WO2021174850A1 - 一种巷道冒顶隐患自动检测装置 - Google Patents
一种巷道冒顶隐患自动检测装置 Download PDFInfo
- Publication number
- WO2021174850A1 WO2021174850A1 PCT/CN2020/120207 CN2020120207W WO2021174850A1 WO 2021174850 A1 WO2021174850 A1 WO 2021174850A1 CN 2020120207 W CN2020120207 W CN 2020120207W WO 2021174850 A1 WO2021174850 A1 WO 2021174850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roadway
- detection device
- automatic detection
- main body
- roadway roof
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/265—Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4445—Classification of defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0232—Glass, ceramics, concrete or stone
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/0289—Internal structure, e.g. defects, grain size, texture
Definitions
- the invention belongs to the technical field of coal mine safety detection, and specifically relates to an automatic detection device for roadway roof fall hidden dangers.
- the present invention provides an automatic detection device for roadway roof fall hidden dangers.
- an automatic detection device for roadway roof fall hazards including a robot main body.
- the chest and abdomen of the robot main body are equipped with a power supply, a control system, a storage system, an automatic grading system, and a signal receiver.
- the two feet of the main body of the robot are crawler walking systems.
- the eyes of the main body of the robot are equipped with high-definition cameras.
- the ears of the main body of the robot are equipped with ultrasonic generators.
- the paint sprayed by the two sets of spray marking systems are different in color, and the power supply supplies power to the storage system, automatic grading system, signal receiver, crawler walking system, high-definition camera, ultrasonic generator and spray marking system through the control system ;
- the control system is connected to the storage system, automatic grading system, signal receiver, crawler walking system, high-definition camera, ultrasonic generator and jet identification system through the control cable; signal receiver, high-definition camera, ultrasonic generator and jet identification system
- the working directions are all set diagonally upwards.
- the two legs of the robot body are equipped with a spring-type vibration damping balance system.
- the built-in automatic classification system is divided into different roof fall trend levels according to coal mine safety regulations and mine production needs.
- the two ultrasonic generators randomly change the scanning area according to the size of the roadway section to cover the entire roadway roof.
- the front side of the crawler walking system is equipped with a traveling direction control device.
- the spray marking system is a water gun spraying paint device that rotates at any angle.
- the spray marking system is equipped with different kinds of paint colors, and different color sequences can be sprayed according to the setting of the automatic grading system.
- the storage system is used to store three-dimensional graphics and lane coordinate data.
- the entire automatic detection device is a mine safety explosion-proof device.
- the high-definition camera takes pictures and videos of the roadway roof, and transmits the picture to the ground monitoring room through the control system.
- the monitoring room displays the real-time picture of the roadway roof and records the environmental conditions in the roadway.
- the automatic detection process of the present invention is as follows: first determine the location of the roadway that needs to be detected, only need to place the present invention at the beginning of the entire detection roadway, turn on the power switch of the entire device, and the device automatically detects the hidden danger of roadway roof fall ,
- the whole detection process is unmanned, remote operation, and real-time 5G picture transmission; in the process of the present invention traveling along the roadway, the ultrasonic generator emits ultrasonic waves to the roof of the roadway, and then the signal receiver receives the ultrasonic reflected waves and transmits them to the automatic classification System, automatic grading system, according to ultrasonic characteristics and parameters, classify the parts of the top of the roadway with hidden dangers of falling rocks, and then transmit the information to the control system, the control system stores the information in the storage system, and the control system controls the injection marking system Signal the start.
- the spray marking system can spray different colors of paint according to different falling grades.
- the storage system is convenient for storing and extracting data on the hidden dangers of the roof of the tunnel as a whole.
- the direction control device mainly controls the moving direction of the entire device to avoid hitting the wall.
- the power supply connects all systems and devices to provide power guarantee.
