WO2021174797A1 - 一种可切换环路增益的供电网络、信号处理系统及应用 - Google Patents

一种可切换环路增益的供电网络、信号处理系统及应用 Download PDF

Info

Publication number
WO2021174797A1
WO2021174797A1 PCT/CN2020/113908 CN2020113908W WO2021174797A1 WO 2021174797 A1 WO2021174797 A1 WO 2021174797A1 CN 2020113908 W CN2020113908 W CN 2020113908W WO 2021174797 A1 WO2021174797 A1 WO 2021174797A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter circuit
circuit
switch
power supply
supply network
Prior art date
Application number
PCT/CN2020/113908
Other languages
English (en)
French (fr)
Inventor
倪楠
胡自洁
雷传球
曹原
倪建兴
Original Assignee
锐石创芯(深圳)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锐石创芯(深圳)科技有限公司 filed Critical 锐石创芯(深圳)科技有限公司
Publication of WO2021174797A1 publication Critical patent/WO2021174797A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/02Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • This application relates to a power supply network, a signal processing system and applications with switchable loop gain.
  • Amplifier is any device that can make smaller energy to control larger energy, including class A amplifier, class B amplifier, class AB amplifier, class D amplifier, class T amplifier, radio frequency power amplifier, etc.
  • radio frequency power amplifier RF PA
  • the power of the radio frequency signal generated by the modulation oscillator circuit is very small, and it needs to go through a series of amplification, a buffer stage, an intermediate amplifier stage, and a final power amplifier stage to obtain sufficient RF power before it can be fed. Radiate to the antenna. In order to obtain sufficient RF output power, a RF power amplifier must be used.
  • the amplifier includes one-stage, two-stage or multi-stage transistors.
  • the input signal is amplified by one-stage, two-stage or multi-stage transistors and output.
  • the bias signal is provided to make the transistor in the amplifier work.
  • the circuit that provides the bias signal to the transistor in the amplifier is called the bias circuit.
  • the upper block is the bias circuit
  • the lower block is the radio frequency circuit.
  • the radio frequency circuit includes a transistor Q1 and a transistor Q2.
  • the bias circuit When the bias circuit is providing bias signals to the transistor Q1 and the transistor Q2, the bias circuit and the transistor in the amplifier form a closed loop, as indicated by the dashed line in FIG. 1.
  • the signal to be amplified is input to the transistor Q1 after being amplified and then input to the transistor Q2 to be amplified.
  • all the signals amplified by the transistor Q1 and Q2 will not enter the subsequent circuit.
  • the signal amplified by the transistor Q2 will not be all output, and part of the signal will return to the transistor Q1 with the closed loop, and the transistor Q1 will return to the circuit again.
  • the signal After the signal is amplified, it is input to the transistor Q2, and the transistor Q2 amplifies the signal before returning, and then loops in turn.
  • This kind of signal that forms a loop in a closed loop is expressed in terms of loop gain. When the loop gain is greater than 1, the signal will continuously amplify in this closed loop to form an oscillating frequency, which will eventually cause the circuit to oscillate and cause the amplifier to be unstable.
  • a capacitor C1 is connected to the bias circuit. Because the capacitor itself has parasitic inductance, in addition, the connection between the capacitor and the power supply and the ground is also equivalent to an inductance at radio frequency, causing the capacitor and the two inductances to resonate at a certain frequency when the capacitor is working, forming a resonant frequency. When the capacitor is in resonance, the impedance is 0 ohms.
  • the oscillation frequency of the closed loop will enter the ground along the 0 ohm impedance formed by the capacitor C1, so that it is not in the closed loop.
  • the continuous oscillation in the circuit eliminates the oscillation in the closed loop, avoids the oscillation in the closed loop, and ensures the stability of the amplifier. That is to say, the resonant frequency of the capacitor C1, the signal returned by the subsequent stage through the closed loop is grounded through the capacitor C1, that is, the signal loop is broken and no oscillation can be formed, which ensures the stability of the amplifier.
  • Amplifiers usually integrate multi-stage amplifiers in one chip to process signals in different frequency bands. Take the power amplifier in a mobile phone as an example. There are usually two frequency bands, low frequency and intermediate frequency. In order to save costs, these two frequency bands will share a bias.
  • the setting circuit provides a bias signal.
  • the bias circuit In order to reduce the influence of the closed loop oscillation frequency, the bias circuit will use the above-mentioned method to process, that is, a capacitor is connected to the bias circuit, and the loop gain is eliminated through the capacitor.
  • the loop gains of the low frequency and intermediate frequency are generally inconsistent, the circuit structure shown in Figure 1 cannot ensure that the amplifier is stable in different frequency bands.
  • the purpose of the present application here is to provide a power supply network capable of generating a switchable loop gain of two resonant frequencies.
  • the power supply network with switchable loop gain is used to provide a bias signal to a power amplifier, and includes a first filter circuit, a second filter circuit, and a switch.
  • the second filter circuit forms a filter circuit with a different resonance frequency from the first filter circuit through the closed state or the open state of the switch, so as to realize the elimination of different loop gains.
  • the power supply network provided in this application is used to provide a bias signal to the power amplifier, wherein the first filter circuit and the second filter circuit are used to eliminate loop gain, and the working state of the second filter circuit is controlled by the on and off of the switch , So that it forms a filter circuit with a different resonance frequency from the first filter circuit, so as to realize the elimination of different loop gains.
