequency that can be used to determine the frequency position of the downlink radio frequency channel and/or SSB and/or other units.
  • the downlink frequency point may be a reference frequency used to determine one or more downlink transmission frequencies such as downlink channels (such as PDSCH, PDCCH, etc.), SSB, and downlink reference signals (such as downlink DMRS, CSI-RS, TRS).
  • the uplink frequency point may be a reference frequency used to determine one or more uplink transmission frequencies such as an uplink channel (PUSCH, PUCCH, RACH, etc.) and an uplink reference signal (for example, SRS).
  • the UE determines the downlink reception frequency corresponding to each first downlink signal according to one or more of the first downlink signals, and the downlink reception frequency corresponding to all the first downlink signals is the same.
  • the UE determines a downlink frequency point, which is used as the downlink reception frequency corresponding to each first downlink signal determined by the UE.
  • the UE respectively determines the downlink receiving frequency corresponding to each first downlink signal according to each first downlink signal, and the downlink receiving frequency corresponding to each first downlink signal may be the same or different.
  • the UE determines a downlink frequency point for each first downlink signal, and these downlink frequency points are used as the downlink receiving frequency corresponding to each first downlink signal.
  • the UE may respectively determine the transmission frequency of each uplink signal having an association relationship with each first downlink signal according to the downlink receiving frequency corresponding to each first downlink signal, and there may be multiple ways.
  • the UE determines the transmission frequency of each uplink signal based on the same downlink receiving frequency.
  • the UE determines a downlink frequency point, and then determines an uplink frequency point based on the downlink frequency point in combination with the frequency deviation between the uplink and the downlink.
  • the UE determines the Doppler offset of the first downlink signal with respect to the downlink frequency according to each first downlink signal.
  • the UE uses the uplink frequency plus the same according to the uplink frequency.
  • the Doppler shift of the first downlink signal for which the signal has the above-mentioned association relationship determines the actual frequency point of the uplink signal, and the transmission frequency of the uplink signal is determined based on the actual frequency point.
  • the UE determines the Doppler offset of the first downlink signal relative to the downlink frequency point according to each first downlink signal, based on the Doppler offset and the corresponding Doppler offset of each first downlink signal.
  • the downlink frequency point determines the downlink reception frequency of the first downlink signal; then, based on the downlink reception frequency of the first downlink signal, combined with the frequency deviation between the uplink and the downlink, the transmission frequency of each uplink signal is determined.
  • the foregoing frequency deviation between the uplink and the downlink may be agreed upon by a protocol, configured by the network device through signaling, or determined according to the uplink and/or downlink frequency indication information of the network device.
  • the UE separately determines a downlink receiving frequency according to each first downlink signal, and uses the downlink receiving frequency to determine the transmission frequency of the uplink signal corresponding to the first downlink signal.
  • the transmission frequency of an uplink signal is determined based on the frequency obtained by adding the uplink and downlink frequency deviations to the downlink reception frequency of the first downlink signal with which the above-mentioned association relationship exists.
  • Step 102 Send each uplink signal based on the transmission frequency of each uplink signal.
  • the UE After the UE determines the transmission frequency of the uplink signal associated with each first downlink signal, it can send respective corresponding uplink signals to each TRP based on the transmission frequency, and use different transmission frequencies for uplink signal transmission. send.
  • Each TRP can receive the uplink signal that is associated with the first downlink signal sent by the UE, and determine the frequency offset based on the uplink signal for frequency pre-compensation, and send the pre-compensated transmission frequency to the UE.
  • the subsequent second downlink signal After the UE determines the transmission frequency of the uplink signal associated with each first downlink signal, it can send respective corresponding uplink signals to each TRP based on the transmission frequency, and use different transmission frequencies for uplink signal transmission. send.
  • Each TRP can receive the uplink signal that is associated with the first downlink signal sent by the UE, and determine the frequency offset based on the uplink signal for frequency pre-compensation, and send the pre-compensated transmission frequency to the UE.
  • the subsequent second downlink signal The subsequent second
  • the UE may determine the transmission frequency (frequency point) of the uplink signal transmitted to each transmission reception point according to the first downlink signal transmitted by each transmission reception point, and use the transmission frequency to perform each uplink signal respectively.
  • Signal transmission so that each transmission and reception point can obtain the Doppler frequency shift of the terminal relative to itself, so that frequency pre-compensation can be performed at each transmission and reception point to eliminate the Doppler shift and Doppler frequency on the terminal side.
  • first downlink signal and “second downlink signal” mentioned in the embodiments of this application are used to distinguish the downlink signals that the same TRP sends to the UE twice.
  • the signal may be a downlink signal sent to the UE for the first time. Based on the first downlink signal, the UE can not only determine the uplink signal associated with it, but also determine the transmission frequency used to send the uplink signal to the TRP.
  • the second downlink signal is a downlink signal sent after the TRP performs frequency pre-compensation, which can reduce channel estimation errors and improve downlink transmission performance. Note that the first downlink signal and the second downlink signal can be different signals, or two transmissions of the same signal.
  • this TRS is the first downlink signal; when it transmits the frequency pre-compensated TRS for the second time, this TRS is the second downlink signal .
  • the terminal determines the corresponding downlink reception frequency for each received first downlink signal, and determines the transmission frequency of each uplink signal based on the downlink reception frequency, and each first downlink signal
  • Each uplink signal has a preset association relationship, and each transmission and reception point can independently perform frequency offset estimation and pre-compensation. Since each transmission and reception point is pre-compensated for the downlink Doppler frequency offset, the error of the channel estimation is reduced and the performance of the downlink transmission is improved.
  • association relationship includes one or a combination of the following:
  • One or more channel characteristics and/or spatial transmission parameters of the uplink signal may be obtained by derivation of the first downlink signal
  • the receiving end of the uplink signal and the sending end of the first downlink signal are the same network equipment, that is, the receiving end of the uplink signal and the sending end of the first downlink signal are quasi co-located, QCL).
  • some characteristics of the channel experienced by the target signal can be obtained through the source signal; or, the spatial transmission parameters of the target signal may be obtained through the spatial reception parameters of the source signal. get.
  • the association relationship is a QCL relationship, and the types of the association relationship include one or more of the following:
  • Type 1 ('QCL-TypeA'): ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • Type 2 ('QCL-TypeB'): ⁇ Doppler shift,Doppler spread ⁇
  • Type 3 ('QCL-TypeC'): ⁇ Doppler shift, average delay ⁇
  • Type 4 (such as'QCL-TypeE', etc.): ⁇ Spatial parameter ⁇ or ⁇ spatial related information SpatialRelationInofo ⁇
  • the spatial transmission parameters of the target signal can be obtained through the spatial reception parameters of the source signal
  • Type 5 (such as'QCL-TypeF', etc.): ⁇ Doppler shift ⁇
  • Type 6 Frequency-related information, the transmission frequency of the target signal is determined according to the source signal
  • Type 7 A new type of QCL that includes Doppler shift.
  • association relationship may include one or more of the following. When multiple types are included, it can be type 1/2/3/5/ One of the combinations of 6+type 4:
  • the UE determines the Doppler frequency offset, Doppler spread, average delay, and delay spread of the uplink signal according to the first downlink signal.
  • the UE determines the Doppler shift and Doppler spread of the uplink signal according to the first downlink signal.
  • the UE determines the Doppler shift and average delay of the uplink signal according to the first downlink signal;
  • the UE determines the transmission beam of the uplink signal according to the downlink signal.
  • the UE uses the receive spatial filter of the downlink signal as the transmit spatial filter of the uplink signal.
  • the UE determines the Doppler shift of the uplink signal according to the first downlink signal. ;
  • the UE determines the frequency-related information of the uplink signal according to the first downlink signal, and so on.
  • association relationship may not be indicated in a QCL-type manner, but other indication methods. As long as the functions of the association relationship proposed in this application in advance are included in the embodiments of this application.
  • the uplink signal includes but is not limited to one or more of the following: SRS ((Sounding Reference Signal, sounding reference signal), RACH (Random Access Channel, that is, random access) Incoming Channel), PUSCH (Physical Uplink Shared Channel), PUCCH (Physical Uplink Control Channel), DMRS corresponding to PUSCH, and DMRS corresponding to PUCCH.
  • SRS (Sounding Reference Signal, sounding reference signal)
  • RACH Random Access Channel, that is, random access) Incoming Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • DMRS corresponding to PUSCH Physical Uplink Control Channel
  • the first downlink signal includes but is not limited to one or more of the following: SSB, TRS (Tracking Refernece Signal, tracking reference signal), and NZP-CSI RS (Non-zero power Channel state information) reference signal, non-zero power channel state information reference signal).
  • a downlink signal sent by the network side is the first downlink signal by one or more of the following methods:
  • the indication information on the network side may be, for example, the network side directly indicating which signals are the first downlink signals, that is, it is determined by the association relationship indicated by the network side.
  • the configuration information of the first downlink signal may be directly indicated in the configuration parameters of the downlink signal, for example.
  • the type of the downlink signal for example, all SSBs are considered to be the first downlink signal, or all TRSs are considered to be the first downlink signal; or, the protocol agrees to use certain sequences of downlink signals as the first downlink signal.
  • the uplink signal further determines the Doppler frequency offset, Doppler spread, average delay, delay spread, transmission beam, etc. of the uplink signal according to the first downlink signal.
  • the following embodiment introduces the described association relationship and how the network side configures or instructs the UE.
  • the network side indicates the association relationship to the UE through special signaling.
  • the signaling is in uplink configuration (for example, uplink-config).
  • the association relationship is indicated by TCI (Transmission Configuration Indicator) signaling.
  • TCI Transmission Configuration Indicator
  • the association relationship is included in the configuration information or trigger information of the uplink signal, that is, the network side indicates through the configuration information or trigger information of the uplink signal; accordingly, the UE is configured according to the configuration information of the uplink signal.
  • Information or trigger information determines the association relationship.
  • the configuration information of the uplink signal is sent through RRC (Radio Resource Control, radio resource control) signaling.
  • the configuration information of the uplink signal is sent through MAC-CE (Media Access Control Unit) signaling.
  • the trigger information of the uplink signal is indicated by DCI (Downlink Control Information) signaling.
  • the configuration information or trigger information of the uplink signal includes a plurality of information about the first downlink signal that has the association relationship with the uplink signal, that is, the configuration information or trigger information of the uplink signal Under the instruction, there are multiple first downlink signals that have an association relationship with the uplink signals.
  • the configuration information of the uplink signal contains multiple/multiple groups of TCI-state configuration information, and the network side also indicates the activated TCI-state to the UE.
  • the UE determines the type of association relationship and is related to the uplink signal according to the activated TCI-state.
  • the first downlink signal of the United Nations After receiving the first downlink signal activated by the activation signal sent by the network side, the UE sends the uplink signal to the network side.
  • the configuration information or trigger information of the uplink signal includes a plurality of information about the first downlink signal that has the association relationship with the uplink signal, that is, the configuration information or trigger information of the uplink signal Under the instruction, there are multiple first downlink signals that have an association relationship with the uplink signals. Each of the association relationships is associated with a trigger state, and when the uplink signal is triggered, the association relationship is determined according to the trigger state.
  • the configuration information of the uplink signal includes multiple/multiple groups of TCI-state configuration information, and the association relationship is associated with the trigger state and is indicated by the TCI-state. When the uplink signal is triggered, according to the trigger state, the terminal can obtain the type of the association relationship and the first downlink signal information associated with the uplink signal.
  • a TCI-state configuration is:
  • tci-StateId represents the identifier of the TCI-state
  • qcl-Type1 and qcl-Type2 represent the QCL type
  • referenceSignal represents the first downlink signal associated with the uplink signal. It may also be that the configuration information or trigger information of the uplink signal further includes identification information, and the identification information is used to indicate that the first downlink signal that has the association relationship with the uplink signal is in the first downlink signal. The location of the resource collection where the downlink signal is located.
  • multiple first downlink signals are stored in the same resource set, and the network side carries identification information through the configuration information or trigger information of the uplink signal, and the identification information is used to indicate which downlink signal in the resource set is used Associated with the uplink signal, the UE determines the first downlink signal in the resource set based on the location indicated by the identification information.
  • Another way is to implicitly indicate the association relationship between the uplink signal and the first downlink signal.
  • the configuration information or trigger information of the uplink signal and the first downlink signal includes identification information for indicating that there is an association relationship.
  • the configuration/trigger information of the uplink signal and the first downlink signal includes identification information, and when an uplink signal has the same identification information as the first downlink signal, the two signals have an association relationship.
  • the type of association relationship is pre-agreed (for example, stipulated in an agreement). or,
  • the configuration information or trigger information of the first downlink signal includes identification information, all uplink signals are configured in the same resource set, and each uplink signal in the resource set corresponds to the identification information one-to-one.
  • the configuration/trigger information of the first downlink signal includes specific identification information, all the uplink signals corresponding to the TRP are configured in the same resource set, and the uplink signals in the resource set correspond to the identification information
  • the TRPs correspond one-to-one according to a predefined relationship. According to the identification information, the corresponding uplink signal can be determined. or,
  • the first downlink signal and the uplink signal are respectively configured in different resource sets, and there is a predefined one-to-one correspondence between the uplink resources included in the different resource sets and the first downlink resource.
  • the first downlink signals are all configured in the same resource set type
  • the uplink signals are all configured in the same resource set type
  • the type of the uplink signal and the type of the first downlink signal may be the same Or different.
  • the association relationship is included in the configuration information or trigger information of the first downlink signal, that is, the network side indicates through the configuration information or trigger information of the first downlink signal; accordingly, the UE according to The configuration information or trigger information of the first downlink signal determines the association relationship.
  • the configuration information of the first downlink signal includes information about a plurality of uplink signals that have the association relationship with the first downlink signal, that is, the configuration information or trigger information of the first downlink signal Under the instruction of, there are multiple uplink signals that have an association relationship with the first downlink signal.
  • the UE may directly determine the uplink signal associated with the first downlink signal according to the configuration information.
  • the UE may also determine the uplink signal having the association relationship with the first downlink signal according to the activation signal sent by the network side.
  • the network side may also indicate the activated configuration information to the UE, and the UE may determine the activated configuration information according to the activated configuration information.
  • the type of the association relationship and the uplink signal associated with the first downlink signal are determined.
  • the configuration information of the first downlink signal includes information about a plurality of uplink signals that have the association relationship with the first downlink signal, that is, the configuration information or trigger information of the first downlink signal Under the instruction of, there are multiple uplink signals that have an association relationship with the first downlink signal.
  • Each of the association relationships is associated with a trigger state.
  • the configuration information of the first downlink signal includes multiple/ The configuration information of multiple sets of TCI-states, and the association relationship is associated with the trigger state, and is indicated by the TCI-state.
  • the UE can obtain the type of the association relationship and the uplink signal information associated with the first downlink signal.
  • the configuration information or trigger information of the first downlink signal further includes identification information, and the identification information is used to indicate that the uplink signal that has the association relationship with the first downlink signal is in the The position of the resource set where the uplink signal is located.
  • the uplink signal and the first downlink signal are both aperiodic signals, and the trigger signaling of the uplink signal simultaneously triggers the first downlink signal associated therewith, and the first downlink signal The trigger signaling of the trigger triggers the uplink signal associated with it at the same time.
  • the trigger mode is applicable to all types of association relationships.
  • the trigger mode is only applicable to specific types of association relationships.
  • the UE sends each uplink signal based on the transmission frequency of each uplink signal, including any one or a combination of the following:
  • Each of the uplink signals is configured on different time resources, that is, each of the uplink signals is sent in a time division multiplexing manner.
  • uplink signals corresponding to different TRPs are configured on different time resources of the same frequency domain resource, for example, different symbols, different time slots, and different REs. This method can avoid inter-subcarrier interference caused by multiple uplink signals with inconsistent transmission frequency points, but it will take up more time and resources.
  • each of the uplink signals is configured on different frequency domain resources, and a guard interval is left between each other, that is, each of the uplink signals is frequency-division multiplexed, and a guard interval is left between different uplink signals send.
  • the uplink signals corresponding to different TRPs are configured on different frequency domain resources at the same time, and a guard interval is left between each other, and the guard interval may be at the subcarrier level, PRB level, or the like. This method can save time and resources, and can avoid inter-subcarrier interference caused by multiple uplink signals with inconsistent transmission frequency points.
  • Each of the uplink signals is not simultaneously transmitted with uplink signals for other purposes.
  • the terminal determines the corresponding downlink reception frequency for each received first downlink signal, and determines the transmission frequency of each uplink signal based on the downlink reception frequency, and each first downlink signal
  • Each uplink signal has a preset association relationship, and each transmission and reception point can independently perform frequency offset estimation and pre-compensation. Since each transmission and reception point is pre-compensated for the downlink Doppler frequency offset, the signal from each transmission and reception point that the UE sees is the compensated Doppler frequency offset. If there is no error, the Doppler frequency offset is completely compensated, and the signal from each transmission and reception point seen by the UE has no Doppler frequency offset, which reduces the error of channel estimation and improves the downlink Transmission performance.
  • Fig. 2 is a schematic flow chart of a signal transmission method provided by another embodiment of the application.
  • the execution subject of the method may be a network device such as a TRP or a TRP group.
  • TRP network device
  • the following takes TRP as an example for introduction.
  • the method at least Including the following steps:
  • Step 200 Send a first downlink signal to a terminal, so that the terminal can determine a transmission frequency of an uplink signal associated with the first downlink signal according to a downlink reception frequency corresponding to the first downlink signal;
  • the UE receives the first downlink signal respectively issued by multiple transmission receiving points TRP, that is, for example, in the HST-SFN scenario, including multiple transmission receiving points TRP, each TRP will enter the HST-SFN
  • the UEs in the scenario send their respective first downlink signals.
  • each TRP All the first downlink signals delivered to the UE have an association relationship with an uplink signal, and the UE sends the uplink signal based on the association relationship.
  • the UE may first determine the downlink reception frequency corresponding to each first downlink signal.
  • the downlink receiving frequency in the embodiment of the present application refers to the receiving frequency at which the UE receives the first downlink signal.
  • the UE may separately determine the transmission frequency of each uplink signal associated with each first downlink signal according to the downlink receiving frequency corresponding to each first downlink signal.
  • Step 201 Receive an uplink signal that is sent by the terminal based on the transmission frequency and has the association relationship with the first downlink signal;
  • Step 202 Determine a frequency offset based on the uplink signal, and determine the transmission frequency of the second downlink signal.
  • the UE After the UE determines the transmission frequency of the uplink signal associated with each first downlink signal, it can send respective corresponding uplink signals to each TRP based on the transmission frequency, and use different transmission frequencies for uplink signal transmission. send.
  • Each TRP can receive the uplink signal that is associated with the first downlink signal sent by the UE, and determine the frequency offset based on the uplink signal to perform frequency pre-compensation, and give the pre-compensated transmission frequency to the UE.
  • the network includes multiple TRPs, and each TRP sends a different first downlink signal.
  • Each TRP determines a frequency offset based on the uplink signal having the association relationship with the first downlink signal sent by itself, and uses the frequency offset to determine the transmission frequency of the second downlink signal sent by itself.
  • the network contains multiple TRPs, and the multiple TRPs are grouped.
  • Each TRP includes one or more TRPs.
  • Each TRP group sends different first downlink signals (each TRP group may have one or more TRPs sending the first downlink signal).
  • Each TRP group determines its own corresponding frequency offset based on the uplink signal that has the associated relationship with the first downlink signal sent by it, and uses the frequency offset to determine the transmission of the second downlink signal sent by the TRP contained in it. frequency.
