WO2021175097A1 - 一种非视距物体的成像方法和电子设备 - Google Patents

一种非视距物体的成像方法和电子设备 Download PDF

Info

Publication number
WO2021175097A1
WO2021175097A1 PCT/CN2021/075658 CN2021075658W WO2021175097A1 WO 2021175097 A1 WO2021175097 A1 WO 2021175097A1 CN 2021075658 W CN2021075658 W CN 2021075658W WO 2021175097 A1 WO2021175097 A1 WO 2021175097A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
electronic device
mobile phone
component
line
Prior art date
Application number
PCT/CN2021/075658
Other languages
English (en)
French (fr)
Inventor
余子明
曾昆
王光健
何佳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21764733.8A priority Critical patent/EP4102823A4/en
Publication of WO2021175097A1 publication Critical patent/WO2021175097A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/62Control of parameters via user interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/64Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • G01S13/888Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons through wall detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/17Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths using opto-mechanical scanning means only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/30Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/631Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/631Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters
    • H04N23/632Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters for displaying or modifying preview images prior to image capturing, e.g. variety of image resolutions or capturing parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30112Baggage; Luggage; Suitcase
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory

Definitions

  • This application relates to the field of terminal technology, and in particular, to an imaging method and electronic equipment for non-line-of-sight objects.
  • Electromagnetic waves can penetrate part of the surface of objects, and are often used to detect the internal structure of objects or detect non-line of sight (NLOS) objects, and image objects, which can be widely used in medical, security and other technical fields.
  • NLOS non-line of sight
  • the imaging principle of electromagnetic waves is to form an image by actively or passively detecting the target to be imaged, such as reconstructing the shape and characteristics of the object.
  • the present application provides a method and electronic device for imaging non-line-of-sight objects, which can meet the imaging of non-line-of-sight objects in a variety of application scenarios.
  • an embodiment of the present application provides a method for imaging a non-line-of-sight object, which is applied to an electronic device, the electronic device includes a first component and a second component, and the method includes: detecting a trigger signal and responding to the Trigger signal, acquiring first data collected by the first component, and acquiring second data collected by the second component, the first data including the electromagnetic signal collected by the first component, and the second data including the image collected by the second component Information and/or movement information of the electronic device; matching the first data and the second data, and generating electromagnetic image data of the non-line-of-sight object based on the matching result.
  • the electronic device can be moved when imaging non-line-of-sight objects.
  • the movement of the electronic device that is, the movement of the first component, is equivalent to expanding the beam scanning range of the electronic device, thereby improving the imaging resolution of electromagnetic imaging.
  • it can be realized by a small-sized electronic device, so the electronic device is convenient to carry and can be suitable for imaging of non-line-of-sight objects in a variety of scenarios.
  • the first component includes an antenna.
  • the first component is an antenna, a mobile electronic device, which can be considered to form a virtual larger antenna array, thereby realizing a wider beam scanning range.
  • the second component includes at least one of an optical camera, a motion sensor, a laser radar, and a millimeter wave radar.
  • matching the first data with the second data includes:
  • N is a positive integer
  • M is a positive integer
  • the first sampling data and the second sampling data at the same collection time are matched.
  • each sampling moment of the second data corresponds to a physical space position, and the physical space position also corresponds to a first data, and the first data can represent the electromagnetic image of a non-line-of-sight object, so the N first sampling data Matching with M second sampled data means that the first sampled data and the second sampled data at the same collection time are matched, so that an electromagnetic image of a non-line-of-sight object can be obtained.
  • the method further includes:
  • the first movement track is mapped from the first reference coordinate system to the second reference coordinate system of the electronic device to obtain a second movement track.
  • the first data and the second data correspond to the same physical space position, and the reference coordinates of the electronic device and the second component may be different, so the first motion trajectory obtained with the reference coordinates of the second component is mapped to the second reference Coordinates, the actual movement trajectory of the electronic device can be obtained.
  • the electromagnetic image includes material information, and the material information is used to indicate the material of the non-line-of-sight object.
  • the material information on the electromagnetic image can be used to remind the user of the material of the non-line-of-sight object, which improves the user experience.
  • the method before the trigger signal is detected, the method further includes: detecting a first operation, and in response to the first operation, activating an optical camera included in the electronic device.
  • the first operation may be an operation to start the camera application, which turns on the optical camera by default; or the electronic device is, for example, another possible device, and the first operation may be an operation to start the electronic device. , Start the electronic device and turn on the optical camera by default.
  • the method further includes:
  • Auxiliary prompt information is displayed on the display interface, and the auxiliary prompt information includes a first scanning prompt pattern for instructing the electronic device to scan the movement trajectory that the non-line-of-sight object needs to refer to.
  • This solution is beneficial for electronic devices to improve the imaging performance of non-line-of-sight objects.
  • the method further includes: detecting a second operation, and in response to the second operation, displaying a second scan prompt on the display interface pattern.
  • a variety of scanning prompt patterns are provided, and the corresponding imaging performance of different scanning prompt patterns may be different. Therefore, the user can choose which scanning prompt pattern to use according to actual needs, which improves the user experience.
  • the electronic device may determine whether to prompt the user to move the electronic device to a specified path according to current movement information, such as movement speed, movement direction, etc.
  • the method further includes:
  • first prompt information is displayed on the display interface, where the first prompt information is used by the user to move the electronic device at a speed lower than the moving speed.
  • the method further includes:
  • second prompt information is displayed on the display interface, and the second prompt information is used to prompt the user to move the electronic device in a specified direction.
  • an embodiment of the present application provides an electronic device, including: a processor, a first component, and a second component, where:
  • the processor is used to detect a trigger signal
  • the processor is configured to obtain first data collected by the first component and second data collected by the second component in response to the trigger signal, the first data including the first component
  • the collected electromagnetic signal, the second data includes the image information collected by the second component and/or the movement information of the electronic device;
  • the first component is used to collect the first data
  • the second component is used to collect the second data
  • the processor is further configured to match the N first sampled data with the M second sampled data, and generate electromagnetic image data of the non-line-of-sight object based on the matching result.
  • the first component includes an antenna.
  • the second component includes at least one of an optical camera, a motion sensor, a laser radar, and a millimeter wave radar.
  • the processor is specifically used for:
  • N is a positive integer
  • M is a positive integer
  • the first sampling data and the second sampling data at the same collection time are matched.
  • the processor is also used for:
  • the first movement track is mapped from the first reference coordinate system to the second reference coordinate system of the electronic device to obtain a second movement track.
  • the electromagnetic image includes material information, and the material information is used to indicate the material of the non-line-of-sight object.
  • the processor before the trigger signal is detected, the processor is further configured to:
  • the first operation is detected
  • the optical camera included in the electronic device is activated.
  • the electronic device further includes a display screen, and the display screen is configured to display auxiliary prompt information on the display interface of the display screen after the processor detects the trigger signal.
  • the prompt information includes a first scanning prompt pattern, which is used to instruct the electronic device to scan the movement trajectory that the non-line-of-sight object needs to refer to.
  • the processor is further configured to:
  • the second operation is detected
  • a second scan prompt pattern is displayed on the display interface.
  • the processor is further configured to:
  • the display interface displays first prompt information, and the first prompt information is used for the user to move at a speed lower than the moving speed The electronic equipment.
  • the processor is further configured to:
  • second prompt information is displayed on the display interface, and the second prompt information is used to prompt the user to move the electronic device in a specified direction.
  • the display screen is also used for:
  • the embodiments of the present application also provide a circuit system, which may be one or more chips, such as a system-on-a-chip (SoC).
  • the circuit system includes: at least one processing circuit for:
  • first data collected by a first component in the electronic device and acquire second data collected by a second component in the electronic device, where the first data includes the electromagnetic signal collected by the first component, and the first data
  • the second data includes image information collected by the second component and/or movement information of the electronic device
  • the first data and the second data are matched, and electromagnetic image data of the non-line-of-sight object is generated based on the matching result.
  • the at least one processing circuit is specifically used for:
  • N is a positive integer
  • M is a positive integer
  • the first sampling data and the second sampling data at the same collection time are matched.
  • the at least one processor is also used for:
  • the first movement track is mapped from the first reference coordinate system to the second reference coordinate system of the electronic device to obtain a second movement track.
  • the electromagnetic image includes material information, and the material information is used to indicate the material of the non-line-of-sight object.
  • the technical effects brought about by any one of the above-mentioned third aspect and the third aspect may refer to the technical effects brought about by any one of the first aspect and the first aspect, which will not be repeated here.
  • embodiments of the present application also provide an electronic device, which includes: a display screen, an optical camera, and an electromagnetic sensor; one or more processors; a memory; one or more programs; wherein the one or more Programs are stored in the memory, and the one or more programs include instructions, and when the instructions are executed by the electronic device, the electronic device executes the method steps in any one of the first aspect .
  • the embodiments of the present application also provide an electronic device.
  • the electronic device may include modules/units that execute the first aspect or any one of the possible design methods of the first aspect; these modules/units may be Hardware implementation can also be implemented by hardware executing corresponding software.
  • an embodiment of the present application also provides a chip, which is coupled with a memory in an electronic device, so that the chip invokes program instructions stored in the memory during operation to implement the above-mentioned first embodiment of the embodiment of the present application.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium includes a program.
  • the program runs on an electronic device, the electronic device executes the first aspect or the first aspect described above. Any one of the possible design methods.
  • the embodiments of the present application also provide a program product that includes a program product, which when the program product runs on an electronic device, causes the electronic device to execute the first aspect or any one of the possible designs of the first aspect mentioned above. method.
  • an embodiment of the present application also provides a graphical user interface on an electronic device, the electronic device having a display screen, a camera, a memory, and one or more processors, and the one or more processors are used to execute One or more computer programs stored in the memory, and the graphical user interface may include a graphical user interface displayed when the electronic device executes the first aspect or any one of the possible design methods of the first aspect .
  • FIG. 1 is a schematic diagram of a structure of an electronic device provided by an embodiment of the application
  • FIG. 2 is an imaging scene of a non-line-of-sight object provided by an embodiment of the application
  • FIG. 3 is another imaging scene of a non-line-of-sight object provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a method for imaging a non-line-of-sight object provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of a camera interface of a mobile phone provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a photographing process of a non-line-of-sight object provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of auxiliary prompt information provided by an embodiment of the application.
  • FIG. 8 is another schematic diagram of auxiliary prompt information provided by an embodiment of this application.
  • FIG. 9 is another schematic diagram of auxiliary prompt information provided by an embodiment of the application.
  • FIG. 10 is another schematic diagram of auxiliary prompt information provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of alignment of first data and second data provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of the principle of restoring a motion trajectory according to the second data provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of the principle of electromagnetic imaging provided by an embodiment of the application.
  • FIG. 14 is a photographing scene of a non-line-of-sight object provided by an embodiment of the application.
  • 15 is a schematic diagram of a display interface of a mobile phone provided by an embodiment of the application.
  • FIG. 16 is a schematic structural diagram of an electronic device provided by an embodiment of this application.
  • FIG. 17 is a schematic diagram of a structure of a circuit system provided by an embodiment of the application.
  • Electromagnetic wave imaging is an imaging method that uses electromagnetic waves as the information carrier.
  • the electromagnetic wave has a high frequency band, so it can penetrate part of the object to be imaged, that is, to realize the perspective of the internal structure of the object to be imaged. Therefore, electromagnetic wave imaging is often used to detect the internal structure of objects or to detect non-line-of-sight objects, and to image objects, which can be widely used in medical, security and other technical fields.
  • non-line-of-sight objects here refer to objects that are invisible to the naked eye or objects that are invisible to visible light, such as objects that are blocked by obstacles, such as wires hidden in walls.
  • Electromagnetic wave imaging is mainly through active or passive detection of the signal of the object to be imaged and the surrounding scattered field, reconstructing the shape, characteristics or dielectric constant distribution of the object to be imaged to form an image.
  • Electromagnetic wave imaging mainly has two electromagnetic imaging methods, active electromagnetic imaging and passive electromagnetic imaging.
  • Active electromagnetic imaging means that the transmitter in the imaging device actively sends electromagnetic waves to the object to be imaged, the object to be imaged reflects the received electromagnetic waves, and the reflected electromagnetic waves are received by the receiver in the imaging device.
  • the emitted electromagnetic waves are also called echo signals, and the imaging device processes the received echo signals, for example, extracting target features used to characterize the object to be imaged from the echo signal, such as characterizing the contour of the object to be imaged According to the characteristics of the target, the object to be imaged is imaged.
  • Passive electromagnetic imaging means that the imaging device obtains electromagnetic radiation information in the space where the object to be imaged is located through, for example, a receiving antenna, and uses the difference in electromagnetic radiation intensity of different objects to perform imaging.
  • Typical passive electromagnetic imaging is, for example, thermal imaging in the infrared band.
  • the radiation energy from the object to be imaged can be collected, the collected radiation energy can be converted into electrical signals, and the electrical signals can be processed, such as developing, fixing, and correcting the electrical signals, and finally outputting the processed signals , Such as output to scanning imager, TV picture tube, cathode ray tube, etc., to achieve the imaging of the object to be imaged.
  • the size of the antenna aperture is proportional to the imaging resolution, that is, it satisfies: ⁇ D, where ⁇ is the imaging resolution and D is the antenna aperture.
  • is the imaging resolution
  • D is the antenna aperture.
  • antennas exist in the form of an array, that is, multiple antennas form an antenna array in the form of an array, and each antenna can also be regarded as an antenna array element.
  • the antenna array includes N antennas, and the centers of each antenna of the N antennas are arranged at equal intervals of ⁇ /2, then the antenna aperture D is equal to N* ⁇ /2. In order to obtain higher imaging resolution, the more antenna elements, the better.
  • an imaging method and an electronic device for a non-line-of-sight object in the embodiments of the present application.
  • the electronic device includes a first component capable of collecting electromagnetic signals, which can also be understood as the first component capable of transmitting and receiving electromagnetic signals.
  • the electronic device can be moved. As the electronic device moves, a wider beam scanning range can be achieved, which can improve the imaging resolution of electromagnetic imaging. Therefore, the imaging of non-line-of-sight objects in a variety of scenarios can be achieved through a small portable device.
  • the method can be applied to not limited to portable devices such as mobile phones, for example, it can be applied to mobile devices such as vehicles for target detection and tracking in automatic driving.
  • the embodiments of the present application can be applied to any electronic device with electromagnetic imaging function to execute the imaging method for non-line-of-sight objects provided in the embodiments of the present application.
  • the following describes a possible electronic device provided by an embodiment of the present application and an embodiment of using the electronic device to perform image imaging.
  • the electronic device may be a terminal, such as a mobile phone, a tablet computer, a mobile computer, a vehicle-mounted device, a mobile robot, and so on.
  • the electronic device can detect non-line-of-sight objects, and the detection of non-line-of-sight objects uses electromagnetic waves.
  • the electronic device at least includes an antenna array for sending and receiving electromagnetic wave signals to achieve non-line-of-sight objects. Detection of objects in line-of-sight. Since the electronic device includes an antenna for communication, in order to facilitate the distinction, the antenna array used for detecting non-line-of-sight objects is called the first component.
