CN208421220U - 地铁盾构隧道衬砌质量高精度快速车载检测装置 - Google Patents

地铁盾构隧道衬砌质量高精度快速车载检测装置 Download PDF

Info

Publication number
CN208421220U
CN208421220U CN201820942669.6U CN201820942669U CN208421220U CN 208421220 U CN208421220 U CN 208421220U CN 201820942669 U CN201820942669 U CN 201820942669U CN 208421220 U CN208421220 U CN 208421220U
Authority
CN
China
Prior art keywords
ground penetrating
penetrating radar
shield
train
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820942669.6U
Other languages
English (en)
Inventor
张安学
李建星
师振盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201820942669.6U priority Critical patent/CN208421220U/zh
Application granted granted Critical
Publication of CN208421220U publication Critical patent/CN208421220U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本实用新型公开了一种地铁盾构隧道衬砌质量高精度快速车载检测装置,检测装置包括图像采集模块、探地雷达模块、多传感器融合定位模块、激光测距模块、工控机,所述图像采集模块包括线阵CCD工业相机和LED光源,所述探地雷达模块包括探地雷达天线和探地雷达主机,所述多传感器融合定位模块包括惯性测量装置和编码器。本实用新型可以用于既有地铁线路盾构隧道衬砌质量的自动化和常态化检测,不需要停电作业、不占用维修天窗、不影响地铁正常运营;本实用新型显著提高检测效率,使病害类型和位置的检测时间大大缩短,有利于及时消除隧道衬砌病害,保障地铁安全运营和人民生命财产安全。