  • the UE may determine the transmission frequency (and/or frequency point) of the uplink signal transmitted to each transmission reception point according to the first downlink signal transmitted by each transmission reception point, and use the transmission frequency respectively. Perform the transmission of each uplink signal so that each transmission and reception point can obtain the Doppler frequency shift of the terminal relative to itself, so that the frequency precompensation can be performed at each transmission and reception point to eliminate the Doppler frequency shift and the Doppler frequency shift on the terminal side. Doppler expansion.
  • first downlink signal and “second downlink signal” mentioned in the embodiments of this application are used to distinguish the downlink signals that the same TRP sends to the UE twice.
  • the signal may be a downlink signal sent to the UE for the first time. Based on the first downlink signal, the UE can not only determine the uplink signal associated with it, but also determine the transmission frequency used to send the uplink signal to the TRP.
  • the second downlink signal is a downlink signal sent after the TRP performs frequency pre-compensation, which can reduce channel estimation errors and improve downlink transmission performance. Note that the first downlink signal and the second downlink signal can be different signals, or two transmissions of the same signal.
  • this TRS is the first downlink signal; when it transmits the frequency pre-compensated TRS for the second time, this TRS is the second downlink signal .
  • the terminal determines the corresponding downlink reception frequency for each received first downlink signal, and determines the transmission frequency of each uplink signal based on the downlink reception frequency, and each first downlink signal
  • Each uplink signal has a preset association relationship, and each transmission and reception point can independently perform frequency offset estimation and pre-compensation. Since each transmission and reception point is pre-compensated for the downlink Doppler frequency offset, the error of the channel estimation is reduced and the performance of the downlink transmission is improved.
  • the network device configures or instructs the association relationship between the uplink signal and the downlink signal, so that the terminal can determine the transmission frequency (and/or frequency point) of the uplink signal according to the downlink signal.
  • a way for a terminal to determine the transmission frequency of an uplink signal based on a downlink signal is: the terminal determines its corresponding downlink frequency (and/or frequency) based on a downlink signal, and then based on the downlink frequency and the difference between the uplink and downlink frequencies, the uplink can be determined.
  • the frequency (and/or frequency point) of the signal For example, if the downlink frequency determined by the terminal is f DL , and the uplink frequency difference is f d larger than the downlink frequency, the uplink frequency can be determined to be f DL +f d .
  • the steps of configuring the association relationship of the TRP and delivering the first downlink signal to the UE may be in no particular order.
  • the UE uses the detected first downlink signal to determine the transmission frequency (for example, frequency point) of the uplink signal with the above-mentioned association relationship according to the configured or indicated association relationship, and according to the configuration or the associated relationship of the uplink signal. Instruct to transmit the uplink signal on the transmission frequency.
  • Each TRP receives an uplink signal corresponding to itself, and the TRP uses the uplink signal corresponding to it to determine a frequency offset, and uses the frequency offset to determine the transmission frequency of subsequent downlink transmissions (frequency precompensation is performed on the transmission of the downlink signal).
  • the uplink signal corresponding to the TRP refers to the uplink signal that has the above-mentioned association relationship with the downlink signal sent by the TRP.
  • the step 202 may include:
  • Step 2021 Determine a subsequent frequency adjustment value of the downlink signal based on the frequency offset
  • Step 2022 Use the frequency adjustment value to determine the transmission frequency of the subsequent downlink signal (the second downlink signal).
  • the TRP receives the uplink signal corresponding to it, performs frequency offset estimation, and uses the frequency offset estimation to obtain a frequency offset value for pre-compensation.
  • the pre-compensated frequency offset value of a subsequent downlink signal sent by a TRP is equal to a function of the frequency offset estimated value obtained by the TRP using an uplink signal that has an associated relationship with the first downlink signal sent by the TRP.
  • the pre-compensated frequency offset value of a subsequent downlink signal sent by a TRP is equal to the frequency offset estimated value obtained by the TRP using an uplink signal that is associated with the first downlink signal sent by the TRP.
  • the pre-compensated frequency offset value of a subsequent downlink signal sent by a TRP is equal to the negative value of the frequency offset estimated value obtained by the TRP using an uplink signal that is associated with the first downlink signal sent by the TRP.
  • the pre-compensated frequency offset value of a subsequent downlink signal sent by a TRP is equal to half of the frequency offset estimated value obtained by the TRP using an uplink signal that is associated with the first downlink signal sent by the TRP.
  • the pre-compensated frequency offset value of the subsequent downlink signal sent by a TRP is equal to the negative value of half of the frequency offset estimated value obtained by the TRP using the uplink signal associated with the first downlink signal sent by the TRP. .
  • the pre-compensated frequency offset value of subsequent downlink signals sent by one TRP for all TRPs in a TRP group is equal to the frequency offset of the TRP group's use and self-transmission.
  • the first downlink signal has a function of the estimated value of the frequency offset obtained from the uplink signal with the associated relationship.
  • the pre-compensated frequency offset value of subsequent downlink signals sent by all TRPs in a TRP group is equal to the frequency offset estimation value obtained by the TRP group using an uplink signal that is associated with the first downlink signal sent by itself. .
  • the pre-compensated frequency offset value of subsequent downlink signals sent by all TRPs in a TRP group is equal to the frequency offset estimation value obtained by the TRP group using an uplink signal that is associated with the first downlink signal sent by itself.
  • the pre-compensated frequency offset value of subsequent downlink signals sent by all TRPs in a TRP group is equal to the frequency offset estimation value obtained by the TRP group using an uplink signal that is associated with the first downlink signal sent by itself.
  • the pre-compensated frequency offset value of subsequent downlink signals sent by all TRPs in a TRP group is equal to the frequency offset estimation value obtained by the TRP group using an uplink signal that is associated with the first downlink signal sent by itself.
  • the method of using the frequency adjustment value to determine the transmission frequency of the subsequent downlink signal is: determining the frequency of the subsequent downlink signal (the second downlink signal) as the original frequency and increasing the frequency adjustment value based on the frequency adjustment value.
  • the frequency point determines the transmission frequency of the subsequent downlink signal.
  • using the frequency adjustment value to determine the transmission frequency of the subsequent downlink signal is: determining the frequency of the subsequent downlink signal (the second downlink signal) as the original frequency minus the frequency adjustment value, based on The frequency point determines the transmission frequency of the subsequent downlink signal.
  • using the frequency adjustment value to determine the transmission frequency of the subsequent downlink signal is as follows: determining the transmission frequency of the subsequent downlink signal as the frequency before frequency pre-compensation plus the frequency adjustment value.
  • using the frequency adjustment value to determine the transmission frequency of the subsequent downlink signal is as follows: determining the transmission frequency of the subsequent downlink signal as the frequency before frequency pre-compensation minus the frequency adjustment value.
  • using the frequency adjustment value to determine the transmission frequency of the subsequent downlink signal includes: determining the downlink frequency point corresponding to each TRP as the original frequency point and increasing the frequency adjustment value corresponding to each TRP.
  • using the frequency adjustment value to determine the transmission frequency of the subsequent downlink signal includes: determining the downlink frequency point corresponding to each TRP as the original frequency point of each TRP minus the frequency adjustment value corresponding to each TRP.
  • using the frequency adjustment value to determine the transmission frequency of the subsequent downlink signal includes: determining a downlink frequency point corresponding to a TRP in a TRP group; adding the frequency point corresponding to the TRP group to the original frequency point of the TRP group Adjust the value.
  • using the frequency adjustment value to determine the transmission frequency of the subsequent downlink signal includes: determining the TRP downlink frequency point in a TRP group as the original frequency point of each TRP minus the frequency adjustment value corresponding to each TRP. .
  • the manner of using the frequency adjustment value to determine the transmission frequency of the subsequent downlink signal is that each TRP uses the frequency adjustment value to determine the transmission frequency of the subsequent downlink signal.
  • the frequency offset estimation result is f d
  • the pre-compensated frequency offset value is -f d/2
  • the frequency offset estimation algorithm can use some frequency offset estimation algorithms in the prior art.
  • TRP uses -f d/2 to precompensate the transmission frequency of the second downlink signal, so that only a small frequency offset remains when the UE receives the downlink signal.
  • the aforementioned frequency offset estimation is an estimation of the difference between the received frequency of the uplink signal and the actual uplink frequency.
  • the UE does not perform frequency pre-compensation.
  • TRP can always use the same frequency offset pre-compensation determination method.
  • the TRP uses a pre-compensation frequency determination method when the UE accesses the TRP for the first time, and uses another pre-compensation frequency determination method in the subsequent process. For example, when the UE first accesses, if the frequency offset value estimated by TRP is f d , TRP can use -f d/2 to precompensate the transmission frequency of the downlink signal; in the subsequent use the uplink signal for precompensation During frequency estimation, if the frequency offset value estimated by TRP is f d' , TRP can use -f d' to precompensate the transmission frequency of the downlink signal.
  • association relationship includes one or a combination of the following:
  • One or more channel characteristics and/or spatial transmission parameters of the uplink signal may be obtained by derivation of the first downlink signal
  • the receiving end of the uplink signal and the sending end of the first downlink signal are the same network equipment, that is, the receiving end of the uplink signal and the sending end of the first downlink signal are quasi co-located, QCL).
  • some characteristics of the channel experienced by the target signal can be obtained through the source signal; or, the spatial transmission parameters of the target signal may be obtained through the spatial reception parameters of the source signal. get.
  • the association relationship is a QCL relationship, and the types of the association relationship include one or more of the following:
  • Type 1 ('QCL-TypeA'): ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • Type 2 ('QCL-TypeB'): ⁇ Doppler shift,Doppler spread ⁇
  • Type 3 ('QCL-TypeC'): ⁇ Doppler shift, average delay ⁇
  • Type 4 (such as'QCL-TypeE', etc.): ⁇ Spatial parameter ⁇ or ⁇ spatial related information SpatialRelationInofo ⁇
  • the spatial transmission parameters of the target signal can be obtained through the spatial reception parameters of the source signal
  • Type 5 (such as'QCL-TypeF', etc.): ⁇ Doppler shift ⁇
  • Type 6 Frequency-related information, the transmission frequency of the target signal is determined according to the source signal
  • Type 7 A new type of QCL that includes Doppler shift.
  • association relationship may include one or more of the following. When multiple types are included, it can be type 1/2/3/5/ One of the combinations of 6+type 4:
  • the UE determines the Doppler frequency offset, Doppler spread, average delay, and delay spread of the uplink signal according to the first downlink signal.
  • the UE determines the Doppler shift and Doppler spread of the uplink signal according to the first downlink signal.
  • the UE determines the Doppler shift and average delay of the uplink signal according to the first downlink signal;
  • the UE determines the transmission beam of the uplink signal according to the downlink signal.
  • the UE uses the receive spatial filter of the downlink signal as the transmit spatial filter of the uplink signal.
  • the UE determines the Doppler shift of the uplink signal according to the first downlink signal. ;
  • the UE determines the frequency-related information of the uplink signal according to the first downlink signal, and so on.
  • association relationship may not be indicated in a QCL-type manner, but other indication methods. As long as the functions of the association relationship proposed in this application in advance are included in the embodiments of this application.
  • the uplink signal includes, but is not limited to, one or more of the following: SRS, RACH, PUSCH, PUCCH, DMRS corresponding to PUSCH, and DMRS corresponding to PUCCH.
  • the first downlink signal includes but is not limited to one or more of the following: SSB, TRS, and NZP-CSI RS.
  • the network side may instruct the UE to determine whether a downlink signal sent by the network side is the first downlink signal through one or more of the following methods:
  • the indication information on the network side may be, for example, the network side directly indicating which signals are the first downlink signals, that is, it is determined by the association relationship indicated by the network side.
  • the configuration information of the first downlink signal may be directly indicated in the configuration parameters of the downlink signal, for example.
  • the type of the downlink signal for example, all SSBs are considered to be the first downlink signal, or all TRSs are considered to be the first downlink signal; or, the protocol agrees to use certain sequences of downlink signals as the first downlink signal.
  • the uplink signal further determines the Doppler frequency offset, Doppler spread, average delay, delay spread, transmission beam, etc. of the uplink signal according to the first downlink signal.
  • the following embodiment introduces the described association relationship and how the network side configures or instructs the UE.
  • the network side indicates the association relationship to the UE through special signaling.
  • the signaling is in uplink configuration (for example, uplink-config).
  • the association relationship is indicated by TCI signaling. For example, configure TCI signaling in the uplink configuration.
  • the association relationship is included in the configuration information or trigger information of the uplink signal, that is, the network side indicates through the configuration information or trigger information of the uplink signal; accordingly, the UE is configured according to the configuration information of the uplink signal.
  • Information or trigger information determines the association relationship.
  • the configuration information of the uplink signal is sent through RRC signaling.
  • the configuration information of the uplink signal is sent through MAC-CE signaling.
  • the trigger information of the uplink signal is indicated by DCI signaling.
  • the configuration information or trigger information of the uplink signal includes a plurality of information about the first downlink signal that has the association relationship with the uplink signal, that is, the configuration information or trigger information of the uplink signal Under the instruction, there are multiple first downlink signals that have an association relationship with the uplink signals.
  • the configuration information of the uplink signal contains multiple/multiple groups of TCI-state configuration information, and the network side also indicates the activated TCI-state to the UE.
  • the UE determines the type of association relationship and is related to the uplink signal according to the activated TCI-state.
  • the network side sends an activation signal for the UE to determine the first downlink signal that has the associated relationship with the uplink signal. After the UE receives the first downlink signal activated by the activation signal sent by the network side, it sends the signal to the network The side sends the uplink signal.
  • the configuration information or trigger information of the uplink signal includes a plurality of information about the first downlink signal that has the association relationship with the uplink signal, that is, the configuration information or trigger information of the uplink signal Under the instruction, there are multiple first downlink signals that have an association relationship with the uplink signals. Each of the association relationships is associated with a trigger state, and the network side sends a trigger signal to the uplink signal for the UE to determine the association relationship according to the trigger state.
  • the configuration information of the uplink signal includes multiple/multiple groups of TCI-state configuration information, and the association relationship is associated with the trigger state and is indicated by the TCI-state.
  • the configuration information or trigger information of the uplink signal further includes identification information, and the identification information is used to indicate that the first downlink signal that has the association relationship with the uplink signal is in the first downlink signal.
  • the location of the resource collection where the downlink signal is located Specifically, multiple first downlink signals are stored in the same resource set, and the network side carries identification information through the configuration information or trigger information of the uplink signal, and the identification information is used to indicate which downlink signal in the resource set is used Associated with the uplink signal, the UE determines the first downlink signal in the resource set based on the location indicated by the identification information.
  • Another way is to implicitly indicate the association relationship between the uplink signal and the first downlink signal.
  • the configuration information or trigger information of the uplink signal and the first downlink signal includes identification information for indicating an association relationship.
  • the configuration/trigger information of the uplink signal and the first downlink signal includes identification information, and when an uplink signal has the same identification information as the first downlink signal, the two signals have an association relationship.
  • the type of association relationship is pre-agreed (for example, stipulated in an agreement). or,
  • the configuration information or trigger information of the first downlink signal includes identification information, all uplink signals are configured in the same resource set, and each uplink signal in the resource set corresponds to the identification information one-to-one.
  • the configuration/trigger information of the first downlink signal includes specific identification information, all the uplink signals corresponding to the TRP are configured in the same resource set, and the uplink signals in the resource set correspond to the identification information
  • the TRPs correspond one-to-one according to a predefined relationship. According to the identification information, the corresponding uplink signal can be determined. or,
  • the first downlink signal and the uplink signal are respectively configured in different resource sets, and there is a predefined one-to-one correspondence between the uplink resources included in the different resource sets and the first downlink resource.
  • the first downlink signals are all configured in the same resource set type
  • the uplink signals are all configured in the same resource set type
  • the type of the uplink signal and the type of the first downlink signal may be the same Or different.
  • the association relationship is included in the configuration information or trigger information of the first downlink signal, that is, the network side indicates through the configuration information or trigger information of the first downlink signal; accordingly, the UE according to The configuration information or trigger information of the first downlink signal determines the association relationship.
  • the configuration information of the first downlink signal includes information about a plurality of uplink signals that have the association relationship with the first downlink signal, that is, the configuration information or trigger information of the first downlink signal Under the instruction of, there are multiple uplink signals that have an association relationship with the first downlink signal.
  • the UE may directly determine the uplink signal associated with the first downlink signal according to the configuration information.
  • the network side sends an activation signal for the UE to determine the uplink signal that has the association relationship with the first downlink signal, and the UE may determine that it is related to the first downlink signal according to the activation signal sent by the network side.
  • the network side further indicates the activated configuration information to the UE, and the UE determines the type of the association relationship and the uplink signal associated with the first downlink signal according to the activated configuration information.
  • the configuration information of the first downlink signal includes information about a plurality of uplink signals that have the association relationship with the first downlink signal, that is, the configuration information or trigger information of the first downlink signal Under the instruction of, there are multiple uplink signals that have an association relationship with the first downlink signal.
  • Each of the association relationships is associated with a trigger state, and the network side sends a trigger signal to trigger the first downlink signal for the UE to determine the association relationship according to the trigger state, specifically, the configuration information of the first downlink signal It contains multiple/multiple groups of TCI-state configuration information, and the association relationship is associated with the trigger state, which is indicated by the TCI-state.
  • the UE can obtain the type of the association relationship and the uplink signal information associated with the first downlink signal.
  • the configuration information or trigger information of the first downlink signal further includes identification information, and the identification information is used to indicate that the uplink signal that has the association relationship with the first downlink signal is in the The position of the resource set where the uplink signal is located.
  • the uplink signal and the first downlink signal are both aperiodic signals, and the trigger signaling of the uplink signal simultaneously triggers the first downlink signal associated therewith, and the first downlink signal The trigger signaling of the trigger triggers the uplink signal associated with it at the same time.
  • the trigger mode is applicable to all types of association relationships.
  • the trigger mode is only applicable to specific types of association relationships.
  • each uplink signal includes any one or a combination of the following:
  • Each of the uplink signals is configured on different time resources.
  • the uplink signals corresponding to different TRPs are configured on different time resources of the same frequency domain resource, for example, different symbols, different time slots, and different REs. Wait. This method can avoid inter-subcarrier interference caused by multiple uplink signals with inconsistent transmission frequency points, but it will occupy more time resources.
  • each of the uplink signals is configured on different frequency domain resources, and a guard interval is left between each other.
  • the uplink signals corresponding to different TRPs are configured on different frequency domain resources at the same time, and each other A guard interval is left between, and the guard interval may be sub-carrier level, PRB level, etc. This method can save time and resources, and can avoid inter-subcarrier interference caused by multiple uplink signals with inconsistent transmission frequency points.
  • Each of the uplink signals is not simultaneously transmitted with uplink signals for other purposes.
  • the terminal determines the corresponding downlink reception frequency for each received first downlink signal, and determines the transmission frequency of each uplink signal based on the downlink reception frequency, and each first downlink signal
  • Each uplink signal has a preset association relationship, and each transmission and reception point can independently perform frequency offset estimation and pre-compensation. Since each transmission and reception point is pre-compensated for the downlink Doppler frequency offset, the signal from each transmission and reception point that the UE sees is the compensated Doppler frequency offset. If there is no error, the Doppler frequency offset is completely compensated, and the signal from each transmission and reception point seen by the UE has no Doppler frequency offset, which reduces the error of channel estimation and improves the downlink Transmission performance.
  • a BBU is connected to 4 TRPs, specifically 4 RRHs.
  • the order in which the train passes through these RRHs will be RRH1, RRH2, RRH3, and RRH4.
  • Table 3 shows the frequency comparison table when the downlink signal from each RRH arrives at the UE before and after frequency pre-compensation.
  • the Doppler frequency offset estimates of the RRH and the terminal are ideal estimates