  • Another object of the present application is to provide a signal processing system including the power supply network provided by the present application.
  • Another purpose of this application is to provide an application of a power supply network including the switchable loop gain provided in this application in the radio frequency front end of a mobile phone.
  • the power supply network provided by this application changes the state of the filter circuit working in the power supply network through the closed state or the open state of the switch, realizes different resonance frequencies, and can correspond to higher loop gains of circuits of different frequencies.
  • the two frequency bands realize different loop gain characteristics, and the stability of the two frequency bands can be improved with one network.
  • FIG. 1 is a circuit schematic diagram of a power amplifier composed of a conventional two-stage triode described in this application;
  • FIG. 2 is one of the circuit schematic diagrams of the power supply network provided by this application.
  • FIG. 3 is the second circuit schematic diagram of the power supply network provided by this application.
  • Fig. 4 is a circuit schematic diagram of the signal processing system provided by this application.
  • the first filter circuit The first filter circuit; 2. The second filter circuit; 3. Switch; 4. Power amplifier; 5. Impedance matching network; 6. Frequency selection switch; 7. Control chip; 8. Power supply network; 41. Intermediate frequency circuit; 42, low frequency circuit; 51, intermediate frequency impedance matching circuit; 52, low frequency impedance matching circuit.
  • the power supply network with switchable loop gain provided by the present application includes a first filter circuit 1, a second filter circuit 2 and a switch 3.
  • the first filter circuit 1 is always in working state
  • the second filter circuit 2 is in a working state or a non-working state when the switch 3 is in a closed state or an open state, so that it forms a filter circuit with a different resonance frequency with the first filter circuit 1 so as to eliminate different loop gains.
  • the power supply network with switchable loop gain provided in this application is a bias circuit used to provide bias current to the transistor in the power amplifier.
  • it is applied to the mobile phone RF front end to provide bias current to the power amplifier in the mobile phone RF front end as an example to illustrate its working principle.
  • the power amplifier of the mobile phone RF front end is usually used to process the low frequency and intermediate frequency bands, including the respective A low-frequency circuit for processing the low frequency band and an intermediate frequency circuit for processing the intermediate frequency band.
  • the power supply network provided in this application is a schematic diagram of the connection circuit of the mobile phone radio frequency front-end power amplifier, as shown in Figures 4 and 5, where 4 represents the power amplifier, 41 represents the intermediate frequency circuit, 42 represents the low frequency circuit; the intermediate frequency circuit 41 and the low frequency circuit 42 Including two or more triodes.
  • the power supply is loaded on the intermediate frequency circuit 41 and the low frequency circuit 42 after the first filter circuit 1 and/or the second filter circuit 2 to provide bias current for each stage of the transistor in the circuit; switch 3 Connect with the control chip in the radio frequency front end of the mobile phone.
  • the control chip receives the frequency signal sent by the mobile phone baseband chip, and outputs a control signal to control the opening and closing of the switch 3 according to the frequency of the frequency signal. For example, when the frequency signal sent by the baseband chip is an intermediate frequency signal, the control chip outputs a control signal to control the switch 3 to be off.
  • the first filter circuit 1 is in working state, and the second filter circuit 2 is not connected; at this time, the loop gain generated by the closed loop A in the intermediate frequency circuit 41 is eliminated by the resonant circuit formed by the first filter circuit 1, such as Shown in Figure 4.
  • the control chip When the frequency signal sent by the baseband chip is a low-frequency signal, the control chip outputs a control signal to control the switch 3 to close, so that the second filter circuit 2 is connected, so that it and the first filter circuit 1 are in working state at the same time; at this time, the low-frequency circuit 42
  • the loop gain generated by the closed loop B is eliminated by the resonant circuit formed by the first filter circuit 1 and the second filter circuit 2, as shown in FIG. 5.
  • the initial state of the switch 3 may be closed or open. As shown in Figure 2, when the initial state of the switch 3 is closed, the first filter circuit 1 and the second filter circuit 2 are both in the working state; when the control signal controls the switch 3 to open, the second filter circuit 2 is disconnected , Only the first filter circuit 1 is in the working state, as shown in FIG. 3.
  • the first filter circuit 1 and the second filter circuit 2 described in this application can use any filter circuit.
  • the first filter circuit 1 is a capacitor C2 constituting a capacitor filter circuit
  • the second filter circuit 2 is a capacitor formed by a capacitor C3.
  • Filter circuit Of course, an inductance filter circuit, an LC filter circuit, etc. can also be used.
  • the capacitor C2 and the capacitor C3 can be grounded separately or connected together and then grounded. Because the function of the capacitor C3 is to change the resonance frequency through its access. If the parasitic inductance is generated due to the grounding, just adjust the capacitance of C3, and the same effect can be achieved.
  • the power supply network provided by this application realizes the access and disconnection of the second filter circuit 2 by controlling the closing and opening of the switch 3, and the access and disconnection of the second filter circuit 2 have two resonance frequencies, which are respectively determined by The first filter circuit 1 and the first filter circuit 1+the second filter circuit 2 are determined. These two resonance frequencies can correspond to the two frequency bands with relatively high loop gains in the low-frequency and intermediate-frequency circuits, and achieve the effect of increasing the stability of the low-frequency and intermediate-frequency circuits respectively.