Description

地铁盾构隧道衬砌质量高精度快速车载检测装置
技术领域
本实用新型属于地铁工务系统检测技术领域,涉及一种地铁盾构隧道衬砌质量高精度快速车载检测装置。
背景技术
伴随着我国国民经济的持续高速发展和城市建设进程的不断加快,城市人口急剧增加,城市交通日益拥堵,城市交通设施与城市快速发展的矛盾日益突显。地下轨道交通因其运载能力大、影响城市环境程度低、安全准时、方便快捷的优势,已经成为我国大中型城市提升公共交通能力的必然趋势和选择。盾构隧道法是指利用盾构机具在地下开挖隧道的一种施工方法,是现在城市环境中地铁隧道的主要施工技术。但是我国地铁盾构隧道修建的历史时期不同、应用的技术水平参差不齐、面临的地质条件复杂多变,经过多年运营,时常发现存在裂缝和渗漏水病害,严重威胁到地铁列车的正常运营,甚至人民群众的生命和财产安全。早期地铁隧道由于勘察精度受限、设计图纸偏差、施工质量欠佳、维护保养缺失等因素,同样经常出现隧道拱顶空洞、拱顶开裂、边墙开裂、渗漏水、衬砌掉块等病害,给地铁运营带来严重的安全隐患。
目前我国检测地铁隧道衬砌主要是依靠人工现场记录和病害标记,再由人工绘制隧道衬砌的病害展开图,这种检测方法需要消耗大量的人力物力,检测效率低、作业风险高、劳动强度大、检测结果主观性强。2014年,黄宏伟等人申请了名称为“地铁盾构隧道病害快速高精度检测设备”的发明专利,申请号201410327988.2,该专利申请提出了一种包括行走装置、控制装置和图像采集装置的地铁盾构隧道检测设备,通过定期地检测并对比线阵CCD工业相机拍摄的隧道衬砌图像,评估隧道衬砌的健康状况,一定程度上提高了检测效率和检测结果的可靠性。但是与上述的人工检测方法一样,这种检测方法只能得到隧道衬砌的表面结构,不能获得隧道衬砌的内部结构,无法做到全面地检测隧道衬砌质量,防隐患于未然。
探地雷达技术因其具有快速、准确、连续、无损、高效的突出优点,近些年来被广泛地应用于工程质量探测、建筑结构探测、考古探测、矿产资源探测等领域,与此同时在公路、桥梁、隧道病害检测中也发挥着日益重要的作用。目前探地雷达主要有两种实施方式,即人工托举法和液压支撑法,用于检测地铁盾构隧道的衬砌质量。两种方式都须在维修天窗时间内停电作业,不仅影响地铁正常运营,而且检测效率不高,存在着施工安全隐患。此外,目前对探地雷达所采集数据的后处理程序主要依靠人工完成,无法自动检测和识别隧道衬砌病害的类型。探地雷达数据采集量巨大,故导致探测人员工作量极其繁重,检测效率难以显著提高。
病害位置标记是地铁盾构隧道衬砌病害检测的重要环节,准确标记其位置有利于探测人员和施工人员快速寻找到病害的区域,缩短施工周期,及时地消除病害。显然,地面公路和铁路路基探测中普遍使用的GPS定位法不再适用于地铁隧道环境。目前,编码器定位方法是铁路隧道衬砌检测中常用的定位方法,该方法将编码器安装于列车轴上面,通过编码器的累积计数解算出列车的实时位置。但是,由于地铁列车的频繁刹车以及列车轨道轮可能出现的磨损、打滑、空转等问题,导致这种方法的定位误差普遍偏大,严重时甚至可高达数百上千米,极大地增加了衬砌病害区域的寻找难度,以致于衬砌病害无法得到及时解决,造成地铁运营的安全隐患。
因此,目前亟需进一步研究提高地铁隧道衬砌质量检测效率和精度的新装置。
实用新型内容
本实用新型的目的在于提供一种地铁盾构隧道衬砌质量高精度快速车载检测装置,以解决上述技术问题。本实用新型利用线阵CCD工业相机和探地雷达两种不同技术手段,同时获取地铁盾构隧道衬砌表面结构的高清图像以及隧道衬砌内部结构的地质图像,解决检测依据过于单一的缺点,可为探测人员提供更加完整和全面的隧道衬砌状况。本实用新型是一种远距离无接触的检测装置,检测装置挂于地铁列车的尾部,不需要停电作业、不影响地铁列车正常运营、不需要增加车次,可以以列车正常行驶速度检测隧道衬砌质量,实现地铁盾构隧道衬砌病害的常态化检测。
为了实现上述目的,本实用新型采用以下技术方案:
一种地铁盾构隧道衬砌质量高精度快速车载检测装置,包括图像采集模块、探地雷达模块、多传感器融合定位模块、激光测距模块和工控机;图像采集模块包括七组线阵CCD工业相机和LED光源,全部通过防震底座安装于列车机身;LED光源用于集中照射线阵CCD工业相机扫描范围;线阵CCD工业相机经数据线与列车测试台的工控机通信;探地雷达模块包括六组空气耦合探地雷达天线和一台六通道探地雷达主机;每组探地雷达天线都通过天线腔体安装于列车机身;探地雷达主机放置于列车测试台,通过射频同轴电缆与探地雷达天线连接;多传感器融合定位模块包括惯性测量装置和编码器;惯性测量装置通过减振器安装于列车测试台下方的地板,并经数据线与工控机通信;编码器安装于列车轴上,经数据线与工控机通信;激光测距模块含两套激光传感器,两套激光传感器分别安装于列车机身两侧,并经数据线与工控机通信;线阵CCD工业相机、LED光源和探地雷达天线腔体都位于列车车辆限界以内;线阵CCD工业相机、LED光源、探地雷达主机和惯性测量装置的电源端口均与列车车载电源连接。
