WO2021175098A1 - 一种结构光三维扫描相机的标定装置及标定方法 - Google Patents
一种结构光三维扫描相机的标定装置及标定方法 Download PDFInfo
- Publication number
- WO2021175098A1 WO2021175098A1 PCT/CN2021/075673 CN2021075673W WO2021175098A1 WO 2021175098 A1 WO2021175098 A1 WO 2021175098A1 CN 2021075673 W CN2021075673 W CN 2021075673W WO 2021175098 A1 WO2021175098 A1 WO 2021175098A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- axis
- calibration
- tooth
- fine
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
- G06T7/85—Stereo camera calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
Definitions
- the invention relates to the technical field of camera calibration, in particular to a calibration device and a calibration method for a structured light three-dimensional scanning camera.
- Structured light 3D scanning technology has been widely used in product design and manufacturing, industrial measurement, quality inspection, medicine, film and television entertainment and other industries due to its low cost, non-contact, high precision, and high efficiency. It is known as the most promising The three-dimensional measurement method. Structured light 3D scanning technology realizes 3D scanning by actively controlling the light source, which has higher reliability than other 3D scanning technologies.
- the structured light system needs to be calibrated, that is, the internal parameters of the camera and projection equipment in the structured light system and the conversion relationship between the two are also obtained as external parameters. The calibration accuracy directly affects The quality of the 3D reconstruction.
- the checkerboard calibration board can be used for calibration.
- the camera and light source are set in front of the calibration board.
- the camera collects multiple calibration board images and then performs calibration.
- This solution has the advantage of low cost, but it also There are some disadvantages. Because the calibration board is generally large in size, the illumination is uneven.
- the calibration solution that needs to move the calibration board it also needs to move the light source. Moving the light source requires additional power connection to the mobile device.
- the cover greatly increases the complexity of the calibration, and finally leads to The calibration accuracy is poor, the calibration time is long, and a large amount of readable data cannot be converted when taking points. In the case of batch calibration, efficiency and accuracy cannot be double guaranteed.
- the purpose of the present invention is to provide a calibration device for a structured light three-dimensional scanning camera that does not require power connection, has high calibration accuracy, fast calibration efficiency, and is convenient to use.
- the solution of the present invention is:
- a calibration device for a structured light three-dimensional scanning camera including a bottom plate, a linear module, a driving device, a lifting mechanism, a calibration block, a light source for emitting light beams, and a three-axis fine-tuning device for adjusting the direction of the light source.
- the linear module and the three-axis fine-tuning device are respectively arranged at both ends of the base plate, the linear module is arranged along the length direction of the base plate, the lifting mechanism is arranged on the linear module, and the linear module is arranged on the linear module.
- the module includes a linear module body, a sliding block and a screw rod.
- the screw rod is rotatably arranged on the linear module body, the screw rod is arranged in a horizontal direction, and the sliding block is slidably arranged on the linear module body.
- the bottom of the slider is provided with a screw nut seat for the screw to pass through, and the driving device is arranged at an end of the linear module away from the three-axis fine-tuning device, so
- the driving device is axially connected with the screw rod, the lifting mechanism is fixedly arranged on the sliding block, the calibration block is arranged on the lifting mechanism, and the light source is arranged on the three-axis fine-tuning device.
- the driving device includes a servo motor, the rotating shaft of the servo motor is arranged in a horizontal direction, and the rotating shaft of the servo motor is axially connected with the screw rod.
- the driving device includes a guide shaft seat, a coupling, a pointer, a scale hand wheel and a clamping handle, the guide shaft seat is arranged on the bottom plate, and the guide shaft seat is An open-type guide shaft seat, the coupling has a first end of a coupling connected with the scale handwheel and a second end of the coupling connected with the screw rod, the first coupling The end and the second end of the coupling are both arranged in a horizontal direction, and the pointer is arranged on the guide shaft seat;
- the guide shaft seat includes an upper part of the guide shaft seat, a lower part of the guide shaft seat, an opening of the guide shaft seat, and a guide shaft seat through hole provided between the upper part of the guide shaft seat and the lower part of the guide shaft seat.
- the opening is arranged on one side between the upper part of the guide shaft seat and the lower part of the guide shaft seat;
- the clamping handle is arranged on the upper part of the guide shaft seat, the clamping handle includes a hand-held part and a connecting part arranged at the bottom of the hand-held part, and the lower part of the guide shaft seat is positioned relative to the connecting part
- a screw hole adapted to the connecting portion is provided, the first end of the coupling passes through the through hole of the guide shaft seat and is axially connected to the scale handwheel, and the second end of the coupling is connected to the The screw rod is connected axially.
- the lifting mechanism includes a lifting bottom plate, a lifting top plate, a first connecting rod, a second connecting rod, a first moving component, and a second moving component, and the lifting bottom plate is arranged on the sliding block. superior;
- the first moving component includes a first moving component body, a rotating hand wheel, a first polished rod, and a first moving nut seat.
- the first moving component body is arranged on an end of the bottom of the lifting top plate, and the first The polished rod is arranged on the first moving assembly body, the rotating hand wheel is arranged at one end of the first moving assembly body, and is located on one side of the lifting top plate, the first polished rod and the rotating handwheel shaft Connected to each other, the first moving nut seat is slidably arranged on the first polished rod;
- the second moving component is arranged on one end of the lifting bottom plate, and the second moving component includes a second moving component body, a second polished rod, and a second moving nut seat.
- the second polished rod is disposed on the second On the moving component body, the second polished rod is arranged in a horizontal direction, and the second moving nut base is slidably arranged on the second polished rod;
- the first connecting rod and the second connecting rod are arranged to cross each other, the bottom plate fixing nut seat is provided on the side of the lifting bottom plate away from the second moving assembly, and the lower end of the first connecting rod is connected to the
- the bottom plate fixing nut seat is hinged, the upper end of the first connecting rod is hinged to the first moving nut seat, and the top plate fixing nut seat is provided on the side of the second connecting rod away from the first moving component ,
- the upper end of the second connecting rod is hinged to the top plate fixing nut base, and the lower end of the second connecting rod is hinged to the second moving nut base;
- the top of the lifting top plate is provided with a positioning pin, and the horizontal cross section of the positioning pin is a heterogeneous cross section.
- the calibration block includes a tooth-shaped calibration plate and a cover plate used to calibrate the camera, the tooth-shaped calibration plate is set on the lifting top plate through the positioning pin, and the cover The plate is arranged above the tooth-shaped calibration plate through the positioning pins, and a washer is also arranged between the tooth-shaped calibration plate and the cover plate;
- Both sides of the tooth-shaped calibration plate are respectively provided with a first saw tooth and a second saw tooth.
- the horizontal cross-sections of the first saw tooth and the second saw tooth are both isosceles triangles.
- the first saw tooth and Each of the second sawtooths is composed of a plurality of sawtooth units, and each of the sawtooth units has a tooth root and a tooth tip;
- the distance between the two adjacent tooth tips of the saw-tooth unit of the first saw tooth is inconsistent with the density of the two adjacent tooth tips of the saw-tooth unit of the second saw tooth.
- the length direction of the bottom plate is defined as the X axis
- the width direction of the bottom plate is defined as the Y axis
- the direction perpendicular to the bottom plate is defined as the Z axis
- the three-axis fine-tuning device is arranged on the bottom plate, and the three-axis fine-tuning device includes a fine-tuning bottom plate, a Y-axis rotating plate, a Z-axis rotating plate, a Z-axis linkage plate, an X-axis rotating plate, a first rotating shaft, and a second rotating shaft.
- the third rotation shaft, the first compression spring, the second compression spring, the third compression spring, the first pressure plate, the second pressure plate, the third pressure plate, used to adjust the gap between the Y-axis rotation plate and the fine-tuning bottom plate The first spherical differential off for adjusting the gap between the Y-axis rotating plate and the X-axis rotating plate, and the second spherical differential off for adjusting the X-axis rotating plate and the Z-axis rotating plate.
- the fine-tuning bottom plate is provided with the Y-axis rotating plate along the X-axis direction, one side of the fine-tuning bottom plate and the side opposite to the Y-axis rotating plate are hinged by the first rotating shaft, and the first The rotating shaft is arranged along the Y-axis direction, the first pressing plate is arranged on the side of the fine-tuning bottom plate away from the first rotating shaft, one end of the first pressing plate is fixedly arranged on the fine-tuning bottom plate, and the first pressing plate Extending to the top of the Y-axis rotating plate, the first spherical differential is arranged above the first pressure plate, and the telescopic rod of the first spherical differential passes through the first pressure plate and abuts against the On the Y-axis rotating plate, one end of the first compression spring abuts against the fine-tuning bottom plate, and the other end of the first compression spring abuts against the axis rotating plate;
- the Y-axis rotating plate is provided with the X-axis rotating plate in the direction of the Z-axis, and one side of the Y-axis rotating plate and the opposite side of the X-axis rotating plate are hinged by the second rotating shaft,
- the second rotating shaft is arranged along the X-axis direction
- the second pressing plate is arranged on the side of the Y-axis rotating plate away from the second rotating shaft
- one end of the second pressing plate is fixedly arranged on the Y-axis rotating plate.
- the second pressure plate extends above the X-axis rotating plate, the second spherical differential close is arranged above the second pressure plate, and the telescopic rod of the second spherical differential passes through all the
- the second pressure plate abuts against the X-axis rotating plate, one end of the second compression spring abuts against the Y-axis rotating plate, and the other end of the second compression spring abuts against the X-axis Transfer board
- the Z-axis linkage plate is vertically arranged on the X-axis rotating plate, one side of the Z-axis linkage plate is provided with the Z-axis rotating plate, the Z-axis linkage plate is arranged vertically, and the Z-axis One side of the linkage plate and the side opposite to the Z-axis rotating plate are hinged by the third rotating shaft, the third rotating shaft is arranged along the Z-axis direction, and the third pressing plate is arranged on the Z-axis linking plate away from On one side of the third rotating shaft, one end of the third pressing plate is fixedly arranged on the Z-axis linkage plate, the third pressing plate extends above the Z-axis rotating plate, and the third spherical surface differential
- the switch is arranged above the third pressure plate, and the telescopic rod of the third spherical differential switch passes through the third pressure plate and abuts against the Z-axis rotating plate, and one end of the third compression spring abuts On the X-axis rotating plate,
- the three-axis fine-tuning device is provided with a housing for placing the light source and the camera, the housing is a hollow housing, and the inner cavity of the housing is provided with An accommodating space for the light source and the camera to be placed, and the light source is arranged above the camera.
- a scale engraved with a distance scale is provided on the body of the linear module.
- the light source includes at least one of a light emitting diode and a laser light source.
- the present invention also provides another object, which is to provide a calibration method for a structured light three-dimensional scanning camera that can quickly and accurately obtain calibration data information so as to perform reading conversion.