  • the unidirectional Doppler frequency shifts of RRH1, RRH2, RRH3, and RRH4 are f 1 , f 2 , f 3 and f 4 , respectively, and the frequency pre-compensation value It is one-half of the Doppler frequency offset determined by the RRH based on the received uplink signal. It can be seen that, in the embodiment of the present application, the Doppler shift of the downlink signal from each RRH received by the UE can be eliminated, so that the UE can obtain better downlink reception performance.
  • Table 3 A frequency value of the downlink signal received by the UE from each RRH point before and after frequency pre-compensation.
  • FIG. 3 is a schematic diagram of the composition of a terminal provided by an embodiment of the application.
  • the terminal includes a first receiving module 301, a first determining module 302, and a first sending module 303, where:
  • the first receiving module 301 is configured to receive multiple first downlink signals; the first determining module 302 is configured to determine the downlink reception frequency corresponding to each of the first downlink signals, and based on the downlink reception corresponding to each first downlink signal The frequency respectively determines the transmission frequency of each uplink signal associated with each first downlink signal; the first sending module 303 is configured to send each uplink signal based on the transmission frequency of each uplink signal; wherein, based on the transmission frequency of each uplink signal; The downlink signal has the frequency offset determined by the uplink signal with the association relationship, and is used to determine the transmission frequency of the second downlink signal.
  • the terminal determines the corresponding downlink reception frequency for each received first downlink signal, and determines the transmission frequency of each uplink signal based on the downlink reception frequency.
  • Each first downlink signal is
  • Each uplink signal has a preset association relationship, and each transmission and reception point can perform frequency offset estimation and pre-compensation independently. Since each transmission and reception point is pre-compensated for the downstream Doppler frequency offset, the signal from each transmission and reception point that the UE sees is the compensated Doppler frequency offset. If there is no error, the Doppler frequency offset is completely compensated, and the signal from each transmission and reception point seen by the UE has no Doppler frequency offset, which reduces the error of channel estimation and improves the downlink Transmission performance.
  • FIG. 4 is a schematic structural diagram of a terminal provided by another embodiment of the application.
  • the terminal 400 may include: at least one processor 401, a memory 402, at least one network interface 404, and other user interfaces 403.
  • the various components in the terminal 400 are coupled together through the bus system 405.
  • the bus system 405 is used to implement connection and communication between these components.
  • the bus system 405 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 405 in FIG. 4.
  • the user interface 403 may include a display, a keyboard, or a pointing device, such as a mouse, a trackball (trackball), a touch panel, or a touch screen.
  • a pointing device such as a mouse, a trackball (trackball), a touch panel, or a touch screen.
  • the memory 402 in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • SLDRAM Direct Rambus RAM
  • the memory 402 of the system and method described in the various embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 402 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them, such as the operating system 4021 and the application program 4022.
  • the operating system 4021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 4022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • the program for implementing the method of the embodiment of the present application may be included in the application program 7022.
  • the processor 401 by calling a computer program or instruction stored in the memory 402, specifically, a computer program or instruction stored in the application program 4022, the processor 401 is configured to:
  • the frequency offset determined based on the uplink signal having the association relationship with the first downlink signal is used to determine the transmission frequency of the second downlink signal.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 401 or implemented by the processor 401.
  • the processor 401 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 401 or instructions in the form of software.
  • the aforementioned processor 401 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • Programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 402, and the processor 401 reads the information in the memory 402, and completes the steps of the foregoing method in combination with its hardware.
  • the embodiments described in this application can be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the described technology can be implemented by modules (for example, procedures, functions, etc.) that execute the functions described in the embodiments of the present application.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • association relationship includes one or a combination of the following:
  • One or more channel characteristics and/or spatial transmission parameters of the uplink signal may be obtained by derivation of the first downlink signal
  • the receiving end of the uplink signal and the sending end of the first downlink signal are the same network device.
  • association relationship is a QCL relationship
  • type of the association relationship includes one or more of the following:
  • Type 1 ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ;
  • Type 2 ⁇ Doppler shift, Doppler spread ⁇
  • Type 3 ⁇ Doppler shift, average delay ⁇
  • Type 4 ⁇ Spatial parameter ⁇ or ⁇ spatial related information SpatialRelationInofo ⁇ ;
  • Type 5 ⁇ Doppler shift ⁇
  • Type 6 Frequency related information
  • Type 7 A new type of QCL that includes Doppler shift.
  • the association relationship is determined according to configuration information or trigger information of the uplink signal.
  • the processor is further configured to:
  • the configuration information or trigger information of the uplink signal includes information of a plurality of the first downlink signals that have the association relationship with the uplink signal; accordingly, the method further includes: according to the activation sent by the network side The signal determines the first downlink signal that has the association relationship with the uplink signal; or it further includes that each of the association relationships is associated with a trigger state, and when the uplink signal is triggered, according to the trigger state Determine the association relationship;
  • the configuration information or trigger information of the uplink signal further includes identification information, and the identification information is used to indicate that the first downlink signal that has the association relationship with the uplink signal is located at the location of the first downlink signal. The location of the resource collection.
  • the configuration information or trigger information of the uplink signal and the first downlink signal includes identification information for indicating an association relationship
  • the configuration information or trigger information of the first downlink signal includes identification information, all uplink signals are configured in the same resource set, and each uplink signal in the resource set corresponds to the identification information one-to-one;
  • the first downlink signal and the uplink signal are respectively configured in different resource sets, and there is a predefined one-to-one correspondence between the uplink resources included in the different resource sets and the first downlink resource.
  • the association relationship is determined according to configuration information or trigger information of the first downlink signal.
  • the processor is further configured to:
  • the configuration information of the first downlink signal includes information about a plurality of uplink signals having the association relationship with the first downlink signal; accordingly, the method further includes: determining according to the activation signal sent by the network side The uplink signal that has the association relationship with the first downlink signal; or further includes that each of the association relationships is associated with a trigger state, and when the first downlink signal is triggered, according to the trigger The state determines the association relationship;
  • the configuration information or trigger information of the first downlink signal also includes identification information, and the identification information is used to indicate that the uplink signal that has the association relationship with the first downlink signal is located at the location of the uplink signal. The location of the resource collection.
  • the sending of each uplink signal based on the transmission frequency of each uplink signal includes any one or a combination of the following:
  • Each of the uplink signals is configured on different time resources
  • Each of the uplink signals is configured on different frequency domain resources, and a guard interval is left between each other;
  • Each of the uplink signals is not simultaneously transmitted with uplink signals for other purposes.
  • the uplink signal includes but is not limited to one or more of the following: SRS, RACH, PUSCH, PUCCH, DMRS corresponding to PUSCH, and one or more of DMRS corresponding to PUCCH Multiple.
  • the first downlink signal includes but is not limited to one or more of the following: one or more of SSB, TRS, and NZP-CSI RS.
  • a downlink signal is the first downlink signal based on one or more of the following information:
  • the type of the downlink signal is the type of the downlink signal.
  • the terminal provided in the embodiment of the present application can implement the various processes implemented by the terminal in the foregoing embodiment, and in order to avoid repetition, details are not described herein again.
  • FIG. 5 is a schematic diagram of the structure of a terminal provided by another embodiment of the application.
  • the terminal can be a mobile phone, a tablet computer, a personal digital assistant (PDA), or an e-reader, a handheld game console, or a point of sale terminal. Sales, POS), in-vehicle electronic equipment (in-vehicle computer), etc.
  • the mobile terminal includes a radio frequency (RF) circuit 510, a memory 520, an input unit 530, a display unit 540, a processor 560, an audio circuit 570, a WiFi (Wireless Fidelity) module 580, and a power supply 590.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 5 does not constitute a limitation on the mobile phone, and may include more or fewer components than those shown in the figure, or combine certain components, or split certain components, or Different component arrangements.
  • the input unit 530 can be used to receive numeric or character information input by the user, and to generate signal input related to user settings and function control of the mobile terminal.
  • the input unit 530 may include a touch panel 5301.
  • the touch panel 5301 also called a touch screen, can collect the user's touch operations on or near it (for example, the user's operations on the touch panel 5301 with fingers, stylus, or any other suitable objects or accessories), and set it according to the preset
  • the specified program drives the corresponding connection device.
  • the touch panel 5301 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 560, and can receive and execute the commands sent by the processor 560.
  • the touch panel 5301 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 530 may also include other input devices 5302, and the other input devices 5302 may be used to receive inputted numeric or character information and generate key signal inputs related to user settings and function control of the mobile terminal.
  • other input devices 5302 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, optical mice (optical mice are touch sensitive that do not display visual output).
  • function keys such as volume control buttons, switch buttons, etc.
  • trackballs such as volume control buttons, switch buttons, etc.
  • mice joysticks
  • optical mice optical mice are touch sensitive that do not display visual output.
  • the display unit 540 can be used to display information input by the user or information provided to the user and various menu interfaces of the mobile terminal.
  • the display unit 540 may include a display panel 5401.
  • the display panel 5401 can be configured with the display panel 5401 in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), etc.
  • the touch panel 5301 can cover the display panel 5401 to form a touch screen.
  • the touch screen detects a touch operation on or near it, it is transmitted to the processor 560 to determine the type of touch event, and then the processor 560 provides corresponding visual output on the touch screen according to the type of touch event.
  • the touch screen includes an application program interface display area and a common control display area.
  • the arrangement of the display area of the application program interface and the display area of the commonly used controls is not limited, and can be arranged up and down, left and right, etc., which can distinguish the two display areas.
  • the application program interface display area can be used to display the application program interface. Each interface may include at least one application icon and/or widget desktop control and other interface elements.
  • the application program interface display area can also be an empty interface that does not contain any content.
  • the commonly used control display area is used to display controls with a higher usage rate, such as application icons such as setting buttons, interface numbers, scroll bars, and phonebook icons.
  • the RF circuit 510 can be used for receiving and sending signals during information transmission or communication. In particular, after receiving the downlink information on the network side, it is processed by the processor 560; in addition, the designed uplink data is sent to the network side.
  • the RF circuit 510 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 510 can also communicate with the network and other devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division) Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), Email, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • Email Short Messaging Service
  • the memory 520 is used to store software programs and modules, and the processor 560 executes various functional applications and data processing of the mobile terminal by running the software programs and modules stored in the memory 520.
  • the memory 520 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of the mobile terminal, etc.
  • the memory 520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 560 is the control center of the mobile terminal. It uses various interfaces and lines to connect the various parts of the entire mobile phone, runs or executes the software programs and/or modules stored in the first memory 5201, and calls the software programs and/or modules stored in the second memory.
  • the data in 5202 executes various functions of the mobile terminal and processes data, so as to monitor the mobile terminal as a whole.
  • the processor 560 may include one or more processing units.
  • the processor 560 is configured to receive a plurality of first downlink signals; determine The downlink receiving frequency corresponding to each first downlink signal is determined, and the transmission frequency of each uplink signal associated with each first downlink signal is determined based on the downlink receiving frequency corresponding to each first downlink signal; The transmission frequency of the signal sends each of the uplink signals; wherein the frequency offset determined based on the uplink signal having the association relationship with the first downlink signal is used to determine the transmission frequency of the second downlink signal.
  • the terminal provided in the embodiment of the present application can implement the various processes implemented by the terminal in the foregoing embodiment, and in order to avoid repetition, details are not described herein again.
  • Fig. 6 is a schematic diagram of the composition of a network device provided by an embodiment of the application.
  • the network device may be a TRP or a TRP group for a transmission receiving point.
  • the TRP includes a second sending module 601, a second receiving module 602, and a second receiving module 602. Two determining module 603, where:
  • the second sending module 601 is configured to send a first downlink signal to the terminal, so that the terminal can determine the uplink signal associated with the first downlink signal according to the downlink receiving frequency corresponding to the first downlink signal. Transmission frequency
  • the second receiving module 602 is configured to receive an uplink signal that is sent by the terminal based on the transmission frequency and has the associated relationship with the first downlink signal;
  • the second determining module 603 is configured to determine a frequency offset based on the uplink signal, and determine the transmission frequency of the second downlink signal.
  • the terminal determines the corresponding downlink reception frequency for each received first downlink signal, and determines the transmission frequency of each uplink signal based on the downlink reception frequency.
  • Each first downlink signal is
  • Each uplink signal has a preset association relationship, and each transmission and reception point can perform frequency offset estimation and pre-compensation independently. Since each transmission and reception point is pre-compensated for the downlink Doppler frequency offset, the signal from each transmission and reception point that the UE sees is the compensated Doppler frequency offset. If there is no error, the Doppler frequency offset is completely compensated, and the signal from each transmission and reception point seen by the UE has no Doppler frequency offset, which reduces the error of channel estimation and improves the downlink Transmission performance.
  • FIG. 7 is a schematic diagram of the composition of a network device provided by another embodiment of the application.
  • the network device 700 may include at least one processor 701, a memory 702, at least one other user interface 703, and a transceiver 704.
  • the various components in the base station 700 are coupled together through the bus system 705.
  • the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clarity, various buses are marked as the bus system 705 in FIG. 7.
  • the bus system may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 701 and the memory 702
  • the various circuits of the representative memory are linked together.
  • the bus system can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art. Therefore, the embodiments of the present application no longer select them. describe.
  • the bus interface provides the interface.
  • the transceiver 704 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 703 may also be an interface that can externally and internally connect the required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the memory 702 in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the memory 702 of the system and method described in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the processor 701 is responsible for managing the bus system and general processing.
  • the memory 702 can store computer programs or instructions used by the processor 701 when performing operations.
  • the processor 1001 can be used for:
  • the terminal Send a first downlink signal to the terminal, so that the terminal can determine the transmission frequency of the uplink signal associated with the first downlink signal according to the downlink reception frequency corresponding to the first downlink signal; and receive the terminal An uplink signal sent based on the transmission frequency and having the association relationship with the first downlink signal; a frequency offset is determined based on the uplink signal, and a transmission frequency of the second downlink signal is determined.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 702, and the processor 701 reads the information in the memory 702, and completes the steps of the foregoing method in combination with its hardware.
  • the embodiments described in this application can be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the described technology can be implemented by modules (for example, procedures, functions, etc.) that execute the functions described in the embodiments of the present application.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the determining the frequency offset based on the uplink signal and determining the transmission frequency of the second downlink signal includes:
  • the frequency adjustment value is used to determine the transmission frequency of the subsequent downlink signal.
  • association relationship includes one or a combination of the following:
  • One or more channel characteristics and/or spatial transmission parameters of the uplink signal may be obtained through derivation of the downlink signal
  • the receiving end of the uplink signal and the sending end of the downlink signal are the same network device.
  • association relationship is a QCL relationship
  • type of the association relationship includes one or more of the following:
  • Type 1 ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ;
  • Type 2 ⁇ Doppler shift, Doppler spread ⁇
  • Type 3 ⁇ Doppler shift, average delay ⁇
  • Type 4 ⁇ Spatial parameter ⁇ or ⁇ spatial related information SpatialRelationInofo ⁇ ;
  • Type 5 ⁇ Doppler shift ⁇
  • Type 6 Frequency related information
  • Type 7 A new type of QCL that includes Doppler shift.
  • the association relationship is indicated by configuration information or trigger information of the uplink signal.
  • the processor is further configured to:
  • the configuration information of the uplink signal includes a plurality of information of the first downlink signal that has the association relationship with the uplink signal; accordingly, the method further includes: the network side sends an activation signal for the The terminal determines the first downlink signal that has the association relationship with the uplink signal; or, each of the association relationships is associated with one or more trigger states, and the network side sends a trigger signal to trigger the uplink signal, For the terminal to determine the association relationship according to the trigger state;
  • the configuration information or trigger information of the uplink signal further includes identification information, and the identification information is used to indicate that the first downlink signal that has the association relationship with the uplink signal is located at the location of the first downlink signal. The location of the resource collection.
  • the configuration information or trigger information of the uplink signal and the first downlink signal includes identification information for indicating an association relationship
  • the configuration information or trigger information of the first downlink signal includes identification information, all uplink signals are configured in the same resource set, and each uplink signal in the resource set corresponds to the identification information one-to-one;
  • the first downlink signal and the uplink signal are respectively configured in different resource sets, and there is a predefined one-to-one correspondence between the uplink resources included in the resource set and the first downlink resources.
  • the association relationship is indicated by configuration information or trigger information of the first downlink signal.
  • the processor is further configured to:
  • the configuration information of the first downlink signal further includes information about a plurality of uplink signals having the association relationship with the first downlink signal; accordingly, the method further includes: the network side sends an activation signal for The terminal determines the uplink signal that has the association relationship with the first downlink signal; or, each of the association relationships is associated with a trigger state, and the network side sends a trigger signal to trigger the first downlink signal. Signal for the terminal to determine the association relationship according to the trigger state;
  • the configuration information or trigger information of the first downlink signal also includes identification information, and the identification information is used to indicate that the uplink signal that has the association relationship with the first downlink signal is located at the location of the uplink signal. The location of the resource collection.
  • each of the uplink signal transmission modes includes any one of the following or a combination thereof:
  • Each of the uplink signals is configured on different time resources
  • Each of the uplink signals is configured on different frequency domain resources, and a guard interval is left between each other;
  • Each of the uplink signals is not simultaneously transmitted with uplink signals for other purposes.
  • the uplink signal includes but is not limited to one or more of the following: SRS, RACH, PUSCH, PUCCH, DMRS corresponding to PUSCH, and DMRS corresponding to PUCCH.
  • the first downlink signal includes but is not limited to one or more of the following: SSB, TRS, and NZP-CSI RS.
  • a downlink signal is the first downlink signal:
  • the type of the downlink signal is the type of the downlink signal.
  • the network equipment provided in the embodiments of the present application can implement the various processes implemented by the network equipment in the foregoing embodiments. To avoid repetition, details are not described herein again.
  • the terminal and network device provided in the embodiments of the present application include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections between devices or units through some interfaces.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of a software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions to enable a computer device (which can be a personal computer, a server, Or a network device, etc.) or a processor executes all or part of the steps of the method described in each embodiment of the present application.
  • the computer storage medium is a nontransitory (English: nontransitory) medium, including: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the non-transitory computer-readable storage medium provided by the embodiments of the present application is specifically used to execute the signal transmission method procedures provided in the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