  • the first component can send and receive electromagnetic wave signals, it can also be It is called an electromagnetic sensor, which is used as an example below. It should be understood that the electromagnetic sensor can be multiplexed with the antenna used for communication in the electronic device, or can be independent of the antenna used for communication in the electronic device, which is not limited in the embodiment of the present application. It should be noted that, in this article, in addition to an antenna array, the electromagnetic sensor may also include components such as processing chips.
  • the electronic device may include a second component for determining the movement information of the electronic device.
  • the second component may include a motion sensor, such as an acceleration sensor, a posture sensor, a gyroscope, etc., or the second component may include an optical camera, etc., installed in an electronic device such as a mobile phone; or the second component may include an inertial measurement unit (inertial measurement unit, IMU), such as an IMU composed of three single-axis accelerometers and gyroscopes, or the second component may also include encoders, wheel speedometers, etc., installed in electronic equipment such as mobile robots; or Components can also include lidar, millimeter-wave radar, etc., which are installed in vehicle-mounted equipment.
  • the second component is a motion sensor as an example.
  • the electronic device may further include an optical sensor, and the optical sensor may include an optical camera and necessary components such as a mechanical transmission device.
  • the electronic device may include a portable electronic device. Exemplary embodiments of the portable electronic device include but are not limited to carrying Or other operating systems, such as Portable electronic device. It should be understood that the aforementioned portable electronic devices may also be other portable electronic devices, such as digital cameras, personal digital assistants (PDAs), media players, smart TVs, smart wearable devices (such as smart watches, smart glasses, and smart devices). Bracelets, etc.), e-readers, handheld game consoles, point of sales (POS), in-vehicle electronic equipment (in-vehicle computers), etc. It should also be understood that in some other embodiments of the present application, the above-mentioned electronic device may not be a portable electronic device, but any device including at least an electromagnetic sensor and an optical camera, such as a desktop computer, or a mobile robot.
  • PDAs personal digital assistants
  • media players such as smart TVs
  • electronic devices can support multiple applications. For example, one or more of the following applications: camera application, instant messaging application, photo management application, etc. Among them, there can be multiple instant messaging applications. Such as WeChat, Tencent chat software (QQ), WhatsApp Messenger, Line, photo sharing (instagram), Kakao Talk, DingTalk, etc. Users can send text, voice, pictures, video files, and various other files to other contacts through instant messaging applications; or, users can implement video or audio calls with other contacts through instant messaging applications.
  • instant messaging applications Such as WeChat, Tencent chat software (QQ), WhatsApp Messenger, Line, photo sharing (instagram), Kakao Talk, DingTalk, etc.
  • Users can send text, voice, pictures, video files, and various other files to other contacts through instant messaging applications; or, users can implement video or audio calls with other contacts through instant messaging applications.
  • FIG. 1 shows a schematic structural diagram of a mobile phone 100.
  • the mobile phone 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, and a power management module 141, battery 142, antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, a camera 193, a display screen 194, and a subscriber identification module (SIM) card interface 195, etc.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the mobile phone 100.
  • the mobile phone 100 may include more or fewer components than those shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the mobile phone 100.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching instructions and executing instructions.
  • a memory may also be provided in the processor 110 to store instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the processor 110. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, and a universal asynchronous transmitter/receiver (universal asynchronous) interface.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter/receiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may include multiple sets of I2C buses.
  • the processor 110 may be coupled to the touch sensor 180K, charger, flash, camera 193, etc., respectively through different I2C bus interfaces.
  • the processor 110 may couple the touch sensor 180K through an I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to implement the touch function of the mobile phone 100.
  • the I2S interface can be used for audio communication.
  • the processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through an I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communication to sample, quantize and encode analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 may also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a two-way communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the UART interface is generally used to connect the processor 110 and the wireless communication module 160.
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through a UART interface, so as to realize the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with the display screen 194, the camera 193 and other peripheral devices.
  • the MIPI interface includes a camera serial interface (camera serial interface, CSI), a display serial interface (display serial interface, DSI), and so on.
  • the processor 110 and the camera 193 communicate through a CSI interface to implement the shooting function of the mobile phone 100.
  • the processor 110 and the display screen 194 communicate through the DSI interface to realize the display function of the mobile phone 100.
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and specifically may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and so on.
  • the USB interface 130 can be used to connect a charger to charge the mobile phone 100, and can also be used to transfer data between the mobile phone 100 and peripheral devices. It can also be used to connect earphones and play audio through earphones. This interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is merely a schematic illustration, and does not constitute a structural limitation of the mobile phone 100.
  • the mobile phone 100 may also adopt different interface connection modes in the foregoing embodiments, or a combination of multiple interface connection modes.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive the charging input of the wired charger through the USB interface 130.
  • the charging management module 140 may receive the wireless charging input through the wireless charging coil of the mobile phone 100. While the charging management module 140 charges the battery 142, it can also supply power to the electronic device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the external memory, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110.
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the mobile phone 100 can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor, and the baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the mobile phone 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the antenna 1 and the antenna 2 may both be antenna arrays, that is, an antenna array composed of multiple antennas.
  • the antenna array can be a linear array, a planar array, or a distributed array.
  • the mobile communication module 150 can provide a wireless communication solution including 2G/3G/4G/5G and the like applied on the mobile phone 100.
  • the mobile communication module 150 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), and the like.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing. After the low-frequency baseband signal is processed by the baseband processor, it is passed to the application processor.
  • the application processor outputs a sound signal through an audio device (not limited to the speaker 170A, the receiver 170B, etc.), or displays an image or video through the display screen 194.
  • the modem processor may be an independent device. In other embodiments, the modem processor may be independent of the processor 110 and be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the mobile phone 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellite systems. (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive a signal to be sent from the processor 110, perform frequency modulation, amplify, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the antenna 1 of the mobile phone 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the mobile phone 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the mobile phone 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. For example, music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into an analog audio signal for output, and is also used to convert an analog audio input into a digital audio signal.
  • the audio module 170 can also be used to encode and decode audio signals.
  • the audio module 170 may be provided in the processor 110, or part of the functional modules of the audio module 170 may be provided in the processor 110.
  • the speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the mobile phone 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the mobile phone 100 answers a call or a voice message, it can receive the voice by bringing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone”, “microphone”, is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through the human mouth, and input the sound signal into the microphone 170C.
  • the mobile phone 100 may be provided with at least one microphone 170C. In other embodiments, the mobile phone 100 may be provided with two microphones 170C, which can implement noise reduction functions in addition to collecting sound signals. In other embodiments, the mobile phone 100 may also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions.
  • the earphone interface 170D is used to connect wired earphones.
  • the earphone interface 170D may be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, and a cellular telecommunications industry association (cellular telecommunications industry association of the USA, CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA, CTIA
  • the pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A may be provided on the display screen 194.
  • the capacitive pressure sensor may include at least two parallel plates with conductive materials.
  • the mobile phone 100 determines the intensity of the pressure according to the change of the capacitance.
  • a touch operation acts on the display screen 194, the mobile phone 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the mobile phone 100 may also calculate the touched position based on the detection signal of the pressure sensor 180A.
  • touch operations that act on the same touch position but have different touch operation strengths may correspond to different operation instructions. For example: when a touch operation whose intensity of the touch operation is less than the first pressure threshold is applied to the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the movement posture of the mobile phone 100.
  • the angular velocity of the mobile phone 100 around three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyroscope sensor 180B detects the shake angle of the mobile phone 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shake of the mobile phone 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes. It should be understood that, herein, the motion sensor may include a gyroscope sensor 180B.
  • the air pressure sensor 180C is used to measure air pressure.
  • the mobile phone 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the mobile phone 100 can use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the mobile phone 100 can detect the opening and closing of the flip according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the mobile phone 100 in various directions (generally three axes). When the mobile phone 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and apply to applications such as horizontal and vertical screen switching, pedometers, and so on. It should be understood that, herein, the motion sensor may also include an acceleration sensor 180E.
  • the mobile phone 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the mobile phone 100 may use the distance sensor 180F to measure the distance to achieve fast focusing.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the mobile phone 100 emits infrared light to the outside through the light emitting diode.
  • the mobile phone 100 uses a photodiode to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the mobile phone 100. When insufficient reflected light is detected, the mobile phone 100 can determine that there is no object near the mobile phone 100.
  • the mobile phone 100 can use the proximity light sensor 180G to detect that the user holds the mobile phone 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, and the pocket mode will automatically unlock and lock the screen.
  • the ambient light sensor 180L is used to sense the brightness of the ambient light.
  • the mobile phone 100 can adaptively adjust the brightness of the display 194 according to the perceived brightness of the ambient light.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the mobile phone 100 is in the pocket to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the mobile phone 100 can use the collected fingerprint characteristics to implement fingerprint unlocking, access application locks, fingerprint photographs, fingerprint answering calls, and so on.
  • the temperature sensor 180J is used to detect temperature.
  • the mobile phone 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold, the mobile phone 100 performs a reduction in the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the mobile phone 100 when the temperature is lower than another threshold, the mobile phone 100 heats the battery 142 to avoid abnormal shutdown of the mobile phone 100 due to low temperature.
  • the mobile phone 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch panel”.
  • the touch sensor 180K may be disposed on the display screen 194, and the touch screen is composed of the touch sensor 180K and the display screen 194, which is also called a “touch screen”.
  • the touch sensor 180K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen 194.
  • the touch sensor 180K may also be disposed on the surface of the mobile phone 100, which is different from the position of the display screen 194.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can obtain the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the human pulse and receive the blood pressure pulse signal.
  • the bone conduction sensor 180M may also be provided in the earphone, combined with the bone conduction earphone.
  • the audio module 170 can parse the voice signal based on the vibration signal of the vibrating bone block of the voice obtained by the bone conduction sensor 180M, and realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal obtained by the bone conduction sensor 180M, and realize the heart rate detection function.
  • the button 190 includes a power-on button, a volume button, and so on.
  • the button 190 may be a mechanical button. It can also be a touch button.
  • the mobile phone 100 can receive key input, and generate key signal input related to user settings and function control of the mobile phone 100.
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for incoming call vibration notification, and can also be used for touch vibration feedback.
  • touch operations applied to different applications can correspond to different vibration feedback effects.
  • Acting on touch operations in different areas of the display screen 194, the motor 191 can also correspond to different vibration feedback effects.
  • Different application scenarios for example: time reminding, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 may be an indicator light, which may be used to indicate the charging status, power change, or to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface 195 is used to connect to the SIM card.
  • the SIM card can be connected to and separated from the mobile phone 100 by inserting into the SIM card interface 195 or pulling out from the SIM card interface 195.
  • the mobile phone 100 may support 1 or N SIM card interfaces, and N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM cards, Micro SIM cards, SIM cards, etc.
  • the same SIM card interface 195 can insert multiple cards at the same time. The types of the multiple cards can be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 may also be compatible with external memory cards.
  • the mobile phone 100 interacts with the network through the SIM card to implement functions such as call and data communication.
  • the mobile phone 100 uses an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the mobile phone 100 and cannot be separated from the mobile phone 100.
  • the mobile phone 100 implements a display function through a GPU, a display screen 194, and an application processor.
  • the GPU is an image processing microprocessor, which is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations and is used for graphics rendering.
  • the processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, and the like.
  • the display screen 194 includes a display panel.
  • the display panel can adopt liquid crystal display (LCD), organic light-emitting diode (OLED), active matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the mobile phone 100 may include one or N display screens 194, and N is a positive integer greater than one.
  • the mobile phone 100 can realize the shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, and an application processor.
  • the ISP is used to process the data fed back from the camera 193. For example, when taking a picture, the shutter is opened, the light is transmitted to the photosensitive element of the camera through the lens, the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing and is converted into an image visible to the naked eye.
  • ISP can also optimize the image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193.
  • the camera 193 is used to capture still images or videos.
  • the camera 193 includes an electromagnetic sensor, and may also include an optical camera.
  • Electromagnetic sensors, or electromagnetic sensors are used to image non-line-of-sight objects through active electromagnetic imaging or passive electromagnetic imaging.
  • the electromagnetic sensor sends electromagnetic waves to the object to be imaged through the transmitter, and receives the echo signal from the object to be imaged through the receiver, converts the echo signal into an electrical signal, and transmits it to the ISP for conversion into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing, such as extracting the target features of the object to be imaged, and finally converting it into an image signal.
  • the electromagnetic sensor collects the radiant energy of the object to be imaged, converts the collected radiant energy into an electrical signal, and then transfers it to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing, such as extracting the target features of the object to be imaged, and finally converting it into an image signal.
  • the object generates an optical image through the lens of the optical camera and is projected to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transfers the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the mobile phone 100 selects the frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the mobile phone 100 may support one or more video codecs. In this way, the mobile phone 100 can play or record videos in multiple encoding formats, such as: moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, and so on.
  • NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • applications such as intelligent cognition of the mobile phone 100 can be realized, such as image recognition, face recognition, voice recognition, text understanding, and so on.
  • the external memory interface 120 may be used to connect an external memory card, such as a Micro SD card, so as to expand the storage capacity of the mobile phone 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example, save music, video and other files in an external memory card.
  • the internal memory 121 may be used to store computer executable program code, where the executable program code includes instructions.
  • the processor 110 executes various functional applications and data processing of the mobile phone 100 by running instructions stored in the internal memory 121.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program (such as a sound playback function, an image playback function, etc.) required by at least one function, and the like.
  • the data storage area can store data (such as audio data, phone book, etc.) created during the use of the mobile phone 100.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), and the like.
  • UFS universal flash storage
  • the internal memory 121 can also store the software code of the method for shooting non-line-of-sight objects provided by the embodiments of the present application.