- the solution of the present invention is:
- a method for calibrating a structured light 3D scanning camera using a calibration device of a structured light 3D scanning camera includes the following steps:
- S7 Start the software of the camera, start to obtain the pixel point positions (A1, B1) of the tooth tip and the tooth root of any one of the saw tooth units of the second saw tooth within the camera's field of view, ( A2, B2)...(An, Bn), using linear algebra to determine the coordinate conversion method between the actual physical coordinate value of the reference plane and the pixel value of the camera software.
- the calibration device of the present invention can greatly improve the efficiency of camera calibration, and does not need to be connected to electricity, and the transition does not need to be re-installed and calibrated. It can be used with only a workbench or an open space; when the light source emits a light beam, the height of the lifting mechanism is adjusted , The mobile lifting mechanism slides along the linear module, and then adjusts the beam through the three-axis fine-tuning device, so that the beam is evenly irradiated on the calibration plate in the horizontal direction, and the relative position of the camera and the calibration block is calibrated.
- the calibration method of the present invention can be fast and accurate Obtain the data information of the calibration block, and then transmit it to the computer for reading conversion, which has a significant effect of improving the efficiency and accuracy of batch camera calibration.
- Figure 1 is a schematic diagram of the structure of the present invention
- Figure 2 is a side view of the present invention
- Figure 3 is a schematic diagram of the structure of the linear module of the present invention.
- Figure 4 is a schematic diagram of the structure of the lifting mechanism in the present invention.
- Figure 5 is a schematic diagram of the structure of the three-axis fine-tuning device in the present invention.
- Figure 6 is a partial cross-sectional view of the three-axis fine-tuning device of the present invention.
- Fig. 7 is a schematic diagram of the structure of the hand cranking device of the present invention.
- Base plate 1 linear module 2, linear module body 21, slider 22, screw rod 23, screw nut base 24, ruler 25, lifting mechanism 3, lifting base plate 31, base plate fixing nut base 311, lifting top plate 32, top plate Fixed nut seat 321, first connecting rod 33, second connecting rod 34, first moving component 35, first moving component body 351, rotating hand wheel 352, first polished rod 353, first moving nut seat 354, second moving The component 36, the second moving component body 361, the second polished rod 362, the second moving nut seat 363, the positioning pin 37, the calibration block 4, the tooth-shaped calibration plate 41, the first serration 411, the second serration 412, the cover plate 42, Three-axis fine-tuning device 5, fine-tuning base 50, fine-tuning bottom plate 51, first slot 511, Y-axis rotating plate 52, second slot 521, Z-axis rotating plate 53, Z-axis linkage plate 54, third slot 541, X-axis rotating plate 55, first rotating shaft 561, third rotating shaft 563, first pressing plate 581, second pressing plate 582, third pressing plate
- the present invention will be used to improve the deficiencies in the prior art, especially when the camera 8 is to be calibrated when it is shipped from the factory or in actual use.
- the actual object in actual use is often used as a reference, but this is not standard. Affect.
- the length direction of the bottom plate 1 (described in detail below) as the X axis
- the width direction of the bottom plate 1 as the Y axis
- the direction perpendicular to the bottom plate 1 as the Z axis.
- the invention provides a calibration device for a structured light three-dimensional scanning camera, which includes a bottom plate 1, a driving device, a linear module 2, a lifting mechanism 3, a calibration block 4, a light source 6 for emitting light beams, and a light source 6 for adjusting the irradiation direction of the light source 6.
- the three-axis fine-tuning device 5 and the camera 8 the base plate 1 is used as a carrier for fixing the installation of various related mechanisms and components, and the camera 8 can be a conventional CCD camera.
- the light source 6 in this embodiment includes at least one of a light emitting diode and a laser light source.
- the linear module 2 and the three-axis fine-tuning device 5 are respectively arranged at both ends of the base plate 1 along the length direction of the base plate (X-axis direction), and the lifting mechanism 3 is arranged on the linear module 2.
- the linear module 2 includes a linear module body 21, a slider 22, and a screw rod 23.
- the screw rod 23 is rotatably arranged on the linear module body 21, the screw rod 23 is arranged in a horizontal direction, and the slider 22 is slidably arranged on the On the linear module body 21, the bottom of the slider 22 is provided with a screw nut seat 24 for the screw 23 to pass through.
- the linear module 2 can perform linear movement in the X-axis direction, and is installed on the linear module body 21 through a screw rod 23.
- Both ends of the screw rod 23 are fixedly supported by bearings, and the screw nut seat 24 is installed on the
- the rod 23 can be linearly slid in the X-axis direction, and the slider 22 is mounted on the screw nut base 24 and can follow the screw nut base 24 to move.
- linear module 2 is also provided with a scale 25 engraved with a distance scale.
- the driving device is arranged at an end of the linear module 2 away from the three-axis fine-tuning device 5, and the driving device drives the screw rod 23 to rotate, thereby driving the slider 22 to slide on the linear module body 21 along the X axis to achieve adjustment The distance between the camera 8 and the calibration block 4.
- the driving device may be an electric driving device
- the electric driving device includes a servo motor (not shown in the figure)
- the rotating shaft of the servo motor is axially connected to the screw rod 23, and the The rotation axis of the servo motor is set along the X axis direction.
- the driving device may also be a manual driving device
- the manual driving device may be a hand cranking device 7.
- the hand cranking device 7 includes a guide shaft seat 71, a coupling 72, The pointer 73, the scale hand wheel 74 and the clamping handle 75, the guide shaft seat 71 is arranged on the base plate 1, the guide shaft seat 71 is an open-type guide shaft seat, and the coupling 72 has a shaft coupling axially connected with the scale hand wheel 74
- the first end 721 of the coupling and the second end 722 of the coupling axially connected with the screw rod 23, the first end 721 of the coupling and the second end 722 of the coupling are both arranged along the X-axis direction.
- the guide shaft seat 71 is provided with a guide shaft seat through hole 711 through which the first end 721 of the coupling penetrates in the middle, and a guide shaft seat opening 712 is provided on one side of the guide shaft seat 71.
- the guide shaft seat 71 is divided into an upper part of the guide shaft seat 713 and a lower part of the guide shaft seat 714.
- the guide shaft seat through hole 711 is provided between the upper part 713 of the guide shaft seat and the lower part 714 of the guide shaft seat.
- the opening 712 is provided on a side between the upper part 713 of the guide shaft seat and the lower part 714 of the guide shaft seat.
- the clamping handle 75 is arranged on the upper part 713 of the guide shaft seat.
- the clamping handle 75 includes a handle part 751 and a connecting part (not shown in the figure) arranged at the bottom of the handle part 751.
- the lower part 714 of the guide shaft seat is opposite to the clamping handle 75.
- the position of the connecting portion is provided with a screw hole adapted to the connecting portion; the first end 721 of the coupling passes through the guide shaft seat through hole 711 of the guide shaft seat 71 and is axially connected to the scale hand wheel 74 .
- the pointer 73 is arranged on the guide shaft seat 71, and the pointer 73 points to the scale of the scale hand wheel 74, which is convenient for reading data.
- the hand crank device 7 of the present invention has a simple structure and a compact design. Through the axial connection of the scale hand wheel 74, the coupling 72 and the lead screw 23, the fine adjustment operation of the slider 22 can be realized, which is convenient and flexible, and has high adjustment accuracy.
- the lifting mechanism 3 includes a lifting bottom plate 31, a lifting top plate 32, a first connecting rod 33, a second connecting rod 34, a first moving component 35 and a second moving component 36.
- the lifting bottom plate 31 is fixedly arranged on the slider 22.
- the second moving assembly 36 is arranged on one end of the lifting bottom plate 31.
- the second moving assembly 36 includes a second moving assembly body 361, a second polished rod 362, and a second moving nut seat 363.
- the second polished rod 362 is disposed on the second moving assembly body. On 361, the second polished rod 362 is arranged along the Y-axis direction, and the second moving nut base 363 is slidably arranged on the second polished rod 362.
- the first moving assembly 35 includes a first moving assembly body 351, a rotating hand wheel 352, a first polished rod 353, and a first moving nut seat 354.
- the first moving assembly body 351 is arranged on one end of the bottom of the lifting top plate 32.
- the component body 351 is positioned relative to the second moving component body 361, the first polished rod 353 is disposed on the first moving component body 351, the first polished rod 353 is disposed along the Y-axis direction, and the rotating hand wheel 352 is disposed on the first moving component body 351.
- the first polished rod 353 is axially connected with the rotating hand wheel 352, and the first moving nut seat 354 is slidably arranged on the first polished rod 353.
- the first connecting rod 33 and the second connecting rod 34 are arranged to cross each other.
- a bottom plate fixing nut seat 311 is provided on the side of the lifting bottom plate 31 away from the second moving assembly 36.
- the lower end of the first connecting rod 33 is hinged to the bottom plate fixing nut seat 311 ,
- the upper end of the first connecting rod 33 is hinged to the first moving nut base 354.
- a top plate fixing nut seat 321 is provided on the side of the second link 34 away from the first moving assembly 35.
- the upper end of the second link 34 is hinged to the top plate fixing nut seat 321, and the lower end of the second link 34 is connected to the second moving part.
- the nut base 363 is hinged.
- the top of the lifting top plate is also provided with a positioning pin 37.
- the cross section of the positioning pin 37 is a special-shaped cross-section.
- the design of the special-shaped cross-section positioning pin 37 is convenient for the operator to adjust the fixing direction of the tooth-shaped calibration plate 4 during use. Switching between the first saw tooth 411 (described in detail below) and the second saw tooth 412 (described in detail below) is realized.
- the calibration block 4 moves up and down along the Z axis with the lifting mechanism 3.
- the first connecting rod 33 and the second connecting rod 34 form a double-wishbone lifting combination.
- the first polished rod 353 is axially connected to the rotating hand wheel 352, and the rotating hand wheel 352 is rotated. , That is, rotating the first polished rod 353 to rotate, so that the first moving nut holder 354 makes a reciprocating motion on the first polished rod 353, so that the upper end of the first connecting rod 33 can move on the first polished rod 353.
- the joint linkage upgrade of the first link 33 and the second link 34 can be performed, that is, when the upper end of the first link 33 moves on the first polished rod 353, the lower end of the second link 34 is at the second
- the polished rod 362 is moved correspondingly, so as to realize the lifting and lowering of the top plate 32 up and down.
- the calibration block 4 includes a special-shaped tooth-shaped calibration plate 41 and a cover plate 42 used to calibrate the camera 8. Both the tooth-shaped calibration plate 41 and the cover plate 42 are provided with positioning pin through holes for the positioning pins 37 to pass through.
- the positioning pin through hole of the tooth profile calibration plate 41 is set on the lifting top plate 32 through the positioning pin 37, and the positioning pin through hole through which the cover plate 42 passes is set above the tooth profile calibration plate 41 through the positioning pin 37,
- a precision washer (not shown in the figure) is also arranged between the cover plate 42 and the tooth-shaped calibration plate 41, so that there is a gap of 0.1-0.3 mm between the cover plate 42 and the tooth-shaped calibration plate 41.