  • the switch 3 described here can adopt any kind of controllable switch.
  • a MOS tube is used, and a signal is applied to the G pole of the MOS tube to control the closing and opening of the MOS tube.
  • the power supply network provided in this application can be used for signal processing in any signal processing circuit.
  • it is applied to the signal processing system of the radio frequency front end of a mobile phone.
  • the signal processing system includes:
  • Power amplifier 4 used for signal amplification
  • the impedance matching network 5 is used to match the output impedance of the power amplifier 4 to the impedance of the load;
  • the control chip 7 is used for receiving signals and outputting control signals according to the received signals to control the working state of the power amplifier 4, the frequency selection switch 6 and the switch 3 in the power supply network 8.
  • the bias current provided by the power supply network 8 to the power amplifier 4, and the signal output by the power amplifier 4 is matched by the impedance matching network 5 and then output to the lower stage, such as an antenna, through the frequency selection switch 6.
  • the power amplifier 4 includes an intermediate frequency circuit 41 for amplifying intermediate frequency signals and a low frequency circuit 42 for amplifying low frequency signals.
  • the impedance matching network 5 includes an intermediate frequency impedance matching circuit 51 matched with the intermediate frequency circuit 41 and matched with the low frequency circuit 42.
  • the low-frequency impedance matching circuit 52; the frequency selection switch 6 includes a switch S1 connected to the output terminal of the intermediate frequency impedance matching circuit 51 and a switch S2 connected to the output terminal of the low-frequency impedance matching circuit 52.
  • the intermediate frequency circuit 41 and the low frequency circuit 42 described herein can adopt any amplifying circuit, for example, a three-stage series common emitter transistor is used to form an intermediate frequency circuit for amplifying intermediate frequency signals and a low frequency circuit for amplifying low frequency signals.
  • the specific circuit structure is shown in Figure 7, including a first-stage transistor Q3, a second-stage transistor Q4, and a third-stage transistor Q5.
  • the collector of the first-stage transistor Q3 is connected to the base of the second-stage transistor Q4 via a capacitor C4.
  • the collector of the second-stage transistor Q4 is connected to the base of the third-stage transistor Q5 via the capacitor C5.
  • the base of the first-stage transistor Q3 is used as an input terminal for inputting frequency signals
  • the collector of the third-stage transistor Q5 is used as an output terminal for outputting signals processed by the three-stage transistor.
  • the emitter of the first-stage transistor Q3, the emitter of the second-stage transistor Q4, and the emitter of the third-stage transistor Q5 are grounded respectively; the collector of the first-stage transistor Q3, the collector of the second-stage transistor Q4, and the third-stage The collectors of the transistor Q5 are respectively connected to the power supply VCC via the LC circuit.
  • the bias current provided by the power supply network provided in this application is respectively loaded on the base of the first-stage transistor Q3, the base of the second-stage transistor Q4, and the base of the third-stage transistor Q5 to ensure that the first-stage transistor Q3 and the The normal operation of the second-stage transistor Q4 and the third-stage transistor Q5.
  • the low-frequency (intermediate frequency) circuit provided in Figure 7 of this article is a typical circuit, and of course there can be different low-frequency circuits and intermediate frequency circuits.
  • the intermediate frequency impedance matching circuit 51 and the low frequency impedance matching circuit 52 recorded in this document can adopt any impedance matching circuit.
  • the intermediate frequency impedance matching circuit 51 provided here includes an inductor L1, an inductor L2, a capacitor C5, and a capacitor C6, one end of the inductor L1
  • the input end of the intermediate frequency impedance matching circuit 51 is connected to the output end of the intermediate frequency circuit 41, and the other end is connected to one end of the inductor L2 and grounded through the capacitor C5; the other end of the inductor L2 is used as the output end of the intermediate frequency impedance matching circuit 51 to connect to the switch S1 and the inductor L2 The other end is also grounded via capacitor C6.
  • the low-frequency impedance matching circuit 52 includes an inductor L3, an inductor L4, a capacitor C7, and a capacitor C8.
  • One end of the inductor L3 is used as the input end of the low-frequency impedance matching circuit 52 to connect to the output end of the low-frequency circuit 42, and the other end is connected to the inductor L4.
  • One end is grounded through the capacitor C7; the other end of the inductor L4 is used as the output terminal of the low-frequency impedance matching circuit 52 to connect to the switch S2, and the other end of the inductor L4 is also grounded through the capacitor C8.
  • the control chip 7 can use any chip that can store a computer program and run the stored in it when power is supplied.
  • the function implemented by the program is: accepting the signal sent by the mobile phone baseband chip and outputting control instructions according to the received signal Control the working state of the power amplifier 4, the frequency selection switch 6 and the switch 3 in the power supply network 8.
  • control chip 7 When the signal processing system provided in this application is applied to the mobile phone radio frequency front-end processing signal, when the control chip 7 receives the instruction issued by the mobile phone baseband chip, it will generate corresponding control signals to control other chips, such as power amplifiers, frequency selection switches, etc. . In addition, the control chip 7 also generates a separate signal to control the switch 3. When the baseband sends a low-frequency working signal to the control chip 7, the control chip 7 will generate a signal to close the switch 3 and connect the second filter circuit 2 to the power supply network. When the baseband sends an intermediate frequency operation signal to the control chip 7, the control chip 7 will generate a signal to turn off the switch 3 and not connect the second filter circuit 2 to the power supply network.