- the invention measures the characteristics and parameters of the ultrasonic reflected wave of the roadway roof, and calculates it with a computer to determine the dangerous parameter threshold; the invention can also be used to monitor the construction of the roadway roof during the roadway excavation process.
- the ultrasonic generator emits ultrasonic waves. It spreads in the rock body, and when it encounters cracks in the rock block in the roof of the roadway or the separation of the rock layer, it will reflect.
- the signal receiving device receives the characteristics and parameters of the ultrasonic return; according to the characteristics and parameters of the reflection spectrum, the automatic classification system automatically processes the signal wave characteristics. Wavelength and parameters to determine the crack level of the rock block on the roof of the roadway.
- the information will be automatically transmitted to the control system, and the control system will send a signal to the spray marking system.
- the spray marking system sprays different pigments on the surface of the roadway as markings according to different grades.
- the degree of danger of rock falling; for the cracks or separation of the rock in the roof, three-dimensional images of the roadway will be transmitted in real time, and the dangerous parts of the falling will be marked.
- it will send an alarm message to the operation center through the signal receiver, so that the mine staff can take corresponding measures in time to deal with hidden dangers and ensure the safety of coal mine production.
- the spray marking system is equipped with different kinds of paint colors, and different color sequences can be sprayed according to the setting of the automatic grading system for the rock blocks on the surface of the roadway.
- the three-dimensional images of the roadway will be transmitted in real time, and the risky parts of the roadway will be marked.
- the mine staff can take corresponding measures in time to deal with hidden dangers and ensure the safety of coal mine production.
- the present invention truly realizes unmanned roadway detection during the detection process, no need to perform drilling and installation of instruments, and no need to spend time waiting for the test results, just remote control; it can simplify the test procedure and reduce the test time. , Improve the test area and test accuracy, ensure the reliability of test results, save a lot of manpower, material resources and financial resources, and have good economic and social benefits.
- Figure 1 is a schematic diagram of the structure of the present invention
- Fig. 2 is a side view of the crawler walking system in Fig. 1.
- an automatic detection device for roadway roof fall hazards includes a robot body 1.
- the chest and abdomen of the robot body 1 are equipped with a power source 2, a control system 3, a storage system 4, and an automatic grading system 5.
- the signal receiver 6, the two feet of the robot body 1 are crawler walking systems 7, the head of the robot body 1 is equipped with high-definition cameras 8 at both eyes, and the head of the robot body 1 is equipped with ultrasonic generators at both ears.
- the two upper arms of the robot body 1 are equipped with a spray marking system 19 respectively. The paint sprayed by the two spray marking systems 19 are different in color.
- the power source 2 is the storage system 4, the automatic grading system 5, and the signal through the control system 3.
- Receiver 6, crawler walking system 7, high-definition camera 8, ultrasonic generator 9 and jet marking system 19 are powered; control system 3 is respectively connected through control cable and storage system 4, automatic classification system 5, signal receiver 6, crawler walking
- control cable and storage system 4 automatic classification system 5, signal receiver 6, crawler walking
- the system 7, the high-definition camera 8, the ultrasonic generator 9 and the jet marking system 19 are connected; the working directions of the signal receiver 6, the high-definition camera 8, the ultrasonic generator 9 and the jet marking system 19 are all set up diagonally.
- the two legs of the robot body 1 are provided with a spring-type vibration damping balance system 10.
- the spring-type vibration damping balance system 10 plays a role of damping, preventing vibration from damaging other parts inside the robot body 1.
- the automatic classification system 5 is built-in and divided into different roof fall trend levels according to coal mine safety regulations and mine production needs.
- the two ultrasonic generators 9 arbitrarily change the scanning area according to the size of the roadway section to cover the entire roadway roof.
- the front side of the crawler walking system 7 is provided with a traveling direction control device 11 .
- the spray marking system 19 is a water gun type spray paint device that rotates at any angle.
- the spray marking system 19 is equipped with different kinds of paint colors, and different color sequences can be sprayed according to the setting of the automatic grading system 5.