- a first saw tooth 411 and a second saw tooth 412 are respectively provided on both sides of the tooth-shaped calibration plate 41.
- the horizontal cross section of the first saw tooth 411 and the second saw tooth 412 is an isosceles triangle.
- the first saw tooth 411 and the second saw tooth 412 Each is composed of several saw-tooth units, and each of the saw-tooth units has a tooth root and a tooth tip.
- the operator faces the required serrated surface to the direction of the light source 6 illuminating.
- we set the first saw tooth 411 to face the light source 6 irradiation direction
- the second saw tooth 412 is arranged to face the light source 6 irradiation direction.
- the distance between the two adjacent tooth tips of the saw tooth unit of the first saw tooth 411 is not consistent with the distance between the two adjacent tooth tips of the saw tooth unit of the second saw tooth 412, that is, each of the first saw tooth 411
- the densities of the saw-tooth unit and the second saw-tooth 412 are inconsistent with each other.
- the first saw-tooth 411 and the second saw-tooth 412 are used for different types of camera calibration.
- the three-axis fine-tuning device 5 is arranged on the base plate 1, and the three-axis fine-tuning device 5 can adjust the three-axis angular freedom of the camera 8, XYZ, and thereby adjust the positions of the camera 8 and the tooth-shaped calibration plate 41.
- the three-axis fine-tuning device 5 includes a fine-tuning base 50, a fine-tuning base plate 51, a Y-axis rotating plate 52, a Z-axis rotating plate 53, a Z-axis linkage plate 54, an X-axis rotating plate 55, a first rotating shaft 561, and a second rotating shaft (not shown in the figure).
- the third rotating shaft 563 Shown), the third rotating shaft 563, the first compression spring (not shown in the figure), the second compression spring (not shown in the figure), the third compression spring (not shown in the figure), the first pressure plate 581, The second pressing plate 582, the third pressing plate 583, the first spherical differential switch 591, the second spherical differential switch 592, and the third spherical differential switch 593.
- the first spherical differential gate 591, the second spherical differential gate 592, and the third spherical differential gate 593 all adopt the spherical differential gate of the model S65-1Q on the market.
- the first pressing plate 581, the second pressing plate 582, and the third pressing plate 583 are all elastic pressing plates.
- the fine adjustment base 50 is arranged at the end of the base plate 1 away from the hand crank device 7.
- a fine adjustment base 51 is fixed on the fine adjustment base 50.
- the fine adjustment base 51 is provided with a Y-axis rotating plate 52 along the X axis direction.
- the fine adjustment base 51 now serves as the Y axis.
- the linkage plate One side of the fine-tuning bottom plate 51 and the side opposite to the Y-axis rotating plate 52 are hinged through a first rotating shaft 561.
- the first rotating shaft 561 is arranged along the Y-axis direction.
- the telescopic rod of the first spherical differential switch 591 passes through the first pressure plate 581 and abuts against the Y-axis rotating plate 52.
- One end of the first compression spring abuts against the fine adjustment base plate 51, and the first compression The other end of the spring abuts on the Y-axis rotating plate 52.
- the first spherical differential switch 591 is used to adjust the gap between the Y-axis rotating plate 52 and the fine adjustment bottom plate 51. By adjusting the first spherical differential switch 591, the Y-axis rotating plate 52 is moved away from/close to the fine adjustment base plate 51 around the first rotating shaft 561, so as to adjust the irradiation direction of the light source 6 in the Y-axis direction.
- the Y-axis rotating plate 52 is provided with an X-axis rotating plate 55 along the Y-axis direction.
- the Y-axis rotating plate 52 serves as an X-axis linkage plate at this time.
- One side of the Y-axis rotating plate 52 and the opposite side of the X-axis rotating plate 55 pass The second rotating shaft is hinged, and the second rotating shaft is arranged along the X-axis direction.
- the Y-axis rotating plate 52 has a second slot 521 on the side away from the second rotating shaft, one end of the second pressing plate 582 is fixedly arranged on the second slot 521, and the other end of the second pressing plate 582 is arranged on the X-axis rotating plate 55, the second spherical differential gate 592 is arranged above the second pressure plate 582, and the telescopic rod of the second spherical differential gate 592 passes through the second pressure plate 582 and abuts against the X-axis rotating plate 55, the second compression One end of the spring abuts against the Y-axis rotating plate 52, and the other end of the second compression spring abuts against the X-axis rotating plate 55.
- the second spherical differential switch 592 is used to adjust the gap between the Y-axis rotating plate 52 and the X-axis rotating plate 55.
- the X-axis rotating plate 55 is moved away from/close to the Y-axis rotating plate 52 around the second rotating shaft, thereby adjusting the irradiation direction of the light source 6 in the X-axis direction.
- the Z-axis linkage plate 54 is arranged vertically on the X-axis rotating plate 55, one side of the Z-axis linkage plate 54 is provided with a Z-axis rotating plate 53, the Z-axis linkage plate 54 is arranged in the vertical direction, and one side of the Z-axis linkage plate 54 is connected to The opposite side of the Z-axis rotating plate 53 is hinged with a third rotating shaft 563, and the third rotating shaft 563 is arranged along the Z-axis direction.
- the Z-axis linkage plate 54 has a third slot 541 on the side away from the third rotating shaft 563, one end of the third pressing plate 583 is fixedly arranged on the third slot 523, and the other end of the third pressing plate 583 is arranged on the Z-axis rotating plate 53
- the third spherical differential 593 is provided on the side of the third pressure plate 583 away from the Z-axis rotating plate 53, and one end of the third compression spring abuts against the X-axis rotating plate 55, The other end of the third compression spring abuts on the Z-axis linkage plate 54.
- the third spherical differential switch 593 is used to adjust the gap between the Z-axis linkage plate 54 and the Z-axis rotating plate 53.
- the Z-axis rotating plate 53 is moved away from/close to the Z-axis linkage plate 54 around the third rotating shaft 563, thereby adjusting the irradiation direction of the light source 6 in the Z-axis direction.
- the three-axis fine-tuning device 5 of the present invention has a simple structure and a compact design.
- the fine adjustment operation of the three-dimensional position of the light source 6 can be realized, which is convenient and flexible, and has adjustment accuracy.
- the distance error between the camera 8 and the calibration block 4 can be effectively reduced, and the calibration accuracy of the camera 8 can be improved.
- the three-axis fine-tuning device 5 is provided with a housing 9 for placing the light source 6 and the camera 8.
- the housing 9 is a hollow housing, and the inner cavity of the housing 9 is provided with an accommodation space for the light source 6 and the camera 8 to be placed. 91.
- the light source 6 is arranged above the camera 8.
- the camera 8 used in the present invention is a laser scanning camera.
- the camera 8 is installed on the accommodating space 91.
- the inner cavity of the housing 9 is also equipped with a light shielding sleeve 92 to prevent light leakage.
- the front end of the light shielding sleeve 92 is equipped with a lens 93, and the front end of the lens 93 is installed
- the filter (not shown in the figure) can filter light beams of different wavelengths other than the laser.
- the camera 8 and the light source beam emitted by the light source 6 form a certain angle relationship.
- the shell of the housing 9 is equipped with a transparent glass 94.
- the transparent glass 94 and the housing of the camera 8 are equipped with a sealing ring (not shown in the figure) to prevent dust from entering the interior of the camera 8.
- the housing of the camera 8 and the accommodation space 91 There is also an O-ring rubber strip groove (not shown in the figure), and the whole machine composition reaches IP67 sealing performance.
- the present invention also provides a method for calibrating a structured light three-dimensional scanning camera.
- the specific operation steps are as follows:
- the fixed tooth profile calibration plate 41 is in a certain range of the linear module 2, and the tooth tip of the tooth unit of any second tooth 412 is set as the reference origin (0, 0), because the calibration tooth
- the tooth profile physical quantity of the shape plate 41 is known, and the coordinate point of any tooth tip of the saw tooth unit of the second saw tooth 412 and any tooth root of the saw tooth unit of the second saw tooth 412 can be calculated.
- the coordinate points of the tooth tip and the tooth root of any one of the saw tooth units of the second saw tooth 412 are (X1, Y1), (X2, Y2)...(Xn, Yn);
- S7 Start the camera 8 software, start to obtain the pixel point positions (A1, B1), (A2, B2) of the tooth tip and the tooth root of any one of the saw tooth units of the second saw tooth 412 within the camera's field of view. ...(An, Bn), because the camera software’s field of view will produce a fold line, the fold line is connected by the coordinate points of the tooth tip and the tooth root of any one of the saw tooth units of the second saw tooth 412 A line segment, the plane on which the tooth tip and the tooth root of any one of the saw tooth units of the second saw tooth 412 are connected by a line is used as the reference reference surface, and the reference reference surface is determined by linear algebra based on this reference reference surface The coordinate conversion method between the actual physical coordinate value and the pixel value of the camera software.
- the step S3 According to the specific structure of the driving device:
- the gap between the tooth-shaped calibration plate and the cover plate of the lifting mechanism is raised/lowered to approximately coincide with the laser plane of the light source.
- the gap between the tooth-shaped calibration plate and the cover plate of the lifting mechanism rises/drops to roughly coincide with the laser plane of the light source.
- the pixel point coordinates of the tooth tips and the tooth roots of the four saw tooth units of the second saw tooth 412 in the camera software (A1, B1), (A2, B2), (A3, B3), (A4, B4)
- Y1 MA1+NB1+O-KY1A1-LB1Y1
- Y2 MA2+NB2+O-KY2A2-LB2Y2
- Y4 MA4+NB4+O-KY4A4-LB4Y4
- the coordinate conversion between the actual physical coordinate value on the datum reference surface and the pixel value of the camera software is determined.
- the present invention is beneficial in that the calibration fine adjustment mechanism of the fixed camera 8 can be manually adjusted.
- the light source 6 emits a light beam
- the height of the lifting mechanism 3 is adjusted and the lifting mechanism 3 is moved to slide along the linear module body 21.
- the light beam is adjusted by the three-axis fine-tuning device 5 so that the light beam is evenly irradiated on the gap between the tooth-shaped calibration plate 41 and the cover plate 42 in the horizontal direction, and then the data on the scale 25 is read, and the displacement detection of the camera 8 is performed.
- the invention greatly improves the calibration efficiency of the camera, and does not need to be connected to electricity, and the transition does not need to be re-installed and calibrated, and can be used with only a workbench or an open space.
- the invention provides a calibration device and a calibration method for a structured light three-dimensional scanning camera.