  • control principle of the control chip 7 is based on the control principle of the signal processing system provided in this application when applied to the radio frequency front end of a mobile phone.
  • the basic principle is the same, and the difference is that the control signal received by the control chip 7 is different.
  • low frequencies are generally below 1.0 GHz; frequencies above 1.0 GHz and below 2.025 GHz (that is, Band34) are intermediate frequencies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一种可切换环路增益的供电网络、信号处理系统及应用,该供电网络用于向功率放大器提供偏置信号,包括第一滤波电路(1)、第二滤波电路(2)和开关(3),该第一滤波电路(1)一直处于工作状态,该第二滤波电路(2)经该开关(3)闭合状态或断开状态,使其与该第一滤波电路(1)构成谐振频率不同的滤波电路,从而实现对不同的环路增益进行消除。该供电网络通过开关的闭合状态或断开状态改变供电网络中工作的滤波电路状态,实现了不同的谐振频率,可以对应不同频率电路中环路增益比较高的两个频段,实现了不同的环路增益特性,用一个网络就可以提高两个频段的稳定性。

Description

一种可切换环路增益的供电网络、信号处理系统及应用
本申请要求以2020年3月6日提交的申请号为202010149206.6,名称为“一种可切换环路增益的供电网络、信号处理系统及应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种可切换环路增益的供电网络、信号处理系统及应用。
背景技术
放大器是能够使较小的能量来控制较大能量的任何器件,包括A类放大器、B类放大器、AB类放大器、D类放大器、T类放大器、射频功率放大器等,其中射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。
放大器包括一级、二级或多级三极管,通过一级、二级或多级三极管对输入的信号进行放大后输出,为了保证放大器能够处于有效的工作状态对输入的信号进行处理,需要对放大器提供偏置信号使放大器内的三极管处于工作状态。向放大器内的三极管提供偏置信号的电路称为偏置电路。
如图1所示,上面方框为偏置电路,下面方框为射频电路,射频 电路包括三极管Q1和三极管Q2。当偏置电路在向三极管Q1和三极管Q2提供偏置信号时,偏置电路与放大器内的三极管形成闭合环路,如图1中的虚线表示。待放大信号输入三极管Q1经放大后输入三极管Q2放大。但经三极管Q1、三极管Q2放大后的信号不会全部进入后级电路,如经三极管Q2放大后的信号不会全部输出,一部分信号会随着闭合环路回到三极管Q1,三极管Q1再次对返回的信号进行放大后输入三极管Q2,三极管Q2再对信号进行放大后再返回,依次循环。这种在闭合环路内形成环路的信号我们用环路增益表述。当环路增益大于1时,信号会在这个闭合环路间不停的放大形成震荡频率,最终引起电路震荡,导致放大器不稳定。
目前,为了消除环路增益对放大器稳定性的影响,在偏置电路中会接入不同的滤波电路。如图1所示,在偏置电路中接入电容C1。由于电容自身有寄生电感,另外,电容与电源和地的连线在射频也等效为电感,导致电容在工作时,电容与这两个电感会在某个频率产生谐振,形成谐振频率。电容在谐振时,阻抗为0欧,当电容C1的谐振频率和闭合环路内的震荡频率一致时,闭合环路的震荡频率会沿电容C1形成的0欧姆阻抗进入地,使其不在闭合环路内持续震荡,从而消除了闭合环路内的震荡,避免了闭合环路产生震荡,保证了放大器的稳定性。也就是说,电容C1的谐振频率,后级通过闭合环路返回的信号经电容C1接地,即信号环路被打破了,无法形成震荡,保证了放大器的稳定性。
放大器通常在一个芯片内集成了多级放大器,用于处理不同的频 段信号,以手机内的功率放大器为例,通常有低频和中频两个频段,为了节省成本,这两个频段会共用一个偏置电路提供偏置信号,为了降低闭合环路震荡频率的影响,偏置电路会采用上述方式进行处理,即在偏置电路中接入电容,通过电容消除环路增益。但是,由于低频和中频的环路增益通常情况下并不一致,因此采用如图1所示的电路结构无法保证放大器在不同的频段达到稳定。
发明内容
为了解决现有所存在的技术问题,本申请在此的目的在于提供一种能够产生两种谐振频率的可切换环路增益的供电网络。
为实现本申请的目的,在此所提供的可切换环路增益的供电网络用于向功率放大器提供偏置信号,包括第一滤波电路、第二滤波电路和开关,所述第一滤波电路一直处于工作状态,所述第二滤波电路经所述开关闭合状态或断开状态,使其与所述第一滤波电路构成谐振频率不同的滤波电路,从而实现对不同的环路增益进行消除。
本申请提供的供电网络用于向功率放大器提供偏置信号,其中的第一滤波电路和第二滤波电路用于消除环路增益,第二滤波电路的工作状态经开关的导通、断开控制,使其与第一滤波电路构成谐振频率不同的滤波电路,从而实现对不同的环路增益进行消除。
本申请另一个目的在于提供一种包括本申请提供的供电网络的信号处理系统。
本申请另一个目的在于提供一种包括本申请提供的可切换环路 增益的供电网络在手机射频前端的应用。
本申请的有益效果是:本申请提供的供电网络通过开关的闭合状态或断开状态改变供电网络中工作的滤波电路状态,实现了不同的谐振频率,可以对应不同频率电路的中环路增益比较高的两个频段,实现了不同的环路增益特性,用一个网络就可以提高两个频段的稳定性。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本申请记载的现有的两级三极管构成的功率放大器的电路原理图;