本申请实施例提供一种信号的传输方法、终端、网络设备和存储介质。该方法包括接收多个第一下行信号;确定各所述第一下行信号对应的下行接收频率,并基于各第一下行信号对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率;基于各上行信号的传输频率发送各所述上行信号;其中,基于与所述第一下行信号具有所述关联关系的上行信号所确定的频率偏移,用于确定第二下行信号的传输频率。本申请实施例中通过每个传输接收点都进行了下行多普勒频偏的预补偿,因此降低了信道估计的误差,提高了下行传输的性能。

Description

一种信号的传输方法、终端、网络设备和存储介质
相关申请的交叉引用
本申请要求于2020年03月05日提交的申请号为2020101486671,发明名称为“一种信号的传输方法、终端、网络设备和存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信号的传输方法、终端、网络设备和存储介质。
背景技术
多点协作在无线通信系统中是一种重要的技术手段。通过多个分布式传输接收点进行分布式传输,可以改善小区边缘的覆盖,降低越区切换带来的时延和信令开销。例如在高铁场景下,为了避免终端UE(User Equipment,用户设备)进行频繁的小区切换,通常采用SFN(Single Frequency Network,单频网)的部署方式,简称为HST-SFN(High Speed Train-Single Frequency Network,高铁单频网)场景。在HST-SFN场景下,一个小区cell包含多个传输接收点(例如RRH(Remote Radio Head,射频拉远头)),信号从多个传输接收点同时发出。当列车运行到相邻两个传输接收点之间时,来自于两个RRH的信号其中一个为负的多普勒频移,另一个为正的多普勒频移,这样会产生多普勒谱。由于列车移动速度很快,多普勒频移的变化范围有可能很大,从而导致终端不能很好地进行下行信号的解调。
为了解决终端接收到的来自不同的RRH存在相反的多普勒频移的问题,一种方法是在每个RRH分别进行多普勒频移的预补偿,以消除UE接收到的下行信号的多普勒扩展。但现有技术中在多点传输时,UE只确定出一个下行频点,并基于该下行频点进行上行信号的传输。由于各个RRH的地理位置和/或接收波束方向的不同,上行信号到达各个RRH经历的多普勒频移是不同的。由于RRH并不知道UE基于什么样的下行频点进行上行信号的传输,因此,RRH无法估计出下行或上行经历的多普勒频移,从而无法有效地进行多 普勒频移的预补偿。
发明内容
针对现有技术存在的问题,本申请实施例提供一种信号的传输方法、终端、网络设备和存储介质。
第一方面,本申请实施例提供一种信号的传输方法,包括:
接收多个第一下行信号;
确定各所述第一下行信号对应的下行接收频率,并基于各第一下行信号对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率;
基于各上行信号的传输频率发送各所述上行信号;
其中,基于与所述第一下行信号具有所述关联关系的上行信号所确定的频率偏移,用于确定第二下行信号的传输频率。
可选地,所述关联关系包括以下一种或其组合:
所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述第一下行信号推导获得;
所述上行信号的接收端与所述第一下行信号的发送端为同一个网络设备。
可选地,所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
类型1:{Doppler shift,Doppler spread,average delay,delay spread};
类型2:{Doppler shift,Doppler spread};
类型3:{Doppler shift,average delay};
类型4:{Spatial parameter}或{空间相关信息SpatialRelationInofo};
类型5:{Doppler shift};
类型6:频率相关信息。
可选地,所述关联关系根据所述上行信号的配置信息或触发信息进行确定。
可选地,所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;相应地,所述方法还包括:根据网络侧发送的激活信号确定与所述上行信号具有所述关联关系的所述第 一下行信号;或者还包括,每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系;
或者,
所述上行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。
可选地,在所述上行信号和所述第一下行信号的配置信息或触发信息中包含有用于指示具有所述关联关系的标识信息;
在所述第一下行信号的配置信息或触发信息中包含标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应;
所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述不同的资源集包含的上行资源和第一下行资源间具有预定义的一一对应关系。
可选地,所述关联关系根据所述第一下行信号的配置信息或触发信息进行确定。
可选地,所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;相应地,所述方法还包括:根据网络侧发送的激活信号确定与所述第一下行信号具有所述关联关系的所述上行信号;或者还包括,每个所述关联关系与一个触发状态相关联,当所述第一下行信号被触发时,根据触发状态确定所述关联关系;
或者,
所述第一下行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
可选地,所述基于各上行信号的传输频率发送各所述上行信号,包括以下任一种或其组合:
各所述上行信号被配置在不同的时间资源上;
各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔;
各所述上行信号不与其他用途的上行信号同时传输。
可选地,所述上行信号包括但不限于以下中的一种或多个:SRS、RACH、PUSCH、PUCCH、PUSCH对应的DMRS,以及PUCCH对应的DMRS。
可选地,所述第一下行信号包括但不限于以下中的一种或多个:SSB、TRS以及NZP-CSI RS。
可选地,基于以下信息的一种或多种,确定所述第一下行信号:
网络侧的指示信息;
所述下行信号的配置信息;
所述下行信号的类型。
第二方面,本申请实施例提供另一种信号的传输方法,包括:
向终端发送第一下行信号,以供所述终端根据所述第一下行信号对应的下行接收频率确定与所述第一下行信号具有关联关系的上行信号的传输频率;
接收所述终端基于所述传输频率发送的、与所述第一下行信号具有所述关联关系的上行信号;
基于所述上行信号确定频率偏移,确定第二下行信号的传输频率。
可选地,所述基于所述上行信号确定频率偏移,确定第二下行信号的传输频率,包括:
基于所述频率偏移,确定第二下行信号的频率调整值;
使用所述频率调整值,确定第二下行信号的传输频率。
可选地,所述关联关系包括以下一种或其组合:
所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述下行信号推导获得;
所述上行信号的接收端与所述下行信号的发送端为同一个网络设备。
可选地,所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
类型1:{Doppler shift,Doppler spread,average delay,delay spread};
类型2:{Doppler shift,Doppler spread};
类型3:{Doppler shift,average delay};
类型4:{Spatial parameter}/{空间相关信息SpatialRelationInofo};
类型5:{Doppler shift};
类型6:频率相关信息。
可选地,所述关联关系通过所述上行信号的配置信息或触发信息进行指示。
可选地,所述处理器还用于:所述上行信号的配置信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;相应地,所述方法还包括:网络侧发送激活信号以供所述终端确定与所述上行信号具有所述关联关系的所述第一下行信号;或者,每个所述关联关系与一个或多个触发状态相关联,网络侧发送触发信号触发所述上行信号,以供所述终端根据触发状态确定所述关联关系;
或者,
所述上行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。
可选地,在所述上行信号和所述第一下行信号的配置信息或触发信息中包含有用于指示具有所述关联关系的标识信息;
在所述第一下行信号的配置信息或触发信息中包含标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应;
所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述资源集包含的上行资源和第一下行资源间具有预定义的一一对应关系。
可选地,所述关联关系通过所述第一下行信号的配置信息或触发信息进行指示。
可选地,所述处理器还用于:所述第一下行信号的配置信息中还包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;相应地,所述方法还包括:网络侧发送激活信号以供所述终端确定与所述第一下行信号具有所述关联关系的所述上行信号;或者,每个所述关联关系与一个触发状态相关联,网络侧发送触发信号触发所述第一下行信号,以供所述终端根据触发状态确定所述关联关系;
或者,
所述第一下行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
可选地,所各所述上行信号的发送方式,包括如下任一种或其组合:
各所述上行信号被配置在不同的时间资源上;
各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔;
各所述上行信号不与其他用途的上行信号同时传输。
可选地,所述上行信号包括但不限于以下中的一种或多个:SRS、RACH、PUSCH、PUCCH、PUSCH对应的DMRS,以及PUCCH对应的DMRS。
可选地,所述下行信号包括但不限于以下中的一种或多个:SSB、TRS以及NZP-CSI RS。
可选地,网络侧基于以下信息的一种或多种,向所述终端指示所述第一下行信号:
网络侧的指示信息;
所述下行信号的配置信息;
所述下行信号的类型。
第三方面,本申请实施例提供一种终端,包括:
第一接收模块,用于接收多个第一下行信号;
第一确定模块,用于确定各所述第一下行信号对应的下行接收频率,并基于各第一下行信号对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率;
第一发送模块,用于基于各上行信号的传输频率发送各所述上行信号;
其中,基于与所述第一下行信号具有所述关联关系的上行信号所确定的频率偏移,用于确定第二下行信号的传输频率。
第四方面,本申请实施例提供一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
接收多个第一下行信号;
确定各所述第一下行信号对应的下行接收频率,并基于各第一下行信号 对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率;
基于各上行信号的传输频率发送各所述上行信号;
其中,基于与所述第一下行信号具有所述关联关系的上行信号所确定的频率偏移,用于确定第二下行信号的传输频率。
可选地,所述关联关系包括以下一种或其组合:
所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述第一下行信号推导获得;
所述上行信号的接收端与所述第一下行信号的发送端为同一个网络设备。
可选地,所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
类型1:{Doppler shift,Doppler spread,average delay,delay spread};
类型2:{Doppler shift,Doppler spread};
类型3:{Doppler shift,average delay};
类型4:{Spatial parameter}或{空间相关信息SpatialRelationInofo};
类型5:{Doppler shift};
类型6:频率相关信息。
可选地,所述关联关系根据所述上行信号的配置信息或触发信息进行确定。
可选地,所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;相应地,所述方法还包括:根据网络侧发送的激活信号确定与所述上行信号具有所述关联关系的所述第一下行信号;或者还包括,每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系;
或者,
所述上行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。
可选地,在所述上行信号和所述第一下行信号的配置信息或触发信息中包含有用于指示具有关联关系的标识信息;
在所述第一下行信号的配置信息或触发信息中包含标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应;
所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述不同的资源集包含的上行资源和第一下行资源间具有预定义的一一对应关系。
可选地,所述关联关系根据所述第一下行信号的配置信息或触发信息进行确定。
可选地,所述处理器还用于:所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;相应地,所述方法还包括:根据网络侧发送的激活信号确定与所述第一下行信号具有所述关联关系的所述上行信号;或者还包括,每个所述关联关系与一个触发状态相关联,当所述第一下行信号被触发时,根据触发状态确定所述关联关系;
或者,
所述第一下行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
可选地,所述基于各上行信号的传输频率发送各所述上行信号,包括以下任一种或其组合:
各所述上行信号被配置在不同的时间资源上;
各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔;
各所述上行信号不与其他用途的上行信号同时传输。
可选地,所述上行信号包括但不限于以下中的一种或多个:SRS、RACH、PUSCH、PUCCH、PUSCH对应的DMRS,以及PUCCH对应的DMRS。
可选地,所述第一下行信号包括但不限于以下中的一种或多个:SSB、TRS以及NZP-CSI RS。
可选地,基于以下信息的一种或多种,确定所述第一下行信号:
网络侧的指示信息;
所述下行信号的配置信息;
所述下行信号的类型。
第五方面,本申请实施例提供一种网络设备,包括:
第二发送模块,用于向终端发送第一下行信号,以供所述终端根据所述第一下行信号对应的下行接收频率确定与所述第一下行信号具有关联关系的上行信号的传输频率;
第二接收模块,用于接收所述终端基于所述传输频率发送的、与所述第一下行信号具有所述关联关系的上行信号;
第二确定模块,用于基于所述上行信号确定频率偏移,确定第二下行信号的传输频率。
第六方面,本申请实施例提供另一种网络设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
向终端发送第一下行信号,以供所述终端根据所述第一下行信号对应的下行接收频率确定与所述第一下行信号具有关联关系的上行信号的传输频率;
接收所述终端基于所述传输频率发送的、与所述第一下行信号具有所述关联关系的上行信号;
基于所述上行信号确定频率偏移,确定第二下行信号的传输频率。
可选地,所述基于所述上行信号确定频率偏移,确定第二下行信号的传输频率,包括:
基于所述频率偏移,确定第二下行信号的频率调整值;
使用所述频率调整值,确定第二下行信号的传输频率。
可选地,所述关联关系包括以下一种或其组合:
所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述下行信号推导获得;
所述上行信号的接收端与所述下行信号的发送端为同一个网络设备。
可选地,所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
类型1:{Doppler shift,Doppler spread,average delay,delay spread};
类型2:{Doppler shift,Doppler spread};
类型3:{Doppler shift,average delay};
类型4:{Spatial parameter}或{空间相关信息SpatialRelationInofo};
类型5:{Doppler shift};
类型6:频率相关信息。
可选地,所述关联关系通过所述上行信号的配置信息或触发信息进行指示。
可选地,所述处理器还用于:
所述上行信号的配置信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;相应地,所述方法还包括:网络侧发送激活信号以供所述终端确定与所述上行信号具有所述关联关系的所述第一下行信号;或者,每个所述关联关系与一个或多个触发状态相关联,网络侧发送触发信号触发所述上行信号,以供所述终端根据触发状态确定所述关联关系;
或者
所述上行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。
可选地,在所述上行信号和所述第一下行信号的配置信息或触发信息中包含有用于指示具有关联关系的标识信息;
在所述第一下行信号的配置信息或触发信息中包含标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应;
所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述资源集包含的上行资源和第一下行资源间具有预定义的一一对应关系。
可选地,所述关联关系通过所述第一下行信号的配置信息或触发信息进行指示。
可选地,所述处理器还用于:
所述第一下行信号的配置信息中还包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;相应地,所述方法还包括:网络侧发送激活信号以供所述终端确定与所述第一下行信号具有所述关联关系的所述上行信 号;或者,每个所述关联关系与一个触发状态相关联,网络侧发送触发信号触发所述第一下行信号,以供所述终端根据触发状态确定所述关联关系;
或者,
所述第一下行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
可选地,各所述上行信号,包括如下任一种或其组合:
各所述上行信号被配置在不同的时间资源上;
各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔;
各所述上行信号不与其他用途的上行信号同时传输。
可选地,所述上行信号包括但不限于以下中的一种或多个:SRS、RACH、PUSCH、PUCCH、PUSCH对应的DMRS,以及PUCCH对应的DMRS。
可选地,所述下行信号包括但不限于以下中的一种或多个:SSB、TRS以及NZP-CSI RS。
可选地,基于以下信息的一种或多种,向所述终端指示确定一个下行信号是否为所述第一下行信号:
网络侧的指示信息;
所述下行信号的配置信息;
所述下行信号的类型。
第七方面,本申请实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第一方面所述的方法的步骤。
第八方面,本申请实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第二方面所述的方法的步骤。
本申请实施例提供的信号的传输方法、终端、网络设备和存储介质,终端为每个接收到的第一下行信号均确定出对应的下行接收频率,并基于该下行接收频率分别确定各上行信号的传输频率,各第一下行信号与各上行信号分别具有预设的关联关系,各个传输接收点可以独立地进行频偏估计和预补偿。由于每个传输接收点都进行了下行多普勒频偏的预补偿,因此降低了信 道估计的误差,提高了下行传输的性能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的信号的传输方法流程示意图;
图2为本申请另一实施例提供的信号的传输方法流程示意图;
图3为本申请一实施例提供的终端组成示意图;
图4为本申请另一实施例提供的终端的结构示意图;
图5为本申请再一实施例提供的终端的结构示意图;
图6为本申请一实施例提供的网络设备组成示意图;
图7为本申请另一实施例提供的网络设备组成示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在HST-SFN场景下,多个传输接收点(transmission and reception point,TRP)(可以是一些RRH)通过光纤连接到同一个BBU(Base Band Unit,基带处理单元),这多个TRP使用相同的小区ID。通过连接多个TRP的方式,扩大了小区的覆盖范围,从而降低了终端的小区切换频率。由于TRP通过光纤连接到BBU,因此,可以认为这些TRP之间是理想的回程(backhaul)。HST-SFN场景下一个典型的传输方案为将下行信号从一个BBU连接的所有的TRP同时发出,也就是说所有的TRP传输相同的码字、layer(层)、DMRS(Demodulation reference signals,解调参考信号)端口,多个TRP相当于组成了更多的径。当列车运行到相邻两个传输接收点TRP之间时,来自于两个 TRP的信号其中一个为负的多普勒频移,另一个为正的多普勒频移,这样会产生多普勒谱。由于列车移动速度很快,多普勒频移的变化范围有可能很大,从而导致终端不能很好地进行下行信号的解调。
为了解决终端接收到的来自不同的TRP存在相反的多普勒频移的问题,一种方法是在每个TRP分别进行多普勒频移的预补偿,以消除UE接收到的下行信号的多普勒扩展。但在现有技术中,UE检测SSB(Synchronization Signal block,同步信号块,有时也写作SS/PBCH block,Synchronization Signal/Physical Broadcast Channel Block,同步信号广播信道块),根据检测到的SSB获得下行频点,并基于该下行频点获得上行频点,在所述上行频点上进行上行信号的传输。在UE处于移动状态时,UE获得的下行频点中包含了下行的多普勒频移,上行传输时又进一步叠加了上行的多普勒频移,因此,在单点传输时,上行信号在TRP接收时的频率相对于TRP侧的上行频点存在2倍的多普勒频率偏移。在多点传输时,各TRP的下行频点相同,但由于地理位置不同,在UE的多普勒频率偏移是不同的。但UE只确定出一个下行频点,并基于该下行频点进行上行信号的传输。由于各个TRP的地理位置和/或接收波束方向的不同,上行信号到达各个TRP经历的多普勒频移是不同的。由于TRP并不知道UE基于什么样的下行频点进行上行信号的传输,因此,TRP无法估计出下行或上行经历的多普勒频移,从而无法有效地进行多普勒频移的预补偿。
为了解决高铁SFN部署场景下从多个传输接收点同时发送数据时终端接收到的信号存在相反方向的多普勒而导致的解调性能不好的问题,本申请各实施例提供一种基于频率预补偿的多传输接收点的信号传输解决方案,即终端根据各个传输接收点TRP传输的下行信号分别确定出传输给各个传输接收点TRP的上行信号的传输频率(频点),并使用所述传输频率分别进行各个上行信号的传输,以使得各个传输接收点可以分别获得终端相对于自己的多普勒频移,从而可以在各个传输接收点分别进行频率预补偿,消除终端侧的多普勒频移和多普勒扩展。本申请实施例提供的方法,可以适用的系统包括但不限于5G系统(例如NR(New Radio)系统)、LTE系统、6G系统、卫星系统、车联网系统,以及它们演进版本的系统等。
本申请各实施例中,网络设备可以为基站,基站可以包括多个传输接收 点TRP或TRP组。对于每个TRP,可以是该TRP发送第一下行信号,UE发送与之关联的上行信号,基站确定该TRP预补偿的频率。对于每个TRP组,可以是其中的一个TRP发送第一下行信号,UE发送与之关联的上行信号,基站确定TRP组里所有TRP预补偿的频率。其中,所述的TRP可以为RRH,TRP组可以RRH组。
本申请实施例提供的网络侧设备可以包含但不限于以下中的一种或多种:通常所用的基站、演进型基站(evolved node base station,eNB)、5G系统中的网络侧设备(例如下一代基站(next generation node base station,gNB)、发送和接收点(transmission and reception point,TRP))等设备。
本申请实施例提供的终端可以被称为用户设备UE等。终端可以包括但不限于手持设备、车载设备。例如,可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
图1为本申请一实施例提供的信号的传输方法流程示意图,如图1所示,该方法的执行主体可以为终端(例如用户设备UE),该方法至少包括如下步骤:
步骤100、接收多个第一下行信号;
HST-SFN场景下,UE接收多个传输接收点TRP分别下发的第一下行信号,即在例如HST-SFN场景下包括多个传输接收点TRP,每个TRP都会向进入到HST-SFN场景下的UE发送各自的第一下行信号。而且为了避免各TRP无法估计出下行或上行经历的多普勒频移,从而无法有效地进行多普勒频移的预补偿的现有技术问题,本申请实施例提供的方法中,每个TRP下发给UE的第一下行信号都与一上行信号具有关联关系,UE基于该关联关系发送上行信号。
步骤101、确定各所述第一下行信号对应的下行接收频率,并基于各第一下行信号对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率;
UE接收多个第一下行信号后,可以首先确定各第一下行信号对应的下行接收频率。本申请实施例中所述的下行接收频率可以为所述第一下行信号到达UE的频率,或者为UE确定的该第一下行信号对应的下行频点。注意,由 于器件影响、信道估计不准、算法等因素,UE确定出的第一下行信号的下行接收频率有可能与下行信号到达UE的实际频率有偏差。一个频点是指一个参考频率,即可以用来确定下行射频信道和/或SSB和/或其他单元的频率位置的频率。例如,下行频点可以为用来确定下行信道(如PDSCH、PDCCH等)、SSB、下行参考信号(例如下行DMRS、CSI-RS、TRS)等一个或多个下行传输的频率的参考频率。例如,上行频点可以为用来确定上行信道(PUSCH、PUCCH、RACH等)、上行参考信号(例如SRS)等一个或多个上行传输的频率的参考频率。
可选地,UE根据其中的一个或多个第一下行信号确定出各第一下行信号对应的下行接收频率,所有各第一下行信号对应的下行接收频率相同。一个可能的方式是UE确定出一个下行频点,该频点作为UE确定的各第一下行信号对应的下行接收频率。
可选地,UE根据各个第一下行信号分别确定出各第一下行信号对应的下行接收频率,各第一下行信号对应的下行接收频率可以相同或不同。一种可能的方式为,UE针对每一个第一下行信号确定出一个下行频点,这些下行频点作为各第一下行信号对应的下行接收频率。
UE根据各第一下行信号对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率的方式可以包括多种。
可选地,UE基于同一个下行接收频率确定各上行信号的传输频率。
可选地,UE确定一个下行频点,然后基于该下行频点结合上行和下行的频率偏差确定出上行频点。UE根据每个第一下行信号确定出该第一下行信号相对于下行频点的多普勒偏移,UE在确定一个上行信号的传输频率时使用该上行频点加上与根据该上行信号存在上述关联关系的第一下行信号的多普勒偏移确定该上行信号的实际频点,基于该实际频点确定上行信号的传输频率。
可选地,UE根据每个第一下行信号确定出该第一下行信号相对于下行频点的多普勒偏移,基于每个第一下行信号对应的多普勒偏移和所述下行频点确定出该第一下行信号的下行接收频率;然后基于该第一下行信号的下行接收频率结合上行和下行的频率偏差确定出每个上行信号的传输频率。
上述上行和下行的频率偏差可以是协议约定的,网络设备通过信令配置的,或者根据网络设备关于上行和/或下行的频率指示信息确定的。