进一步的,
工控机用于对探地雷达回波数据和相机图像数据处理,具体包括:探地雷达回波数据处理的流程包括:背景抵消、直流分量去除、零时刻校正、频域滤波、滑动平均和时变增益放大,获得清晰的探地雷达图像;相机图像数据的数据处理流程包括:抖动消除、边沿检测、特征刻化和对比度调节;
工控机还用于将处理后的探地雷达图像与病害图像特征库进行图像匹配,自动检测和识别隧道衬砌病害类型。
进一步的,七个线阵CCD工业相机中的两个指向盾构隧道衬砌一侧边墙,两个指向另一侧边墙,一个指向一侧拱角,一个指向另一侧拱角,一个指向拱顶。
进一步的,六组空气耦合探地雷达天线中,一组指向盾构隧道衬砌一侧边墙,一组指向另一侧边墙,一个指向一侧拱角,一个指向另一侧拱角,两个指向拱顶。
进一步的,每个天线腔体内放置有两副相同的超宽带维瓦尔第空气耦合天线,中心频率为300MHz;天线腔体长轴与地铁线路方向一致,前侧的天线负责发射脉冲信号,后侧的天线负责接收脉冲回波信号;两副天线之间设有用于减少收发天线的电磁波直耦的高频吸波材料板。
进一步的,探地雷达主机各个通道的脉冲重复频率为200KHz,总脉冲重复频率为1.2MHz,扫描速率为400扫描线/秒,且每条扫描线有512个采样点,能够满足最高时速72公里/小时的地铁列车的高速探测。
本实用新型是一种地铁盾构隧道高精度快速车载检测系统,七组线阵CCD工业相机与其LED光源以及六组探地雷达天线安装于地铁列车机身,且不超过列车车辆限界,能够以最高72公里/小时的速度运行,全断面地采集隧道衬砌表面结构的高清图像数据和隧道衬砌内部结构的探地雷达回波数据。根据地质图像与病害图像特征库的图像匹配结果,并综合相机图像,准确判断隧道衬砌可能存在的病害类型和位置。
本实用新型解决工业相机和探地雷达全断面检测地铁盾构隧道衬砌的技术方案是:增加工业相机数量、探地雷达主机通道数以及探地雷达收发天线对数,并且沿着地铁列车机身合理布局工业相机、探地雷达收发天线的安装位置。
本实用新型解决以地铁列车正常行驶速度检测盾构隧道衬砌的技术方案是:提高探地雷达脉冲重复频率。地铁盾构隧道衬砌检测要求测点距离不超过5厘米。我国地铁列车最高行驶速度约为60公里/小时,这就要求探地雷达各个通道的扫描速率不小于333扫描线/秒,每条扫描线有512个采集点,则脉冲重复频率必须大于170KHz;本实用新型探地雷达脉冲重复频率为200KHz。
与现有技术相比,本实用新型具有以下有益效果:本实用新型可以用于既有地铁线路盾构隧道衬砌质量的自动化和常态化检测,不需要停电作业、不占用维修天窗、不影响地铁正常运营。本实用新型显著提高检测效率,使病害类型和位置的检测时间大大缩短,有利于及时消除隧道衬砌病害,保障地铁安全运营和人民生命财产安全。
本实用新型要解决的是利用工业相机和探地雷达全断面检测隧道衬砌;检测速度要达到列车正常行驶速度;自动检测和识别隧道衬砌病害的类型;精准定位隧道衬砌病害的位置,提高隧道衬砌检测效率、降低作业风险、减少劳动强度,为我国既有以及在建地铁隧道提供可靠的检测手段,促进我国的地铁盾构隧道衬砌检测技术向更高的智能化、自动化和常态化水平发展。
附图说明
图1是本实用新型图像采集模块和探地雷达天线布局图。
图2是本实用新型测试台布置图。
图3是本实用新型数据采集流程图。
图4是本实用新型探地雷达和工业相机的数据处理流程图。
图5是本实用新型衬砌病害自动检测和识别流程图。
图6是本实用新型多传感器融合定位原理框图。
具体实施方式
下面结合实施例及附图对本实用新型作进一步详细的描述。
参考图1和图2,本实用新型的地铁盾构隧道衬砌质量高精度快速车载检测装置,包括图像采集模块1、探地雷达模块2、多传感器融合定位模块3、激光测距模块4、工控机5。
图像采集模块含七组线阵CCD工业相机11和LED光源12,全部通过防震底座安装于列车机身,且须处于列车车辆限界以内。LED光源12集中照射线阵CCD工业相机11扫描范围,保证提供充足的光线强度。七个线阵CCD工业相机11中的两个线阵CCD工业相机111、112指向盾构隧道衬砌一侧边墙,两个线阵CCD工业相机117、116指向另一侧边墙,一个线阵CCD工业相机113指向一侧拱角,一个线阵CCD工业相机115指向另一侧拱角,一个线阵CCD工业相机114指向拱顶;七个线阵CCD工业相机11镜头依次指向边墙、拱角和拱顶,实现全断面拍摄隧道衬砌。线阵CCD工业相机111、112、113、114、115、116、117旁侧对应设置LED光源121、122、123、124、125、126、127;线阵CCD工业相机经数据线与列车测试台的工控机通信。线阵CCD工业相机和LED光源电源端口与列车车载电源连接。