图2为本申请提供的供电网络的电路原理图之一;
图3为本申请提供的供电网络的电路原理图之二;
图4为本申请提供的信号处理系统的电路原理图;
图中:1、第一滤波电路;2、第二滤波电路;3、开关;4、功率放大器;5、阻抗匹配网络;6、频率选择开关;7、控制芯片;8、供电网络;41、中频电路;42、低频电路;51、中频阻抗匹配电路;52、低频阻抗匹配电路。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本申请将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
参照图2、图3所示,本申请所提供的可切换环路增益的供电网络包括了第一滤波电路1、第二滤波电路2和开关3,第一滤波电路1一直处于工作状态,第二滤波电路2在开关3闭合状态或断开状态下处于工作状态或非工作状态,使其与第一滤波电路1构成谐振频率不同的滤波电路,从而实现对不同的环路增益进行消除。
本申请提供的可切换环路增益的供电网络为偏置电路,用于向功率放大器内的三极管提供的偏置电流。在此以其应用于手机射频前端,用于对手机射频前端内的功率放大器提供偏置电流为例说明其工作原理,手机射频前端的功率放大器通常用于处理低频和中频两个频段,包括分别用于对低频频段处理的低频电路和用于对中频频段处理的中频电路。本申请提供的供电网络为手机射频前端功率放大器的连接电路简图,如图4、图5所示,其中4表示功率放大器,41表示中频电路,42表示低频电路;中频电路41和低频电路42包括两级或两级以上的三极管。
如图4、图5所示,电源经第一滤波电路1和/或第二滤波电路2后加载于中频电路41和低频电路42,为电路中的每一级三极管提供偏置电流;开关3与手机射频前端内的控制芯片连接。控制芯片接收 手机基带芯片发出的频率信号,根据频率信号的频率情况输出控制信号控制开关3的开、断,如当基带芯片发出的频率信号为中频信号时,控制芯片输出控制信号控制开关3断开,使第一滤波电路1处于工作状态,第二滤波电路2不接入;此时中频电路41中的闭合环路A产生的环路增益经第一滤波电路1构成的谐振电路消除,如图4所示。
当基带芯片发出的频率信号为低频信号时,控制芯片输出控制信号控制开关3闭合,使第二滤波电路2接入,使其与第一滤波电路1同时处于工作状态;此时低频电路42中的闭合环路B产生的环路增益经第一滤波电路1和第二滤波电路2构成的谐振电路消除,如图5所示。
本文中,开关3的初始状态可是闭合,也可以是断开。如图2所示,当开关3的初始状态为闭合时,第一滤波电路1和第二滤波电路2均处于工作状态时;当控制信号控制开关3断开后,第二滤波电路2断开,仅第一滤波电路1处于工作状态,如图3所示。
如图3所示,当开关3的初始状态为断开时,第一滤波电路1处于工作状态时;当控制信号控制开关3闭合后,第二滤波电路2处于工作状态,与第一滤波电路1共同处于工作状态,如图2所示。
本申请所记载的第一滤波电路1、第二滤波电路2可以采用任何一种滤波电路,在此第一滤波电路1为电容C2构成电容滤波电路,第二滤波电路2为电容C3构成的电容滤波电路。当然也可以采用电感滤波电路,LC滤波电路等。对于本应用而言,电容C2和电容C3既可以分别接地,也可以连到一起后再接地。因为电容C3的作用是 通过它的接入,改变谐振频率。如果因为分别接地而产生了寄生电感,只需调整C3的容值,也可以达到同样的效果。
本申请提供的供电网络通过控制开关3的闭合、断开,实现第二滤波电路2的接入、断开,第二滤波电路2的接入、断开就有了两个谐振频率,分别由第一滤波电路1和第一滤波电路1+第二滤波电路2决定。这两个谐振频率,可以对应低频和中频电路中环路增益比较高的两个频段,达到分别增加低频和中频电路稳定性的效果。
在此所记载的开关3可以采用任何一种可控开关,在此采用MOS管,在MOS管的G极加载信号即可控制MOS管的闭合、断开。
本申请提供的供电网络可以用于任何信号处理电路中对信号进行处理,在此将其应用于手机射频前端的信号处理系统,参照图6所示,该信号处理系统包括:
功率放大器4,用于信号放大;
阻抗匹配网络5,用于将功率放大器4的输出阻抗匹配到负载的阻抗;
频率选择开关6,以及
控制芯片7,用于接受信号,并根据接受到的信号输出控制信号,控制功率放大器4、频率选择开关6和供电网络8中的开关3的工作状态。
供电网络8向功率放大器4提供的偏置电流,功率放大器4输出的信号经阻抗匹配网络5匹配后经频率选择开关6输出至下级,如天线。
其中,功率放大器4包括用于放大中频信号的中频电路41和用于放大低频信号的低频电路42,阻抗匹配网络5包括与中频电路41相匹配的中频阻抗匹配电路51和与低频电路42相匹配的低频阻抗匹配电路52;频率选择开关6包括与中频阻抗匹配电路51输出端连接的开关S1和与低频阻抗匹配电路52输出端连接的开关S2。
此处所记载的中频电路41、低频电路42可以采用任何一种放大电路,如采用三级串联的共射极三极管分别构成用于放大中频信号的中频电路和用于放大低频信号的低频电路。具体电路结构如图7所示,包括第一级三极管Q3、第二级三极管Q4和第三级三极管Q5,第一级三极管Q3的集电极经电容C4接第二级三极管Q4的基极,第二级三极管Q4的集电极经电容C5接第三级三极管Q5的基极。第一级三极管Q3的基极作为输入端用于输入频率信号,第三级三极管Q5的集电极作为输出端用于输出经三级三极管处理后的信号。
第一级三极管Q3的发射极、第二级三极管Q4的发射极和第三级三极管Q5的发射极分别接地;第一级三极管Q3的集电极、第二级三极管Q4的集电极和第三级三极管Q5的集电极分别经LC电路接电源VCC。
本申请提供的供电网络提供的偏置电流分别加载于第一级三极管Q3的基极、第二级三极管Q4的基极和第三级三极管Q5的基极,以保证第一级三极管Q3、第二级三极管Q4和第三级三极管Q5的正常工作。
应注意的是,本文附图7提供的低频(中频)电路是一种典型电 路,当然也可以有不同的低频电路、中频电路。