  • the processor 110 runs the software code, the process steps of the method for shooting non-line-of-sight objects are executed, which can realize the non-line-of-sight object shooting method.
  • the imaging of line-of-sight objects can also locate the space where non-line-of-sight objects are located.
  • the internal memory 121 may also store images obtained by shooting.
  • the external memory interface 120 may be used to connect an external memory card, such as a Micro SD card, so as to expand the storage capacity of the mobile phone 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example, save music, images, videos and other files in an external memory card.
  • the software code of the non-line-of-sight object shooting method provided by the embodiment of the present application can also be stored in an external memory, and the processor 110 can run the software code through the external memory interface 120 to execute the non-line-of-sight object shooting method. Process steps to achieve imaging of non-line-of-sight objects.
  • the image captured by the mobile phone 100 may also be stored in an external memory.
  • the user can specify whether to store the image in the internal memory 121 or the external memory.
  • the mobile phone 100 when the mobile phone 100 is currently connected to an external memory, if the mobile phone 100 captures an image, a prompt message can be popped up to prompt the user to store the image in the external memory or the internal memory 121; of course, there are other designated methods.
  • the application embodiment is not limited; or, when the mobile phone 100 detects that the memory amount of the internal memory 121 is less than the preset amount, it can automatically store the image in the external memory.
  • the electronic device is a mobile phone 100 as an example, but the form of the electronic device is not limited.
  • the electronic device may be a vehicle-mounted device, and may include lidar, millimeter wave radar, and the like.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the mobile phone 100.
  • the mobile phone 100 may include more components than shown, for example, including lidar or millimeter wave radar, etc., or may include fewer components than shown, or combine certain components, or disassemble. Divided into certain parts, or different parts arrangement.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the image processing process provided in the following embodiments can be applied to images in any format, such as uncompressed image formats, such as BMP format; that is, the following image processing processes, such as image fusion process, can be applied to BMP format images. image.
  • the image processing procedures provided in the following embodiments can also be applied to compressed image formats, such as JPEG format, JPG format, GIF format, PNG format, etc., that is to say, the following image processing procedures such as image fusion
  • the process can be applied to images in JPEG format, JPG format, GIF format, PNG format and other formats.
  • the mobile phone 100 may decompress these images, and then perform the image processing procedures provided in the following embodiments on the decompressed images.
  • the preview image involved in the embodiment of the present application refers to the image displayed in the viewfinder interface of the electronic device.
  • the electronic device is the mobile phone 100
  • the mobile phone 100 starts the camera application, turns on the camera, and displays the viewfinder interface, and the preview image is displayed in the viewfinder interface.
  • the mobile phone 100 starts the video call function
  • the camera is turned on to display the viewfinder interface
  • the preview image is displayed in the viewfinder interface.
  • the embodiment of the present application takes the camera application of the mobile phone 100 as an example, but is not limited to the camera application. For example, it may be other applications on the mobile phone 100. For example, starting the application can image non-line-of-sight objects by default.
  • Example 1 The mobile phone 100 shoots an image with a single angle of view.
  • FIG. 2 is an example of an application scenario provided by an embodiment of this application.
  • the object to be imaged such as a box
  • the object to be imaged can be regarded as a non-line-of-sight object
  • the wall can be regarded as a line-of-sight object.
  • FIG. 3 which is an example of another application scenario provided by an embodiment of this application.
  • the object to be imaged such as scissors
  • the box is a line-of-sight object.
  • FIG. 4 is a schematic diagram of a process of capturing an image of the non-line-of-sight object by the mobile phone 100.
  • the mobile phone 100 includes at least one motion sensor, such as a gyroscope sensor 180B and/or an acceleration sensor 180E, or at least one motion sensor may include an optical camera.
  • the mobile phone 100 further includes at least one electromagnetic sensor, which may be, for example, an antenna used for communication on the mobile phone 100, or an antenna used for communication independent of the mobile phone 100.
  • the shooting process includes:
  • the display screen 194 of the mobile phone 100 displays a main interface
  • the main interface includes icons of various applications (such as camera application icons, WeChat application icons, etc.).
  • the user detects the first operation of the user on the display screen 194 through the touch sensor 180K provided on the display screen 194.
  • the first operation may be an operation of clicking the camera application icon in the main interface.
  • the first operation may also be other operations, such as the operation of sliding on the lock screen interface, or the operation of long pressing the volume key, etc., as long as the operation can start the camera, which is not limited in the embodiment of the present application.
  • the mobile phone 100 provided by the embodiment of the present application can take pictures of visible objects such as portraits, and can take pictures of non-line-of-sight objects. It should be understood that portraits and non-line-of-sight objects are relative terms, that is, the mobile phone 100 supports at least two imaging modes.
  • Figure 5 is a schematic diagram of the camera display interface.
  • the camera display interface includes icons for multiple imaging modes (such as portrait icons, non-line-of-sight object icons, etc.).
  • the "portrait” imaging mode can also be understood as an optical imaging mode
  • the "non-line-of-sight object” imaging mode can also be understood as an electromagnetic imaging mode.
  • the portrait icon and the non-line-of-sight object icon are only used as an indication for distinguishing between optical imaging and electromagnetic imaging. Compared with optical imaging, electromagnetic imaging is more able to perceive the object to be imaged.
  • optical imaging corresponds to a "photo” imaging mode (also called a photo mode)
  • electromagnetic imaging can correspond to a "perceived” imaging mode (also called a perception mode).
  • optical imaging corresponds to the photo mode
  • electromagnetic imaging corresponds to the perception mode as examples.
  • the first imaging mode may be a photo mode or a perception mode ( Figure 5 takes this as an example).
  • the second operation may be an operation of clicking a non-line-of-sight object icon in the camera display interface.
  • the mobile phone 100 detects the second operation through the touch sensor 180K provided on the display screen 194.
  • the second operation may also be other operations, such as the operation of sliding on the camera display interface, or the operation of long pressing the volume key, etc., as long as it is an operation that can enter the first imaging mode, which is not limited in the embodiment of the present application.
  • the electronic device is a mobile phone 100 as an example. If the electronic device is another device that does not have a display screen, then the user can also perform operations on the electronic device. At this time, the electronic device generates a trigger signal. To trigger the electronic device to enter the first imaging mode. It should be understood that the user performs an operation that can enter the first imaging mode on the display screen 194. At this time, the mobile phone 100 generates a trigger signal. From this perspective, it can also be considered that the mobile phone 100 uses the touch sensor 180K provided on the display screen 194. The trigger signal is detected.
  • the camera display interface includes an imaging mode option control.
  • a selection box containing multiple imaging modes is displayed, including a "photo” option, a "perception” option, etc. .
  • the mobile phone 100 detects an operation on the "photo” option or the “perception” option, it enters the first imaging mode.
  • the first imaging mode is the "perceptual" imaging mode, that is, the electromagnetic imaging mode, as an example.
  • the camera display interface includes a preview image. Including the electromagnetic image, the user can manually select the electromagnetic image, that is, operate on the electromagnetic image. If the user performs an operation on the electromagnetic image, it can be considered that the user manually selects to enter the first imaging mode.
  • the embodiments of this application will not be listed one by one.
  • the mobile phone 100 needs to turn on the optical camera.
  • the mobile phone 100 starts the camera application and turns on the optical camera in response to the first operation. If the first imaging mode is the "perception" mode, the mobile phone 100 also needs to activate the electromagnetic sensor.
  • the mobile phone 100 detects the first operation, such as the operation of clicking the camera application icon in the main interface, starts the optical camera, and then detects the second operation, such as the operation of clicking the "perceive" icon in the camera display interface , Activate the electromagnetic sensor, otherwise do not turn on the electromagnetic sensor, in order to save the energy consumption of the mobile phone 100 as much as possible.
  • the mobile phone 100 detects the first operation, for example, the operation of clicking the camera application icon in the main interface to activate the optical camera and the electromagnetic sensor. It should be noted that if the electromagnetic sensor is multiplexed with the antenna used by the electronic device for communication, the electromagnetic sensor is always on by default.
  • the viewfinder screen is displayed. It is possible that the object to be imaged is not in the framing screen, so the user can adjust the relative position of the mobile phone 100 and the object to be imaged so that the object to be imaged is located in the framing screen to ensure that the mobile phone 100 can capture the image of the object to be imaged.
  • the user can trigger the mobile phone 100 to take a picture of the object to be imaged.
  • the mobile phone 100 may detect a third operation of the user on the display screen 194 through the touch sensor 180K provided on the display screen 194, and the third operation may be an operation of clicking a camera icon in the camera display interface.
  • the third operation may also be other operations, such as a sliding operation on the viewfinder display interface, or an operation of long pressing the volume key, etc., as long as it can trigger a photographing operation, which is not limited in the embodiment of the present application.
  • the mobile phone 100 may automatically trigger to take a picture of the object to be imaged.
  • the electromagnetic sensor of the mobile phone 100 can collect a plurality of first data from non-line-of-sight objects. It should be understood that if the mobile phone 100 supports active electromagnetic imaging, the mobile phone 100 emits electromagnetic waves through an antenna to illuminate the space area to be imaged (it should be understood that line-of-sight objects and non-line-of-sight objects are located in the space area), as shown in FIG. 6. Line-of-sight objects and non-line-of-sight objects receive electromagnetic waves and reflect the received electromagnetic waves to the electromagnetic sensor, that is, the electromagnetic sensor receives the echo signal. After that, the electromagnetic sensor can extract the radiation information of the echo signal, and then perform imaging of non-line-of-sight objects based on the radiation information.
  • the radiation information of the echo signal may include the electromagnetic radiation information of line-of-sight objects and non-line-of-sight objects.
  • the electromagnetic radiation information can determine the spatial distribution of line-of-sight objects and non-line-of-sight objects, that is, line-of-sight objects and The spatial distribution of the various position points of non-line-of-sight objects.
  • the first data may be an echo signal, or radiation information of the echo signal, such as the energy of the echo signal.
  • the mobile phone 100 If the mobile phone 100 supports passive electromagnetic imaging, the mobile phone 100 obtains radiation information in the space to be imaged through an antenna, and uses the difference in radiation intensity of different objects (line-of-sight objects and non-line-of-sight objects) to achieve imaging. It should be understood that the first data at this time is data indicating the radiation intensity.
  • the embodiment of the present application aims to virtualize a larger antenna array through the mobile phone 100. Therefore, after triggering the imaging of non-line-of-sight objects, the user can move the mobile phone 100.
  • the first data collected by the electromagnetic sensor is different at different positions. In order to ensure that the first data can be better matched with the movement trajectory of the mobile phone, the mobile phone 100 collects the first data on the electromagnetic sensor.
  • auxiliary reminders could be displayed on the viewfinder screen.
  • the auxiliary prompt information can be used to guide the user how to move the electronic device, that is, the rules that the mobile electronic device needs to follow.
  • the mobile phone 100 can be moved along the length direction of the mobile phone 100 or along the width direction of the mobile phone 100.
  • the prompt information can be a straight line along a certain direction.
  • the auxiliary prompt information may be a curve or a rotation angle, and the user can move the mobile phone 100 according to the trajectory indicated by the auxiliary prompt information.
  • the auxiliary prompt information may include a pattern of the movement track of the mobile phone 100.
  • a pattern of the movement track of the mobile phone 100 Exemplary, please refer to Fig. 7 for an example of auxiliary prompt information; for another exemplary, please refer to Fig. 8 for another example of auxiliary prompt information; for another exemplary, please refer to Fig. 9, It is another example of auxiliary prompt information.
  • FIGS. 7-9 are only for illustration, and the embodiment of the present application does not limit the specific form of the pattern of the movement track of the mobile phone 100 included in the auxiliary prompt information.
  • the auxiliary prompt information may include a variety of patterns of the movement track of the mobile phone 100, so that the user can choose which pattern to use according to the actual non-line-of-sight object and/or the line-of-sight object to be imaged, so as to obtain the non-line-of-sight object as much as possible. Complete imaging.
  • the camera display interface may include an "auxiliary prompt information” option control.
  • auxiliary prompt information a selection box containing a variety of "auxiliary prompt information” is displayed, including “scanning "Pattern 1" option, "Scanning pattern 2” option, etc.
  • the mobile phone 100 detects an operation for the "scan pattern 1" option, it displays the scan pattern 1 on the display interface.
  • the camera display interface may display various "auxiliary prompt information” icons.
  • auxiliary prompt information icons.
  • the camera display interface can display "scan pattern 1" icon, "scan pattern 2" icon, "scan pattern 2" icon, etc.
  • the mobile phone 100 detects an operation for the "scan pattern 1" option, it displays the scan pattern 1 on the display interface.
  • the mobile phone 100 detects an operation that triggers a photograph, that is, the aforementioned third operation, and displays, for example, scan pattern 1 on the camera display interface by default, which can be understood as the first scan prompt pattern. Then, when an operation for the "scan pattern 2" option or the "scan pattern 2" icon is detected, a second scan prompt pattern, that is, scan pattern 2 is displayed.
  • the auxiliary prompt information may also include other prompt information, such as information used to prompt the mobile phone 100 to move too fast, information used to prompt the user of the direction deviation of the mobile phone 100, etc., so as to try to ensure the non-line-of-sight object Imaging performance.
  • the mobile phone 100 may obtain the moving speed of the mobile phone 100 during the moving process. It should be understood that the moving speed may be an instantaneous speed or an average speed within a preset time period. When the mobile phone 100 determines that the acquired moving speed is greater than the preset threshold, the mobile phone 100 moves faster. At this time, the first prompt message can be displayed on the display interface. The first prompt message is used for the user to move at a speed lower than the moving speed. Mobile phone 100. As shown in FIG.
  • the first prompt message may be "please slow down” displayed on the display interface, or the first prompt message may be the "arrow” in scan pattern 1, and the color of the "arrow” is a preset color; Or the first prompt information can also be scan pattern 1, and the color of scan pattern 1 is a preset color; or the first prompt information can be the "arrow” in scan pattern 1, and the "arrow” flashes at a preset frequency, and many more.
  • the first prompt information may also be multiple combinations of the above-mentioned prompt information, and the implementation of this application is not limited.
  • a second prompt message can be displayed on the display interface, and the second prompt message can be used to prompt the user to change the moving direction of the mobile phone 100.
  • the second prompt message can be "Please change the moving direction" displayed on the display interface, or the second prompt message can be the "arrow” in scan pattern 1, and the color of the "arrow” is preset Color; or the second prompt information can also be scan pattern 1, and the color of scan pattern 1 is a preset color; or the second prompt information can be the "arrow" in scan pattern 1, and the "arrow” is in accordance with the preset frequency Blink, wait.
  • the second prompt information can also be multiple combinations of the above-mentioned prompt information, and the implementation of this application is not limited.
  • a third prompt information may be displayed on the display interface, and the third prompt information may be used for The user is prompted to move the mobile phone 100 in the specified direction.
  • the third prompt message can be "move up” displayed on the display interface; or the third prompt message is similar to the first prompt message or the second prompt message, and the third prompt message can also be in the scan pattern 1.
  • “Arrow”, and the color of the "Arrow” is the preset color, so I won't repeat it here.
  • S404 In response to the trigger signal, obtain the first data collected by the electromagnetic sensor, and obtain the second data collected by the at least one motion sensor.
  • the first data is the electromagnetic signal collected by the electromagnetic sensor. As described above, it may be an echo signal or the radiation information of the echo signal, such as the energy of the echo signal.
  • the at least one motion sensor may include an attitude sensor, an acceleration sensor, a gyroscope, and one or more combinations of an optical camera, a laser radar, a millimeter wave radar, and the like.
  • the second data may be data used to characterize the position of the mobile phone 100, for example, may include image information collected by at least one motion sensor and/or movement information of the electronic device.
  • At least one motion sensor includes an optical camera or lidar
  • the second data includes image information collected by at least one motion sensor
  • at least one motion sensor includes an attitude sensor, an acceleration sensor, a gyroscope, etc.
  • the second data includes at least one motion The movement information of the mobile phone 100 collected by the sensor.
  • the electromagnetic sensor continuously collects the first data from the non-line-of-sight object.
  • at least one motion sensor continuously collects the second data of the mobile phone 100.
  • the second data collected by the at least one motion sensor may include M second sampling data. Each sampling moment of the second data corresponds to a physical spatial location, so the mobile phone 100 can determine the actual movement trajectory of the mobile phone 100 according to the M second sampling data.
  • Figure 11 is a schematic diagram of determining the movement trajectory.
  • the movement trajectory of the mobile phone 100 may be a trajectory on a two-dimensional plane or a trajectory on a three-dimensional space.