- the storage system 4 is used to store three-dimensional graphics and lane coordinate data.
- the entire automatic detection device is a mine safety explosion-proof device.
- the high-definition camera 8 takes pictures and videos of the roadway roof, and transmits the picture to the ground monitoring room through the control system 3.
- the monitoring room displays the real-time picture of the roadway roof and records the environmental conditions in the roadway.
- the automatic detection process of the present invention is as follows: first determine the location of the roadway that needs to be detected, only need to place the present invention at the starting point of the entire detection roadway, turn on the power 2 switch of the entire device, and the device automatically performs the role of detecting the hidden danger of roadway roof fall, and the entire detection process Unmanned, remote operation, and real-time transmission of 5G images; in the process of traveling along the roadway of the present invention, the ultrasonic generator 9 sends ultrasonic waves to the roof of the roadway, and then the signal receiver 6 receives the ultrasonic reflected waves and transmits them to the automatic classification system 5 , The automatic grading system 5 classifies the parts of the top of the roadway with hidden dangers of falling rocks according to the ultrasonic characteristics and parameters, and then transmits the information to the control system 3, and the control system 3 stores the information in the storage system 4, and controls the system 3 at the same time.
- a start signal is issued to the injection marking system 19.
- the spray marking system 19 can spray paints of different colors according to different falling grades.
- the storage system 4 is convenient for storing and extracting data on the hidden danger of the roof of the roadway as a whole.
- the direction control device 11 mainly controls the moving direction of the entire device to avoid hitting the wall.