本文记记载的中频阻抗匹配电路51、低频阻抗匹配电路52可以采用任何一种阻抗匹配电路,在此提供的中频阻抗匹配电路51包括电感L1、电感L2、电容C5和电容C6,电感L1的一端作为中频阻抗匹配电路51的输入端接中频电路41的输出端,另一端接电感L2的一端并经电容C5接地;电感L2的另一端作为中频阻抗匹配电路51的输出端接开关S1,电感L2的另一端还经电容C6接地。
在此所提供的低频阻抗匹配电路52包括电感L3、电感L4、电容C7和电容C8,电感L3的一端作为低频阻抗匹配电路52的输入端接低频电路42的输出端,另一端接电感L4的一端并经电容C7接地;电感L4的另一端作为低频阻抗匹配电路52的输出端接开关S2,电感L4的另一端还经电容C8接地。
控制芯片7可以采用任何一种能够存储计算机程序,并在供电时运行存储于其内的芯片,其运行的程序实现的功能为:接受手机基带芯片发出的信号,并根据接受的信号输出控制指令控制功率放大器4、频率选择开关6和供电网络8中的开关3的工作状态。
本申请提供的信号处理系统应用于手机射频前端处理信号时,当控制芯片7接收到手机基带芯片发出的指令后,会生成相应的控制信号,控制其他芯片,如功率放大器、频率选择开关等等。此外,控制芯片7还生成一个单独的信号,控制开关3。当基带发出低频工作的信号给控制芯片7时,控制芯片7会生成信号让开关3闭合,把第二滤波电路2接入供电网络。当基带发出中频频工作的信号给控制芯片 7时,控制芯片7会生成信号,让开关3断开,不把第二滤波电路2接入供电网络。
以上控制芯片7的控制原理是基于本申请提供的信号处理系统应用于手机射频前端中时的控制原理,当用于其它信号处理时,基本原理相同,区别在于控制芯片7接收的控制信号不同。
本领域中通常1.0GHz以下是低频;频率在1.0GHz以上、2.025GHz(也就是Band34)以下是中频。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种可切换环路增益的供电网络,其特征在于:该供电网络用于向功率放大器提供偏置信号,包括第一滤波电路(1)、第二滤波电路(2)和开关(3),所述第一滤波电路(1)一直处于工作状态,所述第二滤波电路(2)经所述开关(3)闭合状态或断开状态,使其与所述第一滤波电路(1)构成谐振频率不同的滤波电路,从而实现对不同的环路增益进行消除。
  2. 根据权利要求1所述的可切换环路增益的供电网络,其特征在于:所述第一滤波电路(1)和所述第二滤波电路(2)接地。
  3. 根据权利要求1所述的可切换环路增益的供电网络,其特征在于:所述第一滤波电路(1)包括电容滤波电路或电感滤波电路或LC滤波电路。
  4. 根据权利要求1所述的可切换环路增益的供电网络,其特征在于:所述第二滤波电路(2)包括电容滤波电路或电感滤波电路或LC滤波电路。
  5. 根据权利要求1所述的可切换环路增益的供电网络,其特征在于:
    所述开关(3)在低频时闭合,所述第一滤波电路(1)和所述第二滤波电路(2)处于工作状态;
    所述开关(3)在中频时断开,所述第一滤波电路(1)处于工作状态。
  6. 一种信号处理系统,其特征在于:该系统包括供电网络,所述供电网络用于向功率放大器提供偏置信号,包括第一滤波电路(1)、 第二滤波电路(2)和开关(3),所述第一滤波电路(1)一直处于工作状态,所述第二滤波电路(2)经所述开关(3)闭合状态或断开状态,使其与所述第一滤波电路(1)构成谐振频率不同的滤波电路,从而实现对不同的环路增益进行消除。
  7. 根据权利要求6所述的信号处理系统,其特征在于,还包括:
    功率放大器(4),用于信号放大;
    阻抗匹配网络(5),用于将所述功率放大器(4)的输出阻抗匹配到负载的阻抗;
    频率选择开关(6),以及
    控制芯片(7),用于接受信号,并根据接受到的信号输出控制信号,控制所述功率放大器(4)、所述频率选择开关(6)和所述供电网络中的开关(3)的工作状态。
  8. 根据权利要求7所述的信号处理系统,其特征在于:所述功率放大器(4)包括中频电路和低频电路,所述阻抗匹配网络(5)包括与所述中频电路相匹配的中频阻抗匹配电路和与所述低频电路相匹配的低频阻抗匹配电路;所述频率选择开关(6)包括与所述中频阻抗匹配电路输出端连接的开关S1和与所述低频阻抗匹配电路输出端连接的开关S2;
    当基带发出低频工作的信号给控制芯片(7)时,控制芯片7信号控制开关(3)闭合,把第二滤波电路(2)接入供电网络,当基带发出中频工作的信号给控制芯片(7)时,控制芯片(7)信号控制开关(3)断开,第二滤波电路(2)不接入供电网络,保证功率放大器 (4)在不同的频段达到稳定。
  9. 根据权利要求8所述的信号处理系统,其特征在于:所述中频电路和/或所述低频电路为一个三级串联的共射极放大电路。
  10. 如权利要求6所述的信号处理系统,其特征在于,所述第一滤波电路(1)和所述第二滤波电路(2)接地。
  11. 如权利要求6所述的信号处理系统,其特征在于,所述第一滤波电路(1)包括电容滤波电路或电感滤波电路或LC滤波电路。
  12. 如权利要求6所述的信号处理系统,其特征在于,所述第二滤波电路(2)包括电容滤波电路或电感滤波电路或LC滤波电路。
  13. 如权利要求6所述的信号处理系统,其特征在于,
    所述开关(3)在低频时闭合,所述第一滤波电路(1)和所述第二滤波电路(2)处于工作状态;
    所述开关(3)在中频时断开,所述第一滤波电路(1)处于工作状态。
  14. 一种可切换环路增益的供电网络在手机射频前端的应用,所述供电网络用于向功率放大器提供偏置信号,包括第一滤波电路(1)、第二滤波电路(2)和开关(3),所述第一滤波电路(1)一直处于工作状态,所述第二滤波电路(2)经所述开关(3)闭合状态或断开状态,使其与所述第一滤波电路(1)构成谐振频率不同的滤波电路,从而实现对不同的环路增益进行消除。