  • FIG. 11 uses a two-dimensional plane as an example, and the movement track of the mobile phone 100 is a curve as an example.
  • X and Y respectively represent two axes of a two-dimensional plane, for example, X represents a horizontal axis, and Y represents a vertical axis.
  • the second data collected by a certain motion sensor in the mobile phone 100 can be expressed as ⁇ S x , Sy , S z ⁇ , where S x , Sy , S z represents the signal collected by the sensor on the X-axis, Y-axis and Z-axis, and can also be understood as the signal value.
  • the sampling rate of the motion sensor is K 1 Hz
  • the set of second data collected by the mobile phone 100 in T seconds can be expressed as:
  • the set of second data collected by multiple motion sensors within T seconds is multi-dimensional, and integrating the multi-dimensional second data can restore the movement trajectory of the mobile phone 100.
  • the set of second data representing the two-dimensional trajectory of the mobile phone 100 can be expressed as:
  • the i row represents the X axis
  • the j column represents the Y axis
  • Pi ,j represents a physical location in space.
  • the mobile phone 100 can display the movement trajectory of the mobile phone 100 on the display interface. Specifically, the mobile phone 100 can obtain part or all of the second data in the N pieces of second data, and respectively calculate any two adjacent ones of the extracted second data.
  • the position coordinates of the second data in the first reference coordinate system can be used to obtain the first motion trajectory.
  • the first reference coordinate system is the internal reference coordinate system of the motion sensor. It should be understood that the motion sensor determining the motion trajectory of the electronic device according to the first reference coordinate system may not be the actual motion trajectory of the electronic device. For example, the motion sensor determines that the electronic device moves to the left according to the first reference coordinate system, but the electronic device actually moves to the right. move. Therefore, the mobile phone then maps the first motion trajectory from the first reference coordinate system to the second reference coordinate system to obtain the second motion trajectory, that is, the actual motion trajectory of the mobile phone 100. It should be understood that the second reference coordinate system is a geodetic coordinate system.
  • FIG. 12 is a schematic diagram of forming a track for two adjacent second data.
  • the motion sensor is an optical camera as an example, that is, the motion track of the optical camera is determined as an example. It should be understood that the motion sensor is an optical camera, and two adjacent pieces of second data are actually two adjacent frames of second data. Each of the blocks of different shapes represents a feature point on the photo taken by the optical camera, that is, the feature point in the second data.
  • the position coordinates of the two adjacent second data in the first reference coordinate system can be calculated respectively, so that the first reference coordinate system of the two adjacent second data in the first reference coordinate system can be obtained.
  • One movement trajectory is a schematic diagram of forming a track for two adjacent second data.
  • the position coordinates of two adjacent feature points on the photo taken by the optical camera in the first reference coordinate system can be calculated separately, so that two adjacent feature points can be obtained
  • the first motion trajectory in the first reference coordinate system By mapping the first motion trajectory to the second reference coordinate system, the actual motion trajectory of the optical camera, that is, the actual motion trajectory of the mobile phone 100 can be obtained.
  • the electromagnetic sensor continuously collects first data from a non-line-of-sight object, and within a period of time, the first data collected by the electromagnetic sensor may include N first sampling data.
  • Each sampling moment of the first data corresponds to a physical space position, because each sampling moment of the second data also corresponds to a physical space position.
  • each physical space position on the actual motion trajectory of the mobile phone 100 corresponds to a first data and a second data. Therefore, the mobile phone 100 can match the first data with the second data, and can generate an electromagnetic image of a non-line-of-sight object based on the matching result.
  • Matching the first data and the second data in other words, aligning the N first sampling data included in the first data and the M second sampling data included in the second data, that is, aligning the N first sampling data
  • the N first sampling data and the M second sampling data can be aligned by linear difference or extraction. For example, insert M-N third data into N first sample data or insert N-M third data into M second sample data, and then align the first data and second data at the same collection time.
  • the first data is recorded as Among them, A is the amplitude of the echo signal, Is the phase of the echo signal, the sampling rate of the first data is K 1 Hz, and the accumulated movement time of the mobile phone 100 is T seconds.
  • the set of the first data collected by the mobile phone 100 within T seconds can be expressed as:
  • N K 1 *T.
  • N M, that is, the number of N first sampled data is equal to the number of M second sampled data
  • the N first sampled data can be obtained by interpolation Match with M second sampling data one by one. After matching the N first sampling data and M second sampling data, the first data can be recorded as:
  • represents the wavelength of the echo signal
  • ⁇ i,j represents the distance between the mobile phone 100 and the non-line-of-sight object, Used to calculate ⁇ , Used to calculate ⁇ .
  • the electromagnetic image data set of the imaging of the non-line-of-sight object is output to the mobile phone 100, as shown in FIG. 13, to obtain the final image.
  • the mobile phone 100 can output and generate electromagnetic imaging of the non-line-of-sight object, that is, the final image, so as to display the final image in the viewfinder interface.
  • the electromagnetic sensor can collect images in real time.
  • the final image is displayed in the viewfinder interface.
  • the preview image in the viewfinder interface of the camera application is the image obtained by the mobile phone 100 through the above S505 according to the image collected by the electromagnetic sensor.
  • the imaging effect of the preview image may be poor, it may be due to the scan pattern selected by the user.
  • the user can choose not to store the final image, but re-select the scan pattern to obtain a final image with better imaging performance.
  • the current electromagnetic imaging of non-line-of-sight objects by the current security screening equipment can provide users with information such as the contours of non-line-of-sight objects, such as medicine bottles in the suitcase, but they cannot be given
  • the composition of the medicine in the medicine bottle requires the user to open the medicine bottle to test the medicine.
  • the final image can display the material information of the non-line-of-sight object, such as metal, wood, liquid, and further, such as iron, gold, ethanol, etc., in addition to the electromagnetic imaging result of the non-line-of-sight object.
  • one display area of the display interface of the mobile phone 100 is used to display the electromagnetic imaging result of the non-line-of-sight object, and the other display area displays material information, which does not require the user to further verify the material of the non-line-of-sight object, thereby improving user experience.
  • the frequency spectrum corresponding to the first data can be determined. Since the reflection and penetration characteristics of objects of different materials are different, the first data received by the mobile phone 100 presents different spectrum curves.
  • the mobile phone 100 may determine the material of the non-line-of-sight object according to the frequency spectrum corresponding to the first data and the correspondence between the frequency spectrum and the material. It should be understood that the mobile phone 100 can store the corresponding relationship between the frequency spectrum and the material, or the mobile phone 100 can notify other devices after determining the frequency spectrum corresponding to the first data.
  • the device stores the corresponding relationship between the frequency spectrum and the material, and can determine the material of the non-line-of-sight object. The device then informs the mobile phone 100 of the determined material.
  • Example 2 The mobile phone takes images with more than 100 angles of view.
  • the box shown in Figure 3 has a large volume, and the viewing angle of each shot of the mobile phone 100 is limited, so one shot cannot be achieved. Imaging of non-line-of-sight objects.
  • the mobile phone 100 can take multiple shots of non-line-of-sight objects, and for each shot, the position of the mobile phone 100 relative to the non-line-of-sight objects can be adjusted correspondingly, that is, the shooting angle of the mobile phone 100 can be adjusted to achieve imaging of non-line-of-sight objects. .
  • Example 2 The difference between Example 2 and Example 1 is that after the mobile phone 100 enters the first imaging mode, the third operation in S503 is an operation of instructing multi-view photography or panoramic imaging.
  • the third operation may be an operation of clicking a multi-view camera icon or a panoramic imaging icon in the camera display interface. It should be understood that the embodiment of the present application does not limit the name of the icon corresponding to the third operation, such as the multi-view camera icon and the panoramic imaging icon. Of course, the third operation may also be other operations, such as an operation of sliding down on the viewfinder display interface or an operation of long pressing the volume key to instruct multi-view photography. The embodiment of the present application does not limit the third operation. It should be understood that the electronic device detects this third operation and can start the multi-view mode, that is, a mode in which non-line-of-sight objects are photographed from multiple viewpoints.
  • auxiliary prompt information may also be displayed on the display interface.
  • auxiliary prompt information may also be displayed on the display interface.
  • taking pictures of non-line-of-sight objects from multiple perspectives can be understood as the mobile phone 100 performs two-dimensional scanning of the non-line-of-sight objects from various perspectives to obtain two-dimensional electromagnetic images of various perspectives.
  • the two-dimensional electromagnetic images of the viewing angle are stitched together to obtain the final image.
  • Figure 14 is a schematic diagram of multi-view imaging.
  • Fig. 14 takes the shooting of non-line-of-sight objects from three perspectives as an example.
  • the mobile phone 100 detects the input of the fourth operation, such as the operation of clicking the camera icon in the camera display interface, the first data is collected through the electromagnetic sensor, and the first data is collected through at least one movement
  • the sensor collects the second data until the fifth input operation is detected, such as clicking the "pause" icon in the camera display interface to stop collecting the first data through the electromagnetic sensor and/or stop collecting the second data through the at least one motion sensor .
  • the mobile phone 100 completes the photographing in one angle of view.
  • the mobile phone 100 After the mobile phone 100 moves to the second angle of view, the mobile phone 100 detects the input of the sixth operation, such as clicking the "start" icon in the camera display interface, the first data is collected by the electromagnetic sensor, and the second data is collected by the at least one motion sensor. Data until the seventh input operation is detected, such as clicking the “pause” icon in the camera display interface, stopping collecting the first data through the electromagnetic sensor and/or stopping collecting the second data through the at least one motion sensor. That is, the mobile phone 100 takes a picture in the second angle of view. The completion of the third-view photography by the mobile phone 100 is similar to the completion of the second-view photography by the mobile phone 100, and will not be repeated here.
  • the "pause” icon and the "start” icon may be the same icon, and the difference is that the specific styles of the icons are different.
  • the mobile phone 100 can move intermittently, that is, the mobile phone 100 changes from a static state to a motion state, from a motion state to a static state, and then from a static state to a motion state, and so on.
  • the mobile phone 100 detects that the mobile phone 100 changes from a stationary state to a moving state, the mobile phone 100 starts to collect the first data through the electromagnetic sensor, and collects the second data through at least one motion sensor; if the mobile phone 100 detects the mobile phone 100 When changing from a motion state to a static state, the mobile phone 100 stops collecting the first data through the electromagnetic sensor and/or stops collecting the second data through the at least one motion sensor, and so on, the mobile phone 100 can obtain images from multiple perspectives.
  • the electromagnetic image can be stored, that is, electromagnetic images of non-line-of-sight objects in various viewing angles are stored, and then the mobile phone 100 can stitch the electromagnetic images of multiple viewing angles to obtain the final image.
  • the images of these 4 viewing angles are the first electromagnetic image at the first viewing angle, the second electromagnetic image at the second viewing angle, and the third electromagnetic image at the third viewing angle.
  • the fourth electromagnetic image at the fourth viewing angle may sequentially stitch the first electromagnetic image, the second electromagnetic image, the third electromagnetic image, and the fourth electromagnetic image.
  • the mobile phone 100 may splice the first electromagnetic image, the second electromagnetic image, the third electromagnetic image, and the fourth electromagnetic image in the order of the starting moment of shooting.
  • the user can select partial electromagnetic images from multiple perspectives for stitching to obtain the final image.
  • the mobile phone 100 stores electromagnetic images of multiple viewing angles, the user can select a part of the electromagnetic images from the electromagnetic images of multiple viewing angles for stitching.
  • image stitching you can refer to the existing puzzle software implementation, so I won't go into details here.
  • the mobile phone 100 displays the final image
  • the previously stored electromagnetic images of non-line-of-sight objects in various viewing angles can be deleted to save the storage space of the mobile phone 100 as much as possible.
  • the mobile phone 100 can delete part of the electromagnetic images of the non-line-of-sight object in various viewing angles according to the actual needs of the user.
  • there are multiple electromagnetic images and when the mobile phone 100 detects the inputted eighth operation, in response to the eighth operation, some or all of the electromagnetic images are deleted from the multiple electromagnetic images. That is, part of the electromagnetic image is included according to the needs of the user, which is convenient for the user to view in the future.
  • the imaging method for non-line-of-sight objects in the embodiments of the present application can move electronic equipment when imaging non-line-of-sight objects. Since the movement of the electronic device is equivalent to the movement of the first component to form a virtual larger antenna array, a wider beam scanning range can be realized, thereby improving the imaging resolution of electromagnetic imaging. In addition, a wider beam scanning range can be realized by a small-volume electronic device, so the imaging of non-line-of-sight objects in a variety of scenarios can be realized by portable devices.
  • a mobile phone can be used to image larger non-line-of-sight objects; for example, a vehicle-mounted device can also be used to image a non-line-of-sight object, such as an object blocked by another vehicle, which is helpful for driving safety.
  • the method provided in the embodiments of the present application is introduced from the perspective of the electronic device (mobile phone 100) as the execution subject.
  • the terminal device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • the present application also provides an electronic device 1600, which is used to implement the methods provided in the above embodiments of the present application.
  • the electronic device 1600 may include a memory 1601 and a processor 1602.
  • the memory 1601 is used to store program instructions
  • the processor 1602 is used to call the program instructions stored in the memory 1601 to implement the imaging method for non-line-of-sight objects in the embodiment of the present application.
  • the memory 1601 stores the program instructions for executing the imaging method of the non-line-of-sight object shown in FIG. 4
  • the processor 1602 calls the program instructions stored in the memory 1601 to execute the imaging method for the non-line-of-sight object shown in FIG.
  • Figure 4 shows the imaging method of non-line-of-sight objects.
  • the processor 1602 in the embodiment of the present application may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array, FPGA ) Or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory (RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc. mature in the field Storage medium.
  • RAM random access memory
  • flash memory read-only memory
  • read-only memory read-only memory
  • ROM programmable read-only memory or electrically erasable programmable memory, registers, etc. mature in the field Storage medium.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory and completes the steps of the above method in combination with its hardware.
  • FIG. 17 shows a schematic structural diagram of a circuit system provided by an embodiment of the present application.
  • the circuit system may be one or more chips, for example, a system-on-a-chip (SoC).
  • SoC system-on-a-chip
  • the circuit system may be a component in an electronic device (for example, the mobile phone 100 shown in FIG. 1).
  • the circuit system 1700 may include at least one processing circuit 1701, a communication interface 1702, and a storage interface 1703.
  • the circuit system 1700 may further include a memory (not shown in the figure) and the like.
  • At least one processing circuit 1701 may be used to execute all or part of the steps in the embodiment shown in FIG. 4.
  • the at least one processing circuit 1701 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), an image signal processor (ISP), a controller, and a memory.
  • AP application processor
  • GPU graphics processing unit
  • ISP image signal processor
  • controller controller
  • memory e.g., RAM
  • Video codec e.g., Video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc.
  • At least one processing circuit 1701 integrates NPU and ISP. All or part of the steps in the embodiment shown in FIG. 5 may be executed by different processing circuits 1701.
  • the process of matching the first data and the second data can be performed by the NPU, and other processes (for example, S405 in the embodiment shown in FIG. 4, etc.) ) Can be executed through ISP.
  • the communication interface 1702 may be used to implement communication between the circuit system 1700 and other components/devices.
  • the communication interface 1702 may be a wireless communication interface (for example, a Bluetooth communication interface or a wireless communication interface).
  • the circuit system 1700 may be connected to the wireless communication module 172 and/or the mobile communication module 171 through the communication interface 1702.
  • the storage interface 1703 is used to implement data transmission (for example, data reading and writing) between the circuit system 1700 and other components (for example, a memory). Taking the circuit system 1700 as a component in the mobile phone 100 as an example, the circuit system 1700 can access the data stored in the internal memory 121 through the storage interface 1703.
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the first acquiring unit and the second acquiring unit may be the same unit or different units.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the embodiment of the present application also provides a computer-readable storage medium, the storage medium may include a memory, and the memory may store a program.
  • the program When the program is executed, the electronic device is caused to execute the method embodiment shown in FIG. All or part of the steps described in.
  • the embodiment of the present application also provides a computer program product, which when the computer program product runs on an electronic device, causes the electronic device to execute all or part of the method described in the foregoing method embodiment shown in FIG. 4 step.
  • the functions of the mobile phone 100 are implemented in the form of a software functional unit and sold or used as an independent product, they can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Telephone Function (AREA)
  • Studio Devices (AREA)