探地雷达模块2含六组空气耦合探地雷达天线21和一台六通道探地雷达主机22。每组探地雷达天线21都通过天线腔体安装于列车机身,且须处于列车车辆限界内。六组空气耦合探地雷达天线21中,一组探地雷达天线211指向盾构隧道衬砌一侧边墙,一组探地雷达天线216指向另一侧边墙,一组探地雷达天线212指向一侧拱角,一组探地雷达天线215指向另一侧拱角,两组探地雷达天线213、214指向拱顶;天线腔体依次指向边墙、拱角和拱顶,实现全断面探测隧道衬砌。探地雷达主机放22置于列车测试台,通过射频同轴电缆与探地雷达天线21连接。探地雷达主机22经数据线与工控机通信。探地雷达主机22的电源端口与列车的车载电源连接。探地雷达主机22各个通道的脉冲重复频率为200KHz,总脉冲重复频率为1.2MHz,扫描速率为400扫描线/秒,且每条扫描线有512个采样点。每个天线腔体内放置有两副相同的超宽带维瓦尔第空气耦合天线,中心频率为300MHz。天线腔体长轴与地铁线路方向一致,前侧的天线负责发射脉冲信号,后侧的天线负责接收脉冲回波信号。两副天线之间增加有高频吸波材料板,用于减少收发天线的电磁波直耦。
本实用新型采用图像采集模块1和探地雷达模块2共同检测隧道衬砌,图像采集模块1用于获取隧道衬砌表面结构的高清图像,探地雷达模块2用于获取隧道衬砌内部结构的地质图像,有利于探测人员综合衬砌表面和内部结构特征,准确地判断有无衬砌病害并识别衬砌病害类型。
参考图2,多传感器融合定位模块3包括惯性测量装置31和编码器32。惯性测量装置31通过减振器安装于列车测试台下方的地板,并经数据线与工控机5通信。编码器32安装于列车轴上,经数据线与工控机通信。激光测距模块4含两套激光传感器41、42,激光传感器41、42分别安装于指向隧道边墙的天线腔体内,并经数据线与工控机通信。
参考图3,检测列车运行后,惯性测量装置31和编码器32开始工作,线阵CCD工业相机、LED光源和探地雷达主机开启并完成参数初始化设置。工控机程序开始根据惯性测量装置、编码器和地铁信标信息计算列车的实时位置。检测列车驶入隧道时,激光传感器将感知到的驶入隧道信息发送至工控机,工控机执行程序指令开始记录相机图像数据和探地雷达回波数据。检测列车驶出隧道后,激光传感器将感知到的驶出隧道信息发送至工控机,工控机执行程序指令停止记录相机图像数据和探地雷达回波数据,如此反复,直到检测列车检测完整条地铁线路,生成并保存隧道数据文件。
参考图4,数据采集结束后,工控机对采集的数据依据现有技术就可以进行后处理。探地雷达回波数据处理的流程包括:背景抵消、直流分量去除、零时刻校正、频域滤波、滑动平均、时变增益放大,获得清晰的探地雷达图像;相机图像数据的数据处理流程包括:抖动消除、边沿检测、特征刻化、对比度调节;再将探地雷达图像与病害图像特征库进行图像匹配,自动检测和识别隧道衬砌病害类型。对无法自动检测和识别的可疑地质图像,将可疑地质图像与对应位置处的CCD工业相机所拍图像结合保存,由探测人员结合高清相机图像研究确定。
参考图5,检测和识别隧道衬砌病害类型可以分为以下三类情况:
第一类:无病害探地雷达图像;不作特殊处理,直接检测下一个单元的探地雷达图像;
第二类:有病害探地雷达图像;标记衬砌病害位置和类型,保存探地雷达图像和相机图像至待处理衬砌病害库;
第三类:疑似病害探地雷达图像;标记疑似衬砌病害位置,保存探地雷达图像和相机图像至疑似衬砌病害库,探测人员可进一步综合两种图像研究确定有无衬砌病害和衬砌病害类型。
参考图6,融合定位的工作流程为:惯性测量装置和编码器的量测信息组成子滤波器,同时惯性测量装置的量测信息和子滤波器的输出结果组成主滤波器,主滤波器输出列车位置的最优估计值,再经高精度的列车信标信息校正后作为列车实时的定位结果。定位结果反馈至惯性测量装置用于校正其因长时间运行而造成的累积误差。定位结果反馈至惯性测量装置31用于校正其因长时间运行而造成的累积误差。
本实用新型采用惯性测量装置31、编码器32和列车信标组合的多传感器融合定位,精准定位衬砌病害的位置,能够帮助探测人员快速寻找到衬砌的病害区域,缩短消除衬砌病害的施工周期,进而及时排除列车运营的安全隐患。