- the calibration device greatly improves the efficiency of camera calibration, and does not need to be connected to electricity. Can be used; the calibration method of the present invention can quickly and accurately obtain the data information of the calibration block, thereby transmitting it to the computer for reading and conversion, has a significant effect of improving the efficiency and accuracy of batch camera calibration, has a wide range of applications, and has good Industrial applicability.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开了一种结构光三维扫描相机的标定装置及标定方法,包括底板、驱动装置、直线模组、升降机构、标定块、光源以及三轴微调装置,直线模组包括直线模组本体、滑块和丝杆,丝杆可转动地设置在直线模组本体上,滑块滑动设置在直线模组上,滑块的底部设置有丝杆螺母座,驱动装置与丝杆轴向连接,升降机构固定设置在滑块上,标定块设置在升降机构上,光源设置在三轴微调装置上。本发明的标定装置极大的提高相机标定效率,且可以不接电,转场无需重新安装校准,只需一个工作台或是一个空地就能使用;本发明的标定方法能够快速准确的获取标定块的数据信息,从而传输到计算机进行读取换算,对于批量化相机标定有着提高效率和准确性的显著效果。
Description
本发明涉及相机标定技术领域,具体是涉及一种结构光三维扫描相机的标定装置及标定方法。
结构光三维扫描技术由于其具有低成本、非接触、高精度、高效率等优点,已广泛应用于产品设计与制造、工业测量、质量检测、医学、影视娱乐等行业,被誉为最有前途的三维测量方法。结构光三维扫描技术通过主动控制光源来实现三维扫描,与其他三维扫描技术效果比具有更高的可靠度。在进行结构光三维重建前需先对结构光系统进行标定,即获取结构光系统中相机与投影设备的内部参数,以及两者之间的转换关系,亦成为外部参数,标定精度的高低直接影响三维重建的质量。
目前针对相机的标定技术业已成熟,可利用棋盘格标定板对齐进行标定,通过标定板前面设置相机以及光源,相机采集多幅标定板图像进而实施标定,这种方案有着成本低的优点,但也存在一些缺点。由于标定板一般体积较大使得照明不均匀,另外对于需要移动标定板的标定方案则同时也需要移动光源,移动光源需要额外接电移动设备,盖板大大地提升了标定的复杂度,最终导致标定精度差,标定时间长, 并且取点不能实现大量可读数据转换,在批量化标定的情况下,效率和准确性得不到双重保证。
发明内容
本发明的目的在于提供一种无需接电、标定精度高、标定效率快,且使用方便的结构光三维扫描相机的标定装置。
为了达成上述目的,本发明的解决方案是:
一种结构光三维扫描相机的标定装置,包括底板、直线模组、驱动装置、升降机构、标定块、用于发射光束的光源和用于调整所述光源照射方向的三轴微调装置,所述直线模组和所述三轴微调装置分别设置在所述底板的两端,所述直线模组沿所述底板的长度方向设置,所述升降机构设置在所述直线模组上,所述直线模组包括直线模组本体、滑块和丝杆,所述丝杆可转动地设置在所述直线模组本体上,所述丝杆沿水平方向设置,所述滑块可滑动地设置在所述直线模组本体上,所述滑块的底部设置有供所述丝杆穿置的丝杆螺母座,所述驱动装置设置在所述直线模组远离所述三轴微调装置的一端,所述驱动装置与所述丝杆轴向连接,所述升降机构固定设置在所述滑块上,所述标定块设置在所述升降机构上,所述光源设置在所述三轴微调装置上。
作为本发明的一种优选方式,所述驱动装置包括伺服电机,所述伺服电机的转轴沿水平方向设置,所述伺服电机的转轴与所述丝杆轴向连接。
作为本发明的一种优选方式,所述驱动装置包括导向轴座、联轴器、指针、刻度手轮以及夹紧手柄,所述导向轴座设置在所述底板上, 所述导向轴座为开口型导向轴座,所述联轴器具有与所述刻度手轮相连接的联轴器第一端和与所述丝杆相连接的联轴器第二端,所述联轴器第一端和所述联轴器第二端均沿水平方向设置,所述指针设置在所述导向轴座上;
所述导向轴座包括导向轴座上部、导向轴座下部、导向轴座开口以及设置在所述导向轴座上部和所述导向轴座下部之间的导向轴座通孔,所述导向轴座开口设置在所述导向轴座上部和所述导向轴座下部间的一侧上;
所述夹紧手柄设置在所述导向轴座上部上,所述夹紧手柄包括手持部和设置在所述手持部底部的连接部,所述导向轴座下部上相对所述连接部的位置上设置有与所述连接部相适配的螺孔,所述联轴器第一端穿过所述导向轴座通孔与所述刻度手轮轴向连接,所述联轴器第二端与所述丝杆轴向连接。
作为本发明的一种优选方式,所述升降机构包括升降底板、升降顶板、第一连杆、第二连杆、第一移动组件以及第二移动组件,所述升降底板设置在所述滑块上;
所述第一移动组件包括第一移动组件本体、转动手轮、第一光杆和第一移动螺母座,所述第一移动组件本体设置在所述升降顶板的底部的一端上,所述第一光杆设置在所述第一移动组件本体上,所述转动手轮设置在所述第一移动组件本体的一端,且位于所述升降顶板的一侧,所述第一光杆与所述转动手轮轴向连接,所述第一移动螺母座滑动地配设在所述第一光杆上;
所述第二移动组件设置在所述升降底板的一端上,所述第二移动组件包括第二移动组件本体、第二光杆以及第二移动螺母座,所述第二光杆设置在所述第二移动组件本体上,所述第二光杆沿水平方向设置,所述第二移动螺母座滑动设置在所述第二光杆上;
所述第一连杆和所述第二连杆交叉设置,所述升降底板远离所述第二移动组件的一侧上设置有所述底板固定螺母座,所述第一连杆的下端与所述底板固定螺母座相铰接,所述第一连杆的上端与所述第一移动螺母座相铰接,所述第二连杆远离所述第一移动组件的一侧上设置有顶板固定螺母座,所述第二连杆的上端与所述顶板固定螺母座相铰接,所述第二连杆的下端与所述第二移动螺母座相铰接;
所述升降顶板的顶部设置有定位销,所述定位销的水平横截面为异性截面。
作为本发明的一种优选方式,所述标定块包括用于标定相机用的齿形标定板和盖板,所述齿形标定板通过所述定位销设置在所述升降顶板上,所述盖板通过所述定位销设置在所述齿形标定板上方,所述齿形标定板和所述盖板之间还设置垫圈;
所述齿形标定板的两侧均分别设置有第一锯齿和第二锯齿,所述第一锯齿和所述第二锯齿形沿水平方向的截面均为等腰三角形,所述第一锯齿和所述第二锯齿均由若干个锯齿单元组成,各所述锯齿单元均具有齿根和齿尖;
所述第一锯齿的所述锯齿单元相邻的两所述齿尖的距离与所述第二锯齿的所述锯齿单元相邻的两所述齿尖的疏密程度度不一致。
作为本发明的一种优选方式,定义所述底板的长度方向为X轴,所述底板的宽度方向为Y轴,垂直于所述底板的方向为Z轴;
所述三轴微调装置设置在所述底板上,所述三轴微调装置包括微调底板、Y轴转板、Z轴转板、Z轴联动板、X轴转板、第一转轴、第二转轴、第三转轴、第一压缩弹簧、第二压缩弹簧、第三压缩弹簧、第一压板、第二压板、第三压板、用于调节所述Y轴转板与所述微调底板之间的间隙的第一球面微分关、用于调节所述Y轴转板与所述X轴转板之间的间隙的第二球面微分关以及用于调节所述X轴转板与所述Z轴转板之间的间隙的第三球面微分关;
所述微调底板沿X轴的方向上设置有所述Y轴转板,所述微调底板的一侧与所述Y轴转板相对的一侧通过所述第一转轴相铰接,所述第一转轴沿Y轴方向设置,所述第一压板设置在所述微调底板远离所述第一转轴的一侧上,所述第一压板的一端固定设置在所述微调底板上,所述第一压板延伸至所述Y轴转板的上方,所述第一球面微分关设置在所述第一压板的上方,且所述第一球面微分关的伸缩杆穿过所述第一压板抵靠在所述Y轴转板上,所述第一压缩弹簧的一端抵靠在所述微调底板上,所述第一压缩弹簧的另一端抵靠在所述轴转板上;
所述Y轴转板沿Z轴的方向上设置有所述X轴转板,所述Y轴转板的一侧与所述X轴转板相对的一侧通过所述第二转轴相铰接,所述第二转轴沿X轴方向设置,所述第二压板设置在所述Y轴转板远离所述第二转轴的一侧上,所述第二压板的一端固定设置在所述Y轴转板上,所述第二压板延伸至所述X轴转板的上方,所述第二球面微分关 设置在所述第二压板的上方,且所述第二球面微分关的伸缩杆穿过所述第二压板抵靠在所述X轴转板上,所述第二压缩弹簧的一端抵靠在所述Y轴转板上,所述第二压缩弹簧的另一端抵靠在所述X轴转板上;
所述Z轴联动板垂直设置在所述X轴转板上,所述Z轴联动板的一侧设置有所述Z轴转板,所述Z轴联动板竖直方向设置,所述Z轴联动板的一侧与所述Z轴转板相对的一侧通过所述第三转轴相铰接,所述第三转轴沿Z轴方向设置,所述第三压板设置在所述Z轴联动板远离所述第三转轴的一侧上,所述第三压板的一端固定设置在所述Z轴联动板上,所述第三压板延伸至所述Z轴转板的上方,所述第三球面微分关设置在所述第三压板的上方,且所述第三球面微分关的伸缩杆穿过所述第三压板抵靠在所述Z轴转板上,所述第三压缩弹簧的一端抵靠在所述X轴转板上,所述第三压缩弹簧的另一端抵靠在所述Z轴联动板上。
作为本发明的一种优选方式,所述三轴微调装置上设置有供所述光源和所述相机放置的壳体,所述壳体为中空壳体,所述壳体的内腔设置有供所述光源和所述相机放置的容置空间,所述光源设置在所述相机的上方。
作为本发明的一种优选方式,所述直线模组本体上设置有刻有距离刻度的标尺。
作为本发明的一种优选方式,所述光源包含发光二极管、激光光源中的至少一种。
本发明还提供了另一种目的,在于提供一种可以快速准确的获取 标定的数据信息,从而进行读取换算的结构光三维扫描相机的标定方法。
为了达成上述目的,本发明的解决方案是:
一种采用一种结构光三维扫描相机的标定装置的一种结构光三维扫描相机的标定方法,包括下述步骤:
S1:安装待标定的所述相机,将要标定的所述相机安装在所述三轴微调装置上,通过螺丝紧固;
S2:调整校准所述齿形标定块的位置,所述第一锯齿背向所述三轴微调装置设置,所述第二锯齿面向所述三轴微调装置设置;
S3:调整激光平面,打开所述相机,让所述光源的激光束发射出来,转动所述转动手轮,使得所述升降机构的所述齿形标定板与所述盖板之间的缝隙上升/下降到与所述光源的激光平面大致重合;
S4:通过调整所述三轴微调装置,调节所述Y轴转板、所述Z轴转板以及所述X轴转板的转角,使得所述光源的激光平面透过所述齿形标定板与所述盖板间的缝隙,从而使得所述光源的激光平面与所述标定齿形板处于平行状态;