Abstract

本申请提供一种非视距物体的成像方法和电子设备,属于传感器技术领域。该电子设备包括第一组件和第二组件,该方法包括:检测到触发信号,响应于该触发信号,获取第一组件采集的第一数据,以及获取第二组件采集的第二数据,第一数据包括第一组件采集的电磁信号,第二数据包括第二组件采集的图像信息和/或电子设备的移动信息;将第一数据和第二数据进行匹配,基于匹配结果生成非视距物体的电磁图像。本申请提供的方法可应用于且不限于手机等便携设备或者车辆等移动设备,例如可应用于自动驾驶中的目标探测和跟踪。另外,由于第一组件的移动,可实现较宽的波束扫描范围,因此还可通过体积较小的便携设备实现对多种应该场景下的非视距物体的成像。

Description

一种非视距物体的成像方法和电子设备
相关申请的交叉引用
本申请要求在2020年03月06日提交中国专利局、申请号为202010153540.9、申请名称为“一种非视距物体的成像方法和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种非视距物体的成像方法和电子设备。
背景技术
电磁波因可以穿透部分物体表面,常被用于探测物体的内部结构或者探测非视距(not line of sight,NLOS)物体,并对物体成像,可广泛应用在医学、安检等技术领域。电磁波的成像原理是通过主动或者被动检测拟成像目标,例如重构物体的形状、特征,形成图像。
天线阵元越多,可实现的电磁波的波束越窄,可控制的波束扫描范围越宽,所以为了满足波束扫描范围宽的需求,目前电磁成像装置(例如计算机断层(computed tomography,CT)扫描仪、安检设备等)的体积较大,无法满足多种应用场景。
发明内容
本申请提供一种非视距物体的成像方法和电子设备,能够满足多种应用场景的非视距物体的成像。
第一方面,本申请实施例提供一种非视距物体的成像方法,应用于电子设备,所述电子设备包括第一组件和第二组件,所述方法包括:检测到触发信号,响应于该触发信号,获取第一组件采集的第一数据,以及获取第二组件采集的第二数据,所述第一数据包括第一组件采集的电磁信号,所述第二数据包括第二组件采集的图像信息和/或电子设备的移动信息;将所述第一数据和所述第二数据进行匹配,基于匹配结果生成所述非视距物体的电磁图像数据。
由于第一组件能够采集电磁信号,那么在对非视距物体成像时,可移动电子设备。电子设备移动,即第一组件移动,相当于扩大电子设备的波束扫描范围,从而可以提升电磁成像的成像分辨率。且通过较小体积的电子设备即可实现,所以电子设备方便携带,能够适用多种应该场景下的非视距物体的成像。
在一种可能的设计中,所述第一组件包括天线。
应理解,第一组件是天线,移动电子设备,可认为形成虚拟的较大的天线阵列,从而实现较宽的波束扫描范围。
在一种可能的设计中,所述第二组件包括光学摄像头、运动传感器、激光雷达和毫米波雷达中的至少一种。
在一种可能的设计中,第一数据与所述第二数据进行匹配,包括:
获取所述第一数据包括的N个第一采样数据,以及获取所述第二数据包括的M个第 二采样数据,所述N为正整数,所述M为正整数;
将同一采集时刻的所述第一采样数据和所述第二采样数据进行匹配。
应理解,每个第二数据的采样时刻对应一个物理空间位置,该物理空间位置也对应一个第一数据,而第一数据可表征非视距物体的电磁图像,所以将N个第一采样数据和M个第二采样数据进行匹配,就是同一采集时刻的所述第一采样数据和所述第二采样数据进行匹配,进而可获得非视距物体的电磁图像。
在一种可能的设计中,所述方法还包括:
提取所述M个第二采样数据中部分或全部第二数据;
分别计算所述部分或全部第二数据中任意相邻的两个第二数据在所述第二组件的第一参考坐标系中的位置坐标,获得所述电子设备的第一运动轨迹;
将所述第一运动轨迹从所述第一参考坐标系映射到所述电子设备的第二参考坐标系,获得第二运动轨迹。
第一数据和第二数据在同一个物理空间位置上对应,而电子设备和第二组件的参考坐标可能不一样,所以将以第二组件的参考坐标获得的第一运动轨迹映射到第二参考坐标,可获得电子设备的实际运动轨迹。
在一种可能的设计中,所述电磁图像包括材质信息,所述材质信息用于指示所述非视距物体的材质。该方案,电磁图像上的材质信息可用于提示用户非视距物体的材质,提升用户体验。
在一种可能的设计中,在检测到触发信号之前,所述方法还包括:检测到第一操作,响应于所述第一操作,启动所述电子设备包括的光学摄像头。应理解,电子设备例如是手机,那么第一操作可以是启动相机应用的操作,启动相机应用默认开启光学摄像头;或者电子设备例如是其他可能的设备,第一操作可以是启动该电子设备的操作,启动该电子设备默认开启光学摄像头。
在一种可能的设计中,在检测到触发信号之后,所述方法还包括:
在所述显示界面显示辅助提示信息,所述辅助提示信息包括第一扫描提示图样,用于指示所述电子设备扫描所述非视距物体需要参考的移动的轨迹。该方案有利于电子设备提高非视距物体的成像性能。
在一种可能的设计中,在所述显示界面显示辅助提示信息之后,所述方法还包括:检测到第二操作,响应于所述第二操作,在所述显示界面上显示第二扫描提示图样。该方案中,提供多种扫描提示图样,不同的扫描提示图样对应的成像性能可能不同,因此用户可根据实际需求选择使用何种扫描提示图样,提升了用户体验。
为了保证对非视距物体的成像性能,电子设备可根据当前的运动信息,例如移动速度、移动方向等,确定是否提示用户向指定路径移动电子设备。
一示例性的,在所述显示界面显示辅助提示信息之后,所述方法还包括:
获取所述电子设备的移动速度;
若所述移动速度大于预设阈值,在所述显示界面显示第一提示信息,所述第一提示信息用于用户采用比所述移动速度小的速度移动所述电子设备。
另一示例性的,在所述显示界面显示辅助提示信息之后,所述方法还包括:
若确定所述电子设备在移动过程中发生抖动,在所述显示界面显示第二提示信息,所述第二提示信息用于提示用户向指定方向移动所述电子设备。
第二方面,本申请实施例提供一种电子设备,包括:处理器、第一组件和第二组件,其中,
所述处理器,用于检测触发信号;
所述处理器,用于响应于所述触发信号,获取所述第一组件采集的第一数据,以及获取所述第二组件采集的第二数据,所述第一数据包括所述第一组件采集的电磁信号,所述第二数据包括所述第二组件采集的图像信息和/或所述电子设备的移动信息;
所述第一组件,用于采集所述第一数据;
所述第二组件,用于采集所述第二数据;
所述处理器,还用于将所述N个第一采样数据和所述M个第二采样数据进行匹配,基于匹配结果生成所述非视距物体的电磁图像数据。
在一种可能的设计中,所述第一组件包括天线。
在一种可能的设计中,所述第二组件包括光学摄像头、运动传感器、激光雷达和毫米波雷达中的至少一种。
在一种可能的设计中,所述处理器,具体用于:
获取所述第一数据包括的N个第一采样数据,以及获取所述第二数据包括的M个第二采样数据,所述N为正整数,所述M为正整数;
将同一采集时刻的所述第一采样数据和所述第二采样数据进行匹配。
在一种可能的设计中,所述处理器还用于:
获取所述M个第二采样数据中部分或全部第二数据;
分别计算所述部分或全部第二数据中任意相邻的两个第二数据在所述第二组件的第一参考坐标系中的位置坐标,获得所述电子设备的第一运动轨迹;
将所述第一运动轨迹从所述第一参考坐标系映射到所述电子设备的第二参考坐标系,获得第二运动轨迹。
在一种可能的设计中,所述电磁图像包括材质信息,所述材质信息用于指示所述非视距物体的材质。
在一种可能的设计中,在检测到触发信号之前,所述处理器还用于:
检测到第一操作;
响应于所述第一操作,启动所述电子设备包括的光学摄像头。
在一种可能的设计中,所述电子设备还包括显示屏,所述显示屏用于在所述处理器检测到触发信号之后,在所述显示屏的显示界面显示辅助提示信息,所述辅助提示信息包括第一扫描提示图样,用于指示所述电子设备扫描所述非视距物体需要参考的移动的轨迹。
在一种可能的设计中,在所述显示屏的显示界面显示辅助提示信息之后,所述处理器还用于:
检测到第二操作;
响应于所述第二操作,在所述显示界面上显示第二扫描提示图样。
在一种可能的设计中,在所述显示屏的显示界面显示辅助提示信息之后,所述处理器还用于:
获取所述电子设备的移动速度,其中,若所述移动速度大于预设阈值,所述显示界面显示第一提示信息,所述第一提示信息用于用户采用比所述移动速度小的速度移动所述电子设备。
在一种可能的设计中,在所述显示屏的显示界面显示辅助提示信息之后,所述处理器还用于:
若确定所述电子设备在移动过程中发生抖动,在所述显示界面显示第二提示信息,所述第二提示信息用于提示用户向指定方向移动所述电子设备。
在一种可能的设计中,所述显示屏还用于:
接收所述处理器输出的所述非视距物体的电磁图像数据,并根据所述电磁图像数据显示所述非视距物体的电磁图像。
上述第二方面及第二方面中任一种可能设计方式所带来的技术效果可参见第一方面及第一方面中任一种可能设计方式所带来的技术效果,此处不再赘述。
第三方面,本申请实施例还提供一种电路系统,该电路系统可以是一个或多个芯片,比如,片上系统(system-on-a-chip,SoC)。该电路系统包括:至少一个处理电路,用于:
获取电子设备内的第一组件采集的第一数据,以及获取所述电子设备内的第二组件采集的第二数据,所述第一数据包括所述第一组件采集的电磁信号,所述第二数据包括所述第二组件采集的图像信息和/或所述电子设备的移动信息;
将所述第一数据和所述第二数据进行匹配,基于匹配结果生成所述非视距物体的电磁图像数据。
在一种可能的设计中,所述至少一个处理电路具体用于:
获取所述第一数据包括的N个第一采样数据,以及获取所述第二数据包括的M个第二采样数据,所述N为正整数,所述M为正整数;
将同一采集时刻的所述第一采样数据和所述第二采样数据进行匹配。
在一种可能的设计中,所述至少一个处理器还用于:
获取所述M个第一数据中部分或全部第一数据;
分别计算所述部分或全部第一数据中任意相邻的两个第一数据在所述第二组件的第一参考坐标系中的位置坐标,获得所述电子设备的第一运动轨迹;
将所述第一运动轨迹从所述第一参考坐标系映射到所述电子设备的第二参考坐标系,获得第二运动轨迹。
在一种可能的设计中,所述电磁图像包括材质信息,所述材质信息用于指示所述非视距物体的材质。
上述第三方面及第三方面中任一种可能设计方式所带来的技术效果可参见第一方面及第一方面中任一种可能设计方式所带来的技术效果,此处不再赘述。
第四方面,本申请实施例还提供一种电子设备,该电子设备包括:显示屏,光学摄像头和电磁传感器;一个或多个处理器;存储器;一个或多个程序;其中所述一个或多个程序被存储在所述存储器中,所述一个或多个程序包括指令,当所述指令被所述电子设备执行时,使得所述电子设备执行如第一方面中任一所述的方法步骤。
第五方面,本申请实施例还提供了一种电子设备,所述电子设备可以包括执行第一方面或者第一方面的任意一种可能的设计的方法的模块/单元;这些模块/单元可以通过硬件实现,也可以通过硬件执行相应的软件实现。
第六方面,本申请实施例还提供一种芯片,所述芯片与电子设备中的存储器耦合,使得所述芯片在运行时调用所述存储器中存储的程序指令,实现本申请实施例上述第一方面以及第一方面涉及的任一可能设计的方法。
第七方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质包括程序,当程序在电子设备上运行时,使得所述电子设备执行第一方面或上述第一方面的任意一种可能的设计的方法。
第八方面,本申请实施例还提供一种包含程序产品,当所述程序产品在电子设备上运行时,使得所述电子设备执行第一方面或上述第一方面的任意一种可能的设计的方法。
第九方面,本申请实施例还提供一种电子设备上的用户图形界面,所述电子设备具有显示屏、摄像头、存储器、以及一个或多个处理器,所述一个或多个处理器用于执行存储在所述存储器中的一个或多个计算机程序,所述图形用户界面可以包括所述电子设备执行上述第一方面或上述第一方面的任意一种可能的设计的方法时显示的图形用户界面。
上述第四方面至第九方面中任一种可能设计方式所带来的技术效果可参见第一方面及第一方面中任一种可能设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的电子设备的一种结构示意图;
图2为本申请实施例提供的一种非视距物体的成像场景;
图3为本申请实施例提供的另一种非视距物体的成像场景;
图4为本申请实施例提供的非视距物体的成像方法的流程示意图;
图5为本申请实施例提供的手机的相机界面的示意图;
图6为本申请实施例提供的非视距物体的拍摄流程示意图;
图7为本申请实施例提供的辅助提示信息的一示意图;
图8为本申请实施例提供的辅助提示信息的另一示意图;
图9为本申请实施例提供的辅助提示信息的又一示意图;
图10为本申请实施例提供的辅助提示信息的再一示意图;
图11为本申请实施例提供的第一数据和第二数据对齐的示意图;
图12为本申请实施例提供的根据第二数据恢复运动轨迹的原理示意图;
图13为本申请实施例提供的电磁成像的原理示意图;
图14为本申请实施例提供的非视距物体的拍照场景;
图15为本申请实施例提供的手机的显示界面的一种示意图;
图16为本申请实施例提供的电子设备的一种结构示意图;
图17为本申请实施例提供的电路系统的一种结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
电磁波成像是一种以电磁波作为信息载体的成像手段,电磁波频段较高,所以可以穿透部分拟成像物体,即实现对拟成像物体的内部结构的透视。也因此电磁波成像常被用于探测物体的内部结构或者探测非视距物体,并对物体成像,可广泛应用在医学、安检等技 术领域。应理解,这里非视距物体指的是肉眼看不到的物体或者可见光不可见的物体,例如被障碍物遮挡的物体,例如隐藏在墙内的电线等。电磁波成像主要是通过主动或者被动检测拟成像物体及周围散射场的信号,重构拟成像物体的形状、特征或者介电常数分布,形成图像。电磁波成像主要有主动电磁成像和被动电磁成像这两种电磁成像方式。
1)主动电磁成像,指成像装置内的发射机主动向拟成像物体发送电磁波,拟成像物体对接收的电磁波进行反射,反射后的电磁波被成像装置内的接收机接收。在本文中,发射后的电磁波也称为回波信号,成像装置对接收的回波信号进行处理,例如从回波信号中提取用于表征拟成像物体的目标特征,例如表征拟成像物体的轮廓的特征等,根据该目标特征对拟成像物体进行成像。
2)被动电磁成像,指成像装置通过例如接收天线获取拟成像物体所在空间内的电磁辐射信息,利用不同物体的电磁辐射强度的差异进行成像。典型的被动电磁成像,例如为红外波段的热成像。具体的,例如可以收集来自拟成像物体的辐射能量,将收集的辐射能量转化为电信号,并对电信号进行处理,例如对电信号进行显影、定影、校正等处理,最后将处理的信号输出,例如输出给扫描晒像仪、电视显像管、阴极射线管等,实现拟成像物体的成像。
在电磁波成像中,天线孔径的大小与成像分辨率成正比,即满足:ρ∝D,其中,ρ为成像分辨率,D为天线孔径。通常,天线以阵列的形式存在,即多个天线以阵列的方式形成天线阵列,每个天线也可看作是一个天线阵元。以线性天线阵列为例,设电磁波波长为λ,该天线阵列包括N个天线,且这N个天线每个天线的中心按照λ/2等间隔排列,那么天线孔径D等于N*λ/2。为了得到较高的成像分辨率,天线阵元越多越好。且天线阵元越多,可实现的电磁波的波束越窄,可控制的波束扫描范围越宽,所以为了满足波束扫描范围宽的需求,目前电磁成像装置(例如CT扫描仪、安检设备等)的体积较大,无法满足各种应该场景的使用。相对而言,手持设备例如手机,受空间限制,可安装的天线阵元的数量较少,因此电磁成像的成像分辨率也较低,即成像性能较差。
鉴于此,本申请实施例一种非视距物体的成像方法和电子设备,该电子设备包括能够采集电磁信号的第一组件,也可以理解为第一组件能够发射以及接收电磁信号。在对非视距物体成像时,可移动电子设备。由于电子设备移动,可实现较宽的波束扫描范围,从而可以提升电磁成像的成像分辨率,因此可通过体积较小的便携设备实现对多种应该场景下的非视距物体的成像。另外,该方法可应用于不限于手机等便携设备,例如可应用于车辆等移动设备,用于自动驾驶中的目标探测和跟踪。
本申请实施例可以应用在任何具备电磁成像功能的电子设备中,用以执行本申请实施例提供的非视距物体的成像方法。下面介绍本申请实施例提供的一种可能的电子设备,以及使用该电子设备进行图像成像的实施例。
在本申请一些实施例中,电子设备可以是终端,诸如手机、平板电脑、移动电脑、车载设备、移动机器人等。该电子设备可以对非视距物体进行探测,而探测非视距物体通过采用电磁波,从这个角度而言,该电子设备至少包括天线阵列,用于发送电磁波信号以及接收电磁波信号,以实现对非视距物体的探测。由于电子设备包括用于通信的天线,为了便于区分,将用于实现对非视距物体进行探测的天线阵列称为第一组件,由于第一组件能够发送电磁波信号以及接收电磁波信号,所以也可以称为电磁传感器,下文以此为例。应理解,电磁传感器可与电子设备中用于通信的天线复用,也可以独立于电子设备用于通信 的天线,对此,本申请实施例不作限制。需要说明的是,本文中,电磁传感器除了包括天线阵列之外,还可包括例如处理芯片等组件。
应理解,电子设备对非视距物体进行扫描,涉及到电子设备的运动。所以为了确定电子设备的运动信息,该电子设备可包括第二组件,用于确定电子设备的运动信息。示例性的,第二组件可包括运动传感器,例如加速度传感器、姿态传感器以及陀螺仪等,又或者第二组件可包括光学摄像头等,安装在手机等电子设备;或者第二组件可以包括惯性测量单元(inertial measurement unit,IMU),例如由三个单轴加速度计和陀螺仪组成的IMU,又或者第二组件也可包括编码器、轮速计等,安装在移动机器人等电子设备;或者第二组件也可包括激光雷达、毫米波雷达等,安装在车载设备等。下文中,以第二组件是运动传感器为例。
在另一些实施例中,电子设备还可以包括光学传感器,该光学传感器可以包括光学摄像头和例如机械式传动装置等必须的组件。电子设备可以包括便携式电子设备,便携式电子设备的示例性实施例包括但不限于搭载
Figure PCTCN2021075658-appb-000001
或者其它操作系统,例如
Figure PCTCN2021075658-appb-000002
的便携式电子设备。应理解,上述便携式电子设备也可以是其它便携式电子设备,例如数码相机、个人数字助理(personal digital assistant,PDA)、媒体播放器、智能电视、智能可穿戴设备(如智能手表、智能眼镜和智能手环等)、电子阅读器、手持游戏机、销售终端(point of sales,POS)、车载电子设备(车载电脑)等。还应当理解的是,在本申请其他一些实施例中,上述电子设备也可以不是便携式电子设备,而是至少包含电磁传感器和光学摄像头的任一设备,例如台式计算机,又例如移动机器人等。
通常情况下,电子设备可以支持多种应用。比如以下应用中的一个或多个:相机应用、即时消息收发应用、照片管理应用等。其中,即时消息收发应用可以有多种。比如微信、腾讯聊天软件(QQ)、WhatsApp Messenger、连我(Line)、照片分享(instagram)、Kakao Talk、钉钉等。用户通过即时消息收发应用,可以将文字、语音、图片、视频文件以及其他各种文件等信息发送给其他联系人;或者,用户可以通过即时消息收发应用实现与其他联系人的视频或音频通话。
下面以电子设备是手机为例,介绍本申请实施例所应用的电子设备的一种结构示意图。
图1示出了手机100的结构示意图,手机100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对手机100的具体限定。在本申请另一些实施例中,手机100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器 (application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是手机100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现手机100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现手机100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现手机100的显示功 能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为手机100充电,也可以用于手机100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对手机100的结构限定。在本申请另一些实施例中,手机100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过手机100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