- Power supply 2 connects all systems and devices to provide power guarantee.
- the two upper arms of the robot body 1 can be rotated under the control of the control system 3, so that the spray marking system 19 can spray paint toward the location where the hidden danger is detected.
- the robot main body 1 the power supply 2, the control system 3, the storage system 4, the automatic classification system 5, the signal receiver 6, the crawler walking system 7, the high-definition camera 8, the ultrasonic generator 9, the spray marking system 19,
- the spring-type vibration damping balance system 10 is an existing mature technology, and the specific structure will not be described in detail.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Acoustics & Sound (AREA)
- Manipulator (AREA)
Abstract
一种巷道冒顶隐患自动检测装置,包括机器人主体(1),机器人主体(1)的胸腹部内部设有电源(2)、控制系统(3)、存储系统(4)、自动分级系统(5)和信号接收器(6),机器人主体(1)的两个足部为履带式行走系统(7),机器人主体(1)头部的双眼处均设有高清摄像头(8),机器人主体(1)头部的双耳处均设有超声波发生器(9),机器人主体(1)的两个上臂内分别设有一套喷射标识系统(19),两套喷射标识系统(19)喷出的涂料颜色不同。巷道冒顶隐患自动检测装置实现巷道检测无人化,不需要进行打孔安装仪器,也不需要花费时间等待测试结果,远程操控即可;能简化测试程序,减少测试时间,提高测试面积以及测试精度,保证测试结果的可靠性,节约了人力物力和财力。
Description
本发明属于煤矿安全检测技术领域,具体涉及一种巷道冒顶隐患自动检测装置。
巷道冒顶严重威胁煤矿的安全生产,准确了解巷道顶板围岩结构、岩性及其破坏程度,并评价巷道所存在的冒顶风险,对科学合理的巷道支护设计至关重要。目前,矿井巷道冒顶隐患探测的方法主要有钻孔窥视和顶板岩性探测。钻孔窥视能够直观地了解到巷道围岩结构、岩层岩性及裂隙分布情况,但需专门钻孔和专人管理,由于钻孔的设置存在差异性,矿工的手工作业有人为因素的影响,从而不能准确判断煤巷顶板的支护效果。对于高密度的探测,其工作量较大;现有的矿用顶板岩性探测仪虽能够在锚索钻孔施工过程中探测巷道顶板岩性,但仪器还存在着结构设计不合理、测量精度低、数据传输不畅等问题。
在巷道掘进头施工开挖前,还要通过一些措施排查冒顶隐患,矿工采用一个长杆对顶板和两侧的岩体进行敲击,从而排除冒顶隐患,习惯称为敲帮问顶,这也是由于对顶板隐患监测不准确的一种补救措施,而且也存在风险。
基于以上问题,需要研发一种新的巷道冒顶隐患自动检测装置,对于巷道顶部存在冒顶隐患的进行自动检测、分级以及标识。整个装置不需要巷道内施工作业,不需要专人管理,更不需要矿井工作人员进入有冒顶隐患的巷道内进行检测。实现检测细致化、巷道内无人化、信息数据化、操作远程化。有效减少因人工敲帮问顶造成的矿井工作人员出现伤亡的情况,确保矿井安全高效生产。使测试能够随时随地进行,尽可能普及到所有位置,提供可靠 的顶板离层数据,对巷道施工质量的检查和管理确保施工安全意义重大,但至今未见有公开报导。
发明内容
本发明为了解决现有技术中的不足之处,提供一种巷道冒顶隐患自动检测装置。
为解决上述技术问题,本发明采用如下技术方案:一种巷道冒顶隐患自动检测装置,包括机器人主体,机器人主体的胸腹部内部设有电源、控制系统、存储系统、自动分级系统和信号接收器,机器人主体的两个足部为履带式行走系统,机器人主体头部的双眼处均设有高清摄像头,机器人主体头部的双耳处均设有超声波发生器,机器人主体的两个上臂内分别设有一套喷射标识系统,两套喷射标识系统喷出的涂料颜色不同,电源通过控制系统为存储系统、自动分级系统、信号接收器、履带式行走系统、高清摄像头、超声波发生器和喷射标识系统供电;控制系统分别通过控制电缆与存储系统、自动分级系统、信号接收器、履带式行走系统、高清摄像头、超声波发生器和喷射标识系统连接;信号接收器、高清摄像头、超声波发生器和喷射标识系统的工作方向均斜向上设置。