Claims (6)

1.一种地铁盾构隧道衬砌质量高精度快速车载检测装置,其特征在于,包括图像采集模块(1)、探地雷达模块(2)、多传感器融合定位模块(3)、激光测距模块(4)和工控机(5);
图像采集模块(1)包括七组线阵CCD工业相机(11)和LED光源(12),全部通过防震底座安装于列车机身;LED光源(12)用于集中照射线阵CCD工业相机(11)扫描范围;线阵CCD工业相机(11)经数据线与列车测试台的工控机(5)通信;
探地雷达模块(2)包括六组空气耦合探地雷达天线(21)和一台六通道探地雷达主机(22);每组探地雷达天线(21)都通过天线腔体安装于列车机身;探地雷达主机(22)放置于列车测试台,通过射频同轴电缆与探地雷达天线(21)连接;六通道探地雷达主机(22)与工控机(5)通信;
多传感器融合定位模块包括惯性测量装置(31)和编码器(32);惯性测量装置(31)通过减振器安装于列车测试台下方的地板,并经数据线与工控机(5)通信;编码器(32)安装于列车轴上,经数据线与工控机(5)通信;
激光测距模块(4)含两套激光传感器(41、42),两套激光传感器(41、42)分别安装于列车机身两侧,并经数据线与工控机(5)通信;
线阵CCD工业相机(11)、LED光源(12)和探地雷达天线(21)腔体都位于列车车辆限界以内;
线阵CCD工业相机(11)、LED光源(12)、探地雷达主机(22)和惯性测量装置(31)的电源端口均与列车车载电源连接。
2.根据权利要求1所述的一种地铁盾构隧道衬砌质量高精度快速车载检测装置,其特征在于,工控机用于对探地雷达回波数据和相机图像数据处理,具体包括:探地雷达回波数据处理的流程包括:背景抵消、直流分量去除、零时刻校正、频域滤波、滑动平均和时变增益放大,获得清晰的探地雷达图像;相机图像数据的数据处理流程包括:抖动消除、边沿检测、特征刻化和对比度调节;
工控机还用于将处理后的探地雷达图像与病害图像特征库进行图像匹配,自动检测和识别隧道衬砌病害类型。
3.根据权利要求1所述的一种地铁盾构隧道衬砌质量高精度快速车载检测装置,其特征在于,七个线阵CCD工业相机(11)中的两个指向盾构隧道衬砌一侧边墙,两个指向另一侧边墙,一个指向一侧拱角,一个指向另一侧拱角,一个指向拱顶。
4.根据权利要求1所述的一种地铁盾构隧道衬砌质量高精度快速车载检测装置,其特征在于,六组空气耦合探地雷达天线(21)中,一组指向盾构隧道衬砌一侧边墙,一组指向另一侧边墙,一个指向一侧拱角,一个指向另一侧拱角,两个指向拱顶。
5.根据权利要求1所述的一种地铁盾构隧道衬砌质量高精度快速车载检测装置,其特征在于,每个天线腔体内放置有两副相同的超宽带维瓦尔第空气耦合天线,中心频率为300MHz;天线腔体长轴与地铁线路方向一致,前侧的天线负责发射脉冲信号,后侧的天线负责接收脉冲回波信号;两副天线之间设有用于减少收发天线的电磁波直耦的高频吸波材料板。
6.根据权利要求1所述的一种地铁盾构隧道衬砌质量高精度快速车载检测装置,其特征在于,探地雷达主机(22)各个通道的脉冲重复频率为200KHz,总脉冲重复频率为1.2MHz,扫描速率为400扫描线/秒,且每条扫描线有512个采样点,能够满足最高时速72公里/小时的地铁列车的高速探测。
CN201820942669.6U 2018-06-19 2018-06-19 地铁盾构隧道衬砌质量高精度快速车载检测装置 Active CN208421220U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820942669.6U CN208421220U (zh) 2018-06-19 2018-06-19 地铁盾构隧道衬砌质量高精度快速车载检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820942669.6U CN208421220U (zh) 2018-06-19 2018-06-19 地铁盾构隧道衬砌质量高精度快速车载检测装置

Publications (1)

Publication Number Publication Date
CN208421220U true CN208421220U (zh) 2019-01-22

Family

ID=65109286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820942669.6U Active CN208421220U (zh) 2018-06-19 2018-06-19 地铁盾构隧道衬砌质量高精度快速车载检测装置

Country Status (1)