手机100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。手机100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。应理解,天线1和天线2可均为天线阵列,即由多个天线组成的天线阵列。该天线阵列可以是线阵、平面阵,或者分布式的阵列。
移动通信模块150可以提供应用在手机100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器 将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在手机100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,手机100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得手机100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
手机100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。手机100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当手机100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。手机100可以设置至少一个麦克风170C。在另一些实施例中,手机100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,手机100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。手机100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,手机100根据压力传感器180A检测所述触摸操作强度。手机100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定手机100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定手机100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测手机100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消手机100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。应理解,本文中,运动传感器可包括陀螺仪传感器180B。
气压传感器180C用于测量气压。在一些实施例中,手机100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。手机100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当手机100是翻盖机时,手机100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测手机100在各个方向上(一般为三轴)加速度的大小。当手机100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。应理解,本文中,运动传感器也可包括加速度传感器180E。
距离传感器180F,用于测量距离。手机100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,手机100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。手机100通过发光二极管向外发射红外光。手机100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定手机100附近有物体。当检测到不充分的反射光时,手机100可以确定手机100附近没有物体。手机100可以利用接近光传感器180G检测用户手持手机100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。手机100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测手机100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。手机100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,手机100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,手机100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,手机100对电池142加热,以避免低温导致手机100异常关机。在其他一些实施例中,当温度低于又一阈值时,手机100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于手机100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。手机100可以接收按键输入,产生与手机100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和手机100的接触和分离。手机100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。手机100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,手机100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在手机100中,不能和手机100分离。
手机100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液 晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,手机100可以包括1个或N个显示屏194,N为大于1的正整数。
手机100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频,在本申请实施例中,摄像头193包括电磁传感器,还可以包括光学摄像头。电磁传感器,或者称为电磁传感器用于通过主动电磁成像方式或被动电磁成像方式对非视距物体进行成像。例如电磁传感器通过发射机对拟成像物体发送电磁波,并通过接收机接受来自拟成像物体的回波信号,将回波信号转化成电信号后,传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理,例如提取拟成像物体的目标特征等,最终转换成图像信号。又例如电磁传感器收集拟成像物体的辐射能量,将收集的辐射能量转化为电信号后传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理,例如提取拟成像物体的目标特征等,最终转换成图像信号。
物体通过光学摄像头的镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当手机100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。手机100可以支持一种或多种视频编解码器。这样,手机100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现手机100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展手机100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行手机100的各种功能应用以 及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储手机100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
内部存储器121还可以存储本申请实施例提供的非视距物体的拍摄方法的软件代码,当处理器110运行所述软件代码时,执行非视距物体的拍摄方法的流程步骤,能够实现对非视距物体的成像,还能够定位非视距物体所在空间的位置。
内部存储器121还可以存储拍摄得到的图像。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展手机100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,图像,视频等文件保存在外部存储卡中。
当然,本申请实施例提供的非视距物体的拍摄方法的软件代码也可以存储在外部存储器中,处理器110可以通过外部存储器接口120运行所述软件代码,执行非视距物体的拍摄方法的流程步骤,实现对非视距物体的成像。手机100拍摄得到的图像也可以存储在外部存储器中。
应理解,用户可以指定将图像存储在内部存储器121还是外部存储器中。比如,手机100当前与外部存储器连接时,若手机100拍摄得到一张图像时,可以弹出提示信息,以提示用户将图像存储在外部存储器还是内部存储器121;当然,还有其它的指定方式,本申请实施例不作限定;或者,手机100检测到内部存储器121的内存量小于预设量时,可以自动将图像存储在外部存储器中。
应理解,本申请实施例以电子设备是手机100为例,但不限定电子设备的形式,例如电子设备可以是车载设备,可包括激光雷达、毫米波雷达等。本申请实施例示意的结构并不构成对手机100的具体限定。在本申请另一些实施例中,手机100可以包括比图示更多的部件,例如包括激光雷达或毫米波雷达等,也可以包括比图示更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面以本申请实施例应用在上述手机100中为例,通过手机100拍摄得到一张非视距物体的图像的过程的几种示例,对本申请实施例提供的方案进行详细介绍。需要说明的是,以下实施例提供的图像处理过程可以适用于任何格式的图像,比如未经过压缩的图像格式,比如BMP格式;即下文中的图像处理过程比如图像融合过程可以适用于BMP格式的图像。再比如,以下实施例中提供的图像处理过程还可以适用于经过压缩后的图像格式,比如JPEG格式、JPG格式、GIF格式、PNG格式等,也就是说,下文中的图像处理过程比如图像融合过程可以适用于JPEG格式、JPG格式、GIF格式、PNG格式等格式的图像。再比如,对于压缩后的图像格式,手机100可以将对这些图像解压,然后对解压后的图像执行以下实施例提供的图像处理过程。
本申请实施例涉及的预览图像,是指电子设备的取景界面中显示的图像。比如,电子设备是手机100时,手机100启动相机应用,打开摄像头,显示取景界面,该取景界面中显示预览图像。继续以手机100为例,手机100启动视频通话功能时,打开摄像头,显示取景界面,该取景界面中显示预览图像。
本申请实施例以利用手机100的相机应用为例,但是不限于相机应用,例如可以是手机100上的其他应用,例如启动该应用,可默认对非视距物体进行成像。
示例1:手机100单视角拍摄图像。
请参见图2,为本申请实施例提供的一种应用场景的示例。如图2所示,拟成像物体(例如盒子)被遮挡物(墙体)遮挡,这种情况下,拟成像物体即盒子可以认为是非视距物体,墙体可以认为是视距物体。请参见图3,为本申请实施例提供的另一种应用场景的示例。如图3所示,拟成像物体(例如剪刀)被遮挡物(盒子)遮挡,这种情况下,拟成像物体即剪刀可以认为是非视距物体,盒子是视距物体。
下面以图3的场景为例,介绍手机100拍摄非视距物体的流程。请参见图4,为手机100拍摄该非视距物体的图像的流程示意图。应理解手机100包括至少一个运动传感器,例如陀螺仪传感器180B和/或加速度传感器180E,或者至少一个运动传感器可包括光学摄像头。该手机100还包括至少一个电磁传感器,例如可以是手机100上用于通信的天线,也可以是独立于手机100上用于通信的天线。如图4所述,该拍摄过程包括:
S401、检测到第一操作。
示例性的,手机100的显示屏194显示主界面,主界面中包括各个应用程序的图标(比如相机应用图标、微信应用图标等等)。用户通过设置于显示屏194上的触摸传感器180K检测用户在显示屏194上的第一操作,第一操作可以是点击主界面中的相机应用图标的操作。当然,第一操作还可以是其它操作,例如在锁屏界面上滑的操作,或者长按音量键的操作等,只要是能够启动相机的操作即可,本申请实施例不作限定。
S402、响应于所述第一操作,打开光学摄像头,进入第一成像模式,显示取景界面。
本申请实施例提供的手机100可以对可见物体例如人像进行拍照,又可以对非视距物体进行拍照。应理解,人像和非视距物体是相对而言的,也就是手机100支持至少两种成像模式。
示例性的,请参见图5,为相机显示界面的示意图。从图5可以看出,相机显示界面中包括多种成像模式的图标(比如人像图标、非视距物体图标等等)。“人像”成像模式也可以理解为光学成像模式,相对的,“非视距物体”成像模式也可以理解为电磁成像模式。应理解,在本申请实施例中,人像图标和非视距物体图标仅是作为区分光学成像和电磁成像的一种示意。由于电磁成像相对光学成像来说,更能够感知拟成像物体。从这个角度而言,可以认为光学成像对应“照片”成像模式(又称为照片模式),电磁成像可对应“感知”成像模式(又称为感知模式)。为了便于描述,下文中,以光学成像对应照片模式,电磁成像对应感知模式为例。应理解,第一成像模式可以是照片模式,也可以是感知模式(图5以此为例)。
S403、检测到触发信号。
用户在显示屏194上的第二操作,该第二操作可以是点击相机显示界面中的非视距物体图标的操作,手机100通过设置于显示屏194上的触摸传感器180K检测到第二操作。当然,第二操作还可以是其它操作,例如在相机显示界面上滑的操作,或者长按音量键的操作等,只要是能够进入第一成像模式的操作即可,本申请实施例不作限定。
需要说明的是,本申请实施例以电子设备是手机100为例,如果电子设备是其他不具备显示屏的设备,那么用户也可以在该电子设备上进行操作,此时电子设备生成触发信号, 以触发该电子设备进入第一成像模式。应理解,用户在显示屏194上进行能够进入第一成像模式的操作,此时手机100生成触发信号,从这个角度而言,也可以认为,手机100通过设置于显示屏194上的触摸传感器180K检测到该触发信号。
又一示例性的,相机显示界面中包括成像模式选项控件,当手机100检测到针对该控件的操作时,显示包含多种成像模式的选择框,其中包括“照片”选项、“感知”选项等。当手机100检测到针对“照片”选项或“感知”选项的操作时,进入第一成像模式。为了便于描述,下文中,以第一成像模式是“感知”成像模式,即电磁成像模式为例。
前述仅是列举了两种用户手动设置手机100进入第一成像模式的方式,在实际应用中,还可以由其他的手动方式进入第一成像模式,例如相机显示界面中包括预览图像,该预览图像包括电磁图像,用户可以手动选择电磁图像,也就是针对该电磁图像进行操作。如果用户针对该电磁图像进行操作,可认为用户手动选择进入第一成像模式。本申请实施例不再一一列举。
应理解,如果用户针对预览图像进行操作,那么手机100需要开启光学摄像头。在一些实施例中,手机100响应于所述第一操作,启动相机应用,开启光学摄像头。而如果第一成像模式是“感知”模式,那么手机100还需要启动电磁传感器。在一些实施例中,手机100检测到第一操作,例如点击主界面中的相机应用图标的操作,启动光学摄像头,之后检测到第二操作,例如点击相机显示界面中的“感知”图标的操作,启动电磁传感器,否则不开启电磁传感器,以尽量节省手机100的能耗。当然在另一些实施例中,手机100检测到第一操作,例如点击主界面中的相机应用图标的操作,启动光学摄像头和电磁传感器。需要说明的是,如果电磁传感器与电子设备用于通信的天线复用,那么默认电磁传感器一直处于开启状态。
手机100进入第一成像模式之后,显示取景画面。可能存在拟成像物体不在取景画面内,所以用户可以调整手机100与拟成像物体的相对位置,使得拟成像物体位于取景画面内,以保证手机100可以采集到拟成像物体的图像。
之后,在需要对拟成像物体进行拍照时,用户可以触发手机100对拟成像物体进行拍照。示例性的,手机100可以通过设置于显示屏194上的触摸传感器180K检测用户在显示屏194上的第三操作,该第三操作可以是点击相机显示界面中的拍照图标的操作。当然,第三操作还可以是其它操作,例如在取景显示界面上滑的操作,或者长按音量键的操作等,只要是能够触发拍照的操作即可,本申请实施例不作限定。或者,手机100进入第一成像模式之后,如果检测到拟成像物体位于取景画面中,手机100可以自动触发对拟成像物体进行拍照。
之后手机100的电磁传感器可采集来自非视距物体的多个第一数据。应理解,如果手机100支持主动电磁成像,那么手机100通过天线发射电磁波,照射拟成像空间区域(应理解视距物体和非视距物体位于该空间区域内),如图6所示。视距物体和非视距物体接收电磁波,将接收的电磁波反射给电磁传感器,即电磁传感器接收回波信号。之后,电磁传感器可以提取回波信号的辐射信息,进而根据该辐射信息进行非视距物体的成像。应理解,回波信号的辐射信息可以包括视距物体以及非视距物体的电磁辐射信息,通过该电磁辐射信息可以确定视距物体以及非视距物体在空间的分布,也就是视距物体以及非视距物体的各个位置点在空间上的分布。需要说明的是,第一数据可以是回波信号,也可以是回波信号的辐射信息,例如回波信号的能量。
如果手机100支持被动电磁成像,那么手机100通过天线获取拟成像空间内的辐射信息,利用不同物体(视距物体和非视距物体)的辐射强度的差异,实现进行成像。应理解,此时第一数据为指示辐射强度的数据。
本申请实施例旨在通过移动手机100,虚拟出较大的天线阵列。因此,触发对非视距物体进行成像之后,用户可移动手机100。应理解,手机100在移动,那么不同的位置处,电磁传感器采集的第一数据也有所不同,为了保证第一数据和手机的运动轨迹能够较好地匹配,手机100在电磁传感器采集第一数据之前,可在取景画面可显示辅助提示信息。该辅助提示信息可以用于指导用户如何移动电子设备,也就是移动电子设备需要遵循的规则,例如可以为沿手机100的长度方向或沿手机100的宽度方向移动手机100,这种情况下,辅助提示信息可以是沿某个方向的直线。又例如辅助提示信息可以是曲线,或者旋转角度,用户可以根据该辅助提示信息指示的轨迹移动手机100。
在可能的设计中,该辅助提示信息可包括手机100移动轨迹的图样。示例性的,请参见图7,为一种辅助提示信息的示例;另一示例性的,请参见图8,为另一种辅助提示信息的示例;再一示例性的,请参见图9,为另一种辅助提示信息的示例。应理解,图7-图9只是为了示意,本申请实施例不限制辅助提示信息包括的手机100移动轨迹的图样的具体形式。
应理解,辅助提示信息可包括多种手机100移动轨迹的图样,这样用户就可以根据实际要成像的非视距物体和/或视距物体来选择采用哪种图样,以尽量获得非视距物体的完整成像。
在一些实施例中,可在相机显示界面中包括“辅助提示信息”选项控件,当手机100检测到针对该控件的操作时,显示包含多种“辅助提示信息”的选择框,其中包括“扫描图样1”选项、“扫描图样2”选项等。当手机100检测到针对“扫描图样1”选项的操作时,在显示界面显示扫描图样1。
或者,相机显示界面可显示多种“辅助提示信息”的图标。例如,请参见图10,为显示界面的一种示意。相机显示界面可显示“扫描图样1”图标、“扫描图样2”图标、“扫描图样2”图标等。当手机100检测到针对“扫描图样1”选项的操作时,在显示界面显示扫描图样1。
应理解,在一些实施例中,手机100检测到触发拍照的操作,即前述的第三操作,默认在相机显示界面显示例如扫描图样1,可理解为第一扫描提示图样。之后检测到例如针对“扫描图样2”选项或“扫描图样2”图标的操作时,显示第二扫描提示图样,也就是扫描图样2。