机器人主体的两条腿部设有弹簧式减振平衡系统。
自动分级系统内置根据煤矿安全规定以及矿井生产需要分为不同的冒顶趋势级别。
在履带式行走系统沿巷道底板的中心线行进时,两个超声波发生器根据巷道断面大小任意改变扫描面积以覆盖整个巷道顶板,履带式行走系统的前侧设有行进方向控制装置。
喷射标识系统为任意角度旋转的水枪式喷射涂料装置,喷射标识系统内装有不同种类的涂料颜色,可根据自动分级系统的设置不同,喷射出不同颜色序列。
存储系统用于存储三位立体图形和巷道坐标数据。
整个自动检测装置为矿用安全性防爆装置。
高清摄像头对巷道顶板进行拍照和录像,并通过控制系统将画面传输到地面监控室,监控室显示巷道顶板实时画面,记录巷道内环境状况。
采用上述技术方案,本发明的自动检测工作过程为:首先确定需要检测巷道地点,只需要将本发明放到整个检测巷道的起点,打开整个装置的电源开关,该装置自动进行巷道冒顶隐患检测作用,整个检测过程无人化、操作远程化、5G画面传输实时化;在本发明沿巷道行进过程中,超声波发生器向巷道顶板发出超声波,再由信号接收器接收超声波反射波,传送到自动分级系统,自动分级系统根据超声波特征及参数,将巷道顶部岩石具有冒落隐患的部位进行分级处理,之后将信息传输到控制系统,控制系统将信息储存到存储系统当中,同时控制系统对喷射标识系统发出启动的信号。喷射标识系统可根据不同冒落等级喷射出不同颜色的涂料。存储系统便于存储巷道顶板整体冒落隐患情况的数据以及数据提取。方向控制装置主要控制整个装置的移动方向,避免撞壁。电源为所有系统、装置连接,提供动力保障。
本发明测定巷道顶板的超声波反射波特征及参数,用计算机进行计算,确定危险参数阈值;本发明还可用于在巷道掘进过程中,对施工的巷道顶板进行监测,超声波发生器发射超声波,超声波在岩体内传播,遇到巷道顶板内岩块裂缝或者岩层离层会发生反射,信号接收装置接收超声波返回的特征 及参数;根据反射波谱特征及参数,自动分级系统自动处理信号波特征,根据不同波长以及参数,确定巷道顶板岩块裂缝等级。
将巷道顶部岩石具有冒落隐患的部位进行分级处理之后,信息会自动传递到控制系统,控制系统对喷射标识系统发出信号,喷射标识系统根据等级不同,对于巷道表面岩块喷射出不同颜料作为标记岩块冒落的危险程度;对于顶板内部岩块裂缝或者离层,会实时传输巷道三位立体画面,并且标记有冒落危险的部位。情况严重时会经过信号接收器向操作中心发出报警信息,便于矿井工作人员及时采取相应的措施来处理隐患,保证煤矿生产安全。
喷射标识系统内装有不同种类的涂料颜色,对于巷道表面岩块可根据自动分级系统的设置不同,喷射出不同颜色序列。对于巷道顶板内部岩块裂缝或者离层,会实时传输巷道三位立体画面,并且标记有冒落危险的部位。情况严重时会经过信号接收器向操作中心发出报警信息,便于矿井工作人员及时采取相应的措施来处理隐患,保证煤矿生产安全。
综上所述,本发明在检测过程中,真正实现巷道检测无人化,不需要进行打孔安装仪器,也不需要花费时间等待测试结果,远程操控即可;能简化测试程序,减少测试时间,提高测试面积以及测试精度,保证测试结果的可靠性,节约了大量人力物力和财力,有良好的经济和社会效益。
图1是本发明的结构示意图;
图2是图1中履带式行走系统的侧视图。
如图1-图2所示,本发明的一种巷道冒顶隐患自动检测装置,包括机器人主体1,机器人主体1的胸腹部内部设有电源2、控制系统3、存储系统4、自动分级系统5和信号接收器6,机器人主体1的两个足部为履带式行走系统7,机器人主体1头部的双眼处均设有高清摄像头8,机器人主体1头部的双耳处均设有超声波发生器9,机器人主体1的两个上臂内分别设有一套喷射标识系统19,两套喷射标识系统19喷出的涂料颜色不同,电源2通过控制系统3为存储系统4、自动分级系统5、信号接收器6、履带式行走系统7、高清摄像头8、超声波发生器9和喷射标识系统19供电;控制系统3分别通过控制电缆与存储系统4、自动分级系统5、信号接收器6、履带式行走系统7、高清摄像头8、超声波发生器9和喷射标识系统19连接;信号接收器6、高清摄像头8、超声波发生器9和喷射标识系统19的工作方向均斜向上设置。
机器人主体1的两条腿部设有弹簧式减振平衡系统10。在履带式行走系统7在巷道底板行进时,弹簧式减振平衡系统10起到减振作用,避免振动对机器人主体1内部的其他部件产生损伤。
自动分级系统5内置根据煤矿安全规定以及矿井生产需要分为不同的冒顶趋势级别。
在履带式行走系统7沿巷道底板的中心线行进时,两个超声波发生器9根据巷道断面大小任意改变扫描面积以覆盖整个巷道顶板,履带式行走系统7的前侧设有行进方向控制装置11。