S5:将所述升降机构上升,使得所述光源的激光平面照射在所述标定齿形板的所述第二锯齿上,通过所述直线模组,将所述标定齿形板移动至所述光源的激光平面的有效距离中,通过调整让齿形物体在三维扫描所述相机的景深范围中,增加精度;
S6:固定所述齿形标定板在所述直线模组的某一范围中,设置最任一一个所述第二锯齿的所述锯齿单元的所述齿尖为基准原点(0,0), 由于标定齿形板的齿形物理量已知,可推算出所述第二锯齿任一所述锯齿单元的所述齿尖和所述齿根的坐标点(X1,Y1),(X2,Y2)…(Xn,Yn),
S7:开启所述相机的软件,开始获取所述相机视野范围内所述第二锯齿的任一所述锯齿单元的所述齿尖和所述齿根的像素点位置(A1,B1),(A2,B2)…(An,Bn),采用线性代数方式确定基准参考面上实际物理坐标值与所述相机软件的像素值的坐标换算方式。
采用上述技术方案,本发明的有益是:
本发明的标定装置可以极大的提高相机标定效率,且无需接电,转场无需重新安装校准,只需一个工作台或是一个空地就能使用;当光源发出光束时,调整升降机构的高度、移动升降机构沿直线模组上滑动,进而通过三轴微调装置调整光束,使得光束沿水平方向均匀地照射在标定板上,校准相机与标定块的相对位置,本发明的标定方法可以快速准确的获取标定块的数据信息,从而传输到计算机进行读取换算,对于批量化相机标定有着提高效率和准确性的显著效果。
图1为本发明的结构示意图;
图2为本发明的侧视图;
图3为本发明中直线模组的结构示意图;
图4为本发明中升降机构的结构示意图;
图5为本发明中三轴微调装置的结构示意图;
图6为本发明中三轴微调装置的部分剖视图;
图7为本发明中手摇装置的结构示意图。
图中:
底板1、直线模组2、直线模组本体21、滑块22、丝杆23、丝杆螺母座24、标尺25、升降机构3、升降底板31、底板固定螺母座311、升降顶板32、顶板固定螺母座321、第一连杆33、第二连杆34、第一移动组件35、第一移动组件本体351、转动手轮352、第一光杆353、第一移动螺母座354、第二移动组件36、第二移动组件本体361、第二光杆362、第二移动螺母座363、定位销37、标定块4、齿形标定板41、第一锯齿411、第二锯齿412、盖板42、三轴微调装置5、微调底座50、微调底板51、第一卡槽511、Y轴转板52、第二卡槽521、Z轴转板53、Z轴联动板54、第三卡槽541、X轴转板55、第一转轴561、第三转轴563、第一压板581、第二压板582、第三压板583、第一球面微分关591、第二球面微分关592、第三球面微分关593、光源6、手摇装置7、导向轴座71、导向轴座通孔711、导向轴座开口712、导向轴座上部713、导向轴座下部714、联轴器72、联轴器第一端721、联轴器第二端722、指针73、刻度手轮74、夹紧手柄75、手持部751、相机8、壳体9、容置空间91、遮光套92、镜头93、透明玻璃94。
为了进一步解释本发明的技术方案,下面通过具体实施例来对本 发明进行详细阐述。
本发明将用来改进现有技术中的不足,尤其是在相机8出厂时或在实际的使用当中要对其进行标定参考物,往往以实际使用中的实物作为参考,但这样不太标准,影响使用。
为了方便叙述,我们定义底板1(下面会详细介绍)的长度方向为X轴,底板1的宽度方向为Y轴,垂直于底板1的方向为Z轴。
如图1-图3所示:
本发明提供了一种结构光三维扫描相机的标定装置,包括底板1、驱动装置、直线模组2、升降机构3、标定块4、用于发射光束的光源6、用于调整光源6照射方向的三轴微调装置5以及相机8,底板1作为固定各相关机构和部件安装的载体,相机8可采用常规的CCD相机。
优选的,本实施例中光源6包含发光二极管、激光光源中的至少一种。
直线模组2和三轴微调装置5沿底板的长度方向(X轴方向)分别设置在底板1的两端,升降机构3设置在直线模组2上。
直线模组2包括直线模组本体21、滑块22和丝杆23,丝杆23可转动地设置在直线模组本体21上,丝杆23沿水平方向设置,滑块22可滑动地设置在直线模组本体21上,滑块22的底部设置有供丝杆23穿置的丝杆螺母座24。本实施例中,直线模组2可以进行X轴方向的线性运动,通过丝杆23安装在直线模组本体21上,丝杆23的两端采用轴承固定支撑,丝杆螺母座24安装在丝杆23上,可以进 行X轴方向的线性滑动,滑块22安装在丝杆螺母座24上,可以跟随丝杆螺母座24运动。
进一步,直线模组2上还设置有刻有距离刻度的标尺25。
所述驱动装置设置在直线模组2远离三轴微调装置5的一端,所述驱动装置驱动丝杆23转动,从而带动滑块22沿X轴的方向在直线模组本体21上滑动,实现调整相机8与标定块4之间的距离。
具体的,在本实施例中,所述驱动装置可以为电动驱动装置,所述电动驱动装置包括伺服电机(图中未示出),所述伺服电机的转轴轴向连接丝杆23,所述伺服电机的转轴沿X轴方向设置。当丝杆23相对于丝杆螺母座24转动时,两者之间发生轴向位移,滑块22固定连接在丝杠螺母座24上,并在丝杆螺母座24带动下沿着X轴方向做往返运动。
如图7所示,在本实施例中,所述驱动装置也可以为手动驱动装置,所述手动驱动装置可以采用手摇装置7,手摇装置7包括导向轴座71、联轴器72、指针73、刻度手轮74以及夹紧手柄75,导向轴座71设置在底板1上,导向轴座71为开口型导向轴座,联轴器72具有与刻度手轮74轴向连接的联轴器第一端721和与丝杆23轴向连接的联轴器第二端722,联轴器第一端721和联轴器第二端722均沿X轴方向设置。
导向轴座71的中部设置有供联轴器第一端721穿置的导向轴座通孔711,导向轴座71的一侧设置有导向轴座开口712。为了方便描述,这边将导向轴座71分为导向轴座上部713和导向轴座下部714, 导向轴座通孔711设置在导向轴座上部713和导向轴座下部714之间,导向轴座开口712设置在导向轴座上部713和导向轴座下部714间的一侧上。
夹紧手柄75设置在导向轴座上部713上,夹紧手柄75包括手持部751和设置在手持部751底部的连接部(图中未示出),导向轴座下部714上相对夹紧手柄75的所述连接部的位置上设置有与所述连接部相适配的螺孔;联轴器第一端721穿过导向轴座71的导向轴座通孔711与刻度手轮74轴向连接。当调整好选择的角度时,转动夹紧手柄75的所述手持部,使得所述连接部与所述螺孔相螺紧,即导向轴座上部713向导向轴座下部714方向移动,以缩小导向轴座开口712的间距,以此夹紧联轴器第一端721,即将联轴器第一端721固定在导向轴座通孔711上。
指针73设置在导向轴座71上,指针73指向刻度手轮74的刻度,方便读取数据。
本发明的手摇装置7结构简单,设计紧凑,通过刻度手轮74、联轴器72以及丝杠23的轴向连接,可以实现对滑块22的微调操作,方便灵活,调节精度高。
如图4所示:
升降机构3包括升降底板31、升降顶板32、第一连杆33、第二连杆34、第一移动组件35以及第二移动组件36,升降底板31固定设置在滑块22上。
第二移动组件36设置在升降底板31的一端上,第二移动组件 36包括第二移动组件本体361、第二光杆362以及第二移动螺母座363,第二光杆362设置在第二移动组件本体361上,第二光杆362沿Y轴方向设置,第二移动螺母座363滑动设置在第二光杆362上。
第一移动组件35包括第一移动组件本体351、转动手轮352、第一光杆353和第一移动螺母座354,第一移动组件本体351设置在升降顶板32的底部的一端上,第一移动组件本体351相对第二移动组件本体361的位置设置,第一光杆353设置在第一移动组件本体351上,第一光杆353沿Y轴方向设置,转动手轮352设置在第一移动组件本体351的一端,且位于升降顶板32的一端,第一光杆353与转动手轮352轴向连接,第一移动螺母座354滑动设置在第一光杆353上。
第一连杆33和第二连杆34交叉设置,升降底板31远离第二移动组件36的一侧上设置有底板固定螺母座311,第一连杆33的下端与底板固定螺母座311相铰接,第一连杆33的上端与第一移动螺母座354相铰接。
第二连杆34远离第一移动组件35的一侧上设置有顶板固定螺母座321,第二连杆34的上端与顶板固定螺母座321相铰接,第二连杆34的下端与第二移动螺母座363相铰接。
进一步,升降顶板的顶部还设置有定位销37,定位销37的横截面为异形截面,异形截面的定位销37的设计方便操作者在使用过程中,调整齿形标定板4的固定方向,同时实现第一锯齿411(下面会详细介绍)和第二锯齿412(下面会详细介绍)的切换。
标定块4随升降机构3沿Z轴方向上下升降,第一连杆33与第二连杆34组成双叉臂升降组合,通过第一光杆353轴向连接转动手轮352,转动转动手轮352,即转动第一光杆353转动,使得第一移动螺母座354在第一光杆353上做往返运动,从而实现得第一连杆33的上端可以在第一光杆353移动。通过交叉原理,可以进行第一连杆33和第二连杆34关节联动升级,即当第一连杆33的上端在第一光杆353上移动时,第二连杆34的下端则在第二光杆362上做相对应的移动,从而实现升降顶板32上下升降。
如图1所示:
标定块4包括用于标定相机8用的特殊构型的齿形标定板41和盖板42,齿形标定板41和盖板42上均设置有供定位销37穿过的定位销通孔,齿形标定板41的所述定位销通孔穿过定位销37设置在升降顶板32上,盖板42通过的所述定位销通孔穿过定位销37设置在齿形标定板41的上方,盖板42和齿形标定板41之间还设置有精密性垫圈(图中未示出),让盖板42与齿形标定板41之间有0.1-0.3mm的缝隙。
齿形标定板41的两侧分别设置有第一锯齿411和第二锯齿412,第一锯齿411和第二锯齿412沿水平方向的截面均为等腰三角形,第一锯齿411和第二锯齿412均由若干个锯齿单元组成,每个所述锯齿单元均具有齿根和齿尖。在使用过程中,操作者将所需的锯齿面面向光源6照射方向。为了方便叙述,本实施例中,我们将第一锯齿411背向光源6照射方向设置,第二锯齿412则面向光源6照射方向设置。
进一步,第一锯齿411的所述锯齿单元相邻的两所述齿尖的距离与第二锯齿412的所述锯齿单元相邻的两所述齿尖的距离不一致,即第一锯齿411的各所述锯齿单元与第二锯齿412的各所述锯齿单元的疏密程度度不一致,第一锯齿411和第二锯齿412用于不同类型相机标定。
如图5-图6所示:
三轴微调装置5设置在底板1上,三轴微调装置5能够调整相机8XYZ三轴角度自由度,以此来调整相机8与齿形标定板41的位置。
三轴微调装置5包括微调底座50、微调底板51、Y轴转板52、Z轴转板53、Z轴联动板54、X轴转板55、第一转轴561、第二转轴(图中未示出)、第三转轴563、第一压缩弹簧(图中未示出)、第二压缩弹簧(图中未示出)、第三压缩弹簧(图中未示出)、第一压板581、第二压板582、第三压板583、第一球面微分关591、第二球面微分关592以及第三球面微分关593。
具体的,在本实施例中,第一球面微分关591、第二球面微分关592以及第三球面微分关593均采用市面上型号为S65-1Q的球面微分关。第一压板581、第二压板582以及第三压板583均为富有弹性的压板。