  15. 如权利要求14所述的可切换环路增益的供电网络在手机射频前端的应用,其特征在于,所述第一滤波电路(1)和所述第二滤 波电路(2)接地。
  16. 如权利要求14所述的可切换环路增益的供电网络在手机射频前端的应用,其特征在于,所述第一滤波电路(1)包括电容滤波电路或电感滤波电路或LC滤波电路。
  17. 如权利要求14所述的可切换环路增益的供电网络在手机射频前端的应用,其特征在于,所述第二滤波电路(2)包括电容滤波电路或电感滤波电路或LC滤波电路。
  18. 如权利要求14所述的可切换环路增益的供电网络在手机射频前端的应用,其特征在于,
    所述开关(3)在低频时闭合,所述第一滤波电路(1)和所述第二滤波电路(2)处于工作状态;
    所述开关(3)在中频时断开,所述第一滤波电路(1)处于工作状态。
PCT/CN2020/113908 2020-03-06 2020-09-08 一种可切换环路增益的供电网络、信号处理系统及应用 WO2021174797A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010149206.6A CN111030079B (zh) 2020-03-06 2020-03-06 一种可切换环路增益的供电网络及信号处理系统
CN202010149206.6 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021174797A1 true WO2021174797A1 (zh) 2021-09-10

Family

ID=70199369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113908 WO2021174797A1 (zh) 2020-03-06 2020-09-08 一种可切换环路增益的供电网络、信号处理系统及应用

Country Status (2)

Country Link
CN (1) CN111030079B (zh)
WO (1) WO2021174797A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030079B (zh) * 2020-03-06 2020-07-10 锐石创芯(深圳)科技有限公司 一种可切换环路增益的供电网络及信号处理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020014920A1 (en) * 2000-07-14 2002-02-07 Masami Ohnishi High frequency power amplifier
CN101305440A (zh) * 2005-10-05 2008-11-12 艾利森电话股份有限公司 具有最小化相位噪声用的可调谐滤波器的振荡电路
CN101471632A (zh) * 2007-12-26 2009-07-01 中国科学院微电子研究所 环路增益可控的自偏置低压运算跨导放大器电路
CN101741379A (zh) * 2009-12-09 2010-06-16 中国科学院半导体研究所 一种快速锁定锁相环的频率综合装置
CN103155415A (zh) * 2011-06-15 2013-06-12 旭化成微电子株式会社 分数-n频率合成器中用于消除环路增益改变时的相位跃变的消除系统
CN107615647A (zh) * 2015-04-09 2018-01-19 德克萨斯仪器股份有限公司 低功率低相位噪声的振荡器
WO2019174805A1 (en) * 2018-03-15 2019-09-19 RF360 Europe GmbH Gain control filter circuit, power module comprising a filter circuit and method of adjusting an rf filter circuit to provide a controllable gain
CN111030079A (zh) * 2020-03-06 2020-04-17 锐石创芯(深圳)科技有限公司 一种可切换环路增益的供电网络、信号处理系统及应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8724731B2 (en) * 2010-02-26 2014-05-13 Intersil Americas Inc. Methods and systems for noise and interference cancellation
CN102136840B (zh) * 2011-04-22 2016-03-16 上海华虹宏力半导体制造有限公司 自偏置锁相环
CN202617072U (zh) * 2012-05-24 2012-12-19 江南大学 一种多标准、多频段低噪声放大器
US9537452B2 (en) * 2014-04-29 2017-01-03 Skyworks Solutions, Inc. Broadband power amplifier systems and methods
CN105141263A (zh) * 2015-09-29 2015-12-09 株洲宏达天成微波有限公司 一种多频段低噪声放大方法及多频段低噪声放大器
US9941849B1 (en) * 2017-02-10 2018-04-10 Psemi Corporation Programmable optimized band switching LNA for operation in multiple narrow-band frequency ranges
CN107147408A (zh) * 2017-05-08 2017-09-08 王昭 一种减小直接上变频发射机频率牵引的装置
CN107592082B (zh) * 2017-09-26 2020-07-17 上海华虹宏力半导体制造有限公司 一种双模双频二次电流复用低噪声放大器