喷射标识系统19为任意角度旋转的水枪式喷射涂料装置,喷射标识系统19内装有不同种类的涂料颜色,可根据自动分级系统5的设置不同,喷射出 不同颜色序列。
存储系统4用于存储三位立体图形和巷道坐标数据。
整个自动检测装置为矿用安全性防爆装置。
高清摄像头8对巷道顶板进行拍照和录像,并通过控制系统3将画面传输到地面监控室,监控室显示巷道顶板实时画面,记录巷道内环境状况。
本发明的自动检测工作过程为:首先确定需要检测巷道地点,只需要将本发明放到整个检测巷道的起点,打开整个装置的电源2开关,该装置自动进行巷道冒顶隐患检测作用,整个检测过程无人化、操作远程化、5G画面传输实时化;在本发明沿巷道行进过程中,超声波发生器9向巷道顶板发出超声波,再由信号接收器6接收超声波反射波,传送到自动分级系统5,自动分级系统5根据超声波特征及参数,将巷道顶部岩石具有冒落隐患的部位进行分级处理,之后将信息传输到控制系统3,控制系统3将信息储存到存储系统4当中,同时控制系统3对喷射标识系统19发出启动的信号。喷射标识系统19可根据不同冒落等级喷射出不同颜色的涂料。存储系统4便于存储巷道顶板整体冒落隐患情况的数据以及数据提取。方向控制装置11主要控制整个装置的移动方向,避免撞壁。电源2为所有系统、装置连接,提供动力保障。
机器人主体1的两个上臂可以在控制系统3的控制下转动,以使喷射标识系统19可以朝向检测出隐患存在的部位进行喷射涂料。
本发明中的机器人主体1、电源2、控制系统3、存储系统4、自动分级系统5、信号接收器6、履带式行走系统7、高清摄像头8、超声波发生器9、套喷射标识系统19、弹簧式减振平衡系统10均为现有成熟技术,具体构造不再赘述。
本实施例并非对本发明的形状、材料、结构等作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均属于本发明技术方案的保护范围。
Claims (8)
- 一种巷道冒顶隐患自动检测装置,其特征在于:包括机器人主体,机器人主体的胸腹部内部设有电源、控制系统、存储系统、自动分级系统和信号接收器,机器人主体的两个足部为履带式行走系统,机器人主体头部的双眼处均设有高清摄像头,机器人主体头部的双耳处均设有超声波发生器,机器人主体的两个上臂内分别设有一套喷射标识系统,两套喷射标识系统喷出的涂料颜色不同,电源通过控制系统为存储系统、自动分级系统、信号接收器、履带式行走系统、高清摄像头、超声波发生器和喷射标识系统供电;控制系统分别通过控制电缆与存储系统、自动分级系统、信号接收器、履带式行走系统、高清摄像头、超声波发生器和喷射标识系统连接;信号接收器、高清摄像头、超声波发生器和喷射标识系统的工作方向均斜向上设置。
- 根据权利要求1所述的一种巷道冒顶隐患自动检测装置,其特征在于:机器人主体的两条腿部设有弹簧式减振平衡系统。
- 根据权利要求1或2所述的一种巷道冒顶隐患自动检测装置,其特征在于:自动分级系统内置根据煤矿安全规定以及矿井生产需要分为不同的冒顶趋势级别。
- 根据权利要求1或2所述的一种巷道冒顶隐患自动检测装置,其特征在于:在履带式行走系统沿巷道底板的中心线行进时,两个超声波发生器根据巷道断面大小任意改变扫描面积以覆盖整个巷道顶板,履带式行走系统的前侧设有行进方向控制装置。
- 根据权利要求1或2所述的一种巷道冒顶隐患自动检测装置,其特征在于:喷射标识系统为任意角度旋转的水枪式喷射涂料装置,喷射标识系统内装有不同种类的涂料颜色,可根据自动分级系统的设置不同,喷射出不同颜色序列。
- 根据权利要求1或2所述的一种巷道冒顶隐患自动检测装置,其特征在于:存储系统用于存储三位立体图形和巷道坐标数据。
- 根据权利要求1或2所述的一种巷道冒顶隐患自动检测装置,其特征在于:整个自动检测装置为矿用安全性防爆装置。
- 根据权利要求1或2所述的一种巷道冒顶隐患自动检测装置,其特征在于:高清摄像头对巷道顶板进行拍照和录像,并通过控制系统将画面传输到地面监控室,监控室显示巷道顶板实时画面,记录巷道内环境状况。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010142750.8A CN111272874A (zh) | 2020-03-04 | 2020-03-04 | 一种巷道冒顶隐患自动检测装置 |
CN202010142750.8 | 2020-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021174850A1 true WO2021174850A1 (zh) | 2021-09-10 |
Family