可选地,UE根据每个第一下行信号分别确定一个下行接收频率,使用该下行接收频率确定该第一下行信号对应的上行信号的传输频率。
可选地,一个上行信号的传输频率为根据与它存在上述关联关系的第一下行信号的下行接收频率加上上行和下行的频率偏差后得到的频率确定的。步骤102、基于各上行信号的传输频率发送各所述上行信号。
UE确定出与每个第一下行信号具有关联关系的上行信号的传输频率后,便可以基于该传输频率分别向各TRP分别发送各自对应的上行信号,且使用不同的传输频率进行上行信号的发送。各TRP可以接收到UE发送的与其之前发送的第一下行信号具有关联关系的上行信号,并基于该上行信号确定出频率偏移进行频率预补偿,并给予预补偿后的传输频率向UE发送的后续的第二下行信号。
本申请实施例中,UE可以根据各个传输接收点传输的第一下行信号分别确定出传输给各个传输接收点的上行信号的传输频率(频点),并使用所述传输频率分别进行各个上行信号的传输,以使得各个传输接收点可以分别获得终端相对于自己的多普勒频移,从而可以在各个传输接收点分别进行频率预补偿,消除终端侧的多普勒频移和多普勒扩展。
可以理解的是,本申请各实施例中所述的“第一下行信号”和“第二下行信号”是为了对同一个TRP先后两次向UE发送的下行信号进行区分,第一下行信号可以是首次发送给UE的下行信号,UE基于该第一下行信号不但可以确定与其关联的上行信号,还可以确定向TRP发送该上行信号所采用的传输频率。第二下行信号是TRP进行频率预补偿后发送的下行信号,这样可以降低信道估计的误差,提高下行传输的性能。注意第一下行信号和第二下行信号可以为不同的信号,也可以为同一信号的两次传输。例如,UE第一次传输一个TRS用于文中所述上行信号的传输时,这个TRS为第一下行信号;第二次再传输经过频率预补偿的该TRS时,这个TRS为第二下行信号。
本申请实施例提供的方法,终端为每个接收到的第一下行信号均确定出对应的下行接收频率,并基于该下行接收频率分别确定各上行信号的传输频率,各第一下行信号与各上行信号分别具有预设的关联关系,各个传输接收点可以独立地进行频偏估计和预补偿。由于每个传输接收点都进行了下行多普勒频偏的预补偿,因此降低了信道估计的误差,提高了下行传输的性能。
在上述实施例中,所述的关联关系包括以下一种或其组合:
所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述第一下行信号推导获得;
所述上行信号的接收端与所述第一下行信号的发送端为同一个网络设备,即上行信号的接收端与第一下行信号的发送端是准共址的(quasi co-located,QCL)。
基于上述的下行信号与上行信号的关联关系,可选地,目标信号所经历信道的某些特性是可以通过源信号来获得;或者,目标信号的空间发送参数可以通过源信号的空间接收参数来获得。
所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
类型1('QCL-TypeA'):{Doppler shift,Doppler spread,average delay,delay spread}
类型2('QCL-TypeB'):{Doppler shift,Doppler spread}
类型3('QCL-TypeC'):{Doppler shift,average delay}
类型4(例如'QCL-TypeE'等):{Spatial parameter}或{空间相关信息SpatialRelationInofo}目标信号的空间发送参数可以通过源信号的空间接收参数来获得
类型5(例如'QCL-TypeF'等):{Doppler shift}
类型6:频率相关信息,目标信号的传输频率根据源信号确定;
类型7:一种包含Doppler shift的新的QCL类型。
一些可能的上行信号和下行信号的关联关系类型如下表1所示,关联关系中可能包含下表中的一种或多种,当包含多种时,可以为类型1/2/3/5/6+类型4的组合中的一种:
表1
Figure PCTCN2021077881-appb-000001
Figure PCTCN2021077881-appb-000002
可选地,当包含类型1时,UE根据第一下行信号确定所述上行信号的多普勒频率偏移、多普勒扩展、平均时延、时延扩展。当包含类型2时,UE根据第一下行信号确定所述上行信号的多普勒频移、多普勒扩展。当包含类型3时,UE根据第一下行信号确定所述上行信号的多普勒频移、平均时延;当包含类型4时,UE根据下行信号确定所述上行信号的发送波束。当包含类型4时,UE使用下行信号的接收空间滤波器作为所述上行信号的发送空间滤波器,当包含类型5时,UE根据第一下行信号确定所述上行信号的多普勒频移;当包含类型6时,UE根据第一下行信号确定所述上行信号的频率相关信息,等等。
可以理解的是,关联关系可能不以QCL类型的方式指示,而是其他的指示方式,只要事先本申请提出的关联关系的功能,都包含在本申请实施例之中。
如上述实施例所述,可选地,所述的上行信号包括但不限于以下中的一种或多个:SRS((Sounding Reference Signal,探测参考信号)、RACH(Random  Access Channel,即随机接入信道)、PUSCH(Physical Uplink Shared Channel,物理上行共享信道)、PUCCH(Physical Uplink Control Channel,物理上行链路控制信道)、PUSCH对应的DMRS,以及PUCCH对应的DMRS。
可选地,所述的第一下行信号包括但不限于以下中的一种或多个:SSB、TRS(Tracking Refernece Signal,追踪参考信号)以及NZP-CSI RS(Non-zero power Channel state information reference signal,非零功率的信道状态信息参考信号)。
可选地,可以通过以下方式中的一种或多种,确定网络侧发送的一个下行信号是否为所述第一下行信号:
网络侧的指示信息,例如可以是网络侧直接指示哪些信号为第一下行信号,即通过网络侧指示的关联关系确定。
所述第一下行信号的配置信息,例如可以是直接在该下行信号的配置参数中进行指示。
所述下行信号的类型,例如所有的SSB都认为是第一下行信号,再或者,所有的TRS都认为是第一下行信号;再或者,协议约定使用某些序列的下行信号为第一下行信号;或者,协议约定具有某些特征的下行信号为第一下行信号,等等。
可选地,所述上行信号还根据第一下行信号确定所述上行信号的多普勒频率偏移、多普勒扩展、平均时延、时延扩展、发送波束等。
以下实施例介绍所述的关联关系,网络侧是如何配置或指示给UE的。
一种方式为,网络侧通过专门的信令向UE指示所述关联关系。可选地,所述信令在上行配置中(例如,uplink-config)。所述关联关系通过TCI(Transmission Configuration Indicator,传输配置指示)信令指示。例如,将TCI信令配置在上行配置中。
可选地,所述关联关系包含在所述上行信号的配置信息或触发信息中,即网络侧通过所述上行信号的配置信息或触发信息进行指示;相应地,UE根据所述上行信号的配置信息或触发信息确定关联关系。可选地,所述上行信号的配置信息通过RRC(Radio Resource Control,无线资源控制)信令发送。可选地,所述上行信号的配置信息通过MAC-CE(媒体接入控制单元)信令发送。可选地,所述上行信号的触发信息通过DCI(Downlink Control  Information,下行控制信息)信令指示。
可选地,所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息,即在上行信号的配置信息或触发信息的指示下,有多个第一下行信号与上行信号具有关联关系。例如,上行信号的配置信息中包含多个/多组TCI-state的配置信息,网络侧还向UE指示激活的TCI-state,UE根据激活的TCI-state确定关联关系的类型和与上行信号相关联的第一下行信号。当UE接收到网络侧下发的激活信号激活的第一下行信号后,向网络侧发送该上行信号。还可以是,所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息,即在上行信号的配置信息或触发信息的指示下,有多个第一下行信号与上行信号具有关联关系。每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系。上行信号的配置信息中包含多个/多组TCI-state的配置信息,关联关系与触发状态相关联,通过TCI-state指示。当所述上行信号被触发时,根据触发状态,所述终端可以得到关联关系的类型和与上行信号相关联的第一下行信号信息。
作为一个例子,一种TCI-state的配置为:
Figure PCTCN2021077881-appb-000003
Figure PCTCN2021077881-appb-000004
}其中,tci-StateId表示TCI-state的标识,qcl-Type1,qcl-Type2表示QCL类型,referenceSignal表示用来指示与所述上行信号相关联的第一下行信号。还可以是,所述上行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。具体地,多个第一下行信号存储在同一个资源集合中,网络侧通过上行信号的配置信息或触发信息携带一个标识信息,该标识信息用于指示使用该资源集合中的哪一个下行信号与该上行信号发生关联,UE基于标识信息所指示的位置在资源集合确定该第一下行信号。
另一种方式为:上行信号和第一下行信号的关联关系隐式指示。
可选地,在所述上行信号和所述第一下行信号的配置信息或触发信息中包含有用于指示具有关联关系的标识信息。例如,在上行信号和第一下行信号的配置/触发信息中包含标识信息,当一个上行信号与第一下行信号的标识信息相同时,这两个信号具有关联关系。可选地,关联关系的类型是预先约定的(例如协议规定)。或者,
在所述第一下行信号的配置信息或触发信息中包含标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应。具体地,在第一下行信号的配置/触发信息中包含特定的标识信息,所有TRP对应的上行信号被配置在同一个资源集内,该资源集内的上行信号与所述标识信息所对应的TRP按照预定义的关系一一对应。根据所述标识信息就可以确定出与之对应的上行信号。或者,
所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述不同的资源集包含的上行资源和第一下行资源间具有预定义的一一对应关系。具体地,所述第一下行信号都被配置在相同的资源集类型中,所述上行信号都被配置在相同的资源集类型中,上行信号的类型和第一下行信号的类型可以相同或不同。这些资源集类型包含的上行资源和下行资源间具有预定义的一一对应关系。根据该一一对应关系可以确定上行信号和第一下行信号的关联关系。
再一种方式为:所述关联关系包含在第一下行信号的配置信息或触发信 息中,即网络侧通过所述第一下行信号的配置信息或触发信息进行指示;相应地,UE根据所述第一下行信号的配置信息或触发信息确定关联关系。
可选地,所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息,即在第一下行信号的配置信息或触发信息的指示下,有多个上行信号与第一下行信号具有关联关系。可选地,UE根据所述配置信息直接可以确定与所述第一下行信号相关联的上行信号。UE还可以根据网络侧发送的激活信号确定与所述第一下行信号具有所述关联关系的所述上行信号,具体地,网络侧还向UE指示激活的配置信息,UE根据激活的配置信息确定关联关系的类型和与该第一下行信号相关联的上行信号。
可选地,所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息,即在第一下行信号的配置信息或触发信息的指示下,有多个上行信号与第一下行信号具有关联关系。每个所述关联关系与一个触发状态相关联,当所述第一下行信号被触发时,根据触发状态确定所述关联关系,具体地,第一下行信号的配置信息中包含多个/多组TCI-state的配置信息,关联关系与触发状态相关联,通过TCI-state指示。当所述第一下行信号被触发时,根据触发状态,UE可以得到关联关系的类型和与该第一下行信号相关联的上行信号信息。
可选地,所述第一下行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
在上述实施例中,可选地,所述上行信号和所述第一下行信号都是非周期信号,上行信号的触发信令同时触发与之关联的第一下行信号,第一下行信号的触发信令同时触发与之关联的上行信号。
可选地,所述触发方式针对所有类型的关联关系都适用。可选地,所述触发方式只适用于特定类型的关联关系。
在上述各实施例的基础上,UE基于各上行信号的传输频率发送各所述上行信号,包括以下任一种或其组合:
各所述上行信号被配置在不同的时间资源上,即各所述上行信号以时分复用的方式发送。具体地不同TRP对应的上行信号被配置在相同频域资源的不同的时间资源上,例如,不同的符号,不同的时隙,不同的RE等。这种方 式可以避免多个传输频点不一致的上行信号产生子载波间干扰,但会占用较多的时间资源。
可选地,各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔,即各所述上行信号以频分复用,且在不同上行信号间留有保护间隔的方式发送。具体地,不同TRP对应的上行信号被配置在相同时间的不同的频域资源上,且相互间留有保护间隔,所述保护间隔可以是子载波级的、PRB级的等。这种方式可以节省时间资源,且可以避免多个传输频点不一致的上行信号产生子载波间干扰。
各所述上行信号不与其他用途的上行信号同时传输。
本申请实施例提供的方法,终端为每个接收到的第一下行信号均确定出对应的下行接收频率,并基于该下行接收频率分别确定各上行信号的传输频率,各第一下行信号与各上行信号分别具有预设的关联关系,各个传输接收点可以独立地进行频偏估计和预补偿。由于每个传输接收点都进行了下行多普勒频偏的预补偿,UE看到的来自于每一个传输接收点的信号都是补偿后的多普勒频偏。在没有误差的情况下,多普勒频偏被完全补偿掉了,则UE看到的来自于每个传输接收点的信号都没有多普勒频偏,降低了信道估计的误差,提高了下行传输的性能。
图2为本申请另一实施例提供的信号的传输方法流程示意图,如图2所示,该方法的执行主体可以是网络设备例如TRP或TRP组,以下以TRP为例进行介绍,该方法至少包括如下步骤:
步骤200、向终端发送第一下行信号,以供所述终端根据所述第一下行信号对应的下行接收频率确定与所述第一下行信号具有关联关系的上行信号的传输频率;
HST-SFN场景下,UE接收多个传输接收点TRP分别下发的第一下行信号,即在例如HST-SFN场景下包括多个传输接收点TRP,每个TRP都会向进入到HST-SFN场景下的UE发送各自的第一下行信号。而且为了避免各TRP无法估计出下行或上行经历的多普勒频移,从而无法有效地进行多普勒频移的预补偿的现有技术问题,本申请实施例提供的方法中,每个TRP下发给UE的第一下行信号都与一上行信号具有关联关系,UE基于该关联关系发送上行信号。
UE接收多个第一下行信号后,可以首先确定各第一下行信号对应的下行接收频率。本申请实施例中所述的下行接收频率是指UE接收到所述第一下行信号的接收频率。UE根据各第一下行信号对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率的方式可以包括多种,具体方式与前述实施例相同,此处不再赘述。
步骤201、接收所述终端基于所述传输频率发送的、与所述第一下行信号具有所述关联关系的上行信号;
步骤202、基于所述上行信号确定频率偏移,确定第二下行信号的传输频率。
UE确定出与每个第一下行信号具有关联关系的上行信号的传输频率后,便可以基于该传输频率分别向各TRP分别发送各自对应的上行信号,且使用不同的传输频率进行上行信号的发送。
各TRP可以接收到UE发送来的与其之前发送的第一下行信号具有关联关系的上行信号,并基于该上行信号确定出频率偏移进行频率预补偿,并给予预补偿后的传输频率向UE发送的后续的第二下行信号。
可选地,网络中包含多个TRP,各TRP分别发送不同的第一下行信号。每个TRP基于与自己发送的第一下行信号具有所述关联关系的上行信号确定频率偏移,并利用所述频率偏移确定自己发送的第二下行信号的传输频率。
可选地,网络中包含多个TRP,多个TRP被进行了分组。每个TRP包括一个或多个TRP。各TRP组分别发送不同的第一下行信号(每个TRP组中可以有一个或多个TRP发送第一下行信号)。每个TRP组基于与自己发送的第一下行信号具有所述关联关系的上行信号确定自己对应的频率偏移,并利用所述频率偏移确定自己包含的TRP发送的第二下行信号的传输频率。
本申请实施例中,UE可以根据各个传输接收点传输的第一下行信号分别确定出传输给各个传输接收点的上行信号的传输频率(和/或频点),并使用所述传输频率分别进行各个上行信号的传输,以使得各个传输接收点可以分别获得终端相对于自己的多普勒频移,从而可以在各个传输接收点分别进行频率预补偿,消除终端侧的多普勒频移和多普勒扩展。
可以理解的是,本申请各实施例中所述的“第一下行信号”和“第二下行信号”是为了对同一个TRP先后两次向UE发送的下行信号进行区分,第一 下行信号可以是首次发送给UE的下行信号,UE基于该第一下行信号不但可以确定与其关联的上行信号,还可以确定向TRP发送该上行信号所采用的传输频率。第二下行信号是TRP进行频率预补偿后发送的下行信号,这样可以降低信道估计的误差,提高下行传输的性能。注意第一下行信号和第二下行信号可以为不同的信号,也可以为同一信号的两次传输。例如,UE第一次传输一个TRS用于文中所述上行信号的传输时,这个TRS为第一下行信号;第二次再传输经过频率预补偿的该TRS时,这个TRS为第二下行信号。
本申请实施例提供的方法,终端为每个接收到的第一下行信号均确定出对应的下行接收频率,并基于该下行接收频率分别确定各上行信号的传输频率,各第一下行信号与各上行信号分别具有预设的关联关系,各个传输接收点可以独立地进行频偏估计和预补偿。由于每个传输接收点都进行了下行多普勒频偏的预补偿,因此降低了信道估计的误差,提高了下行传输的性能。
在上述实施例的基础上,网络设备配置或指示上行信号与下行信号的关联关系,以使得终端可以根据下行信号确定上行信号的传输频率(和/或频点)。一种终端根据下行信号确定上行信号的传输频率的方式为:终端根据一个下行信号确定它对应的下行频率(和/或频点),然后基于这个下行频率和上下行频率差就可以确定出上行信号的频率(和/或频点)。例如,终端确定的下行频点为f DL,上下行频率差为上行频点比下行频点大f d,则可以确定出上行频率为f DL+f d
本实施例中TRP配置关联关系和向UE下发第一下行信号的步骤可以不分先后。UE根据配置或指示的所述关联关系,利用检测到的第一下行信号确定与之具有上述关联关系的上行信号的传输频率(例如,频点),并根据关于所述上行信号的配置或指示在该传输频率上传输所述上行信号。各TRP分别接收对应自己的上行信号,TRP使用对应于自己的上行信号确定频率偏移,利用所述频率偏移确定后续的下行传输的传输频率(对下行信号的传输进行频率预补偿)。所述对应于TRP的上行信号是指与该TRP发送的下行信号具有上述关联关系的上行信号。
在上述实施例中,所述的步骤202可以包括:
步骤2021、基于所述频率偏移,确定后续的下行信号的频率调整值;
步骤2022、使用所述频率调整值,确定后续的下行信号(第二下行信号) 的传输频率。
其中,TRP根据对应自己的上行信号确定频率偏移的一种方式为:TRP接收对应于自己的上行信号,进行频偏估计,利用频偏估计获得用于预补偿的频率偏移值。
可选地,一个TRP发送的后续的下行信号的所述预补偿的频率偏移值等于该TRP利用与自己发送的第一下行信号具有关联关系的上行信号得到的频偏估计值的函数。例如,一个TRP发送的后续的下行信号的所述预补偿的频率偏移值等于该TRP利用与自己发送的第一下行信号具有关联关系的上行信号得到的频偏估计值。例如,一个TRP发送的后续的下行信号的所述预补偿的频率偏移值等于该TRP利用与自己发送的第一下行信号具有关联关系的上行信号得到的频偏估计值的负值。例如,一个TRP发送的后续的下行信号的所述预补偿的频率偏移值等于该TRP利用与自己发送的第一下行信号具有关联关系的上行信号得到的频偏估计值的一半。例如,一个TRP发送的后续的下行信号的所述预补偿的频率偏移值等于该TRP利用与自己发送的第一下行信号具有关联关系的上行信号得到的频偏估计值的一半的负值。
可选地,网络中存在多个TRP,这些TRP被进行了分组,一个TRP组内所有TRP一个TRP发送的后续的下行信号的所述预补偿的频率偏移值等于该TRP组利用与自己发送的第一下行信号具有关联关系的上行信号得到的频偏估计值的函数。例如,一个TRP组内所有TRP发送的后续的下行信号的所述预补偿的频率偏移值等于该TRP组利用与自己发送的第一下行信号具有关联关系的上行信号得到的频偏估计值。例如,一个TRP组内所有TRP发送的后续的下行信号的所述预补偿的频率偏移值等于该TRP组利用与自己发送的第一下行信号具有关联关系的上行信号得到的频偏估计值的负值。例如,一个TRP组内所有TRP发送的后续的下行信号的所述预补偿的频率偏移值等于该TRP组利用与自己发送的第一下行信号具有关联关系的上行信号得到的频偏估计值的一半。例如,一个TRP组内所有TRP发送的后续的下行信号的所述预补偿的频率偏移值等于该TRP组利用与自己发送的第一下行信号具有关联关系的上行信号得到的频偏估计值的负值。
可选地,使用所述频率调整值,确定后续的下行信号的传输频率的方式为:确定后续的下行信号(第二下行信号)的频点为原频点增加所述频率调 整值,基于该频点确定所述后续的下行信号的发送频率。
可选地,使用所述频率调整值,确定后续的下行信号的传输频率的方式为:确定后续的下行信号(第二下行信号)的频点为原频点减去所述频率调整值,基于该频点确定所述后续的下行信号的发送频率。
可选地,使用所述频率调整值,确定后续的下行信号的传输频率的方式为:确定后续的下行信号的传输频率为频率预补偿前的频率加上所述频率调整值。
可选地,使用所述频率调整值,确定后续的下行信号的传输频率的方式为:确定后续的下行信号的传输频率为频率预补偿前的频率减去所述频率调整值。
可选地,使用所述频率调整值,确定后续的下行信号的传输频率包括:确定各TRP对应的下行频点为原频点增加各TRP分别对应的所述频率调整值。
可选地,使用所述频率调整值,确定后续的下行信号的传输频率包括:确定各TRP对应的下行频点为各TRP的原频点减去各TRP分别对应的所述频率调整值。
可选地,使用所述频率调整值,确定后续的下行信号的传输频率包括:确定一个TRP组内的TRP对应的下行频点为该TRP组的原频点增加该TRP组对应的所述频率调整值。
可选地,使用所述频率调整值,确定后续的下行信号的传输频率包括:确定一个TRP组内的TRP下行频点为各TRP的原频点减去各TRP分别对应的所述频率调整值。
可选地,使用所述频率调整值,确定后续的下行信号的传输频率的方式为各个TRP分别使用所述频率调整值,确定后续的下行信号的传输频率。
例如,频偏估计的结果为f d,预补偿的频率偏移值为-f d/2,频偏估计的算法可以使用现有技术中的一些频偏估计算法。TRP使用-f d/2对第二下行信号的发送频率进行预补偿,则UE接收下行信号时只剩下了很小的频率偏移。上述频率偏移值估计为对上行信号的接收频率与上行实际频点的差值的估计。
可选地,对于用于确定预补偿频率偏移的第一下行信号,UE不进行频率预补偿。这样TRP可以一直使用相同的频偏预补偿确定方法。
可选地,TRP在UE第一次接入本TRP时使用一种预补偿频率确定方法,在后续过程中使用另外一种预补偿频率确定方法。例如,在UE第一次接入时,若TRP估计出的频率偏移值为f d,TRP可以使用-f d/2对下行信号的发送频率进行预补偿;在后续使用上行信号进行预补偿频率估计时,若TRP估计出的频率偏移值为f d’,TRP可以使用-f d’对下行信号的发送频率进行预补偿。
在上述实施例中,所述的关联关系包括以下一种或其组合:
所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述第一下行信号推导获得;
所述上行信号的接收端与所述第一下行信号的发送端为同一个网络设备,即上行信号的接收端与第一下行信号的发送端是准共址的(quasi co-located,QCL)。
基于上述的下行信号与上行信号的关联关系,可选地,目标信号所经历信道的某些特性是可以通过源信号来获得;或者,目标信号的空间发送参数可以通过源信号的空间接收参数来获得。
所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
类型1('QCL-TypeA'):{Doppler shift,Doppler spread,average delay,delay spread}
类型2('QCL-TypeB'):{Doppler shift,Doppler spread}
类型3('QCL-TypeC'):{Doppler shift,average delay}
类型4(例如'QCL-TypeE'等):{Spatial parameter}或{空间相关信息SpatialRelationInofo}目标信号的空间发送参数可以通过源信号的空间接收参数来获得
类型5(例如'QCL-TypeF'等):{Doppler shift}
类型6:频率相关信息,目标信号的传输频率根据源信号确定;
类型7:一种包含Doppler shift的新的QCL类型。
一些可能的上行信号和下行信号的关联关系类型如下表2所示,关联关系中可能包含下表中的一种或多种,当包含多种时,可以为类型1/2/3/5/6+类型4的组合中的一种:
表2
Figure PCTCN2021077881-appb-000005
可选地,当包含类型1时,UE根据第一下行信号确定所述上行信号的多普勒频率偏移、多普勒扩展、平均时延、时延扩展。当包含类型2时,UE根据第一下行信号确定所述上行信号的多普勒频移、多普勒扩展。当包含类型3时,UE根据第一下行信号确定所述上行信号的多普勒频移、平均时延;当包含类型4时,UE根据下行信号确定所述上行信号的发送波束。当包含类型4时,UE使用下行信号的接收空间滤波器作为所述上行信号的发送空间滤波器,当包含类型5时,UE根据第一下行信号确定所述上行信号的多普勒频移;当包含类型6时,UE根据第一下行信号确定所述上行信号的频率相关信息,等等。
可以理解的是,关联关系可能不以QCL类型的方式指示,而是其他的指示方式,只要事先本申请提出的关联关系的功能,都包含在本申请实施例之中。
如上述实施例所述,可选地,所述的上行信号包括但不限于以下中的一种或多个:SRS、RACH、PUSCH、PUCCH、PUSCH对应的DMRS,以及PUCCH对应的DMRS。
可选地,所述的第一下行信号包括但不限于以下中的一种或多个:SSB、TRS以及NZP-CSI RS。
可选地,网络侧可以通过以下方式中的一种或多种,向UE指示确定网络侧发送的一个下行信号是否为所述第一下行信号:
网络侧的指示信息,例如可以是网络侧直接指示哪些信号为第一下行信号,即通过网络侧指示的关联关系确定。
所述第一下行信号的配置信息,例如可以是直接在该下行信号的配置参数中进行指示。
所述下行信号的类型,例如所有的SSB都认为是第一下行信号,再或者,所有的TRS都认为是第一下行信号;再或者,协议约定使用某些序列的下行信号为第一下行信号;或者,协议约定具有某些特征的下行信号为第一下行信号,等等。
可选地,所述上行信号还根据第一下行信号确定所述上行信号的多普勒频率偏移、多普勒扩展、平均时延、时延扩展、发送波束等。
以下实施例介绍所述的关联关系,网络侧是如何配置或指示给UE的。
一种方式为,网络侧通过专门的信令向UE指示所述关联关系。可选地,所述信令在上行配置中(例如,uplink-config)。所述关联关系通过TCI信令指示。例如,将TCI信令配置在上行配置中。
可选地,所述关联关系包含在所述上行信号的配置信息或触发信息中,即网络侧通过所述上行信号的配置信息或触发信息进行指示;相应地,UE根据所述上行信号的配置信息或触发信息确定关联关系。可选地,所述上行信号的配置信息通过RRC信令发送。可选地,所述上行信号的配置信息通过MAC-CE信令发送。可选地,所述上行信号的触发信息通过DCI信令指示。
可选地,所述上行信号的配置信息或触发信息中包括多个与所述上行信 号具有所述关联关系的所述第一下行信号的信息,即在上行信号的配置信息或触发信息的指示下,有多个第一下行信号与上行信号具有关联关系。例如,上行信号的配置信息中包含多个/多组TCI-state的配置信息,网络侧还向UE指示激活的TCI-state,UE根据激活的TCI-state确定关联关系的类型和与上行信号相关联的第一下行信号。网络侧发送激活信号以供UE确定与所述上行信号具有所述关联关系的所述第一下行信号,当UE接收到网络侧下发的激活信号激活的第一下行信号后,向网络侧发送该上行信号。