在可能的设计中,辅助提示信息还可以包括其他提示信息,例如用于提示手机100的移动速度过快的信息,用于提示用户手机100方向偏离的信息等,以尽量保证非视距物体的成像性能。
示例性的,手机100在移动过程中,可以获取手机100的移动速度,应理解,该移动速度可以是瞬时速度,也可以是预设时长内的平均速度。当手机100确定所获取的移动速度大于预设阈值,那么手机100移动较快,此时可在显示界面显示第一提示信息,该第一提示信息用于用户采用比该移动速度小的速度移动手机100。如图10所示,第一提示信息可以是在显示界面显示的“请减速”,或者第一提示信息可以是扫描图样1中的“箭头”,且该“箭头”的颜色为预设颜色;或者第一提示信息也可以是扫描图样1,且扫描图样1的颜色为预设颜色;或者第一提示信息可以是扫描图样1中的“箭头”,且该“箭头”按照预设频 率闪烁,等等。第一提示信息也可以是上述几种提示信息的多种组合,本申请实施不作限制。
应理解,当手机100超出显示界面显示的扫描图样的扫描范围,可在显示界面显示第二提示信息,该第二提示信息可用于提示用户改变手机100的移动方向。如图10所示,第二提示信息可以是在显示界面显示的“请改变移动方向”,或者第二提示信息可以是扫描图样1中的“箭头”,且该“箭头”的颜色为预设颜色;或者第二提示信息也可以是扫描图样1,且扫描图样1的颜色为预设颜色;或者第二提示信息可以是扫描图样1中的“箭头”,且该“箭头”按照预设频率闪烁,等等。第二提示信息也可以是上述几种提示信息的多种组合,本申请实施不作限制。
应理解,当手机100在移动过程中发生抖动,例如手机100从横屏切换到竖屏,或者由竖屏切换到横屏,可在显示界面显示第三提示信息,该第三提示信息可用于提示用户向指定方向移动手机100。如图10所示,第三提示信息可以是在显示界面显示的“向上移动”;或者第三提示信息与第一提示信息或第二提示信息类似,第三提示信息也可以是扫描图样1中的“箭头”,且该“箭头”的颜色为预设颜色,这里不再赘述。
S404、响应于所述触发信号,获取电磁传感器采集的第一数据,以及获取至少一个运动传感器采集的第二数据。
应理解,第一数据是电磁传感器采集的电磁信号,如前述可以是回波信号,也可以是回波信号的辐射信息,例如回波信号的能量。至少一个运动传感器可包括姿态传感器、加速度传感器和陀螺仪,以及光学摄像头、激光雷达、毫米波雷达等的一种或多种组合。第二数据可以是用于表征手机100的位置的数据,例如可包括至少一个运动传感器采集的图像信息和/或电子设备的移动信息。例如至少一个运动传感器包括光学摄像头或激光雷达,那么第二数据包括至少一个运动传感器采集的图像信息;例如至少一个运动传感器包括姿态传感器、加速度传感器、陀螺仪等,那么第二数据包括至少一个运动传感器采集的手机100的移动信息。
应理解,手机100在移动过程中,电磁传感器持续采集来自非视距物体的第一数据,同理,至少一个运动传感器持续采集手机100的第二数据。在一段时间内,至少一个运动传感器采集的第二数据可包括M个第二采样数据。每个第二数据的采样时刻对应一个物理空间位置,因此手机100根据M个第二采样数据可以确定手机100的实际移动轨迹。
为了便于理解,请参见图11,为确定移动轨迹的示意图。应理解,手机100的移动轨迹可以是二维平面上的轨迹,也可以是三维空间上的轨迹。为方便显示,图11以二维平面示意,且以手机100的移动轨迹是曲线为例。图11中X和Y分别表示二维平面的两个轴,例如X表示水平轴,Y表示垂直轴。
假设手机100累计的移动时长为T秒,在T秒内,手机100中某个运动传感器采集的第二数据可表示为{S x,S y,S z},其中,S x,S y,S z分别表示该传感器在X轴、Y轴和Z轴采集的信号,也可以理解为信号值。如果该运动传感器的采样率为K 1Hz,那么手机100在T秒内采集的第二数据的集合可表示为:
Figure PCTCN2021075658-appb-000003
其中,M=K 1*T。
应理解,多个运动传感器在T秒内采集的第二数据的集合是多维的,将这多维的第二数据进行积分可恢复手机100的移动轨迹。以多个运动传感器包括加速度传感器和陀螺仪传感器为例,得到表征手机100的二维平面轨迹的第二数据的集合可表示为:
Figure PCTCN2021075658-appb-000004
其中,i行表示X轴,j列表示Y轴,P i,j表示空间上的一个物理位置。
手机100可在显示界面上显示手机100的运动轨迹,具体的,手机100可获取N个第二数据中的部分或全部第二数据,并分别计算提取的第二数据中任意相邻的两个第二数据在第一参考坐标系中的位置坐标,可获得第一运动轨迹。其中第一参考坐标系是运动传感器的内参坐标系。应理解,运动传感器根据第一参考坐标系确定电子设备的运动轨迹可能并不是电子设备的实际运动轨迹,例如运动传感器根据第一参考坐标系确定电子设备向左移动,而实际上电子设备向右移动。所以之后手机将第一运动轨迹从第一参考坐标系映射到第二参考坐标系,获得第二运动轨迹,即手机100的实际运动轨迹。应理解,第二参考坐标系为大地坐标系。
为了便于理解,请参见图12,为相邻两个第二数据形成轨迹的示意图。在图12中以运动传感器是光学摄像头为例,即以确定光学摄像头的运动轨迹为例。应理解,运动传感器是光学摄像头,相邻两个第二数据实际上是相邻两帧第二数据。不同形状的图块中每个图块均表示光学摄像头拍摄的照片上的特征点,也就是第二数据内的特征点。在第一参考坐标系中,可分别计算相邻的两个第二数据在第一参考坐标系中的位置坐标,从而可以获得相邻的两个第二数据在第一参考坐标系中的第一运动轨迹。或者,也可认为在第一参考坐标系中,可分别计算光学摄像头拍摄的照片上相邻的两个特征点在第一参考坐标系中的位置坐标,从而可以获得相邻的两个特征点在第一参考坐标系中的第一运动轨迹。将该第一运动轨迹映射到第二参考坐标系中,即可得到光学摄像头的实际运动轨迹,即手机100的实际运动轨迹。
S405、将第一数据和第二数据进行匹配,基于匹配结果生成非视距物体的电磁图像数据。
应理解,手机100在移动过程中,电磁传感器持续采集来自非视距物体的第一数据,在一段时间内,电磁传感器采集的第一数据可包括N个第一采样数据。每个第一数据的采样时刻对应一个物理空间位置,由于每个第二数据的采样时刻也对应一个物理空间位置。那么在手机100的实际运动轨迹上的每个物理空间位置均对应一个第一数据和一个第二数据。所以手机100可将第一数据和第二数据进行匹配,基于匹配结果可生成非视距物体的电磁图像。
将第一数据和第二数据进行匹配,换句话说,是将第一数据包括的N个第一采样数据和第二数据包括的M个第二采样数据对齐,也就是将N个第一采样数据和M个第二采样数据在采集时刻上对齐。应理解,当第一数据和第二数据的采样速率相同时,既N=M,那么第一数据和第二数据自然是对齐的,此时无需任何对齐操作。
而第一数据和第二数据采样速率不相等时,即N不等于M,可通过线性差值或抽取方式将N个第一采样数据和M个第二采样数据对齐。例如在N个第一采样数据中插入M-N个第三数据或在M个第二采样数据中插入N-M个第三数据,再将同一采集时刻的第一数据和第二数据对齐。举例来说,假设第一数据的采样速率为K1Hz,第二数据的采样速率为K2Hz,K1=2*K2,那么有N=K1/K2*M,因此,可以N个第一采样数据每间隔K1/K2 抽取一个数据,从而N个第一采样数据变成M个第一数据,与第二数据的个数相同,一一匹配即可。或在M个第二采样数据每间隔K1/K2插入一个数据,从而M个第二采样数据变成N个第二数据,与第一数据的数量相同,一一匹配即可。
例如,第一数据记为
Figure PCTCN2021075658-appb-000005
其中,A为回波信号的幅度,
Figure PCTCN2021075658-appb-000006
为回波信号的相位,第一数据的采样速率为K 1Hz,手机100累计的移动时长为T秒。手机100在T秒内采集的第一数据的集合可表示为:
Figure PCTCN2021075658-appb-000007
其中,N=K 1*T。
当K 1=K 2,N=M,也就是N个第一采样数据的数目等于M个第二采样数据的数目,当K 1不等于K 2,可采用插值方法将N个第一采样数据和M个第二采样数据一一匹配。对N个第一采样数据和M个第二采样数据匹配后,此时第一数据可记为:
Figure PCTCN2021075658-appb-000008
令用于非视距物体成像的数据集合为:
Figure PCTCN2021075658-appb-000009
那么有
Figure PCTCN2021075658-appb-000010
其中,λ表示回波信号的波长,λ i,j表示手机100与非视距物体之间的距离,
Figure PCTCN2021075658-appb-000011
用于计算θ,
Figure PCTCN2021075658-appb-000012
用于计算ψ。
将非视距物体的成像的电磁图像数据集合输出给手机100,如图13所示,可获得最终的图像。
S406、在取景界面中显示所述最终图像。
手机100可输出生成非视距物体的电磁成像,也就是最终图像,从而在取景界面中显示该最终图像。需要说明的是,手机100在显示相机应用的取景界面时,电磁传感器可以实时地采集图像,手机100可以在电磁传感器每次采集图像都采用上述过程(具体是S505),得到最终图像,并将最终图像显示在取景界面中。也就是说,相机应用的取景界面中的预览图像是手机100根据电磁传感器采集的图像通过上述S505得到的图像。
需要说明的是,由于不同的扫描图样对应的成像性能所有不同,如果预览图像的成像效果可能较差,可能是由于用户选择采用的扫描图样的原因。这种情况下,用户可以选择不存储最终图像,而是重新选择扫描图样,以获得成像性能较好的最终图像。
在一种可能的场景中,例如安检场景中,目前的安检设备对非视距物体的电磁成像可供用户对非视距物体的轮廓等信息,例如行李箱中的药瓶,但是无法给出药瓶中药品的成份,需要用户打开药瓶对药品进行检测。在本申请实施例中,最终图像除了显示非视距物体的电磁成像结果,还可以显示该非视距物体的材质信息,例如金属、木头、液体,进一 步的,例如铁、金、乙醇等。应理解,手机100的显示界面的一个显示区域用于显示非视距物体的电磁成像结果,另一个显示区域显示材质信息,不需要用户对非视距物体的材质进一步验证,提升用户体验。
具体的,手机100获取第一数据之后,可以确定该第一数据对应的频谱。由于不同材质的物体的反射和穿透特性不同,所以手机100接收的第一数据呈现不同的频谱曲线。手机100可以根据第一数据对应的频谱,以及频谱和材质的对应关系确定非视距物体的材质。应理解,手机100可存储频谱和材质的对应关系,或者手机100确定第一数据对应的频谱之后可以告知其他设备,该设备存储有频谱和材质的对应关系,可以确定非视距物体的材质,之后该设备将确定的材质告知手机100。
示例2:手机100多视角拍摄图像。
考虑到拟成像物体的体积较大或者遮挡拟成像物体的遮挡物的体积较大,例如图3所示的盒子的体积较大,而手机100每次拍摄的视角有限,那么拍摄一次,无法实现对非视距物体的成像。这种情况下,手机100可以对非视距物体多次拍摄,每次拍摄可以对应调整手机100相对非视距物体的位置,也就是调整手机100的拍摄视角,实现对非视距物体的成像。
示例2与示例1的不同之处在于,在手机100进入第一成像模式之后,在S503中的第三操作是指示多视角拍照或者全景成像的操作。
在一些实施例中,该第三操作可以是点击相机显示界面中的多视角拍照图标或者全景成像图标的操作。应理解,本申请实施例不限制第三操作对应的图标的名称,例如多视角拍照图标和全景成像图标。当然,第三操作也可以是其他操作,例如在取景显示界面下滑的操作或者长按音量键的操作,指示多视角拍照,本申请实施例对第三操作不作限制。应理解,电子设备检测到该第三操作,可启动多视角模式,也就是从多个视角对非视距物体进行拍摄的模式。
应理解,手机100进入多视角模式之后,也可在显示界面显示辅助提示信息,具体的参见示例1的相关描述,这里不再赘述。手机100进入多视角模式之后,从多个视角对非视距物体进行拍照,可以理解为手机100从各个视角对非视距物体进行二维扫描,获得各个视角的二维电磁图像,之后将各个视角的二维电磁图像进行拼接,获得最终图像。
为了便于理解,请继续参见图14,为多视角成像的一种示意图。图14以从3个视角对非视距物体进行拍摄为例。结合图15,手机100的显示界面显示辅助提示信息之后,手机100检测到输入的第四操作时,例如点击相机显示界面中的拍照图标的操作,通过电磁传感器采集第一数据,通过至少一个运动传感器采集第二数据,直到检测到输入的第五操作,例如点击相机显示界面中的“暂停”图标的操作,停止通过电磁传感器采集第一数据和/或停止通过至少一个运动传感器采集第二数据。应理解,从第四操作到第五操作,手机100完成在一个视角的拍照。
之后手机100运动到第二个视角,手机100检测到输入的第六操作,例如点击相机显示界面中的“开始”图标的操作,通过电磁传感器采集第一数据,通过至少一个运动传感器采集第二数据,直到检测到输入的第七操作,例如点击相机显示界面中的“暂停”图标的操作,停止通过电磁传感器采集第一数据和/或停止通过至少一个运动传感器采集第二数据。即完成手机100在第二个视角的拍照。手机100完成第三视角的拍照与完成手机100在第 二个视角的拍照类似,这里不再赘述。需要说明的是,“暂停”图标和“开始”图标可以是同一个图标,不同之处在于,图标的具体样式不同。又例如,手机100可间歇性地移动,即手机100从静止状态变更到运动状态,又从运动状态变更到静止状态,再从静止状态变更到运动状态,如此等等。这种情况下,手机100如果检测到手机100从静止状态变更到运动状态,则手机100开始通过电磁传感器采集第一数据,并通过至少一个运动传感器采集第二数据;手机100如果检测到手机100从运动状态变更到静止状态,则手机100停止通过电磁传感器采集第一数据和/或停止通过至少一个运动传感器采集第二数据,以此类推,手机100可以获得多个视角的图像。
应理解,手机100每获得一个视角的电磁图像,可以存储该电磁图像,即存储非视距物体在各个视角的电磁图像,之后手机100可对多个视角的电磁图像进行拼接,获得最终图像。具体的,以包括4个视角的图像为例,这4个视角的图像分别为第一视角下的第一电磁图像,第二视角下的第二电磁图像,第三视角下的第三电磁图像,以及第四视角下的第四电磁图像。手机100可以依次将第一电磁图像、第二电磁图像、第三电磁图像和第四电磁图像进行拼接。例如手机100可以按照拍摄的起始时刻的先后顺序将第一电磁图像、第二电磁图像、第三电磁图像和第四电磁图像进行拼接。或者,用户可以多个视角的电磁图像选择部分电磁图像进行拼接,获得最终的图像。应理解,尽管手机100存储了多个视角的电磁图像,但是用户可以从这多个视角的电磁图像中选择部分电磁图像用于拼接。关于图像拼接可参考现有的拼图软件实现,这里不再赘述。
手机100显示最终图像之后,可以删除之前存储的非视距物体在各个视角下的电磁图像,以尽量节约手机100的存储空间。例如手机100可以根据用户的实际需求,删除非视距物体在各个视角下的电磁图像中的部分图像。例如存在多个电磁图像,当手机100检测到输入的第八操作,响应于该第八操作,删除多个电磁图像中的部分或全部电磁图像。即根据用户的需求包括部分电磁图像,方便用户以后查看。
本申请实施例的非视距物体的成像方法,在对非视距物体成像时,可移动电子设备。由于电子设备移动,相当于第一组件移动,形成虚拟的较大的天线阵列,所以可实现较宽的波束扫描范围,从而提升电磁成像的成像分辨率。且通过较小体积的电子设备即可实现较宽的波束扫描范围,所以可通过便携设备实现对多种应该场景下的非视距物体的成像。例如通过手机可实现对较大体积的非视距物体的成像;又例如通过车载设备也可实现对非视距物体,例如另一车辆遮挡的物体的成像,有助于行车安全。
上述本申请提供的实施例中,从电子设备(手机100)作为执行主体的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
基于相同的技术构思,本申请还提供的一种电子设备1600,用于执行本申请以上各实施例提供的方法。如图16所示,电子设备1600可以包括存储器1601和处理器1602。其中,存储器1601用于存储程序指令,处理器1602用于调用存储器1601中存储的程序指令,实现本申请实施例非视距物体的成像方法。例如,存储器1601存储有执行图4所示的非视距物体的成像方法的程序指令,则处理器1602调用存储器1601存储的执行图4所示的非视距物体的成像方法的程序指令,执行图4所示的非视距物体的成像方法。
本申请实施例中处理器1602可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
图17示出了本申请一实施例提供的一种电路系统的结构示意图。该电路系统可以是一个多个芯片,比如,是片上系统(system-on-a-chip,SoC)。在一些实施例中,该电路系统可以是电子设备(比如,图1所示的手机100)中的一个部件。如图17所示,电路系统1700可以包括至少一个处理电路1701,通信接口1702,存储接口1703。在一些实施例中,电路系统1700中还可以包括存储器(图中未示出)等。
其中,至少一个处理电路1701可以用于执行上述图4所示的实施例中的全部或部分步骤。至少一个处理电路1701可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。
在一些实施例中,以至少一个处理电路1701集成NPU和ISP为例。上述图5所示的实施例中的全部或部分步骤可以通过不同的处理电路1701执行。比如,上述过程中,对第一数据和第二数据进行匹配的过程(比如,图4的全部或部分步骤)可以通过NPU执行,其它过程(比如,图4所示的实施例中的S405等)可以通过ISP执行。
通信接口1702可以用于实现电路系统1700和其它部件/设备之间的通信。比如,通信接口1702可以是无线通信接口(比如,蓝牙通信接口或无线通信接口)。以电路系统1700是手机100中的一个部件为例,电路系统1700可以通过该通信接口1702与无线通信模块172和/或移动通信模块171连接。
存储接口1703,用于实现电路系统1700与其它部件(比如,存储器)之间的数据传输(比如,数据的读写)。以电路系统1700是手机100中的一个部件为例,电路系统1700可以通过该存储接口1703访问内部存储器121中存储的数据。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。本发明实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。例如,上述实施例中,第一获取单元和第二获取单元可以是同一个单元,也不同的单元。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请实施例还提供一种计算机可读存储介质,该存储介质可以包括存储器,该存储器可存储有程序,该程序被执行时,使得电子设备执行包括如前的图4所示的方法实施例中记载的全部或部分步骤。
本申请实施例还提供一种包含计算机程序产品,当所述计算机程序产品在电子设备上 运行时,使得所述电子设备执行包括如前的图4所示的方法实施例中记载的全部或部分步骤。
上述实施例中,手机100的功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上实施例中所用,根据上下文,术语“当…时”或“当…后”可以被解释为意思是“如果…”或“在…后”或“响应于确定…”或“响应于检测到…”。类似地,根据上下文,短语“在确定…时”或“如果检测到(所陈述的条件或事件)”可以被解释为意思是“如果确定…”或“响应于确定…”或“在检测到(所陈述的条件或事件)时”或“响应于检测到(所陈述的条件或事件)”。另外,在上述实施例中,使用诸如第一、第二之类的关系术语来区份一个实体和另一个实体,而并不限制这些实体之间的任何实际的关系和顺序。
以上实施例中所用术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。且在本发明实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
为了解释的目的,前面的描述是通过参考具体实施例来进行描述的。然而,上面的示例性的讨论并非意图是详尽的,也并非意图要将本申请限制到所公开的精确形式。根据以上教导内容,很多修改形式和变型形式都是可能的。选择和描述实施例是为了充分阐明本申请的原理及其实际应用,以由此使得本领域的其他技术人员能够充分利用具有适合于所构想的特定用途的各种修改的本申请以及各种实施例。