CN108233886A (zh) * 2018-03-12 2018-06-29 锐石创芯(深圳)科技有限公司 宽频阻抗匹配模块及包含其的装置
CN108736835B (zh) * 2018-05-23 2021-11-30 东南大学 一种多频带低功耗低噪声放大器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020014920A1 (en) * 2000-07-14 2002-02-07 Masami Ohnishi High frequency power amplifier
CN101305440A (zh) * 2005-10-05 2008-11-12 艾利森电话股份有限公司 具有最小化相位噪声用的可调谐滤波器的振荡电路
CN101471632A (zh) * 2007-12-26 2009-07-01 中国科学院微电子研究所 环路增益可控的自偏置低压运算跨导放大器电路
CN101741379A (zh) * 2009-12-09 2010-06-16 中国科学院半导体研究所 一种快速锁定锁相环的频率综合装置
CN103155415A (zh) * 2011-06-15 2013-06-12 旭化成微电子株式会社 分数-n频率合成器中用于消除环路增益改变时的相位跃变的消除系统
CN107615647A (zh) * 2015-04-09 2018-01-19 德克萨斯仪器股份有限公司 低功率低相位噪声的振荡器
WO2019174805A1 (en) * 2018-03-15 2019-09-19 RF360 Europe GmbH Gain control filter circuit, power module comprising a filter circuit and method of adjusting an rf filter circuit to provide a controllable gain
CN111030079A (zh) * 2020-03-06 2020-04-17 锐石创芯(深圳)科技有限公司 一种可切换环路增益的供电网络、信号处理系统及应用

Also Published As

Publication number Publication date
CN111030079A (zh) 2020-04-17
CN111030079B (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
US8271028B2 (en) Dual band amplifier
CN101719776B (zh) 一种射频收发装置
US6603351B2 (en) Power amplifier with gain change compensation
US7439811B2 (en) Broadband low noise amplifier and RF signal amplification method of the same
US5343162A (en) RF variable gain tuned output amplifier which maintains high Q in saturation
CN110995310B (zh) 一种射频前端电路及其控制方法
US6630861B2 (en) Variable gain amplifier
CN109525203B (zh) 一种基于GaAs pHEMT工艺的中频放大器
KR102661652B1 (ko) 전력 증폭 회로
KR100789918B1 (ko) 광대역 저잡음 증폭기의 입력 매칭 회로
CN111342784B (zh) 一种射频功率放大器及应用
US20230015927A1 (en) Radio Frequency (RF) Amplifier Circuit for Antenna Systems having a Modal Antenna
US11152893B2 (en) Power amplifying circuit and power amplifier
WO2021174797A1 (zh) 一种可切换环路增益的供电网络、信号处理系统及应用
CN115208329A (zh) 一种无源跨导增强差分放大电路
JPH09307365A (ja) 増幅器及びその増幅器を用いた携帯電話機
US6292063B1 (en) Oscillating apparatus including two-band resonance circuit
WO2019240668A1 (en) Transmitter device, wireless power transfer system, and methods of forming the same
CN111641395B (zh) 一种射频功率放大器和实现射频信号放大的方法
WO2002093735B1 (en) Integrated circuit radio frequency amplifier with notch filter
US10476440B2 (en) Power amplification circuit
JP2003224439A (ja) 低雑音増幅器
US20230014984A1 (en) Power amplifier circuit
US20210336592A1 (en) Power amplifier circuit
JP3955460B2 (ja) 2バンド発振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922699

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20922699

Country of ref document: EP

Kind code of ref document: A1