还可以是,所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息,即在上行信号的配置信息或触发信息的指示下,有多个第一下行信号与上行信号具有关联关系。每个所述关联关系与一个触发状态相关联,网络侧发送触发信号所述上行信号,以供UE根据触发状态确定所述关联关系。上行信号的配置信息中包含多个/多组TCI-state的配置信息,关联关系与触发状态相关联,通过TCI-state指示。当所述上行信号被触发时,根据触发状态,所述终端可以得到关联关系的类型和与上行信号相关联的第一下行信号信息。
还可以是,所述上行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。具体地,多个第一下行信号存储在同一个资源集合中,网络侧通过上行信号的配置信息或触发信息携带一个标识信息,该标识信息用于指示使用该资源集合中的哪一个下行信号与该上行信号发生关联,UE基于标识信息所指示的位置在资源集合确定该第一下行信号。
另一种方式为:上行信号和第一下行信号的关联关系隐式指示。
在所述上行信号和所述第一下行信号的配置信息或触发信息中包含有用于指示具有关联关系的标识信息。例如,在上行信号和第一下行信号的配置/触发信息中包含标识信息,当一个上行信号与第一下行信号的标识信息相同时,这两个信号具有关联关系。可选地,关联关系的类型是预先约定的(例如协议规定)。或者,
在所述第一下行信号的配置信息或触发信息中包含标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息 一一对应。具体地,在第一下行信号的配置/触发信息中包含特定的标识信息,所有TRP对应的上行信号被配置在同一个资源集内,该资源集内的上行信号与所述标识信息所对应的TRP按照预定义的关系一一对应。根据所述标识信息就可以确定出与之对应的上行信号。或者,
所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述不同的资源集包含的上行资源和第一下行资源间具有预定义的一一对应关系。具体地,所述第一下行信号都被配置在相同的资源集类型中,所述上行信号都被配置在相同的资源集类型中,上行信号的类型和第一下行信号的类型可以相同或不同。这些资源集类型包含的上行资源和下行资源间具有预定义的一一对应关系。根据该一一对应关系可以确定上行信号和第一下行信号的关联关系。
再一种方式为:所述关联关系包含在第一下行信号的配置信息或触发信息中,即网络侧通过所述第一下行信号的配置信息或触发信息进行指示;相应地,UE根据所述第一下行信号的配置信息或触发信息确定关联关系。
可选地,所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息,即在第一下行信号的配置信息或触发信息的指示下,有多个上行信号与第一下行信号具有关联关系。可选地,UE根据所述配置信息直接可以确定与所述第一下行信号相关联的上行信号。
可选地,网络侧发送激活信号以供UE确定与所述第一下行信号具有所述关联关系的所述上行信号,UE可以根据网络侧发送的激活信号确定与所述第一下行信号具有所述关联关系的所述上行信号,具体地,网络侧还向UE指示激活的配置信息,UE根据激活的配置信息确定关联关系的类型和与该第一下行信号相关联的上行信号。
可选地,所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息,即在第一下行信号的配置信息或触发信息的指示下,有多个上行信号与第一下行信号具有关联关系。每个所述关联关系与一个触发状态相关联,网络侧发送触发信号触发所述第一下行信号,以供UE根据触发状态确定所述关联关系,具体地,第一下行信号的配置信息中包含多个/多组TCI-state的配置信息,关联关系与触发状态相关联,通过TCI-state指示。当所述第一下行信号被触发时,根据触发状态,UE可以得到 关联关系的类型和与该第一下行信号相关联的上行信号信息。
可选地,所述第一下行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
在上述实施例中,可选地,所述上行信号和所述第一下行信号都是非周期信号,上行信号的触发信令同时触发与之关联的第一下行信号,第一下行信号的触发信令同时触发与之关联的上行信号。
可选地,所述触发方式针对所有类型的关联关系都适用。可选地,所述触发方式只适用于特定类型的关联关系。
在上述各实施例的基础上,各所述上行信号的发送方式,包括以下任一种或其组合:
各所述上行信号被配置在不同的时间资源上,具体地不同TRP对应的上行信号被配置在相同频域资源的不同的时间资源上,例如,不同的符号,不同的时隙,不同的RE等。这种方式可以避免多个传输频点不一致的上行信号产生子载波间干扰,但会占用较多的时间资源。
可选地,各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔,具体地,不同TRP对应的上行信号被配置在相同时间的不同的频域资源上,且相互间留有保护间隔,所述保护间隔可以是子载波级的、PRB级的等。这种方式可以节省时间资源,且可以避免多个传输频点不一致的上行信号产生子载波间干扰。
各所述上行信号不与其他用途的上行信号同时传输。
本申请实施例提供的方法,终端为每个接收到的第一下行信号均确定出对应的下行接收频率,并基于该下行接收频率分别确定各上行信号的传输频率,各第一下行信号与各上行信号分别具有预设的关联关系,各个传输接收点可以独立地进行频偏估计和预补偿。由于每个传输接收点都进行了下行多普勒频偏的预补偿,UE看到的来自于每一个传输接收点的信号都是补偿后的多普勒频偏。在没有误差的情况下,多普勒频偏被完全补偿掉了,则UE看到的来自于每个传输接收点的信号都没有多普勒频偏,降低了信道估计的误差,提高了下行传输的性能。
以下本申请实施例提出的基站频率预补偿方案的一个示例,例如:
一个BBU连接了4个TRP,具体为4个RRH,按照列车的运行方向,列车经过这些RRH的顺序将是RRH1、RRH2、RRH3和RRH4。表3给出了频率预补偿前后来自于各RRH的下行信号到达UE时的频率比较表格。其中,假设RRH和终端的多普勒频偏估计为理想估计,RRH1、RRH2、RRH3和RRH4单向的多普勒频移分别为f 1、f 2、f 3和f 4,频率预补偿值为RRH根据接收到的上行信号确定的多普勒频偏的二分之一。由此可见,在本申请实施例中,UE接收到的来自于各个RRH的下行信号的多普勒频移可以被消除,从而使得UE可以获得更好的下行接收性能。
表3 一种频率预补偿前后UE接收到来自各个RRH点的下行信号的频率值。
Figure PCTCN2021077881-appb-000006
Figure PCTCN2021077881-appb-000007
图3为本申请一实施例提供的终端组成示意图,如图3所示,该终端包括第一接收模块301、第一确定模块302和第一发送模块303,其中:
第一接收模块301用于接收多个第一下行信号;第一确定模块302用于确定各所述第一下行信号对应的下行接收频率,并基于各第一下行信号对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率;第一发送模块303用于基于各上行信号的传输频率发送各所述上行信号;其中,基于与所述第一下行信号具有所述关联关系的上行信号所确定的频率偏移,用于确定第二下行信号的传输频率。
本申请实施例提供中,终端为每个接收到的第一下行信号均确定出对应的下行接收频率,并基于该下行接收频率分别确定各上行信号的传输频率,各第一下行信号与各上行信号分别具有预设的关联关系,各个传输接收点可以独立地进行频偏估计和预补偿。由于每个传输接收点都进行了下 行多普勒频偏的预补偿,UE看到的来自于每一个传输接收点的信号都是补偿后的多普勒频偏。在没有误差的情况下,多普勒频偏被完全补偿掉了,则UE看到的来自于每个传输接收点的信号都没有多普勒频偏,降低了信道估计的误差,提高了下行传输的性能。
图4为本申请另一实施例提供的终端的结构示意图,如图4所示,该终端400可以包括:至少一个处理器401、存储器402、至少一个网络接口404和其他的用户接口403。终端400中的各个组件通过总线系统405耦合在一起。可理解,总线系统405用于实现这些组件之间的连接通信。总线系统405除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图4中将各种总线都标为总线系统405。
其中,用户接口403可以包括显示器、键盘或者点击设备,例如鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本申请实施例中的存储器402可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请各实施例所描述的系统和方法的存储器402旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器402存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集,例如:操作系统4021和应用程序4022。
其中,操作系统4021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序4022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本申请实施例方法的程序可以包含在应用程序7022中。
在本申请实施例中,通过调用存储器402存储的计算机程序或指令,具体的,可以是应用程序4022中存储的计算机程序或指令,处理器401用于:
接收多个第一下行信号;
确定各所述第一下行信号对应的下行接收频率,并基于各第一下行信号对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率;
基于各上行信号的传输频率发送各所述上行信号;
其中,基于与所述第一下行信号具有所述关联关系的上行信号所确定的频率偏移,用于确定第二下行信号的传输频率。
上述本申请实施例揭示的方法可以应用于处理器401中,或者由处理器401实现。处理器401可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器401中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器401可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器402,处理器401读取存储器402中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本申请描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本申请实施例中所述功能的模块(例如过程、函数等)来实现所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,作为另一个实施例,所述关联关系包括以下一种或其组合:
所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述第一下行信号推导获得;
所述上行信号的接收端与所述第一下行信号的发送端为同一个网络设备。
可选地,作为另一个实施例,所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
类型1:{Doppler shift,Doppler spread,average delay,delay spread};
类型2:{Doppler shift,Doppler spread};
类型3:{Doppler shift,average delay};
类型4:{Spatial parameter}或{空间相关信息SpatialRelationInofo};
类型5:{Doppler shift};
类型6:频率相关信息;
类型7:一种包含Doppler shift的新的QCL类型。
可选地,作为另一个实施例,所述关联关系根据所述上行信号的配置信息或触发信息进行确定。
可选地,作为另一个实施例,所述处理器还用于:
所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;相应地,所述方法还包括: 根据网络侧发送的激活信号确定与所述上行信号具有所述关联关系的所述第一下行信号;或者还包括,每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系;
或者,
所述上行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。
可选地,作为另一个实施例,在所述上行信号和所述第一下行信号的配置信息或触发信息中包含有用于指示具有关联关系的标识信息;
在所述第一下行信号的配置信息或触发信息中包含标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应;
所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述不同的资源集包含的上行资源和第一下行资源间具有预定义的一一对应关系。
可选地,作为另一个实施例,述关联关系根据所述第一下行信号的配置信息或触发信息进行确定。
可选地,作为另一个实施例,所述处理器还用于:
所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;相应地,所述方法还包括:根据网络侧发送的激活信号确定与所述第一下行信号具有所述关联关系的所述上行信号;或者还包括,每个所述关联关系与一个触发状态相关联,当所述第一下行信号被触发时,根据触发状态确定所述关联关系;
或者,
所述第一下行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
可选地,作为另一个实施例,所述基于各上行信号的传输频率发送各 所述上行信号,包括以下任一种或其组合:
各所述上行信号被配置在不同的时间资源上;
各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔;
各所述上行信号不与其他用途的上行信号同时传输。
可选地,作为另一个实施例,所述上行信号包括但不限于以下中的一种或多个:SRS、RACH、PUSCH、PUCCH、PUSCH对应的DMRS,以及PUCCH对应的DMRS中的一种或多个。
可选地,所述第一下行信号包括但不限于以下中的一种或多个:SSB、TRS以及NZP-CSI RS中的一种或多个。
可选地,作为另一个实施例,基于以下信息的一种或多种,确定一个下行信号是否为所述第一下行信号:
网络侧的指示信息;
所述下行信号的配置信息;
所述下行信号的类型。
本申请实施例提供的终端能够实现前述实施例中终端实现的各个过程,为避免重复,此处不再赘述。
图5为本申请再一实施例提供的终端的结构示意图,终端可以为手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或、电子阅读器、手持游戏机、销售终端(Point of Sales,POS)、车载电子设备(车载电脑)等。如图5所示,该移动终端包括射频(Radio Frequency,RF)电路510、存储器520、输入单元530、显示单元540、处理器560、音频电路570、WiFi(Wireless Fidelity)模块580和电源590。本领域技术人员可以理解,图5中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
其中,输入单元530可用于接收用户输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的信号输入。具体地,本申请实施例中,该输入单元530可以包括触控面板5301。触控面板5301,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板5301上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板5301可包括触摸检 测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器560,并能接收处理器560发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板5301。除了触控面板5301,输入单元530还可以包括其他输入设备5302,其他输入设备5302可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。具体地,其他输入设备5302可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。
其中,显示单元540可用于显示由用户输入的信息或提供给用户的信息以及移动终端的各种菜单界面。显示单元540可包括显示面板5401。其中显示面板5401可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(OrganicLight-Emitting Diode,OLED)等形式来配置显示面板5401。
应注意,触控面板5301可以覆盖显示面板5401,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器560以确定触摸事件的类型,随后处理器560根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
RF电路510可用于收发信息或通话过程中,信号的接收和发送,特别地,将网络侧的下行信息接收后,给处理器560处理;另外,将设计上行的数据发送给网络侧。通常,RF电路510包括但不限于天线、至少一个 放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路510还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobilecommunication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband CodeDivision Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器520用于存储软件程序以及模块,处理器560通过运行存储在存储器520的软件程序以及模块,从而执行移动终端的各种功能应用以及数据处理。存储器520可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据移动终端的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其中处理器560是移动终端的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器5201内的软件程序和/或模块,以及调用存储在第二存储器5202内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。可选的,处理器560可包括一个或多个处理单元。
在本申请实施例中,通过调用存储该第一存储器5201内的软件程序和/或模块和/或该第二存储器5202内的数据,处理器560用于接收多个第一下行信号;确定各所述第一下行信号对应的下行接收频率,并基于各第一下行信号对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率;基于各上行信号的传输频率发送各所述上行信号;其中,基于与所述第一下行信号具有所述关联关系的上行信号所确定的频率偏移,用于确定第二下行信号的传输频率。
本申请实施例提供的终端能够实现前述实施例中终端实现的各个过程,为避免重复,此处不再赘述。
图6为本申请一实施例提供的网络设备组成示意图,如图6所示,该网络设备可以为传输接收点TRP或TRP组,该TRP包括第二发送模块601、第二接收模块602和第二确定模块603,其中:
第二发送模块601用于向终端发送第一下行信号,以供所述终端根据所述第一下行信号对应的下行接收频率确定与所述第一下行信号具有关联关系的上行信号的传输频率;
第二接收模块602用于接收所述终端基于所述传输频率发送的、与所述第一下行信号具有所述关联关系的上行信号;
第二确定模块603用于基于所述上行信号确定频率偏移,确定第二下行信号的传输频率。
本申请实施例提供中,终端为每个接收到的第一下行信号均确定出对应的下行接收频率,并基于该下行接收频率分别确定各上行信号的传输频率,各第一下行信号与各上行信号分别具有预设的关联关系,各个传输接收点可以独立地进行频偏估计和预补偿。由于每个传输接收点都进行了下行多普勒频偏的预补偿,UE看到的来自于每一个传输接收点的信号都是补偿后的多普勒频偏。在没有误差的情况下,多普勒频偏被完全补偿掉了,则UE看到的来自于每个传输接收点的信号都没有多普勒频偏,降低了信道估计的误差,提高了下行传输的性能。
图7为本申请另一实施例提供的网络设备组成示意图,如图7所示,该网络设备700可以包括至少一个处理器701、存储器702、至少一个其他的用户接口703,以及收发机704。基站700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统705,总线系统可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器702代表的存储器的各种电路链接在一起。总线系统还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本申请实施例不再对其进行可选描述。总线接口提供接口。收发机704可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通 信的单元。针对不同的用户设备,用户接口703还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
可以理解,本申请实施例中的存储器702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请各实施例所描述的系统和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
处理器701负责管理总线系统和通常的处理,存储器702可以存储处理器701在执行操作时所使用的计算机程序或指令,具体地,处理器1001可以用于:
向终端发送第一下行信号,以供所述终端根据所述第一下行信号对应的下行接收频率确定与所述第一下行信号具有关联关系的上行信号的传输频率;接收所述终端基于所述传输频率发送的、与所述第一下行信号具有所述关联关系的上行信号;基于所述上行信号确定频率偏移,确定第二下行信号的传输频率。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、 数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本申请描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本申请实施例中所述功能的模块(例如过程、函数等)来实现所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,作为另一个实施例,所述基于所述上行信号确定频率偏移,确定第二下行信号的传输频率,包括:
基于所述频率偏移,确定后续的下行信号的频率调整值;
使用所述频率调整值,确定后续的下行信号的传输频率。
可选地,作为另一个实施例,所述关联关系包括以下一种或其组合:
所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述下行信号推导获得;
所述上行信号的接收端与所述下行信号的发送端为同一个网络设备。
可选地,作为另一个实施例,所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
类型1:{Doppler shift,Doppler spread,average delay,delay spread};
类型2:{Doppler shift,Doppler spread};
类型3:{Doppler shift,average delay};
类型4:{Spatial parameter}或{空间相关信息SpatialRelationInofo};
类型5:{Doppler shift};
类型6:频率相关信息;
类型7:一种包含Doppler shift的新的QCL类型。
可选地,作为另一个实施例,所述关联关系通过所述上行信号的配置信息或触发信息进行指示。
可选地,作为另一个实施例,所述处理器还用于:
所述上行信号的配置信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;相应地,所述方法还包括:网络侧发送激活信号以供所述终端确定与所述上行信号具有所述关联关系的所述第一下行信号;或者,每个所述关联关系与一个或多个触发状态相关联,网络侧发送触发信号触发所述上行信号,以供所述终端根据触发状态确定所述关联关系;
或者
所述上行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。
可选地,作为另一个实施例,在所述上行信号和所述第一下行信号的配置信息或触发信息中包含有用于指示具有关联关系的标识信息;
在所述第一下行信号的配置信息或触发信息中包含标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应;
所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所 述资源集包含的上行资源和第一下行资源间具有预定义的一一对应关系。
可选地,作为另一个实施例,所述关联关系通过所述第一下行信号的配置信息或触发信息进行指示。
可选地,作为另一个实施例,所述处理器还用于:
所述第一下行信号的配置信息中还包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;相应地,所述方法还包括:网络侧发送激活信号以供所述终端确定与所述第一下行信号具有所述关联关系的所述上行信号;或者,每个所述关联关系与一个触发状态相关联,网络侧发送触发信号触发所述第一下行信号,以供所述终端根据触发状态确定所述关联关系;
或者,
所述第一下行信号的配置信息或触发信息中还包含标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
可选地,作为另一个实施例,各所述上行信号的发送方式,包括下任一种或其组合:
各所述上行信号被配置在不同的时间资源上;
各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔;
各所述上行信号不与其他用途的上行信号同时传输。
可选地,作为另一个实施例,所述上行信号包括但不限于以下中的一种或多个:SRS、RACH、PUSCH、PUCCH、PUSCH对应的DMRS,以及PUCCH对应的DMRS。
可选地,所述第一下行信号包括但不限于以下中的一种或多个:SSB、TRS以及NZP-CSI RS。
可选地,作为另一个实施例,基于以下信息的一种或多种,向UE指示确定一个下行信号是否为所述第一下行信号:
网络侧的指示信息;
所述下行信号的配置信息;
所述下行信号的类型。
本申请实施例提供的网络设备能够实现前述实施例中网络设备实现 的各个过程,为避免重复,此处不再赘述。
上述主要从终端和网络设备的角度对本申请实施例提供的方案进行了介绍。可以理解的是,本申请实施例提供的终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。
某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对电子设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。所述计算机存储介质是非短暂性(英文:nontransitory)介质,包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供的非暂态计算机可读存储介质,具体用于执行上述各方法实施例提供的信号的传输方法流程,其具体的功能和流程可以详见上述方法实施例,此处不再赘述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (70)