ID=70999301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/120207 WO2021174850A1 (zh) | 2020-03-04 | 2020-10-10 | 一种巷道冒顶隐患自动检测装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111272874A (zh) |
WO (1) | WO2021174850A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114219687A (zh) * | 2021-11-02 | 2022-03-22 | 三峡大学 | 融合人机视觉的施工安全隐患智能识别方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111272874A (zh) * | 2020-03-04 | 2020-06-12 | 河南理工大学 | 一种巷道冒顶隐患自动检测装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103061813A (zh) * | 2013-01-09 | 2013-04-24 | 山东理工大学 | 矿井围岩顶板灾害超声波多点实时监测方法 |
CN204941585U (zh) * | 2015-06-18 | 2016-01-06 | 天津明昊鼎盛包装机械有限公司 | 一种智能化巷道移动式支架装置 |
KR20160116445A (ko) * | 2015-03-30 | 2016-10-10 | 경남대학교 산학협력단 | 지능형 공구 심부름 로봇 |
CN108748072A (zh) * | 2018-05-02 | 2018-11-06 | 深圳市绿恩贝智能科技有限公司 | 一种履带机器人喷涂装置 |
CN109866235A (zh) * | 2019-04-02 | 2019-06-11 | 安徽延达智能科技有限公司 | 一种运用于煤矿井下的巡检机器人 |
CN110194232A (zh) * | 2019-06-27 | 2019-09-03 | 河南理工大学 | 一种智能预警护巷机器车 |
CN210081720U (zh) * | 2019-01-25 | 2020-02-18 | 许灶群 | 一种井下巡检防爆机器人 |
CN111272874A (zh) * | 2020-03-04 | 2020-06-12 | 河南理工大学 | 一种巷道冒顶隐患自动检测装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102182512A (zh) * | 2011-03-10 | 2011-09-14 | 北京大学深圳研究生院 | 一种用于煤矿顶板声发射监测的单元结构 |
CN204772555U (zh) * | 2015-07-08 | 2015-11-18 | 南京工程学院 | 一种震后搜索无线控制型外骨骼机器人 |
CN106958458B (zh) * | 2017-03-23 | 2018-08-14 | 河南理工大学 | 一种监测巷道冒顶隐患的方法 |
CN207516309U (zh) * | 2017-11-16 | 2018-06-19 | 西安石油大学 | 一种自循迹焊缝探伤机器人 |
CN207557135U (zh) * | 2017-12-19 | 2018-06-29 | 路港集团有限公司 | 一种适用于半刚性基层路面裂缝检测结构 |
CN208860807U (zh) * | 2018-09-14 | 2019-05-14 | 国网湖北省电力有限公司武汉供电公司 | 碳纤维导线在线动态检测仪 |
CN109398515B (zh) * | 2018-09-30 | 2021-07-06 | 上海大学 | 履带式冰面检测标记机器人 |
CN209764800U (zh) * | 2019-04-17 | 2019-12-10 | 贾儒 | 一种煤矿巷道安全检测装置 |
CN110541731B (zh) * | 2019-08-27 | 2021-10-22 | 山东科技大学 | 煤矿密闭巷道启封危险气源智能监测和评价机器人及方法 |
-
2020
- 2020-03-04 CN CN202010142750.8A patent/CN111272874A/zh active Pending
- 2020-10-10 WO PCT/CN2020/120207 patent/WO2021174850A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103061813A (zh) * | 2013-01-09 | 2013-04-24 | 山东理工大学 | 矿井围岩顶板灾害超声波多点实时监测方法 |