微调底座50设置在底板1远离手摇装置7的一端,微调底座50上固定设置有微调底板51,微调底板51沿X轴方向上设置有Y轴转板52,微调底板51此时充当Y轴联动板,微调底板51的一侧与Y轴转板52相对的一侧通过第一转轴561相铰接,第一转轴561沿Y 轴方向设置,微调底板51远离第一转轴561的一侧上第一卡槽511,第一压板581的一端固定设置在第一卡槽511上,第一压板581的另一端设置在Y轴转板52的上方,第一球面微分关591设置在第一压板581的上方,且第一球面微分关591的伸缩杆穿过第一压板581抵靠在Y轴转板52上,所述第一压缩弹簧的一端抵靠在微调底板51上,所述第一压缩弹簧的另一端抵靠在Y轴转板52上。第一球面微分关591用于调节Y轴转板52与微调底板51之间间隙。通过调整第一球面微分关591,使得Y轴转板52绕着第一转轴561远离/靠近微调底板51,以此调整光源6在Y轴方向的照射方向。
Y轴转板52沿Y轴方向上设置有X轴转板55,Y轴转板52此时充当X轴联动板,Y轴转板52的一侧与X轴转板55相对的一侧通过所述第二转轴相铰接,所述第二转轴沿X轴方向设置。Y轴转板52远离所述第二转轴的一侧上第二卡槽521,第二压板582的一端固定设置在第二卡槽521上,第二压板582的另一端设置在X轴转板55的上方,第二球面微分关592设置在第二压板582的上方,且第二球面微分关592的伸缩杆穿过第二压板582抵靠在X轴转板55上,所述第二压缩弹簧的一端抵靠在Y轴转板52上,所述第二压缩弹簧的另一端抵靠在X轴转板55上。第二球面微分关592用于调节Y轴转板52与X轴转板55之间间隙。通过调整第二球面微分关592,使得X轴转板55绕着所述第二转轴远离/靠近Y轴转板52,以此调整光源6在X轴方向的照射方向。
Z轴联动板54垂直设置在X轴转板55上,Z轴联动板54的一侧 设置有Z轴转板53,Z轴联动板54竖直方向设置,Z轴联动板54的一侧与Z轴转板53相对的一侧通过第三转轴563相铰接,第三转轴563沿Z轴方向设置。Z轴联动板54远离第三转轴563的一侧上第三卡槽541,第三压板583的一端固定设置在第三卡槽523上,第三压板583的另一端设置在Z轴转板53远离Z轴联动板54的一侧,第三球面微分关593设置在第三压板583远离Z轴转板53的一侧,所述第三压缩弹簧的一端抵靠在X轴转板55上,所述第三压缩弹簧的另一端抵靠在Z轴联动板54上。第三球面微分关593用于调节Z轴联动板54与Z轴转板53之间间隙。通过调整第三球面微分关593,使得Z轴转板53绕着第三转轴563远离/靠近Z轴联动板54,以此调整光源6在Z轴方向的照射方向。
本发明的三轴微调装置5结构简单,设计紧凑,通过调节Y轴转板52、Z轴转板53以及X轴转板55,可以实现光源6的三维位置的微调操作,方便灵活,调节精度高,同时通过对光源6位置进行微调,可以有效减小相机8与标定块4之间的距离误差,提高相机8的标定精度。
进一步,三轴微调装置5上设置有供光源6和相机8放置的壳体9,壳体9为中空壳体,壳体9的内腔设置有供光源6和相机8放置的容置空间91,光源6设置在相机8的上方。
本发明使用的相机8为激光扫描相机,相机8安装于容置空间91上,壳体9内腔还安装遮光套92,防止漏光,遮光套92的前端安装有镜头93,镜头93前端装有滤光镜(图中未示出),可以过滤除 激光外不同波长的光束,相机8与光源6发射的光源光束成一定角度关系。壳体9的外壳上装有透明玻璃94,透明玻璃94与相机8的外壳上装有密封圈(图中未示出),可以防止灰尘进入相机8的内部,相机8的外壳与容置空间91之间也设置有O型圈的胶条槽(图中未示出),整机组成达到IP67的密封性能。
本发明还提供了一种结构光三维扫描相机的标定方法,具体操作步骤如下:
S1:安装待标定的相机8,将要标定的三维扫描相机8安装在三轴微调装置5上的壳体9的的容置空间91上,通过螺丝紧固;
S2:调整校准齿形标定块41的位置;将第一锯齿411背向光源6照射方向设置;由于齿形标定板41本身的齿面与侧面加工时有存在垂直度关系,可以用百分表校准侧面移动时的平面跳动量。使得第二锯齿412的若干个所述锯齿单元均面向着三轴微调装置5。(校准只需校准一次后,锁紧固定好齿形标定板41后,后续使用无需再校准,除非更换齿面,才需再校准一次)
S3:调整激光平面;打开相机8,让光源6的激光束发射出来,将升降机构3上的齿形标定板41与盖板42间的缝隙,上升/下降到与光源6的激光平面大致重合的高度;
S4:通过调整三轴微调装置5,调节Y轴转板52、Z轴转板53以及X轴转板55的转角,使得光源6的激光平面可以贴合齿形标定板41与盖板42间的缝隙,从而使得光源6的激光平面与标定齿形板41处于平行状态;
S5:将升降机构3上升,使得光源6的激光平面照射在标定齿形板41的第二锯齿412上,通过直线模组2,将标定齿形板41移动至光源6的激光平面的有效距离中,通过调整,让齿形物体在三维扫描相机的景深范围中,增加精度;
S6:固定齿形标定板41在直线模组2的某一范围中,设置任一一个第二锯齿412的所述锯齿单元的所述齿尖为基准原点(0,0),由于标定齿形板41的齿形物理量已知,可推算出第二锯齿412的所述锯齿单元的任一所述齿尖和第二锯齿412的所述锯齿单元的任一所述齿根的坐标点,为了方便叙述,我们假设第二锯齿412的任一所述锯齿单元的所述齿尖和所述齿根的坐标点为(X1,Y1),(X2,Y2)…(Xn,Yn);
S7:开启相机8软件,开始获取相机视野范围内第二锯齿412的任一所述锯齿单元的所述齿尖和所述齿根的的像素点位置(A1,B1),(A2,B2)…(An,Bn),由于映入相机软件的视野会产生一段折线,该折线是由第二锯齿412的任一所述锯齿单元的所述齿尖和所述齿根的坐标点相连的一条线段,第二锯齿412的任一所述锯齿单元的所述齿尖和所述齿根的坐标点相连一条线的平面为基准参考面,以此基准参考面,采用线性代数方式确定基准参考面上实际物理坐标值与相机软件的像素值的坐标换算方式。
所述步骤S3:依据驱动装置的具体结构:
通过手摇装置7,使得所述升降机构的所述齿形标定板与所述盖板之间的缝隙上升/下降到与所述光源的激光平面大致重合。
或者通过控制伺服电机,使得所述升降机构的所述齿形标定板与所述盖板之间的缝隙上升/下降到与所述光源的激光平面大致重合。
换算方程式:(本实施例以4个点为例)
实际第二锯齿412的4个所述锯齿单元的所述齿尖和所述齿根的物理点坐标:(X1,Y1),(X2,Y2),(X3,Y3),(X4,Y4)
相机软件内第二锯齿412的4个所述锯齿单元的所述齿尖和所述齿根对应像素点坐标:(A1,B1),(A2,B2),(A3,B3),(A4,B4)
根据以上建立方程组
X1=HA1+IB1+J-KX1A1-LA1Y1
Y1=MA1+NB1+O-KY1A1-LB1Y1
X2=HA2+IB2+J-KX2A2-LA2Y2
Y2=MA2+NB2+O-KY2A2-LB2Y2
X3=HA3+IB3+J-KX3A3-LA3Y3
Y3=MA3+NB3+O-KY3A3-LB3Y3
X4=HA4+IB4+J-KX4A4-LA4Y4
Y4=MA4+NB4+O-KY4A4-LB4Y4
最后求解:H,I,J,K,L,M,N,O值
|A1 B1 1 0 0 0 X1A1 X1B1||H| X1
|00 0A1 B11 Y1A1 Y1B1||I| Y1
|A2 B2 1 0 0 0 X2A2 X2B2||J| X2
|00 0 A2 B21 Y2A2 Y2B2||K|=Y2
|A3 B3 1 0 0 0 X3A3 X2B3||L| X3
|00 0 A3 B31 Y3A3 Y3B3||M| Y3
|A4 B4 1 0 0 0 X4A4 X4B4||N| X4
|00 0 A4B41 Y4A4 Y4B4||O| Y4
解得H,I,J,K,L,M,N,O的值
经过换算,确定了基准参考面上实际物理坐标值与相机软件的像素值的坐标换算。
采用上述技术方案,本发明的有益是:手动即可调节固定相机8的标定微调机构,当光源6发出光束时,调整升降机构3的高度、移动升降机构3沿直线模组本体21上滑动,进而通过三轴微调装置5调整光束,使得光束沿水平方向均匀地照射在齿形标定板41与盖板42之间的缝隙上,进而读取标尺25上的数据,对相机8进行位移检测,减少位移误差,校准相机8与标定块4的相对位置,就可以快速准确的获取标定块41的数据信息,从而传输到计算机进行读取换算,对于批量化相机标定有着提高效率和准确性的显著效果,本发明极大的提高相机标定效率,且无需接电,转场无需重新安装校准,只需一个工作台或是一个空地就能使用。
上面结合附图对本发明做了详细的说明,但是本发明的实施方式并不仅限于上述实施方式,本领域技术人员根据现有技术可以对本发明做出各种变形,这些都属于本发明的保护范围。
本发明一种结构光三维扫描相机的标定装置及标定方法,其标定装置极大的提高相机标定效率,且可以不用接电,转场无需重新安装校准,只需一个工作台或是一个空地就能使用;本发明的标定方法能够快速准确的获取标定块的数据信息,从而传输到计算机进行读取换算,对于批量化相机标定有着提高效率和准确性的显著效果,适用范围广,具有良好的工业实用性。
Claims (11)
- 一种结构光三维扫描相机的标定装置,其特征在于:包括底板、直线模组、驱动装置、升降机构、标定块、用于发射光束的光源和用于调整所述光源照射方向的三轴微调装置,所述直线模组和所述三轴微调装置分别设置在所述底板的两端,所述直线模组沿所述底板的长度方向设置,所述升降机构设置在所述直线模组上,所述直线模组包括直线模组本体、滑块和丝杆,所述丝杆可转动地设置在所述直线模组本体上,所述丝杆沿水平方向设置,所述滑块可滑动地设置在所述直线模组本体上,所述滑块的底部设置有供所述丝杆穿置的丝杆螺母座,所述驱动装置设置在所述直线模组远离所述三轴微调装置的一端,所述驱动装置与所述丝杆轴向连接,所述升降机构固定设置在所述滑块上,所述标定块设置在所述升降机构上,所述光源设置在所述三轴微调装置上。
- 根据权利要求1所述的一种结构光三维扫描相机的标定装置,其特征在于:所述驱动装置包括伺服电机,所述伺服电机的转轴沿水平方向设置,所述伺服电机的转轴与所述丝杆轴向连接。
- 其特征在于:所述驱动装置包括导向轴座、联轴器、指针、刻度手轮以及夹紧手柄,所述导向轴座设置在所述底板上,所述导向轴座为开口型导向轴座,所述联轴器具有与所述刻度手轮相连接的联轴器第一端和与所述丝杆相连接的联轴器第二端,所述联轴器第一端和所述联轴器第二端均沿水平方向设置,所述指针设置在所述导向轴座上;所述导向轴座包括导向轴座上部、导向轴座下部、导向轴座开口以及设置在所述导向轴座上部和所述导向轴座下部之间的导向轴座通孔,所述导向轴座开口设置在所述导向轴座上部和所述导向轴座下部间的一侧上;所述夹紧手柄设置在所述导向轴座上部上,所述夹紧手柄包括手持部和设置在所述手持部底部的连接部,所述导向轴座下部上相对所述连接部的位置上设置有与所述连接部相适配的螺孔,所述联轴器第一端穿过所述导向轴座通孔与所述刻度手轮轴向连接,所述联轴器第二端与所述丝杆轴向连接。
- 根据权利要求2-3任一项所述的一种结构光三维扫描相机的标定装置,其特征在于:所述升降机构包括升降底板、升降顶板、第一连杆、第二连杆、第一移动组件以及第二移动组件,所述升降底板设置在所述滑块上;所述第一移动组件包括第一移动组件本体、转动手轮、第一光杆和第一移动螺母座,所述第一移动组件本体设置在所述升降顶板的底部的一端上,所述第一光杆设置在所述第一移动组件本体上,所述转动手轮设置在所述第一移动组件本体的一端,且位于所述升降顶板的一侧,所述第一光杆与所述转动手轮轴向连接,所述第一移动螺母座滑动地配设在所述第一光杆上;所述第二移动组件设置在所述升降底板的一端上,所述第二移动组件包括第二移动组件本体、第二光杆以及第二移动螺母座,所述第二光杆设置在所述第二移动组件本体上,所述第二光杆沿水平方向设 置,所述第二移动螺母座滑动设置在所述第二光杆上;所述第一连杆和所述第二连杆交叉设置,所述升降底板远离所述第二移动组件的一侧上设置有所述底板固定螺母座,所述第一连杆的下端与所述底板固定螺母座相铰接,所述第一连杆的上端与所述第一移动螺母座相铰接,所述第二连杆远离所述第一移动组件的一侧上设置有顶板固定螺母座,所述第二连杆的上端与所述顶板固定螺母座相铰接,所述第二连杆的下端与所述第二移动螺母座相铰接;所述升降顶板的顶部设置有定位销,所述定位销的水平横截面为异性截面。
- 根据权利要求4所述的一种结构光三维扫描相机的标定装置,其特征在于:所述标定块包括用于标定相机用的齿形标定板和盖板,所述齿形标定板通过所述定位销设置在所述升降顶板上,所述盖板通过所述定位销设置在所述齿形标定板上方,所述齿形标定板和所述盖板之间还设置垫圈;所述齿形标定板的两侧均分别设置有第一锯齿和第二锯齿,所述第一锯齿和所述第二锯齿形沿水平方向的截面均为等腰三角形,所述第一锯齿和所述第二锯齿均由若干个锯齿单元组成,各所述锯齿单元均具有齿根和齿尖;所述第一锯齿的所述锯齿单元相邻的两所述齿尖的距离与所述第二锯齿的所述锯齿单元相邻的两所述齿尖的疏密程度度不一致。
- 根据权利要求5所述的一种结构光三维扫描相机的标定装置,其特征在于:定义所述底板的长度方向为X轴,所述底板的宽度方向 为Y轴,垂直于所述底板的方向为Z轴;所述三轴微调装置设置在所述底板上,所述三轴微调装置包括微调底板、Y轴转板、Z轴转板、Z轴联动板、X轴转板、第一转轴、第二转轴、第三转轴、第一压缩弹簧、第二压缩弹簧、第三压缩弹簧、第一压板、第二压板、第三压板、用于调节所述Y轴转板与所述微调底板之间的间隙的第一球面微分关、用于调节所述Y轴转板与所述X轴转板之间的间隙的第二球面微分关以及用于调节所述X轴转板与所述Z轴转板之间的间隙的第三球面微分关;所述微调底板沿X轴的方向上设置有所述Y轴转板,所述微调底板的一侧与所述Y轴转板相对的一侧通过所述第一转轴相铰接,所述第一转轴沿Y轴方向设置,所述第一压板设置在所述微调底板远离所述第一转轴的一侧上,所述第一压板的一端固定设置在所述微调底板上,所述第一压板延伸至所述Y轴转板的上方,所述第一球面微分关设置在所述第一压板的上方,且所述第一球面微分关的伸缩杆穿过所述第一压板抵靠在所述Y轴转板上,所述第一压缩弹簧的一端抵靠在所述微调底板上,所述第一压缩弹簧的另一端抵靠在所述轴转板上;所述Y轴转板沿Z轴的方向上设置有所述X轴转板,所述Y轴转板的一侧与所述X轴转板相对的一侧通过所述第二转轴相铰接,所述第二转轴沿X轴方向设置,所述第二压板设置在所述Y轴转板远离所述第二转轴的一侧上,所述第二压板的一端固定设置在所述Y轴转板上,所述第二压板延伸至所述X轴转板的上方,所述第二球面微分关设置在所述第二压板的上方,且所述第二球面微分关的伸缩杆穿过所 述第二压板抵靠在所述X轴转板上,所述第二压缩弹簧的一端抵靠在所述Y轴转板上,所述第二压缩弹簧的另一端抵靠在所述X轴转板上;所述Z轴联动板垂直设置在所述X轴转板上,所述Z轴联动板的一侧设置有所述Z轴转板,所述Z轴联动板竖直方向设置,所述Z轴联动板的一侧与所述Z轴转板相对的一侧通过所述第三转轴相铰接,所述第三转轴沿Z轴方向设置,所述第三压板设置在所述Z轴联动板远离所述第三转轴的一侧上,所述第三压板的一端固定设置在所述Z轴联动板上,所述第三压板延伸至所述Z轴转板的上方,所述第三球面微分关设置在所述第三压板的上方,且所述第三球面微分关的伸缩杆穿过所述第三压板抵靠在所述Z轴转板上,所述第三压缩弹簧的一端抵靠在所述X轴转板上,所述第三压缩弹簧的另一端抵靠在所述Z轴联动板上。
- 根据权利要求1所述的一种结构光三维扫描相机的标定装置,其特征在于:所述三轴微调装置上设置有供相机和所述光源放置的壳体,所述壳体为中空壳体,所述壳体的内腔设置有供所述光源和所述相机放置的容置空间,所述光源设置在所述相机的上方。
- 根据权利要求1所述的一种结构光三维扫描相机的标定装置,其特征在于:所述直线模组本体上设置有刻有距离刻度的标尺。
- 根据权利要求1所述的一种结构光三维扫描相机的标定装置,其特征在于:所述光源包含发光二极管、激光光源中的至少一种。
- 一种采用权利要求6-9任一所述的一种结构光三维扫描相机的标定装置的标定方法,其特征在于:包括下述步骤:S1:安装待标定的所述相机,将要标定的所述相机安装在所述三轴微调装置上,通过螺丝紧固;S2:调整校准所述齿形标定块的位置,所述第一锯齿背向所述三轴微调装置设置,所述第二锯齿面向所述三轴微调装置设置;S3:调整激光平面,打开所述相机,让所述光源的激光束发射出来,转动所述转动手轮,使得所述升降机构的所述齿形标定板与所述盖板之间的缝隙上升/下降到与所述光源的激光平面大致重合;S4:通过调整所述三轴微调装置,调节所述Y轴转板、所述Z轴转板以及所述X轴转板的转角,使得所述光源的激光平面透过所述齿形标定板与所述盖板间的缝隙,从而使得所述光源的激光平面与所述标定齿形板处于平行状态;S5:将所述升降机构上升,使得所述光源的激光平面照射在所述标定齿形板的所述第二锯齿上,通过所述直线模组,将所述标定齿形板移动至所述光源的激光平面的有效距离中,通过调整让齿形物体在三维扫描所述相机的景深范围中,增加精度;S6:固定所述齿形标定板在所述直线模组的某一范围中,设置最任一一个所述第二锯齿的所述锯齿单元的所述齿尖为基准原点(0,0),由于标定齿形板的齿形物理量已知,可推算出所述第二锯齿任一所述锯齿单元的所述齿尖和所述齿根的坐标点(X1,Y1),(X2,Y2)…(Xn,Yn),S7:开启所述相机的软件,开始获取所述相机视野范围内所述第二锯齿的任一所述锯齿单元的所述齿尖和所述齿根的像素点位置 (A1,B1),(A2,B2)…(An,Bn),采用线性代数方式确定基准参考面上实际物理坐标值与所述相机软件的像素值的坐标换算方式。
- 根据权利要求10所述的一种结构光三维扫描相机的标定装置的标定方法,其特征在于:所述步骤S3:通过控制伺服电机,使得所述升降机构的所述齿形标定板与所述盖板之间的缝隙上升/下降到与所述光源的激光平面大致重合。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010150684.9A CN111223151B (zh) | 2020-03-06 | 2020-03-06 | 一种结构光三维扫描相机的标定装置及标定方法 |
CN202010150684.9 | 2020-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021175098A1 true WO2021175098A1 (zh) | 2021-09-10 |
Family
ID=70828411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/075673 WO2021175098A1 (zh) | 2020-03-06 | 2021-02-06 | 一种结构光三维扫描相机的标定装置及标定方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111223151B (zh) |
WO (1) | WO2021175098A1 (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113888648A (zh) * | 2021-10-14 | 2022-01-04 | 广东奥普特科技股份有限公司 | 一种3d相机的标定系统、方法及存储介质 |
CN114314008A (zh) * | 2021-12-31 | 2022-04-12 | 浙江汉信科技有限公司 | 管夹阀 |
CN114308700A (zh) * | 2021-12-29 | 2022-04-12 | 深圳市粤源智造科技有限公司 | 一种手机玻璃检测设备 |
CN114359413A (zh) * | 2022-03-17 | 2022-04-15 | 深圳市纵维立方科技有限公司 | 用于三维扫描的旋转平台位置参数计算方法及系统 |
CN114393608A (zh) * | 2022-02-24 | 2022-04-26 | 无锡陆吾智能科技有限公司 | 一种可调式高精度四足机器人标定平台 |
CN114578326A (zh) * | 2022-01-29 | 2022-06-03 | 南京工业大学 | 一种激光雷达校准实验台 |
CN114941783A (zh) * | 2022-05-07 | 2022-08-26 | 广东骏亚电子科技股份有限公司 | 一种复杂外形尺寸的检测方法 |
CN115016219A (zh) * | 2022-05-30 | 2022-09-06 | 深圳市新四季信息技术有限公司 | 一种用于镜头调焦的测试装置 |
CN115183705A (zh) * | 2022-09-13 | 2022-10-14 | 钛科优控(江苏)工业科技有限公司 | 一种x射线测量塑料薄膜厚度的自动标定系统及方法 |
CN115498340A (zh) * | 2022-09-27 | 2022-12-20 | 和鸿电气股份有限公司 | 一种便携式储能电源 |
CN115508059A (zh) * | 2022-11-15 | 2022-12-23 | 北京阿丘科技有限公司 | 多功能光学实验平台 |
CN117268354A (zh) * | 2023-11-22 | 2023-12-22 | 苏州图立方科技有限公司 | 一种用于agv导航二维码粘贴的激光标线装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113091628B (zh) * | 2021-04-07 | 2023-03-10 | 中国工程物理研究院机械制造工艺研究所 | 一种小尺寸轴孔间隙视觉测量标定装置及方法 |
CN116228889B (zh) * | 2023-04-27 | 2023-08-15 | 合肥工业大学 | 移动标定装置、相机阵列系统标定装置及方法 |
CN116399233B (zh) * | 2023-06-07 | 2023-10-27 | 北京融为科技有限公司 | 一种星载激光载荷伺服转台安装误差标定装置和方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110134253A1 (en) * | 2009-12-04 | 2011-06-09 | Honda Motor Co., Ltd. | Camera calibration method and camera calibration apparatus |
CN107218904A (zh) * | 2017-07-14 | 2017-09-29 | 北京航空航天大学 | 一种基于锯齿靶标的线结构光视觉传感器标定方法 |
CN108458671A (zh) * | 2018-03-08 | 2018-08-28 | 西安知微传感技术有限公司 | 一种线结构光三维测量系统的标定方法 |
CN109990698A (zh) * | 2017-12-29 | 2019-07-09 | 广州智信科技有限公司 | 快速标定装置及快速标定方法 |
CN110632951A (zh) * | 2019-09-23 | 2019-12-31 | 湖南视普瑞智能科技有限公司 | 一种智能视觉伺服引导设备及其引导方法 |
CN110823130A (zh) * | 2019-10-22 | 2020-02-21 | 北京工业大学 | 一种结构光3d视觉快速自动标定装置及方法 |
CN211479183U (zh) * | 2020-03-06 | 2020-09-11 | 泉州华中科技大学智能制造研究院 | 一种结构光三维扫描相机的标定装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209433438U (zh) * | 2018-12-28 | 2019-09-24 | 苏州源卓光电科技有限公司 | 一种用于直写式光刻机的曝光镜头的标定装置 |
-
2020
- 2020-03-06 CN CN202010150684.9A patent/CN111223151B/zh active Active
-
2021
- 2021-02-06 WO PCT/CN2021/075673 patent/WO2021175098A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110134253A1 (en) * | 2009-12-04 | 2011-06-09 | Honda Motor Co., Ltd. | Camera calibration method and camera calibration apparatus |
CN107218904A (zh) * | 2017-07-14 | 2017-09-29 | 北京航空航天大学 | 一种基于锯齿靶标的线结构光视觉传感器标定方法 |
CN109990698A (zh) * | 2017-12-29 | 2019-07-09 | 广州智信科技有限公司 | 快速标定装置及快速标定方法 |
CN108458671A (zh) * | 2018-03-08 | 2018-08-28 | 西安知微传感技术有限公司 | 一种线结构光三维测量系统的标定方法 |
CN110632951A (zh) * | 2019-09-23 | 2019-12-31 | 湖南视普瑞智能科技有限公司 | 一种智能视觉伺服引导设备及其引导方法 |
CN110823130A (zh) * | 2019-10-22 | 2020-02-21 | 北京工业大学 | 一种结构光3d视觉快速自动标定装置及方法 |
CN211479183U (zh) * | 2020-03-06 | 2020-09-11 | 泉州华中科技大学智能制造研究院 | 一种结构光三维扫描相机的标定装置 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113888648A (zh) * | 2021-10-14 | 2022-01-04 | 广东奥普特科技股份有限公司 | 一种3d相机的标定系统、方法及存储介质 |
CN114308700A (zh) * | 2021-12-29 | 2022-04-12 | 深圳市粤源智造科技有限公司 | 一种手机玻璃检测设备 |
CN114314008B (zh) * | 2021-12-31 | 2023-12-19 | 浙江汉信科技有限公司 | 管夹阀 |
CN114314008A (zh) * | 2021-12-31 | 2022-04-12 | 浙江汉信科技有限公司 | 管夹阀 |
CN114578326A (zh) * | 2022-01-29 | 2022-06-03 | 南京工业大学 | 一种激光雷达校准实验台 |
CN114393608A (zh) * | 2022-02-24 | 2022-04-26 | 无锡陆吾智能科技有限公司 | 一种可调式高精度四足机器人标定平台 |
CN114393608B (zh) * | 2022-02-24 | 2024-03-08 | 无锡陆吾智能科技有限公司 | 一种可调式高精度四足机器人标定平台 |
CN114359413A (zh) * | 2022-03-17 | 2022-04-15 | 深圳市纵维立方科技有限公司 | 用于三维扫描的旋转平台位置参数计算方法及系统 |
CN114359413B (zh) * | 2022-03-17 | 2022-06-28 | 深圳市纵维立方科技有限公司 | 用于三维扫描的旋转平台位置参数计算方法及系统 |
CN114941783A (zh) * | 2022-05-07 | 2022-08-26 | 广东骏亚电子科技股份有限公司 | 一种复杂外形尺寸的检测方法 |
CN115016219A (zh) * | 2022-05-30 | 2022-09-06 | 深圳市新四季信息技术有限公司 | 一种用于镜头调焦的测试装置 |
CN115016219B (zh) * | 2022-05-30 | 2024-03-22 | 深圳市新四季信息技术有限公司 | 一种用于镜头调焦的测试装置 |
CN115183705A (zh) * | 2022-09-13 | 2022-10-14 | 钛科优控(江苏)工业科技有限公司 | 一种x射线测量塑料薄膜厚度的自动标定系统及方法 |
CN115498340A (zh) * | 2022-09-27 | 2022-12-20 | 和鸿电气股份有限公司 | 一种便携式储能电源 |
CN115508059A (zh) * | 2022-11-15 | 2022-12-23 | 北京阿丘科技有限公司 | 多功能光学实验平台 |
CN115508059B (zh) * | 2022-11-15 | 2023-03-07 | 北京阿丘科技有限公司 | 多功能光学实验平台 |
CN117268354A (zh) * | 2023-11-22 | 2023-12-22 | 苏州图立方科技有限公司 | 一种用于agv导航二维码粘贴的激光标线装置 |
CN117268354B (zh) * | 2023-11-22 | 2024-04-02 | 苏州图立方科技有限公司 | 一种用于agv导航二维码粘贴的激光标线装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111223151B (zh) | 2024-04-12 |
CN111223151A (zh) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021175098A1 (zh) | 一种结构光三维扫描相机的标定装置及标定方法 | |
US8520066B2 (en) | Automated optical inspection system for the runout tolerance of circular saw blades | |
WO2019140778A1 (zh) | 一种三维重构系统及三维重构方法 | |
WO2023138119A1 (zh) | 一种非接触式照相测孔标定装置及方法 | |
CN201795778U (zh) | 一种深孔类零件影像测量装置 | |
EP2859304B1 (en) | Optical measuring machine and method | |
CN212180654U (zh) | 一种相机模组调整装置 | |
TWI413755B (zh) | 圓鋸片之偏轉公差自動化光學檢測系統 | |
CN212180643U (zh) | 一种光源投射角度调整装置 | |
CN114160961A (zh) | 用于标定激光加工参数的系统和方法 | |
CN211479183U (zh) | 一种结构光三维扫描相机的标定装置 | |
CN111207682A (zh) | 基于机器视觉的梯形丝杠参数自动测量装置及方法 | |
CN212180655U (zh) | 一种手机玻璃盖板弧边缺陷检测装置 | |
CN111443097A (zh) | 一种手机玻璃盖板弧边缺陷检测装置 | |
CN117092814A (zh) | 沙姆光学系统的调节装置及方法 | |
CN212390966U (zh) | 一种基于激光三角法的多功能检测装置 | |
CN208420338U (zh) | 一种3d摄像头自动检测设备 | |
CN111028298B (zh) | 一种用于刚体坐标系空间变换标定的汇聚式双目系统 | |
CN212871124U (zh) | 平行度测量设备 | |
CN111947575A (zh) | 一种基于激光三角法的多功能检测装置及检测方法 | |
CN209013926U (zh) | 一种基于透视成像的物体阴影测量仪器 | |
CN208304347U (zh) | 用于校准高拍仪摄像头的治具 | |
CN110953990A (zh) | 一种3d曲面玻璃激光轮廓度检测仪及其检测方法 | |
CN207622689U (zh) | 一种影像测量仪 | |
CN2828745Y (zh) | 新型测量仪 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21764484 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21764484 Country of ref document: EP Kind code of ref document: A1 |