  1. 一种信号的传输方法,其特征在于,包括:
    接收多个第一下行信号;
    确定各所述第一下行信号对应的下行接收频率,并基于各第一下行信号对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率;
    基于各上行信号的传输频率发送各所述上行信号;
    其中,基于与所述第一下行信号具有所述关联关系的上行信号所确定的频率偏移,用于确定第二下行信号的传输频率。
  2. 根据权利要求1所述的信号的传输方法,其特征在于,所述关联关系包括以下一种或其组合:
    所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述第一下行信号推导获得;
    所述上行信号的接收端与所述第一下行信号的发送端为同一个网络设备。
  3. 根据权利要求2所述的信号的传输方法,其特征在于,所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
    类型1:{多普勒频移Doppler shift,多普勒扩展Doppler spread,平均时延average delay,时延扩展delay spread};
    类型2:{Doppler shift,Doppler spread};
    类型3:{Doppler shift,average delay};
    类型4:{空间接收参数Spatial parameter}或{空间相关信息SpatialRelationInofo};
    类型5:{Doppler shift};
    类型6:频率相关信息。
  4. 根据权利要求2或3所述的信号的传输方法,其特征在于,所述关联关系根据所述上行信号的配置信息或触发信息进行确定。
  5. 根据权利要求4所述的信号的传输方法,其特征在于:
    所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;所述方法还包括:根据网络侧发送的激活信号确定与所述上行信号具有所述关联关系的所述第一下行信号;
    或者,
    所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;所述方法还包括:每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系;
    或者,
    所述上行信号的配置信息或触发信息中包括标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。
  6. 根据权利要求1或2或3所述的信号的传输方法,其特征在于:
    在所述上行信号和所述第一下行信号的配置信息或触发信息中包括用于指示具有所述关联关系的标识信息;
    在所述第一下行信号的配置信息或触发信息中包括标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应;
    所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述不同的资源集包括的上行资源和第一下行资源间具有预定义的一一对应关系。
  7. 根据权利要求2或3所述的信号的传输方法,其特征在于,所述关联关系根据所述第一下行信号的配置信息或触发信息进行确定。
  8. 根据权利要求7所述的信号的传输方法,其特征在于:
    所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;所述方法还包括:根据网络侧发送的激活信号确定与所述第一下行信号具有所述关联关系的所述上行信号;
    或者,
    所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;所述方法还包括:每个所述关联关系与一个触发状态相关联,当所述第一下行信号被触发时,根据触发状态确定所述关联关系;
    或者,
    所述第一下行信号的配置信息或触发信息中还包括标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
  9. 根据权利要求1或2或3所述的信号的传输方法,其特征在于,所述基于各上行信号的传输频率发送各所述上行信号,包括以下任一种或其组合:
    各所述上行信号被配置在不同的时间资源上;
    各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔;
    各所述上行信号不与其他用途的上行信号同时传输。
  10. 根据权利要求1或2或3所述的信号的传输方法,其特征在于,所述上行信号包括但不限于以下中的一种或多个:探测参考信号SRS、随机接入信道RACH、物理上行共享信道PUSCH、物理上行链路控制信道PUCCH、PUSCH对应的解调参考信号DMRS,以及PUCCH对应的DMRS;和/或,
    所述第一下行信号包括但不限于以下中的一种或多个:同步信号块SSB、追踪参考信号TRS以及非零功率的信道状态信息参考信号NZP-CSI RS。
  11. 根据权利要求1或2或3所述的信号的传输方法,其特征在于,基于以下信息的一种或多种,确定所述第一下行信号:
    网络侧的指示信息;
    所述下行信号的配置信息;
    所述下行信号的类型。
  12. 一种信号的传输方法,其特征在于,包括:
    向终端发送第一下行信号,以供所述终端根据所述第一下行信号对应的下行接收频率确定与所述第一下行信号具有关联关系的上行信号的传输频率;
    接收所述终端基于所述传输频率发送的、与所述第一下行信号具有所述关联关系的上行信号;
    基于所述上行信号确定频率偏移,确定第二下行信号的传输频率。
  13. 根据权利要求12所述的信号的传输方法,其特征在于,所述基于所述上行信号确定频率偏移,确定第二下行信号的传输频率,包括:
    基于所述频率偏移,确定第二下行信号的频率调整值;
    使用所述频率调整值,确第二下行信号的传输频率。
  14. 根据权利要求12所述的信号的传输方法,其特征在于,所述关联关系包括以下一种或其组合:
    所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述下行信号推导获得;
    所述上行信号的接收端与所述下行信号的发送端为同一个网络设备。
  15. 根据权利要求14所述的信号的传输方法,其特征在于,所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
    类型1:{多普勒频移Doppler shift,多普勒扩展Doppler spread,平均时延average delay,时延扩展delay spread};
    类型2:{Doppler shift,Doppler spread};
    类型3:{Doppler shift,average delay};
    类型4:{空间接收参数Spatial parameter}或{空间相关信息SpatialRelationInofo};
    类型5:{Doppler shift};
    类型6:频率相关信息。
  16. 根据权利要求13或14或15所述的信号的传输方法,其特征在于,所述关联关系通过所述上行信号的配置信息或触发信息进行指示。
  17. 根据权利要求16所述的信号的传输方法,其特征在于:
    所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;所述方法还包括:根据网络侧发送的激活信号确定与所述上行信号具有所述关联关系的所述第一下行信号;
    或者,
    所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;所述方法还包括:每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系;
    或者,
    所述上行信号的配置信息或触发信息中还包括标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。
  18. 根据权利要求12至15任一所述的信号的传输方法,其特征在于:
    在所述上行信号和所述第一下行信号的配置信息或触发信息中包括用于指示具有所述关联关系的标识信息;
    在所述第一下行信号的配置信息或触发信息中包括标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应;
    所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述资源集包括的上行资源和第一下行资源间具有预定义的一一对应关系。
  19. 根据权利要求13或14或15所述的信号的传输方法,其特征在于,所述关联关系通过所述第一下行信号的配置信息或触发信息进行指示。
  20. 根据权利要求19所述的信号的传输方法,其特征在于:
    所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;所述方法还包括:根据网络侧发送的激活信号确定与所述第一下行信号具有所述关联关系的所述上行信号;
    或者,
    所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;所述方法还包括:每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系;
    或者,
    所述第一下行信号的配置信息或触发信息中还包括标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
  21. 根据权利要求12至15任一所述的信号的传输方法,其特征在于,各所述上行信号的发送方式包括如下任一种或其组合:
    各所述上行信号被配置在不同的时间资源上;
    各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔;
    各所述上行信号不与其他用途的上行信号同时传输。
  22. 根据权利要求12至15任一所述的信号的传输方法,其特征在于, 所述上行信号包括但不限于以下中的一种或多个:探测参考信号SRS、随机接入信道RACH、物理上行共享信道PUSCH、物理上行链路控制信道PUCCH、PUSCH对应的解调参考信号DMRS,以及PUCCH对应的DMRS;和/或,
    所述第一下行信号包括但不限于以下中的一种或多个:同步信号块SSB、追踪参考信号TRS以及非零功率的信道状态信息参考信号NZP-CSI RS。
  23. 根据权利要求12至15任一所述的信号的传输方法,其特征在于,网络侧基于以下信息的一种或多种,向所述终端指示所述第一下行信号:
    网络侧的指示信息;
    所述下行信号的配置信息;
    所述下行信号的类型。
  24. 一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    接收多个第一下行信号;
    确定各所述第一下行信号对应的下行接收频率,并基于各第一下行信号对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率;
    基于各上行信号的传输频率发送各所述上行信号;
    其中,基于与所述第一下行信号具有所述关联关系的上行信号所确定的频率偏移,用于确定第二下行信号的传输频率。
  25. 根据权利要求24所述的终端,其特征在于,所述关联关系包括以下一种或其组合:
    所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述第一下行信号推导获得;
    所述上行信号的接收端与所述第一下行信号的发送端为同一个网络设备。
  26. 根据权利要求25所述的终端,其特征在于,所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
    类型1:{多普勒频移Doppler shift,多普勒扩展Doppler spread,平均时延average delay,时延扩展delay spread};
    类型2:{Doppler shift,Doppler spread};
    类型3:{Doppler shift,average delay};
    类型4:{空间接收参数Spatial parameter}或{空间相关信息SpatialRelationInofo};
    类型5:{Doppler shift};
    类型6:频率相关信息。
  27. 根据权利要求25或26所述的终端,其特征在于,所述关联关系根据所述上行信号的配置信息或触发信息进行确定。
  28. 根据权利要求27所述的终端,其特征在于:
    所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;所述步骤还包括:根据网络侧发送的激活信号确定与所述上行信号具有所述关联关系的所述第一下行信号;
    或者,
    所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;所述步骤还包括:每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系;
    或者,
    所述上行信号的配置信息或触发信息中包括标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。
  29. 根据权利要求24或25或26所述的终端,其特征在于:
    在所述上行信号和所述第一下行信号的配置信息或触发信息中包括用于指示具有所述关联关系的标识信息;
    在所述第一下行信号的配置信息或触发信息中包括标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应;
    所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述不同的资源集包括的上行资源和第一下行资源间具有预定义的一一对应关系。
  30. 根据权利要求25或26所述的终端,其特征在于,所述关联关系根 据所述第一下行信号的配置信息或触发信息进行确定。
  31. 根据权利要求30所述的终端,其特征在于:
    所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;所述步骤还包括:根据网络侧发送的激活信号确定与所述第一下行信号具有所述关联关系的所述上行信号;
    或者,
    所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;所述步骤还包括:每个所述关联关系与一个触发状态相关联,当所述第一下行信号被触发时,根据触发状态确定所述关联关系;
    或者,
    所述第一下行信号的配置信息或触发信息中还包括标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置
  32. 根据权利要求24或25或26所述的终端,其特征在于,所述基于各上行信号的传输频率发送各所述上行信号,包括以下任一种或其组合:
    各所述上行信号被配置在不同的时间资源上;
    各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔;
    各所述上行信号不与其他用途的上行信号同时传输。
  33. 根据权利要求24或25或26所述的终端,其特征在于,所述上行信号包括但不限于以下中的一种或多个:探测参考信号SRS、随机接入信道RACH、物理上行共享信道PUSCH、物理上行链路控制信道PUCCH、PUSCH对应的解调参考信号DMRS,以及PUCCH对应的DMRS;和/或,
    所述第一下行信号包括但不限于以下中的一种或多个:同步信号块SSB、追踪参考信号TRS以及非零功率的信道状态信息参考信号NZP-CSI RS。
  34. 根据权利要求24或25或26所述的终端,其特征在于,基于以下信息的一种或多种,确定所述第一下行信号:
    网络侧的指示信息;
    所述下行信号的配置信息;
    所述下行信号的类型。
  35. 一种终端,其特征在于,包括:
    第一接收模块,用于接收多个第一下行信号;
    第一确定模块,用于确定各所述第一下行信号对应的下行接收频率,并基于各第一下行信号对应的下行接收频率分别确定与各第一下行信号具有关联关系的各上行信号的传输频率;
    第一发送模块,用于基于各上行信号的传输频率发送各所述上行信号;
    其中,基于与所述第一下行信号具有所述关联关系的上行信号所确定的频率偏移,用于确定第二下行信号的传输频率。
  36. 根据权利要求35所述的终端,其特征在于,所述关联关系包括以下一种或其组合:
    所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述第一下行信号推导获得;
    所述上行信号的接收端与所述第一下行信号的发送端为同一个网络设备。
  37. 根据权利要求36所述的终端,其特征在于,所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
    类型1:{多普勒频移Doppler shift,多普勒扩展Doppler spread,平均时延average delay,时延扩展delay spread};
    类型2:{Doppler shift,Doppler spread};
    类型3:{Doppler shift,average delay};
    类型4:{空间接收参数Spatial parameter}或{空间相关信息SpatialRelationInofo};
    类型5:{Doppler shift};
    类型6:频率相关信息。
  38. 根据权利要求36或37所述的终端,其特征在于,所述关联关系根据所述上行信号的配置信息或触发信息进行确定。
  39. 根据权利要求38所述的终端,其特征在于:
    所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;所述第一确定模块还用于:根据网络侧发送的激活信号确定与所述上行信号具有所述关联关系的所述第一下行信号;
    或者,
    所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;所述第一确定模块还用于:每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系;
    或者,
    所述上行信号的配置信息或触发信息中还包括标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。
  40. 根据权利要求35或36或37所述的终端,其特征在于:
    在所述上行信号和所述第一下行信号的配置信息或触发信息中包括用于指示具有关联关系的标识信息;
    在所述第一下行信号的配置信息或触发信息中包括标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应;
    所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述不同的资源集包括的上行资源和第一下行资源间具有预定义的一一对应关系。
  41. 根据权利要求36或37所述的终端,其特征在于,所述关联关系根据所述第一下行信号的配置信息或触发信息进行确定。
  42. 根据权利要求41所述的终端,其特征在于:
    所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;所述第一确定模块还用于:根据网络侧发送的激活信号确定与所述第一下行信号具有所述关联关系的所述上行信号;
    或者,
    所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;所述方法还包括:每个所述关联关系与一个触发状态相关联,当所述第一下行信号被触发时,根据触发状态确定所述关联关系;
    或者,
    所述第一下行信号的配置信息或触发信息中还包括标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
  43. 根据权利要求35或36或37所述的终端,其特征在于,所述基于各上行信号的传输频率发送各所述上行信号,包括以下任一种或其组合:
    各所述上行信号被配置在不同的时间资源上;
    各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔;
    各所述上行信号不与其他用途的上行信号同时传输。
  44. 根据权利要求35或36或37所述的终端,其特征在于,所述上行信号包括但不限于以下中的一种或多个:探测参考信号SRS、随机接入信道RACH、物理上行共享信道PUSCH、物理上行链路控制信道PUCCH、PUSCH对应的解调参考信号DMRS,以及PUCCH对应的DMRS;和/或,
    所述第一下行信号包括但不限于以下中的一种或多个:同步信号块SSB、追踪参考信号TRS以及非零功率的信道状态信息参考信号NZP-CSI RS。
  45. 根据权利要求35或36或37所述的终端,其特征在于,基于以下信息的一种或多种,确定所述第一下行信号:
    网络侧的指示信息;
    所述下行信号的配置信息;
    所述下行信号的类型。46、一种网络设备,其特征在于,包括:
    第二发送模块,用于向终端发送第一下行信号,以供所述终端根据所述第一下行信号对应的下行接收频率确定与所述第一下行信号具有关联关系的上行信号的传输频率;
    第二接收模块,用于接收所述终端基于所述传输频率发送的、与所述第一下行信号具有所述关联关系的上行信号;
    第二确定模块,用于基于所述上行信号确定频率偏移,确定第二下行信号的传输频率。
  46. 根据权利要求46所述的网络设备,其特征在于,所述第二确定模块具体用于:
    基于所述频率偏移,确定第二下行信号的频率调整值;
    使用所述频率调整值,确定第二下行信号的传输频率。
  47. 根据权利要求46所述的网络设备,其特征在于,所述关联关系包括以下一种或其组合:
    所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述下行信号推导获得;
    所述上行信号的接收端与所述下行信号的发送端为同一个网络设备。
  48. 根据权利要求48所述的网络设备,其特征在于,所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
    类型1:{多普勒频移Doppler shift,多普勒扩展Doppler spread,平均时延average delay,时延扩展delay spread};
    类型2:{Doppler shift,Doppler spread};
    类型3:{Doppler shift,average delay};
    类型4:{空间接收参数Spatial parameter}或{空间相关信息SpatialRelationInofo};
    类型5:{Doppler shift};
    类型6:频率相关信息。
  49. 根据权利要求47或48或49所述的网络设备,其特征在于,所述关联关系通过所述上行信号的配置信息或触发信息进行指示。
  50. 根据权利要求50所述的网络设备,其特征在于:
    所述上行信号的配置信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;所述第二发送模块还用于:发送激活信号以供所述终端确定与所述上行信号具有所述关联关系的所述第一下行信号;
    或者,
    所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;所述第二发送模块还用于:每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系;
    或者,
    所述上行信号的配置信息或触发信息中还包括标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一 下行信号所在资源集合的位置。
  51. 根据权利要求46至49任一所述的网络设备,其特征在于:
    在所述上行信号和所述第一下行信号的配置信息或触发信息中包括用于指示具有关联关系的标识信息;
    在所述第一下行信号的配置信息或触发信息中包括标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应;
    所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述资源集包括的上行资源和第一下行资源间具有预定义的一一对应关系。
  52. 根据权利要求47或48或49所述的网络设备,其特征在于,所述关联关系通过所述第一下行信号的配置信息或触发信息进行指示。
  53. 根据权利要求53所述的网络设备,其特征在于:
    所述第一下行信号的配置信息中还包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;所述第二发送模块还用于:发送激活信号以供所述终端确定与所述第一下行信号具有所述关联关系的所述上行信号;
    或者,
    所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;所述第二发送模块还用于:每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系;
    或者,
    所述第一下行信号的配置信息或触发信息中还包括标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
  54. 根据权利要求46至49任一所述的网络设备,其特征在于,各所述上行信号的发送方式包括如下任一种或其组合:
    各所述上行信号被配置在不同的时间资源上;
    各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔;
    各所述上行信号不与其他用途的上行信号同时传输。
  55. 根据权利要求46至49任一所述的网络设备,其特征在于,所述上行信号包括但不限于以下中的一种或多个探测参考信号SRS、随机接入信道RACH、物理上行共享信道PUSCH、物理上行链路控制信道PUCCH、PUSCH对应的解调参考信号DMRS,以及PUCCH对应的DMRS;和/或,
    所述第一下行信号包括但不限于以下中的一种或多个:同步信号块SSB、追踪参考信号TRS以及非零功率的信道状态信息参考信号NZP-CSI RS。
  56. 根据权利要求46至49任一所述的网络设备,其特征在于,网络侧基于以下信息的一种或多种,向所述终端指示所述第一下行信号:
    网络侧的指示信息;
    所述下行信号的配置信息;
    所述下行信号的类型。
  57. 一种网络设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    向终端发送第一下行信号,以供所述终端根据所述第一下行信号对应的下行接收频率确定与所述第一下行信号具有关联关系的上行信号的传输频率;
    接收所述终端基于所述传输频率发送的、与所述第一下行信号具有所述关联关系的上行信号;
    基于所述上行信号确定频率偏移,确定第二下行信号的传输频率。
  58. 根据权利要求58所述的网络设备,其特征在于,所述基于所述上行信号确定频率偏移,确定第二下行信号的传输频率,包括:
    基于所述频率偏移,确定第二下行信号的频率调整值;
    使用所述频率调整值,确定第二下行信号的传输频率。
  59. 根据权利要求58所述的网络设备,其特征在于,所述关联关系包括以下一种或其组合:
    所述上行信号的一个或多个信道特性和/或空间发送参数,可通过所述下行信号推导获得;
    所述上行信号的接收端与所述下行信号的发送端为同一个网络设备。
  60. 根据权利要求60所述的网络设备,其特征在于,所述关联关系为QCL关系,所述关联关系的类型包括如下所述的一种或多种:
    类型1:{多普勒频移Doppler shift,多普勒扩展Doppler spread,平均时延average delay,时延扩展delay spread};
    类型2:{Doppler shift,Doppler spread};
    类型3:{Doppler shift,average delay};
    类型4:{空间接收参数Spatial parameter}或{空间相关信息SpatialRelationInofo};
    类型5:{Doppler shift};
    类型6:频率相关信息。
  61. 根据权利要求59或60或61所述的网络设备,其特征在于,所述关联关系通过所述上行信号的配置信息或触发信息进行指示。
  62. 根据权利要求62所述的网络设备,其特征在于,所述处理器还用于:
    所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;所述方法还包括:根据网络侧发送的激活信号确定与所述上行信号具有所述关联关系的所述第一下行信号;
    或者,
    所述上行信号的配置信息或触发信息中包括多个与所述上行信号具有所述关联关系的所述第一下行信号的信息;所述方法还包括:每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系;
    或者,
    所述上行信号的配置信息或触发信息中还包括标识信息,所述标识信息用于指示与所述上行信号存在所述关联关系的所述第一下行信号在所述第一下行信号所在资源集合的位置。
  63. 根据权利要求58至61任一所述的网络设备,其特征在于:
    在所述上行信号和所述第一下行信号的配置信息或触发信息中包括用于指示具有关联关系的标识信息;
    在所述第一下行信号的配置信息或触发信息中包括标识信息,所有上行信号被配置在同一个资源集内,所述资源集内的各上行信号与所述标识信息一一对应;
    所述第一下行信号和所述上行信号分别被配置在不同的资源集中,所述资源集包括的上行资源和第一下行资源间具有预定义的一一对应关系。
  64. 根据权利要求59或60或61所述的网络设备,其特征在于,所述关联关系通过所述第一下行信号的配置信息或触发信息进行指示。
  65. 根据权利要求65所述的网络设备,其特征在于:
    所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;所述方法还包括:根据网络侧发送的激活信号确定与所述第一下行信号具有所述关联关系的所述上行信号;
    或者,
    所述第一下行信号的配置信息中包括多个与所述第一下行信号具有所述关联关系的上行信号的信息;所述方法还包括:每个所述关联关系与一个触发状态相关联,当所述上行信号被触发时,根据触发状态确定所述关联关系;
    或者,
    所述第一下行信号的配置信息或触发信息中还包括标识信息,所述标识信息用于指示与所述第一下行信号存在所述关联关系的所述上行信号在所述上行信号所在资源集合的位置。
  66. 根据权利要求58至61任一所述的网络设备,其特征在于,各所述上行信号的发送方式,包括如下任一种或其组合:
    各所述上行信号被配置在不同的时间资源上;
    各所述上行信号被配置不同的频域资源上,且相互间留有保护间隔;
    各所述上行信号不与其他用途的上行信号同时传输。
  67. 根据权利要求58至61任一所述的网络设备,其特征在于,所述上行信号包括但不限于以下中的一种或多个:探测参考信号SRS、随机接入信道RACH、物理上行共享信道PUSCH、物理上行链路控制信道PUCCH、PUSCH对应的解调参考信号DMRS,以及PUCCH对应的DMRS;和/或,
    所述第一下行信号包括但不限于以下中的一种或多个:同步信号块SSB、追踪参考信号TRS以及非零功率的信道状态信息参考信号NZP-CSI RS。
  68. 根据权利要求58至61任一所述的网络设备,其特征在于,基于以下信息的一种或多种,向所述终端指示所述第一下行信号:
    网络侧的指示信息;
    所述下行信号的配置信息;
    所述下行信号的类型。
  69. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至11任一项所述信号的传输方法的步骤。
  70. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求12至23任一项所述信号的传输方法的步骤。
PCT/CN2021/077881 2020-03-05 2021-02-25 一种信号的传输方法、终端、网络设备和存储介质 WO2021175149A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022553210A JP2023516448A (ja) 2020-03-05 2021-02-25 信号の伝送方法、端末、ネットワーク機器、及び記憶媒体
US17/909,392 US20230107563A1 (en) 2020-03-05 2021-02-25 Signal transmission method, terminal, network device, and storage medium
EP21765448.2A EP4117364A4 (en) 2020-03-05 2021-02-25 SIGNAL TRANSMISSION METHOD, TERMINAL, NETWORK DEVICE, AND STORAGE MEDIUM
KR1020227032200A KR20220141868A (ko) 2020-03-05 2021-02-25 신호의 전송 방법, 단말, 네트워크 설비 및 저장매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010148667.1A CN113365349B (zh) 2020-03-05 2020-03-05 一种信号的传输方法、终端、网络设备和存储介质
CN202010148667.1 2020-03-05