KR20160116445A (ko) * | 2015-03-30 | 2016-10-10 | 경남대학교 산학협력단 | 지능형 공구 심부름 로봇 |
CN204941585U (zh) * | 2015-06-18 | 2016-01-06 | 天津明昊鼎盛包装机械有限公司 | 一种智能化巷道移动式支架装置 |
CN108748072A (zh) * | 2018-05-02 | 2018-11-06 | 深圳市绿恩贝智能科技有限公司 | 一种履带机器人喷涂装置 |
CN210081720U (zh) * | 2019-01-25 | 2020-02-18 | 许灶群 | 一种井下巡检防爆机器人 |
CN109866235A (zh) * | 2019-04-02 | 2019-06-11 | 安徽延达智能科技有限公司 | 一种运用于煤矿井下的巡检机器人 |
CN110194232A (zh) * | 2019-06-27 | 2019-09-03 | 河南理工大学 | 一种智能预警护巷机器车 |
CN111272874A (zh) * | 2020-03-04 | 2020-06-12 | 河南理工大学 | 一种巷道冒顶隐患自动检测装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114219687A (zh) * | 2021-11-02 | 2022-03-22 | 三峡大学 | 融合人机视觉的施工安全隐患智能识别方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111272874A (zh) | 2020-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021174850A1 (zh) | 一种巷道冒顶隐患自动检测装置 | |
CN105178967B (zh) | 掘进机自主定位定向系统及方法 | |
CN108828589A (zh) | 地铁盾构隧道衬砌质量高精度快速车载检测方法与装置 | |
CN106089304B (zh) | 一种基于地层施工多功能电气控制预警通信系统 | |
WO2019000839A1 (zh) | 岩层控制的三位一体监测方法 | |
CN208421220U (zh) | 地铁盾构隧道衬砌质量高精度快速车载检测装置 | |
CN103726844B (zh) | 基于采煤工作面的自动采煤方法 | |
CN110988871B (zh) | 一种无人机载穿墙雷达高层建筑墙体健康离线检测系统及检测方法 | |
CN108222985B (zh) | 用于锚杆钻机的数据采集系统 | |
CN110159199B (zh) | 一种基于图像识别的煤矿探水钻孔定位方法 | |
CN112241712B (zh) | 一种矿产资源采集监测系统 | |
CN110736434A (zh) | 一种煤矿巷道表面位移在线监测系统及监测方法 | |
CN203178504U (zh) | 煤矿采空区孔内红外可视探测装置 | |
CN113959470A (zh) | 煤矿采空区覆岩移动分布式光纤测量导头及监测方法 | |
CN104088668A (zh) | 超低频电磁感应监测预警煤岩动力灾害系统及方法 | |
CN113417699A (zh) | 一种煤矿复合灾害分布式光纤动态监测系统及使用方法 | |
CN207249113U (zh) | 一种单孔探测孤石的探地雷达装置 | |
CN112746864A (zh) | 一种综采超前支护智能机器人群 | |
CN108597166A (zh) | 一种采石场安全监控系统和方法 | |
CN106958458B (zh) | 一种监测巷道冒顶隐患的方法 | |
CN208183704U (zh) | 隧道洞口边坡施工阶段的安全预警系统 | |
CN207379471U (zh) | 一种公路隧道检测装置 | |
CN207008374U (zh) | 一种城市建筑工地环境监控系统 | |
CN203716955U (zh) | 一种辅助c-als钻孔式激光扫描仪在溜井中测量的稳定装置 | |
CN117111175A (zh) | 一种tbm隧洞综合地质预报方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20923091 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20923091 Country of ref document: EP Kind code of ref document: A1 |