Claims (24)

  1. 一种非视距物体的成像方法,应用于电子设备,其特征在于,所述电子设备包括第一组件和第二组件,所述方法包括:
    检测到触发信号;
    响应于所述触发信号,获取所述第一组件采集的第一数据,以及获取所述第二组件采集的第二数据,所述第一数据包括所述第一组件采集的电磁信号,所述第二数据包括所述第二组件采集的图像信息和/或所述电子设备的移动信息;
    将所述第一数据和所述第二数据进行匹配,基于匹配结果生成所述非视距物体的电磁图像数据。
  2. 如权利要求1所述的方法,其特征在于,所述第一组件包括天线。
  3. 如权利要求1或2所述的方法,其特征在于,所述第二组件包括光学摄像头、运动传感器、激光雷达和毫米波雷达中的至少一种。
  4. 如权利要求1-3任一所述的方法,其特征在于,将所述第一数据与所述第二数据进行匹配,包括:
    获取所述第一数据包括的N个第一采样数据,以及获取所述第二数据包括的M个第二采样数据,所述N为正整数,所述M为正整数;
    将同一采集时刻的所述第一采样数据和所述第二采样数据进行匹配。
  5. 如权利要求1-4任一所述的方法,其特征在于,所述方法还包括:
    提取所述第二数据中部分或全部第二数据;
    分别计算所述部分或全部第二数据中任意相邻的两个第二数据在所述第二组件的第一参考坐标系中的位置坐标,获得所述电子设备的第一运动轨迹;
    将所述第一运动轨迹从所述第一参考坐标系映射到所述电子设备的第二参考坐标系,获得第二运动轨迹。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述电磁图像包括材质信息,所述材质信息用于指示所述非视距物体的材质。
  7. 如权利要求1-6任一所述的方法,其特征在于,在检测到触发信号之前,所述方法还包括:
    检测到第一操作;
    响应于所述第一操作,启动所述电子设备包括的光学摄像头。
  8. 如权利要求1-7任一所述的方法,其特征在于,在检测到触发信号之后,所述方法还包括:
    在所述显示界面显示辅助提示信息,所述辅助提示信息包括第一扫描提示图样,用于指示所述电子设备扫描所述非视距物体需要参考的移动的轨迹。
  9. 如权利要求8所述的方法,其特征在于,在所述显示界面显示辅助提示信息之后,所述方法还包括:
    检测到第二操作;
    响应于所述第二操作,在所述显示界面上显示第二扫描提示图样。
  10. 如权利要求8或9所述的方法,其特征在于,在所述显示界面显示辅助提示信息之后,所述方法还包括:
    获取所述电子设备的移动速度;
    若所述移动速度大于预设阈值,在所述显示界面显示第一提示信息,所述第一提示信息用于用户采用比所述移动速度小的速度移动所述电子设备。
  11. 如权利要求8或9所述的方法,其特征在于,在所述显示界面显示辅助提示信息之后,所述方法还包括:
    若确定所述电子设备在移动过程中发生抖动,在所述显示界面显示第二提示信息,所述第二提示信息用于提示用户向指定方向移动所述电子设备。
  12. 一种电子设备,其特征在于,包括:处理器、第一组件和第二组件,其中,
    所述处理器,用于检测触发信号;
    所述处理器,用于响应于所述触发信号,获取所述第一组件采集的第一数据,以及获取所述第二组件采集的第二数据,所述第一数据包括所述第一组件采集的电磁信号,所述第二数据包括所述第二组件采集的图像信息和/或所述电子设备的移动信息;
    所述第一组件,用于采集所述第一数据;
    所述第二组件,用于采集所述第二数据;
    所述处理器,还用于将所述N个第一采样数据和所述M个第二采样数据进行匹配,基于匹配结果生成所述非视距物体的电磁图像数据。
  13. 如权利要求12所述的电子设备,其特征在于,所述第一组件包括天线。
  14. 如权利要求12或13所述的电子设备,其特征在于,所述第二组件包括光学摄像头、运动传感器、激光雷达和毫米波雷达中的至少一种。
  15. 如权利要求12-14任一所述的电子设备,其特征在于,所述处理器,具体用于:
    获取所述第一数据包括的N个第一采样数据,以及获取所述第二数据包括的M个第二采样数据,所述N为正整数,所述M为正整数;
    将同一采集时刻的所述第一采样数据和所述第二采样数据进行匹配。
  16. 如权利要求12-15任一所述的电子设备,其特征在于,所述处理器还用于:
    获取所述M个第二采样数据中部分或全部第二数据;
    分别计算所述部分或全部第二数据中任意相邻的两个第二数据在所述第二组件的第一参考坐标系中的位置坐标,获得所述电子设备的第一运动轨迹;
    将所述第一运动轨迹从所述第一参考坐标系映射到所述电子设备的第二参考坐标系,获得第二运动轨迹。
  17. 如权利要求12-16任一所述的电子设备,其特征在于,所述电磁图像包括材质信息,所述材质信息用于指示所述非视距物体的材质。
  18. 如权利要求12-17任一所述的电子设备,其特征在于,在检测到触发信号之前,所述处理器还用于:
    检测到第一操作;
    响应于所述第一操作,启动所述电子设备包括的光学摄像头。
  19. 如权利要求12-18任一所述的电子设备,其特征在于,所述电子设备还包括显示屏,所述显示屏用于在所述处理器检测到触发信号之后,在所述显示屏的显示界面显示辅助提示信息,所述辅助提示信息包括第一扫描提示图样,用于指示所述电子设备扫描所述非视距物体需要参考的移动的轨迹。
  20. 如权利要求19所述的电子设备,其特征在于,在所述显示屏的显示界面显示辅助 提示信息之后,所述处理器还用于:
    检测到第二操作;
    响应于所述第二操作,在所述显示界面上显示第二扫描提示图样。
  21. 如权利要求19或20所述的电子设备,其特征在于,在所述显示屏的显示界面显示辅助提示信息之后,所述处理器还用于:
    获取所述电子设备的移动速度,其中,若所述移动速度大于预设阈值,所述显示界面显示第一提示信息,所述第一提示信息用于用户采用比所述移动速度小的速度移动所述电子设备。
  22. 如权利要求19或20所述的电子设备,其特征在于,在所述显示屏的显示界面显示辅助提示信息之后,所述处理器还用于:
    若确定所述电子设备在移动过程中发生抖动,在所述显示界面显示第二提示信息,所述第二提示信息用于提示用户向指定方向移动所述电子设备。
  23. 如权利要求12-22任一所述的电子设备,其特征在于,所述显示屏还用于:
    接收所述至少一个处理器输出的所述非视距物体的电磁图像数据,并根据所述电磁图像数据显示所述非视距物体的电磁图像。
  24. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如权利要求1-11中任一项所述的方法。
PCT/CN2021/075658 2020-03-06 2021-02-05 一种非视距物体的成像方法和电子设备 WO2021175097A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21764733.8A EP4102823A4 (en) 2020-03-06 2021-02-05 OFF-SIGHT OBJECT IMAGING METHOD AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010153540.9 2020-03-06
CN202010153540.9A CN113364970B (zh) 2020-03-06 2020-03-06 一种非视距物体的成像方法和电子设备

Publications (1)

Publication Number Publication Date
WO2021175097A1 true WO2021175097A1 (zh) 2021-09-10

Family

ID=77524270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075658 WO2021175097A1 (zh) 2020-03-06 2021-02-05 一种非视距物体的成像方法和电子设备

Country Status (3)

Country Link
EP (1) EP4102823A4 (zh)
CN (1) CN113364970B (zh)
WO (1) WO2021175097A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113805512A (zh) * 2021-09-16 2021-12-17 上海擎朗智能科技有限公司 穿戴设备的控制方法、装置及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116056307A (zh) * 2022-08-30 2023-05-02 荣耀终端有限公司 主板架构和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030202691A1 (en) * 2002-04-24 2003-10-30 Paul Beardsley Calibration of multiple cameras for a turntable-based 3D scanner
CN201322681Y (zh) * 2008-11-17 2009-10-07 浙江红相科技有限公司 基于红外热像技术的sf6气体泄漏激光成像仪
CN102506757A (zh) * 2011-10-10 2012-06-20 南京航空航天大学 双目立体测量系统多视角测量中的自定位方法
CN205539666U (zh) * 2016-03-09 2016-08-31 贾海涛 一种可见光与红外复合成像装置和图像采集装置
CN109785381A (zh) * 2018-12-06 2019-05-21 苏州炫感信息科技有限公司 一种光学惯性融合空间定位方法、定位设备及定位系统
CN210006190U (zh) * 2019-06-19 2020-01-31 四川旭信科技有限公司 一种火场快速搜救设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8593157B2 (en) * 2005-02-15 2013-11-26 Walleye Technologies, Inc. Electromagnetic scanning imager
US8103604B2 (en) * 2008-03-18 2012-01-24 Manchester Metropolitan University Remote detection and measurement of objects
US20110102234A1 (en) * 2009-11-03 2011-05-05 Vawd Applied Science And Technology Corporation Standoff range sense through obstruction radar system
JP5863481B2 (ja) * 2012-01-30 2016-02-16 日立マクセル株式会社 車両用衝突危険予測装置
US9746553B2 (en) * 2012-12-19 2017-08-29 Sony Corporation Method for generating an image and handheld screening device
JP6531698B2 (ja) * 2016-04-01 2019-06-19 トヨタ自動車株式会社 接近車両通知装置
US10302793B2 (en) * 2016-08-04 2019-05-28 Fluke Corporation Blending and display of RF in wall imagery with data from other sensors
CN106403842B (zh) * 2016-10-31 2019-12-31 紫光智云(江苏)物联网科技有限公司 目标物品的电子追踪系统及方法
US10495762B2 (en) * 2017-05-19 2019-12-03 Qualcomm Incorporated Non-line-of-sight (NLoS) satellite detection at a vehicle using a camera
US11428815B2 (en) * 2018-05-03 2022-08-30 Metawave Corporation Non-line-of-sight correction for target detection and identification in point clouds
US11555918B2 (en) * 2018-08-17 2023-01-17 Metawave Corporation Method and apparatus for radar system
CN110515068B (zh) * 2019-09-24 2024-05-31 中国人民解放军国防科技大学 基于多径信号的非视距区域动目标检测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030202691A1 (en) * 2002-04-24 2003-10-30 Paul Beardsley Calibration of multiple cameras for a turntable-based 3D scanner
CN201322681Y (zh) * 2008-11-17 2009-10-07 浙江红相科技有限公司 基于红外热像技术的sf6气体泄漏激光成像仪
CN102506757A (zh) * 2011-10-10 2012-06-20 南京航空航天大学 双目立体测量系统多视角测量中的自定位方法
CN205539666U (zh) * 2016-03-09 2016-08-31 贾海涛 一种可见光与红外复合成像装置和图像采集装置
CN109785381A (zh) * 2018-12-06 2019-05-21 苏州炫感信息科技有限公司 一种光学惯性融合空间定位方法、定位设备及定位系统
CN210006190U (zh) * 2019-06-19 2020-01-31 四川旭信科技有限公司 一种火场快速搜救设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4102823A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113805512A (zh) * 2021-09-16 2021-12-17 上海擎朗智能科技有限公司 穿戴设备的控制方法、装置及存储介质

Also Published As

Publication number Publication date
CN113364970A (zh) 2021-09-07
CN113364970B (zh) 2023-05-19
EP4102823A4 (en) 2023-07-26
EP4102823A1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
CN110445978B (zh) 一种拍摄方法及设备
WO2021093793A1 (zh) 一种拍摄方法及电子设备
EP3961358A1 (en) False touch prevention method for curved screen, and eletronic device
WO2022170863A1 (zh) 超宽带定位方法及系统
US20220417447A1 (en) Imaging Method for Non-Line-of-Sight Object and Electronic Device
WO2021175097A1 (zh) 一种非视距物体的成像方法和电子设备
CN111766606A (zh) Tof深度图像的图像处理方法、装置、设备及存储介质
CN112087649B (zh) 一种设备搜寻方法以及电子设备
WO2022206494A1 (zh) 目标跟踪方法及其装置
CN113672756A (zh) 一种视觉定位方法及电子设备
WO2021170129A1 (zh) 一种位姿确定方法以及相关设备
CN113781548B (zh) 多设备的位姿测量方法、电子设备及系统
CN113592751A (zh) 图像处理方法、装置和电子设备
WO2021179186A1 (zh) 一种对焦方法、装置及电子设备
WO2022206595A1 (zh) 一种图像处理方法以及相关设备
CN114283195B (zh) 生成动态图像的方法、电子设备及可读存储介质
WO2022033344A1 (zh) 视频防抖方法、终端设备和计算机可读存储介质
CN115150542B (zh) 一种视频防抖方法及相关设备
CN114697516B (zh) 三维模型重建方法、设备和存储介质
CN114302063B (zh) 一种拍摄方法及设备
CN114745508B (zh) 一种拍摄方法、终端设备及存储介质
WO2021197014A1 (zh) 图片传输方法及装置
CN118264784A (zh) 一种用于增强现实协同的系统及方法
CN117148404A (zh) 定位方法、终端设备和计算机可读存储介质
CN115762108A (zh) 遥控方法、遥控设备和被控制设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021764733

Country of ref document: EP

Effective date: 20220905

NENP Non-entry into the national phase

Ref country code: DE