Publications (1)

Publication Number Publication Date
WO2021175149A1 true WO2021175149A1 (zh) 2021-09-10

Family

ID=77523718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077881 WO2021175149A1 (zh) 2020-03-05 2021-02-25 一种信号的传输方法、终端、网络设备和存储介质

Country Status (7)

Country Link
US (1) US20230107563A1 (zh)
EP (1) EP4117364A4 (zh)
JP (1) JP2023516448A (zh)
KR (1) KR20220141868A (zh)
CN (1) CN113365349B (zh)
TW (1) TWI813955B (zh)
WO (1) WO2021175149A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11876578B2 (en) 2020-06-16 2024-01-16 China Mobile Communication Co., Ltd Research Inst Information transmission method and apparatus, related device, and storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567708A (zh) * 2008-04-22 2009-10-28 中兴通讯股份有限公司 一种频偏补偿的方法和装置
CN101867386A (zh) * 2009-04-20 2010-10-20 大唐移动通信设备有限公司 一种频偏预校准的方法、系统及设备
CN102932808A (zh) * 2011-08-09 2013-02-13 鼎桥通信技术有限公司 高速场景信号发送方法及直放站
US20140086083A1 (en) * 2012-09-27 2014-03-27 Electronics And Telecommunications Research Institute Uplink frequency control method and apparatus using the same
CN109005135A (zh) * 2017-06-06 2018-12-14 中兴通讯股份有限公司 一种处理通信系统上行链路频偏的方法与装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2502279B (en) * 2012-05-21 2014-07-09 Aceaxis Ltd Reduction of intermodulation products
EP2991441A3 (en) * 2014-08-27 2016-04-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A transceiver, a sudac, a method for signal processing in a transceiver, and methods for signal processing in a sudac
CN105704076A (zh) * 2014-11-24 2016-06-22 中兴通讯股份有限公司 一种频偏校正方法及装置
EP3832973A1 (en) * 2015-03-11 2021-06-09 CommScope, Inc. of North Carolina Distributed radio access network with adaptive fronthaul
CN110417532B (zh) * 2016-09-30 2022-03-11 中兴通讯股份有限公司 表征准共位置参数配置的方法和装置、发射及接收设备
CN110492913B (zh) * 2017-01-06 2020-09-29 华为技术有限公司 一种信号传输方法和装置
CN107911325B (zh) * 2017-11-30 2020-02-07 中兴通讯股份有限公司 一种频偏预补偿方法及装置、通信设备
CN110167152B (zh) * 2018-02-12 2022-04-12 大唐移动通信设备有限公司 一种数据传输方法和设备
WO2021093197A1 (en) * 2020-02-11 2021-05-20 Zte Corporation Method for parameter configuration of frequency modulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567708A (zh) * 2008-04-22 2009-10-28 中兴通讯股份有限公司 一种频偏补偿的方法和装置
CN101867386A (zh) * 2009-04-20 2010-10-20 大唐移动通信设备有限公司 一种频偏预校准的方法、系统及设备
CN102932808A (zh) * 2011-08-09 2013-02-13 鼎桥通信技术有限公司 高速场景信号发送方法及直放站
US20140086083A1 (en) * 2012-09-27 2014-03-27 Electronics And Telecommunications Research Institute Uplink frequency control method and apparatus using the same
CN109005135A (zh) * 2017-06-06 2018-12-14 中兴通讯股份有限公司 一种处理通信系统上行链路频偏的方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4117364A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11876578B2 (en) 2020-06-16 2024-01-16 China Mobile Communication Co., Ltd Research Inst Information transmission method and apparatus, related device, and storage device
JP7470217B2 (ja) 2020-06-16 2024-04-17 中国移動通信有限公司研究院 情報伝送方法及び装置、関連機器並びに記憶機器

Also Published As

Publication number Publication date
TW202135486A (zh) 2021-09-16
TWI813955B (zh) 2023-09-01
KR20220141868A (ko) 2022-10-20
CN113365349B (zh) 2023-07-04
CN113365349A (zh) 2021-09-07
JP2023516448A (ja) 2023-04-19
EP4117364A1 (en) 2023-01-11
EP4117364A4 (en) 2024-04-24
US20230107563A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US20220321293A1 (en) Signal communication method and device
US20220322105A1 (en) Methods and apparatuses for signal transmission, signal measurement reporting, and positioning
WO2019242635A1 (zh) Nr系统的定位参考信号配置、接收方法和设备
US11395267B2 (en) Wireless communication method, terminal device, and network device
JP7160501B2 (ja) 測位基準信号設定方法、受信方法及び機器
WO2021175146A1 (zh) 频率补偿方法、装置、网络侧设备、终端及存储介质
US10925038B2 (en) Method and apparatus for determining time domain resource mapped by reference signal
US11277222B2 (en) Data transmission method and communications device
WO2019214383A1 (zh) 准共址信息的配置方法、网络设备及用户设备
WO2021027805A1 (zh) 功率控制参数配置方法、终端和网络侧设备
US20200205126A1 (en) Method For Indicating Resource Location To Receive Broadcast Message, Network Device, User Equipment And System
WO2020052424A1 (zh) 信道测量方法、终端设备和网络侧设备
AU2016406527A1 (en) System information transmission method, base station, and terminal
US20210400603A1 (en) Method for power control, and terminal device and network device
CN114337947A (zh) 确定传输模式的方法、装置和通信设备
WO2021175149A1 (zh) 一种信号的传输方法、终端、网络设备和存储介质
WO2021196880A1 (zh) 一种harq反馈方法、终端及基站
WO2021164477A1 (zh) 传输方法、装置、设备及计算机可读存储介质
CN111954302B (zh) 一种信息获取方法及装置
WO2021179725A1 (zh) 上行信道传输方法、装置、基站、终端及存储介质
WO2022022714A1 (zh) 定位参考信号传输方法、装置及设备
WO2021197424A1 (zh) 信息配置及确定方法、网络设备和终端设备
WO2021197088A1 (zh) 控制信道检测方法、装置、终端、基站及存储介质
US20220132327A1 (en) Method for pucch transmission, method for information configuration, and device
CN113473607A (zh) Pucch传输方法、装置、终端、网络侧和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553210

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227032200

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021765448

Country of ref document: EP

Effective date: 20221005