Country Link
CN (1) CN208421220U (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828589A (zh) * 2018-06-19 2018-11-16 西安交通大学 地铁盾构隧道衬砌质量高精度快速车载检测方法与装置
CN110346370A (zh) * 2019-07-17 2019-10-18 武汉汉宁轨道交通技术有限公司 隧道病害检测设备、系统及方法
CN110633484A (zh) * 2019-06-17 2019-12-31 重庆海特科技发展有限公司 桥梁病害示意图的生成方法和装置
CN110764106A (zh) * 2019-10-09 2020-02-07 中交一公局集团有限公司 一种采用激光雷达辅助盾构区间调坡调线测量施工方法
CN113075638A (zh) * 2021-04-30 2021-07-06 深圳安德空间技术有限公司 用于地下空间勘察的多源数据同步采集及融合方法和系统
CN114899575A (zh) * 2022-06-07 2022-08-12 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) 一种矿产勘查用的探地雷达装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828589A (zh) * 2018-06-19 2018-11-16 西安交通大学 地铁盾构隧道衬砌质量高精度快速车载检测方法与装置
CN108828589B (zh) * 2018-06-19 2023-08-18 西安交通大学 地铁盾构隧道衬砌质量高精度快速车载检测方法与装置
CN110633484A (zh) * 2019-06-17 2019-12-31 重庆海特科技发展有限公司 桥梁病害示意图的生成方法和装置
CN110346370A (zh) * 2019-07-17 2019-10-18 武汉汉宁轨道交通技术有限公司 隧道病害检测设备、系统及方法
CN110764106A (zh) * 2019-10-09 2020-02-07 中交一公局集团有限公司 一种采用激光雷达辅助盾构区间调坡调线测量施工方法
CN113075638A (zh) * 2021-04-30 2021-07-06 深圳安德空间技术有限公司 用于地下空间勘察的多源数据同步采集及融合方法和系统
CN113075638B (zh) * 2021-04-30 2021-10-12 深圳安德空间技术有限公司 用于地下空间勘察的多源数据同步采集及融合方法和系统
CN114899575A (zh) * 2022-06-07 2022-08-12 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) 一种矿产勘查用的探地雷达装置
CN114899575B (zh) * 2022-06-07 2023-07-21 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) 一种矿产勘查用的探地雷达装置

Similar Documents

Publication Publication Date Title
CN108828589A (zh) 地铁盾构隧道衬砌质量高精度快速车载检测方法与装置
CN208421220U (zh) 地铁盾构隧道衬砌质量高精度快速车载检测装置
CN109186480B (zh) 基于双护盾tbm工艺的隧道围岩扫描与观测系统
CN109254298B (zh) 地铁隧道内安全巡检机器人的定位系统
CN107014352A (zh) 一种用于铁路隧道全断面综合检测的轨道车及检测方法
CN103778681B (zh) 一种车载高速公路巡检系统及数据获取和处理方法
CN111457962A (zh) 一种隧道内部病害的快速检测方法和检测装置
CN105178967B (zh) 掘进机自主定位定向系统及方法
CN112485823B (zh) 高效综合超前地质预报方法
CN108415066B (zh) 一种隧道施工地质灾害预报方法
CN101676520A (zh) 水平导向钻随钻声波成像探测预警系统及其探测方法
CN211291565U (zh) 一种隧道施工动态监测和预警系统
CN114113118B (zh) 一种地铁隧道衬砌裂缝渗漏水病害快速检测装置及其检测方法
CN108572248A (zh) 一种基于无损检测技术评价道路技术状况的方法
CN103485265A (zh) 一种超宽带探地雷达公路质量探测方法及其探测装置
CN108803312A (zh) 一种新型道路损坏检测系统
CN110850435A (zh) 车载式隧道地质素描装置及使用方法
CN218727999U (zh) 一种具备病害自动识别功能的高速准实时三维阵列探地雷达装置
CN105005081A (zh) 煤机采动激励下综采面近场煤岩动态层析成像系统及方法
CN205954421U (zh) 一种轨道状态智能检测平台
CN202599370U (zh) 铁路隧道衬砌全断面车载检测装置
CN115755977A (zh) 一种隧道内智能无人机巡检方法及系统
CN107797160A (zh) 弹性波和电磁波ct勘测数据联合分析系统及方法
CN206399377U (zh) 一种盾构法隧道智能ct检测诊断系统
CN115875040A (zh) 一种掘进工作面遇空区边界判定方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant