WO2021174795A1 - 电场极化气体吸附系统 - Google Patents

电场极化气体吸附系统 Download PDF

Info

Publication number
WO2021174795A1
WO2021174795A1 PCT/CN2020/113619 CN2020113619W WO2021174795A1 WO 2021174795 A1 WO2021174795 A1 WO 2021174795A1 CN 2020113619 W CN2020113619 W CN 2020113619W WO 2021174795 A1 WO2021174795 A1 WO 2021174795A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
electric field
container
field electrode
gas container
Prior art date
Application number
PCT/CN2020/113619
Other languages
English (en)
French (fr)
Inventor
顾士平
顾海涛
Original Assignee
顾士平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顾士平 filed Critical 顾士平
Publication of WO2021174795A1 publication Critical patent/WO2021174795A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to an electric field polarized gas adsorption system, in particular to an electric field polarized gas adsorption system with an external polarized power supply.
  • Hydrogen requires a very low temperature to achieve a large amount of physical adsorption of hydrogen.
  • the invention is to improve the physical adsorption capacity of hydrogen at normal temperature. Hydrogen storage in hydrogen fuel cell technology is now the bottleneck of this technology.
  • the electric field polarized gas adsorption system consists of: gas container port 1 (101), gas container port 2 (107), gas container (102), conductor shielding shell (103), electric field electrode 1 (104), electric field electrode 2 (106) ), pore material (105) or electret pore material (105), wire 1 (108), wire 2 (109), external polarization power supply (110), heating electric heating wire (111);
  • the gas container (102) has one, or two, or more gas container connection ports for gas input, or output, or input/output; gas container port 1 (101), gas container port 2 (107) It is the gas input or output port, or input/output port of the gas container (102);
  • Conductor shielding shell (103) It is the external electromagnetic shielding shell of the electric field polarized gas adsorption system. Its function is to avoid the external influence of the electric field generated by the electric field electrode 1 (104) and the electric field electrode 2 (106) on the conductor shielding shell (103). Ensure the safe operation of the electric field polarized gas adsorption system; the conductor shielding shell (103) can be grounded or ungrounded; the conductor shielding shell (103) and the gas container (102) are combined together to bear the pressure of the gas together; or the conductor shielding The shell (103) is only used as a shielding shell, which shields the electric field and does not bear the pressure of gas;
  • Gas container (102) a non-electric conductor airtight container, electric field electrode 1 (104) and electric field electrode 2 (106) are applied with a voltage to form an electric field, and the electric field acts on: (1) gas container (102) wall; (2) pores Substance (105); (3) The stored gas polarizes the above three parts;
  • the wall of the polarized gas container (102) adsorbs the storage gas; the polarized pore material (105) adsorbs the storage gas; the polarized storage gas adsorbs the polarized storage gas; under the combined action of the pressure of the external gas and the adsorption force, Achieve mass storage of gas;
  • Inflation (1) Input gas to the gas container (102) to increase the gas pressure: continuously press the gas container (102) through the gas container port 1 (101) or the gas container port 2 (107) to increase the gas container (102) ), increase the gas pressure of the gas container (102); (2) increase the DC voltage at both ends of the external polarized power supply (110), and pass it to the electric field electrode 1 (104) through wire 1 (108) and wire 2 (109) ) On the electric field electrode 2 (106); thereby increasing the voltage difference between the electric field electrode 1 (104) and the electric field electrode 2 (106), thereby increasing the pore material (105) and the gas container ( 102)
  • the polarized electric field of the stored gas to enhance the adsorption force of the porous material (105) on the gas, and increase the adsorption force between the stored gas and the stored gas;
  • Bleeding When it is necessary to output gas to the outside, (1) first keep the polarization voltage unchanged, and use the internal pressure of the storage gas to deflate the external gas. When the pressure of the internal storage gas is less than a certain value, then gradually reduce the polarization voltage, Thereby reducing the polarization intensity, and then reducing the physical adsorption, to achieve deflation; (2) or reduce the polarized DC power supply voltage at the same time, and the gas pressure to deflate; (3) or reduce the polarization voltage to deflate to the outside, and then Vent air to the outside by lowering the air pressure;
  • Depolarization When an alternating voltage is applied to the electric field electrode 1 (104) and the electric field electrode 2 (106), an alternating electric field is generated between the electric field electrode 1 (104) and the electric field electrode 2 (106), so that (1 ) Gas container (102) wall; (2) pore material (105); (3) storage gas depolarization; the adsorption force between the adsorbed storage gas and the adsorbed storage gas is reduced, or the adsorbed storage gas and the pore material The adsorption force between (105) is reduced, or the adsorption force between the wall of the gas container (102) and the adsorbed storage gas is reduced, desorption occurs, and the gas is released;
  • the heating wire (111) placed in the pore material (105) in the gas container (102) is energized to generate heat to heat the pore material (105) and the stored gas. Release of stored gas;
  • the electret pore material (105) instead of the pore material (105), the electret pore material itself has polarity, and the electret pore material is used to adsorb gas; when it is necessary to increase the amount of gas adsorption, increase the electric field electrode 1 (104), the voltage at both ends of the electric field electrode 2 (106) further strengthens the polarization of the electret pore material (105), so that more electret pore material (105) can adsorb the pressed gas; at the same time increase the gas Adsorption between gas and gas; increase the storage capacity of gas; when the gas needs to be released, use the pressure of the gas to directly release the gas; or add an alternating voltage to the electrode, the electret pore material in the gas container (102) Under the action of the alternating electric field, depolarization and release of the adsorbed gas; or through the heating electric heating wire (111) placed in the electret pore material (105) in the gas container (102) to generate heat to heat the electrified body Porous material (105) releases stored
  • the polarization voltage at the end releases the gas; or the alternating voltage is applied to the two ends of the electric field electrode 1 (104) and the electric field electrode 2 (106) to further reduce the polarization and release the gas; or the electric current is applied to the two ends of the heating electric heating wire (111), The heating wire generates heat and releases gas.
  • the gas container (102), the conductor shielding shell (103) is spherical; or the gas container (102), the conductor shielding shell (103) is ellipsoidal; or the gas container (102), the conductor shielding shell (103) is Or the gas container (102), the conductor shielding shell (103) is a square shape; or the gas container (102), the conductor shielding shell (103) is a spherical irregular shape.
  • Electric field electrode 1 (104), electric field electrode 2 (106) are flat; or electric field electrode 1 (104), electric field electrode 2 (106) are arc-shaped; or electric field electrode 1 (104), electric field electrode 2 (106) ) Is an irregular board.
  • the electric field polarized gas adsorption system consists of a conductor shielding shell, and the inside is composed of a gas container alone, or a conductor shielding shell and two gas containers, or a conductor shielding shell and 3 gas containers Composition, or one conductor shielding shell and n gas containers;
  • a gas storage system composed of multiple groups of polarized plates and gas containers: conductor shielding shell (201); electric field electrode 1 (210), electric field electrode 2 (211), electric field electrode 3 (212), electric field electrode 4 ( 213), electric field electrode 5 (214);
  • Gas container 1 (206), gas container 2 (207), gas container 3 (208), gas container n (209);
  • Porous material 1 or electrified body pore material 1 (219), pore material 2 electrified body pore material 2 (220), pore material 3 or electrified body pore material 3 (221), pore material n or electrified body pore material n(222);
  • Each group of pore materials or electret pore materials has heating wires;
  • each unit electrode can be connected arbitrarily;
  • the gas container can be spherical, or ellipsoidal, or cube, or square, or irregular in shape;
  • the electric field electrode can be flat, curved, or irregular;
  • Gas container 1 (206), gas container 2 (207), gas container 3 (208), gas container n (209) all have heating resistance wires, and the heating resistance wires are the same as the above current heating to promote the release of stored gas.
  • Porous material (105) uses porous activated carbon; or porous material (105) uses nanoporous carbon; or porous material (105) uses zeolite; or porous material (105) uses graphene; or porous material (105) uses nanotubes; Or porous material (105) uses porous alumina; or porous material (105) uses molecular sieve; or porous material (105) uses porous silica gel; or porous material (105) uses porous aluminum silicate; or porous material (105) uses silicon Algae earth; or porous material (105) using porous ion exchange resin; or porous material (105) using titanium dioxide; or porous material (105) using bentonite; or porous material (105) using sepiolite; or porous material (105) Use fiber carbonized porous material; or porous material (105) using metal organic framework material; or porous material (105) using organic skeleton material; or porous material (105) using foamed aluminum; or porous material (105) using other porous materials;
  • the pore material (105) is LaNi 5 ,
  • the electric field polarized gas adsorption system can be stored in high density at room temperature, hydrogen, or oxygen, or nitrogen, or helium, or chlorine, or fluorine, or neon, or argon, or xenon, or radon, or hydrocarbon Class, or hydrocarbon compound.
  • the heating wire is straight, or the heating wire is arc, or the heating wire is irregular.
  • the present invention is a new physical adsorption method that uses an electric field to polarize the container wall, pore material, and loading gas, and offset the positive and negative charge centers of the container wall, pore material, and loading gas, thereby realizing the connection between the container wall and the loading gas.
  • a vehicle-mounted hydrogen fuel cell needs to load 70MPa to store a small amount of hydrogen. The pressure is too high and dangerous. It takes too much energy to compress hydrogen into the hydrogen tank at such a high pressure; and when the storage of liquefied hydrogen is required, To cool the hydrogen to 20.271K and maintain the liquid hydrogen state requires too much energy to be used in vehicle-mounted hydrogen storage.
  • FIG. 1 Schematic diagram of electric field polarized gas adsorption system
  • FIG. 3 Schematic diagram of the connection of multiple electric field electrodes
  • the electric field polarized gas adsorption system consists of: gas container port 1 (101), gas container port 2 (107), gas container (102), conductor shielding shell (103), electric field electrode 1 (104) , Electric field electrode 2 (106), pore material (105) or electret pore material (105), wire 1 (108), wire 2 (109), external polarization power supply (110), heating wire (111);
  • the gas container (102) has one, or two, or more gas container connection ports for gas input, or output, or input/output; gas container port 1 (101), gas container port 2 (107) It is the gas input or output port, or input/output port of the gas container (102);
  • Conductor shielding shell (103) It is the external electromagnetic shielding shell of the electric field polarized gas adsorption system. Its function is to avoid the external influence of the electric field generated by the electric field electrode 1 (104) and the electric field electrode 2 (106) on the conductor shielding shell (103). Ensure the safe operation of the electric field polarized gas adsorption system; the conductor shielding shell (103) can be grounded or ungrounded; the conductor shielding shell (103) and the gas container (102) are combined together to bear the pressure of the gas together; or the conductor shielding The shell (103) is only used as a shielding shell, which shields the electric field and does not bear the pressure of gas;
  • Gas container (102) a non-electric conductor airtight container, electric field electrode 1 (104) and electric field electrode 2 (106) are applied with a voltage to form an electric field, and the electric field acts on: (1) gas container (102) wall; (2) pores Substance (105); (3) The stored gas polarizes the above three parts;
  • the wall of the polarized gas container (102) adsorbs the storage gas; the polarized pore material (105) adsorbs the storage gas; the polarized storage gas adsorbs the polarized storage gas; under the combined action of the pressure of the external gas and the adsorption force, Achieve mass storage of gas;
  • Inflation (1) Input gas to the gas container (102) to increase the gas pressure: continuously press the gas container (102) through the gas container port 1 (101) or the gas container port 2 (107) to increase the gas container (102) ), increase the gas pressure of the gas container (102); (2) increase the DC voltage at both ends of the external polarized power supply (110), and pass it to the electric field electrode 1 (104) through wire 1 (108) and wire 2 (109) ) On the electric field electrode 2 (106); thereby increasing the voltage difference between the electric field electrode 1 (104) and the electric field electrode 2 (106), thereby increasing the pore material (105) and the gas container ( 102)
  • the polarized electric field of the stored gas to enhance the adsorption force of the porous material (105) on the gas, and increase the adsorption force between the stored gas and the stored gas;
  • Bleeding When it is necessary to output gas to the outside, (1) first keep the polarization voltage unchanged, and use the internal pressure of the storage gas to deflate the external gas. When the pressure of the internal storage gas is less than a certain value, then gradually reduce the polarization voltage, Thereby reducing the polarization intensity, and then reducing the physical adsorption, to achieve deflation; (2) or reduce the polarized DC power supply voltage at the same time, and the gas pressure to deflate; (3) or reduce the polarization voltage to deflate to the outside, and then Vent air to the outside by lowering the air pressure;
  • Depolarization When an alternating voltage is applied to the electric field electrode 1 (104) and the electric field electrode 2 (106), an alternating electric field is generated between the electric field electrode 1 (104) and the electric field electrode 2 (106), so that (1 ) Gas container (102) wall; (2) pore material (105); (3) storage gas depolarization; the adsorption force between the adsorbed storage gas and the adsorbed storage gas is reduced, or the adsorbed storage gas and the pore material The adsorption force between (105) is reduced, or the adsorption force between the wall of the gas container (102) and the adsorbed storage gas is reduced, desorption occurs, and the gas is released;
  • the heating wire (111) placed in the pore material (105) in the gas container (102) is energized to generate heat to heat the pore material (105) and the stored gas. Release of stored gas;
  • the electret pore material (105) instead of the pore material (105), the electret pore material itself has polarity, and the electret pore material is used to adsorb gas; when it is necessary to increase the amount of gas adsorption, increase the electric field electrode 1 (104), the voltage at both ends of the electric field electrode 2 (106) further strengthens the polarization of the electret pore material (105), so that more electret pore material (105) can adsorb the pressed gas; at the same time increase the gas Adsorption between gas and gas; increase the storage capacity of gas; when the gas needs to be released, use the pressure of the gas to directly release the gas; or add an alternating voltage to the electrode, the electret pore material in the gas container (102) Under the action of the alternating electric field, depolarization and release of the adsorbed gas; or through the heating electric heating wire (111) placed in the electret pore material (105) in the gas container (102) to generate heat to heat the electrified body Porous material (105) releases stored
  • the polarization voltage at the end releases the gas; or the alternating voltage is applied to the two ends of the electric field electrode 1 (104) and the electric field electrode 2 (106) to further reduce the polarization and release the gas; or the electric current is applied to the two ends of the heating electric heating wire (111), The heating wire generates heat and releases gas.
  • the gas container (102), the conductor shielding shell (103) is spherical; or the gas container (102), the conductor shielding shell (103) is ellipsoidal; or the gas container (102), the conductor shielding shell (103) is Or the gas container (102), the conductor shielding shell (103) is a square shape; or the gas container (102), the conductor shielding shell (103) is a spherical irregular shape.
  • Electric field electrode 1 (104), electric field electrode 2 (106) are flat; or electric field electrode 1 (104), electric field electrode 2 (106) are arc-shaped; or electric field electrode 1 (104), electric field electrode 2 (106) ) Is an irregular board.
  • the electric field polarized gas adsorption system consists of a conductor shielding shell, and the inside is composed of a gas container alone, or a conductor shielding shell and two gas containers, or a conductor shielding shell and 3 gas containers Composition, or one conductor shielding shell and n gas containers;
  • FIG. 2 it is a gas storage system composed of multiple groups of polarized plates and gas containers: conductor shielding shell (201); electric field electrode 1 (210), electric field electrode 2 (211), electric field electrode 3 (212) ), electric field electrode 4 (213), electric field electrode 5 (214);
  • Gas container 1 (206), gas container 2 (207), gas container 3 (208), gas container n (209);
  • Porous material 1 or electrified body pore material 1 (219), pore material 2 electrified body pore material 2 (220), pore material 3 or electrified body pore material 3 (221), pore material n or electrified body pore material n(222);
  • Each group of pore materials or electret pore materials has heating wires;
  • each unit electrode can be connected arbitrarily;
  • the gas container can be spherical, or ellipsoidal, or cube, or square, or irregular in shape;
  • the electric field electrode can be flat, curved, or irregular;
  • Gas container 1 (206), gas container 2 (207), gas container 3 (208), gas container n (209) all have heating resistance wires, and the heating resistance wires are the same as the above current heating to promote the release of stored gas.
  • Porous material (105) uses porous activated carbon; or porous material (105) uses nanoporous carbon; or porous material (105) uses zeolite; or porous material (105) uses graphene; or porous material (105) uses nanotubes; Or porous material (105) uses porous alumina; or porous material (105) uses molecular sieve; or porous material (105) uses porous silica gel; or porous material (105) uses porous aluminum silicate; or porous material (105) uses silicon Algae earth; or porous material (105) using porous ion exchange resin; or porous material (105) using titanium dioxide; or porous material (105) using bentonite; or porous material (105) using sepiolite; or porous material (105) Use fiber carbonized porous material; or porous material (105) using metal organic framework material; or porous material (105) using organic skeleton material; or porous material (105) using foamed aluminum; or porous material (105) using other porous materials;
  • the pore material (105) is LaNi 5 ,
  • the electric field polarized gas adsorption system can be stored in high density at room temperature, hydrogen, or oxygen, or nitrogen, or helium, or chlorine, or fluorine, or neon, or argon, or xenon, or radon, or hydrocarbon Class, or hydrocarbon compound.
  • the heating wire is straight, or the heating wire is arc, or the heating wire is irregular.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种电场极化气体吸附系统,电场使气体容器(102)壁、孔隙物质(105)、存储气体发生极化;从而实现气体容器(102)壁与存储气体的极化吸附;孔隙物质(105)与存储气体极化吸附;存储气体之间极化吸附。外加电场场强越强,极化强度越强,外加输入气体的压强越大,存储的气体越多。去掉极化后,存储气体与气体容器(102)壁发生脱附,存储气体与孔隙物质(105)发生脱附,同时放气减小储存气体的压强,释放气体。

Description

电场极化气体吸附系统 一、技术领域
本发明涉及电场极化气体吸附系统,特别涉及一种带外部极化电源的电场极化气体吸附系统。
二、背景技术
氢气需要极低的温度下才能实现氢气的大量物理吸附。本发明为在常温下提高氢气的物理吸附能力。现在氢燃料电池技术中的氢气存储是该技术的瓶颈。
三、发明内容
要解决的问题:
现在气体高密度存储方法:物理吸附,化学吸附方法。本专利要解决氢气、氧气、氮气等气体,物理吸附太弱,需要极低的温度,能耗太大;化学吸附化学键又太强,需要很多能量才能实现气体的脱附,需要气体化学脱附时需要大量的能量。
技术方案:
电场极化气体吸附系统,由:气体容器口1(101),气体容器口2(107),气体容器(102),导体屏蔽外壳(103),电场电极1(104),电场电极2(106),孔隙物质(105)或驻电体孔隙物质(105),导线1(108),导线2(109),外接极化电源(110),加热电热丝(111);
气体容器(102)有1个、或2个、或多个气体容器连接口,用于气体的输入,或输出,或输入/输出;气体容器口1(101),气体容器口2(107)为气体容器(102)的气体输入,或输出口,或输入/输出口;
导体屏蔽外壳(103):为电场极化气体吸附系统的外部电磁屏蔽壳,作 用是避免电场电极1(104),电场电极2(106)产生的电场对导体屏蔽外壳(103)的外部影响,保证电场极化气体吸附系统的安全运行;其导体屏蔽外壳(103)可以接地,或不接地;导体屏蔽外壳(103)与气体容器(102)组合在一起,共同承受气体的压强;或导体屏蔽外壳(103)仅仅作为屏蔽作用外壳,对电场起屏蔽作用,不承受气体的压强;
气体容器(102):为非电导体密闭容器,电场电极1(104),电场电极2(106)上外加电压形成电场,电场作用于:(1)气体容器(102)壁;(2)孔隙物质(105);(3)存储气体使上述三个部分发生极化;
极化的气体容器(102)壁吸附存储气体;极化的孔隙物质(105)吸附存储气体;极化的存储气体吸附极化的存储气体;在外加气体的压强和吸附力的共同作用下,实现气体的大量存储;
电场电极1(104),电场电极2(106)之间的直流电压越高,即外加电场场强越强,极化的场强越大,气体容器(102)壁,孔隙物质(105),存储气体极化强度越大;它们之间的吸附力越大,有足够气体输入的情况下存储气体越多;极化强度越强,外加输入气体的压强越大,存储的气体越多;加上外加电场极化后存储的气体与单纯仅仅加上同等压强的气体存储量高几个数量级以上;
充气:(1)气体容器(102)输入气体,提高气体压强:通过气体容器口1(101),或气体容器口2(107)对气体容器(102)不断压入气体,增加气体容器(102)内气体量,提高气体容器(102)气体的压强;(2)提高外接极化电源(110)两端的直流电压,通过导线1(108),导线2(109)传递到电场电极1(104),电场电极2(106)上;从而提高电场电极1(104),电场电极2(106)之间的电压差,从而增加了气体容器(102)中的孔隙物质(105)和气体容器(102)中存储气体的极化电场,增强加孔隙物质(105)对气体的吸附力,增加存储气体与存储气体之间的吸附力;
放气:需要对外输出气体时,(1)先保持极化电压不变,利用存储气体内部的压强对外放气,当内部存储气体的压强小于一定值时,再通过逐渐减小极化电压,从而减少极化强度,进而减小物理吸附,实现放气;(2)或同时减小极化直流电源电压,和气体压强对外放气;(3)或先降低极化电压对 外放气,再通过降低气压对外放气;
去极化:在电场电极1(104),电场电极2(106)上加上交流电压时,在电场电极1(104),电场电极2(106)之间产生交变的电场,使(1)气体容器(102)壁;(2)孔隙物质(105);(3)存储气体去极化;吸附的存储气体与吸附的存储气体之间吸附力减小,或吸附的存储气体与孔隙物质(105)之间吸附力减小,或气体容器(102)壁与吸附的存储气体之间吸附力减小,发生脱附,释放出气体;
电场极化气体吸附系统释放储存的气体不彻底时,通过在气体容器(102)中安放在孔隙物质(105)中的加热电热丝(111)通电发热,加热孔隙物质(105)和存储气体,释放储存的气体;
或驻电体孔隙物质(105)代替孔隙物质(105),驻电体孔隙物质本身带极性,驻电体孔隙物质,用来吸附气体;需要增大气体的吸附量时,增加电场电极1(104),电场电极2(106)两端的电压,使驻电体孔隙物质(105)极化进一步加强,从而实现更多的驻电体孔隙物质(105)吸附压入的气体;同时增加气体与气体之间的吸附;增加气体的储存量;需要释放气体时,利用气体的压力直接释放气体;或在电极上加上交变电压,在气体容器(102)中的驻电体孔隙物质在交变电场的作用下,去极化,释放吸附的气体;或通过在气体容器(102)中安放在驻电体孔隙物质(105)中的加热电热丝(111)通电发热,加热驻电体孔隙物质(105)释放储存的气体;
或去掉孔隙物质(105)或驻电体孔隙物质(105),气体容器(102)中直接充入要存储气体,增加输入气体的压强;同时在电场电极1(104),电场电极2(106)板上加上电压,使(1)气体容器(102)容器壁产生极化,(2)容器内的储存的气体产生极化;气体容器(102)容器壁与充入的气体产生吸附,充入的存储气体与存储气体之间产生吸附,实现气体的高密度存储;需要释放气体时:打开阀门利用气体压强直接释放气体;或降低电场电极1(104),电场电极2(106)两端的极化电压释放气体;或电场电极1(104),电场电极2(106)两端的加交变电压,进一步减少极化,释放气体;或在加热电热丝(111)两端加上电流,电热丝发热,释放气体。
气体容器(102),导体屏蔽外壳(103)是球型的;或气体容器(102), 导体屏蔽外壳(103)是椭球型的;或气体容器(102),导体屏蔽外壳(103)是的正方体;或气体容器(102),导体屏蔽外壳(103)是方型的;或气体容器(102),导体屏蔽外壳(103)是球型的不规则外形。
电场电极1(104),电场电极2(106)是平板式的;或电场电极1(104),电场电极2(106)是弧形的;或电场电极1(104),电场电极2(106)是不规则板。
电场极化气体吸附系统根据系统的规模,由1个导体屏蔽外壳,内部由1个气体容器单独构成,或1个导体屏蔽外壳和2个气体容器构成,或1个导体屏蔽外壳和3气体容器构成,或1个导体屏蔽外壳和n个气体容器构成;
为多组组成的极化极板及气体容器组成的气体储存系统:导体屏蔽外壳(201);电场电极1(210),电场电极2(211),电场电极3(212),电场电极4(213),电场电极5(214);
气体容器1(206),气体容器2(207),气体容器3(208),气体容器n(209);
孔隙物质1或驻电体孔隙物质1(219),孔隙物质2驻电体孔隙物质2(220),孔隙物质3或驻电体孔隙物质3(221),孔隙物质n或驻电体孔隙物质n(222);每组孔隙物质或驻电体孔隙物质中有加热电热丝;
气体容器输入输出口1A(202),气体容器输入输出口1B(215),气体容器输入输出口2A(203),气体容器输入输出口2B(216),气体容器输入输出口3A(204),气体容器输入输出口3B(217),气体容器输入输出口nA(205),气体容器输入输出口nB(218);
导体屏蔽外壳(201),内部设计n个气体容器;气体容器1(206),气体容器2(207),气体容器3(208),气体容器n(209);n个气体容器并列排布;
电场电极1(301),电场电极2(302),电场电极3(303),电场电极n(304);导线(305)连接电场电极1(301)和电场电极3(303);导线(306)连接电场电极2(302)和电场电极n(304);
从左向右顺序,所有的奇数电场电极用导线连接在一起,所有的偶数电 场电极用导线连接在一起;奇数电场电极连接到外加直流极化电源正极,偶数电场电极连接到外加直流极化电源负极;或奇数电场电极连接到外加直流极化电源负极,偶数电场电极连接到外加直流极化电源正极;
或采用n-1个独立直流电源,每个单元电极可任意连接;
气体容器可以是球形的,或椭球形的,或正方体,或方形的,或不规则外形;
电场电极可以是平板式的,或弧形的,或不规则的;
气体容器1(206),气体容器2(207),气体容器3(208),气体容器n(209)中都有加热电阻丝,在加热电阻丝同上电流发热促进存储的气体释放。
孔隙物质(105)采用多空活性炭;或孔隙物质(105)采用纳米多孔碳;或孔隙物质(105)采用沸石;或孔隙物质(105)采用石墨烯;或孔隙物质(105)采用纳米管;或孔隙物质(105)采用多孔氧化铝;或孔隙物质(105)采用分子筛;或孔隙物质(105)采用多孔硅胶;或孔隙物质(105)采用多孔硅酸铝;或孔隙物质(105)采用硅藻土;或孔隙物质(105)采用多孔离子交换树脂;或孔隙物质(105)采用二氧化钛;或孔隙物质(105)采用膨润土;或孔隙物质(105)采用海泡石;或孔隙物质(105)采用纤维碳化多孔材料;或孔隙物质(105)采用金属有机框架材料;或孔隙物质(105)采用有机物骨架材料;或孔隙物质(105)采用泡沫铝;或孔隙物质(105)采用其它多孔物质;孔隙物质(105)采用LaNi 5,或孔隙物质(105)采用FeTi;或孔隙物质(105)采用镁孔隙物质;储氢物质与极化相结合存储气体。
电场极化气体吸附系统可在常温下高密度储存,氢气,或氧气,或氮气,或氦气,或氯气,或氟气,或氖气,或氩气,或氙气,或氡气,或烃类,或烃类化合物。
加热电热丝是直线形,或加热电热丝是弧形,或加热电热丝是无规则的。
电场极化气体吸附的工作原理,外加电场使气体容器(102),和孔隙物质(105)或驻电体孔隙物质(105),和气体容器(102)中的存储气体发生极化;气体容器(102)容器壁与存储气体之间有吸引力;或孔隙物质(105)或驻电体孔隙物质(105)与存储气体之间形成吸引力,实现存储气体高密 度储存。
有益效果:
本发明为一种新的物理吸附方式,利用电场使容器壁、孔隙物质、装载气体发生极化,使上述容器壁、孔隙物质、装载气体的正负电荷中心发生偏移,从而实现容器壁与装载气体物理极化吸附;孔隙物质、装载气体物理极化吸附;去掉极化电场后,装载气体与容器壁发生脱附,装载气体与孔隙物质发生脱附,从而释放气体。如车载氢燃料电池,需要加载70MPa才能储存不多的氢气,压强太高,危险,要这么高的气压将氢气压缩到氢气罐中需要额外开销的能量太多;而需要液化氢存储时,需要将氢气降温至20.271K,且要维持液氢状态,需要的能量太多了,无法在车载储氢中应用。
四、附图说明
图1电场极化气体吸附系统原理示意图
图2叠加式气体容器电场极化气体吸附系统
图3多电场电极连接原理图
五、具体实施方式
下面结合附图对本发明的实施方式进行详细描述:
优选实例1:
如图1所示,电场极化气体吸附系统,由:气体容器口1(101),气体容器口2(107),气体容器(102),导体屏蔽外壳(103),电场电极1(104),电场电极2(106),孔隙物质(105)或驻电体孔隙物质(105),导线1(108),导线2(109),外接极化电源(110),加热电热丝(111);
气体容器(102)有1个、或2个、或多个气体容器连接口,用于气体的输入,或输出,或输入/输出;气体容器口1(101),气体容器口2(107)为气体容器(102)的气体输入,或输出口,或输入/输出口;
导体屏蔽外壳(103):为电场极化气体吸附系统的外部电磁屏蔽壳,作 用是避免电场电极1(104),电场电极2(106)产生的电场对导体屏蔽外壳(103)的外部影响,保证电场极化气体吸附系统的安全运行;其导体屏蔽外壳(103)可以接地,或不接地;导体屏蔽外壳(103)与气体容器(102)组合在一起,共同承受气体的压强;或导体屏蔽外壳(103)仅仅作为屏蔽作用外壳,对电场起屏蔽作用,不承受气体的压强;
气体容器(102):为非电导体密闭容器,电场电极1(104),电场电极2(106)上外加电压形成电场,电场作用于:(1)气体容器(102)壁;(2)孔隙物质(105);(3)存储气体使上述三个部分发生极化;
极化的气体容器(102)壁吸附存储气体;极化的孔隙物质(105)吸附存储气体;极化的存储气体吸附极化的存储气体;在外加气体的压强和吸附力的共同作用下,实现气体的大量存储;
电场电极1(104),电场电极2(106)之间的直流电压越高,即外加电场场强越强,极化的场强越大,气体容器(102)壁,孔隙物质(105),存储气体极化强度越大;它们之间的吸附力越大,有足够气体输入的情况下存储气体越多;极化强度越强,外加输入气体的压强越大,存储的气体越多;加上外加电场极化后存储的气体与单纯仅仅加上同等压强的气体存储量高几个数量级以上;
充气:(1)气体容器(102)输入气体,提高气体压强:通过气体容器口1(101),或气体容器口2(107)对气体容器(102)不断压入气体,增加气体容器(102)内气体量,提高气体容器(102)气体的压强;(2)提高外接极化电源(110)两端的直流电压,通过导线1(108),导线2(109)传递到电场电极1(104),电场电极2(106)上;从而提高电场电极1(104),电场电极2(106)之间的电压差,从而增加了气体容器(102)中的孔隙物质(105)和气体容器(102)中存储气体的极化电场,增强加孔隙物质(105)对气体的吸附力,增加存储气体与存储气体之间的吸附力;
放气:需要对外输出气体时,(1)先保持极化电压不变,利用存储气体内部的压强对外放气,当内部存储气体的压强小于一定值时,再通过逐渐减小极化电压,从而减少极化强度,进而减小物理吸附,实现放气;(2)或同时减小极化直流电源电压,和气体压强对外放气;(3)或先降低极化电压对 外放气,再通过降低气压对外放气;
去极化:在电场电极1(104),电场电极2(106)上加上交流电压时,在电场电极1(104),电场电极2(106)之间产生交变的电场,使(1)气体容器(102)壁;(2)孔隙物质(105);(3)存储气体去极化;吸附的存储气体与吸附的存储气体之间吸附力减小,或吸附的存储气体与孔隙物质(105)之间吸附力减小,或气体容器(102)壁与吸附的存储气体之间吸附力减小,发生脱附,释放出气体;
电场极化气体吸附系统释放储存的气体不彻底时,通过在气体容器(102)中安放在孔隙物质(105)中的加热电热丝(111)通电发热,加热孔隙物质(105)和存储气体,释放储存的气体;
或驻电体孔隙物质(105)代替孔隙物质(105),驻电体孔隙物质本身带极性,驻电体孔隙物质,用来吸附气体;需要增大气体的吸附量时,增加电场电极1(104),电场电极2(106)两端的电压,使驻电体孔隙物质(105)极化进一步加强,从而实现更多的驻电体孔隙物质(105)吸附压入的气体;同时增加气体与气体之间的吸附;增加气体的储存量;需要释放气体时,利用气体的压力直接释放气体;或在电极上加上交变电压,在气体容器(102)中的驻电体孔隙物质在交变电场的作用下,去极化,释放吸附的气体;或通过在气体容器(102)中安放在驻电体孔隙物质(105)中的加热电热丝(111)通电发热,加热驻电体孔隙物质(105)释放储存的气体;
或去掉孔隙物质(105)或驻电体孔隙物质(105),气体容器(102)中直接充入要存储气体,增加输入气体的压强;同时在电场电极1(104),电场电极2(106)板上加上电压,使(1)气体容器(102)容器壁产生极化,(2)容器内的储存的气体产生极化;气体容器(102)容器壁与充入的气体产生吸附,充入的存储气体与存储气体之间产生吸附,实现气体的高密度存储;需要释放气体时:打开阀门利用气体压强直接释放气体;或降低电场电极1(104),电场电极2(106)两端的极化电压释放气体;或电场电极1(104),电场电极2(106)两端的加交变电压,进一步减少极化,释放气体;或在加热电热丝(111)两端加上电流,电热丝发热,释放气体。
优选实例2:
气体容器(102),导体屏蔽外壳(103)是球型的;或气体容器(102),导体屏蔽外壳(103)是椭球型的;或气体容器(102),导体屏蔽外壳(103)是的正方体;或气体容器(102),导体屏蔽外壳(103)是方型的;或气体容器(102),导体屏蔽外壳(103)是球型的不规则外形。
优选实例3:
电场电极1(104),电场电极2(106)是平板式的;或电场电极1(104),电场电极2(106)是弧形的;或电场电极1(104),电场电极2(106)是不规则板。
优选实例4:
电场极化气体吸附系统根据系统的规模,由1个导体屏蔽外壳,内部由1个气体容器单独构成,或1个导体屏蔽外壳和2个气体容器构成,或1个导体屏蔽外壳和3气体容器构成,或1个导体屏蔽外壳和n个气体容器构成;
如图2所示,为多组组成的极化极板及气体容器组成的气体储存系统:导体屏蔽外壳(201);电场电极1(210),电场电极2(211),电场电极3(212),电场电极4(213),电场电极5(214);
气体容器1(206),气体容器2(207),气体容器3(208),气体容器n(209);
孔隙物质1或驻电体孔隙物质1(219),孔隙物质2驻电体孔隙物质2(220),孔隙物质3或驻电体孔隙物质3(221),孔隙物质n或驻电体孔隙物质n(222);每组孔隙物质或驻电体孔隙物质中有加热电热丝;
气体容器输入输出口1A(202),气体容器输入输出口1B(215),气体容器输入输出口2A(203),气体容器输入输出口2B(216),气体容器输入输出口3A(204),气体容器输入输出口3B(217),气体容器输入输出口nA(205),气体容器输入输出口nB(218);
导体屏蔽外壳(201),内部设计n个气体容器;气体容器1(206),气体容器2(207),气体容器3(208),气体容器n(209);n个气体容器并列 排布;
如图3所示,电场电极1(301),电场电极2(302),电场电极3(303),电场电极n(304);导线(305)连接电场电极1(301)和电场电极3(303);导线(306)连接电场电极2(302)和电场电极n(304);
从左向右顺序,所有的奇数电场电极用导线连接在一起,所有的偶数电场电极用导线连接在一起;奇数电场电极连接到外加直流极化电源正极,偶数电场电极连接到外加直流极化电源负极;或奇数电场电极连接到外加直流极化电源负极,偶数电场电极连接到外加直流极化电源正极;
或采用n-1个独立直流电源,每个单元电极可任意连接;
气体容器可以是球形的,或椭球形的,或正方体,或方形的,或不规则外形;
电场电极可以是平板式的,或弧形的,或不规则的;
气体容器1(206),气体容器2(207),气体容器3(208),气体容器n(209)中都有加热电阻丝,在加热电阻丝同上电流发热促进存储的气体释放。
优选实例5:
孔隙物质(105)采用多空活性炭;或孔隙物质(105)采用纳米多孔碳;或孔隙物质(105)采用沸石;或孔隙物质(105)采用石墨烯;或孔隙物质(105)采用纳米管;或孔隙物质(105)采用多孔氧化铝;或孔隙物质(105)采用分子筛;或孔隙物质(105)采用多孔硅胶;或孔隙物质(105)采用多孔硅酸铝;或孔隙物质(105)采用硅藻土;或孔隙物质(105)采用多孔离子交换树脂;或孔隙物质(105)采用二氧化钛;或孔隙物质(105)采用膨润土;或孔隙物质(105)采用海泡石;或孔隙物质(105)采用纤维碳化多孔材料;或孔隙物质(105)采用金属有机框架材料;或孔隙物质(105)采用有机物骨架材料;或孔隙物质(105)采用泡沫铝;或孔隙物质(105)采用其它多孔物质;孔隙物质(105)采用LaNi 5,或孔隙物质(105)采用FeTi;或孔隙物质(105)采用镁孔隙物质;储氢物质与极化相结合存储气体。
优选实例6:
电场极化气体吸附系统可在常温下高密度储存,氢气,或氧气,或氮气,或氦气,或氯气,或氟气,或氖气,或氩气,或氙气,或氡气,或烃类,或烃类化合物。
优选实例7:
加热电热丝是直线形,或加热电热丝是弧形,或加热电热丝是无规则的。
优选实例8:
电场极化气体吸附的工作原理,外加电场使气体容器(102),和孔隙物质(105)或驻电体孔隙物质(105),和气体容器(102)中的存储气体发生极化;气体容器(102)容器壁与存储气体之间有吸引力;或孔隙物质(105)或驻电体孔隙物质(105)与存储气体之间形成吸引力,实现存储气体高密度储存。
虽然结合附图对本发明的实施方式进行说明,但本领域普通技术人员可以在所附权利要求的范围内作出各种变形或修改,也可以本设计中的一部分。

Claims (8)

  1. 电场极化气体吸附系统,其特征是:
    电场极化气体吸附系统,由:气体容器口1(101),气体容器口2(107),气体容器(102),导体屏蔽外壳(103),电场电极1(104),电场电极2(106),孔隙物质(105)或驻电体孔隙物质(105),导线1(108),导线2(109),外接极化电源(110),加热电热丝(111);
    气体容器(102)有1个、或2个、或多个气体容器连接口,用于气体的输入,或输出,或输入/输出;气体容器口1(101),气体容器口2(107)为气体容器(102)的气体输入,或输出口,或输入/输出口;
    导体屏蔽外壳(103):为电场极化气体吸附系统的外部电磁屏蔽壳,作用是避免电场电极1(104),电场电极2(106)产生的电场对导体屏蔽外壳(103)的外部影响,保证电场极化气体吸附系统的安全运行;其导体屏蔽外壳(103)可以接地,或不接地;导体屏蔽外壳(103)与气体容器(102)组合在一起,共同承受气体的压强;或导体屏蔽外壳(103)仅仅作为屏蔽作用外壳,对电场起屏蔽作用,不承受气体的压强;
    气体容器(102):为非电导体密闭容器,电场电极1(104),电场电极2(106)上外加电压形成电场,电场作用于:(1)气体容器(102)壁;(2)孔隙物质(105);(3)存储气体使上述三个部分发生极化;
    极化的气体容器(102)壁吸附存储气体;极化的孔隙物质(105)吸附存储气体;极化的存储气体吸附极化的存储气体;在外加气体的压强和吸附力的共同作用下,实现气体的大量存储;
    电场电极1(104),电场电极2(106)之间的直流电压越高,即外加电场场强越强,极化的场强越大,气体容器(102)壁,孔隙物质(105),存储气体极化强度越大;它们之间的吸附力越大,有足够气体输入的情况下存储气体越多;极化强度越强,外加输入气体的压强越大,存储的气体越多;加上外加电场极化后存储的气体与单纯仅仅加上同等压强的气体存储量高几个数量级以上;
    充气:(1)气体容器(102)输入气体,提高气体压强:通过气体容器 口1(101),或气体容器口2(107)对气体容器(102)不断压入气体,增加气体容器(102)内气体量,提高气体容器(102)气体的压强;(2)提高外接极化电源(110)两端的直流电压,通过导线1(108),导线2(109)传递到电场电极1(104),电场电极2(106)上;从而提高电场电极1(104),电场电极2(106)之间的电压差,从而增加了气体容器(102)中的孔隙物质(105)和气体容器(102)中存储气体的极化电场,增强加孔隙物质(105)对气体的吸附力,增加存储气体与存储气体之间的吸附力;
    放气:需要对外输出气体时,(1)先保持极化电压不变,利用存储气体内部的压强对外放气,当内部存储气体的压强小于一定值时,再通过逐渐减小极化电压,从而减少极化强度,进而减小物理吸附,实现放气;(2)或同时减小极化直流电源电压,和气体压强对外放气;(3)或先降低极化电压对外放气,再通过降低气压对外放气;
    去极化:在电场电极1(104),电场电极2(106)上加上交流电压时,在电场电极1(104),电场电极2(106)之间产生交变的电场,使(1)气体容器(102)壁;(2)孔隙物质(105);(3)存储气体去极化;吸附的存储气体与吸附的存储气体之间吸附力减小,或吸附的存储气体与孔隙物质(105)之间吸附力减小,或气体容器(102)壁与吸附的存储气体之间吸附力减小,发生脱附,释放出气体;
    电场极化气体吸附系统释放储存的气体不彻底时,通过在气体容器(102)中安放在孔隙物质(105)中的加热电热丝(111)通电发热,加热孔隙物质(105)和存储气体,释放储存的气体;
    或驻电体孔隙物质(105)代替孔隙物质(105),驻电体孔隙物质本身带极性,驻电体孔隙物质,用来吸附气体;需要增大气体的吸附量时,增加电场电极1(104),电场电极2(106)两端的电压,使驻电体孔隙物质(105)极化进一步加强,从而实现更多的驻电体孔隙物质(105)吸附压入的气体;同时增加气体与气体之间的吸附;增加气体的储存量;需要释放气体时,利用气体的压力直接释放气体;或在电极上加上交变电压,在气体容器(102)中的驻电体孔隙物质在交变电场的作用下,去极化,释放吸附的气体;或通过在气体容器(102)中安放在驻电体孔隙物质(105)中的加热电热丝(111) 通电发热,加热驻电体孔隙物质(105)释放储存的气体;
    或去掉孔隙物质(105)或驻电体孔隙物质(105),气体容器(102)中直接充入要存储气体,增加输入气体的压强;同时在电场电极1(104),电场电极2(106)板上加上电压,使(1)气体容器(102)容器壁产生极化,(2)容器内的储存的气体产生极化;气体容器(102)容器壁与充入的气体产生吸附,充入的存储气体与存储气体之间产生吸附,实现气体的高密度存储;需要释放气体时:打开阀门利用气体压强直接释放气体;或降低电场电极1(104),电场电极2(106)两端的极化电压释放气体;或电场电极1(104),电场电极2(106)两端的加交变电压,进一步减少极化,释放气体;或在加热电热丝(111)两端加上电流,电热丝发热,释放气体。
  2. 根据权利要求1所述的电场极化气体吸附系统,其特征是:
    气体容器(102),导体屏蔽外壳(103)是球型的;或气体容器(102),导体屏蔽外壳(103)是椭球型的;或气体容器(102),导体屏蔽外壳(103)是的正方体;或气体容器(102),导体屏蔽外壳(103)是方型的;或气体容器(102),导体屏蔽外壳(103)是球型的不规则外形。
  3. 根据权利要求1所述的电场极化气体吸附系统,其特征是:
    电场电极1(104),电场电极2(106)是平板式的;或电场电极1(104),电场电极2(106)是弧形的;或电场电极1(104),电场电极2(106)是不规则板。
  4. 根据权利要求1所述的电场极化气体吸附系统,其特征是:
    电场极化气体吸附系统根据系统的规模,由1个导体屏蔽外壳,内部由1个气体容器单独构成,或1个导体屏蔽外壳和2个气体容器构成,或1个导体屏蔽外壳和3气体容器构成,或1个导体屏蔽外壳和n个气体容器构成;
    为多组组成的极化极板及气体容器组成的气体储存系统:导体屏蔽外壳(201);电场电极1(210),电场电极2(211),电场电极3(212),电场电极4(213),电场电极5(214);
    气体容器1(206),气体容器2(207),气体容器3(208),气体容器n(209);
    孔隙物质1或驻电体孔隙物质1(219),孔隙物质2驻电体孔隙物质2(220),孔隙物质3或驻电体孔隙物质3(221),孔隙物质n或驻电体孔隙物质n(222);每组孔隙物质或驻电体孔隙物质中有加热电热丝;
    气体容器输入输出口1A(202),气体容器输入输出口1B(215),气体容器输入输出口2A(203),气体容器输入输出口2B(216),气体容器输入输出口3A(204),气体容器输入输出口3B(217),气体容器输入输出口nA(205),气体容器输入输出口nB(218);
    导体屏蔽外壳(201),内部设计n个气体容器;气体容器1(206),气体容器2(207),气体容器3(208),气体容器n(209);n个气体容器并列排布;
    电场电极1(301),电场电极2(302),电场电极3(303),电场电极n(304);导线(305)连接电场电极1(301)和电场电极3(303);导线(306)连接电场电极2(302)和电场电极n(304);
    从左向右顺序,所有的奇数电场电极用导线连接在一起,所有的偶数电场电极用导线连接在一起;奇数电场电极连接到外加直流极化电源正极,偶数电场电极连接到外加直流极化电源负极;或奇数电场电极连接到外加直流极化电源负极,偶数电场电极连接到外加直流极化电源正极;
    或采用n-1个独立直流电源,每个单元电极可任意连接;
    气体容器可以是球形的,或椭球形的,或正方体,或方形的,或不规则外形;
    电场电极可以是平板式的,或弧形的,或不规则的;
    气体容器1(206),气体容器2(207),气体容器3(208),气体容器n(209)中都有加热电阻丝,在加热电阻丝同上电流发热促进存储的气体释放。
  5. 根据权利要求1所述的电场极化气体吸附系统,其特征是:
    孔隙物质(105)采用多空活性炭;或孔隙物质(105)采用纳米多孔碳; 或孔隙物质(105)采用沸石;或孔隙物质(105)采用石墨烯;或孔隙物质(105)采用纳米管;或孔隙物质(105)采用多孔氧化铝;或孔隙物质(105)采用分子筛;或孔隙物质(105)采用多孔硅胶;或孔隙物质(105)采用多孔硅酸铝;或孔隙物质(105)采用硅藻土;或孔隙物质(105)采用多孔离子交换树脂;或孔隙物质(105)采用二氧化钛;或孔隙物质(105)采用膨润土;或孔隙物质(105)采用海泡石;或孔隙物质(105)采用纤维碳化多孔材料;或孔隙物质(105)采用金属有机框架材料;或孔隙物质(105)采用有机物骨架材料;或孔隙物质(105)采用泡沫铝;或孔隙物质(105)采用其它多孔物质;孔隙物质(105)采用LaNi 5,或孔隙物质(105)采用FeTi;或孔隙物质(105)采用镁孔隙物质;储氢物质与极化相结合存储气体。
  6. 根据权利要求1所述的电场极化气体吸附系统,其特征是:
    电场极化气体吸附系统可在常温下高密度储存,氢气,或氧气,或氮气,或氦气,或氯气,或氟气,或氖气,或氩气,或氙气,或氡气,或烃类,或烃类化合物。
  7. 根据权利要求1所述的电场极化气体吸附系统,其特征是:
    加热电热丝是直线形,或加热电热丝是弧形,或加热电热丝是无规则的。
  8. 根据权利要求1所述的电场极化气体吸附系统,其特征是:
    电场极化气体吸附的工作原理,外加电场使气体容器(102),和孔隙物质(105)或驻电体孔隙物质(105),和气体容器(102)中的存储气体发生极化;气体容器(102)容器壁与存储气体之间有吸引力;或孔隙物质(105)或驻电体孔隙物质(105)与存储气体之间形成吸引力,实现存储气体高密度储存。
PCT/CN2020/113619 2020-03-06 2020-09-04 电场极化气体吸附系统 WO2021174795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010150368.1A CN113350983A (zh) 2020-03-06 2020-03-06 电场极化气体吸附系统
CN202010150368.1 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021174795A1 true WO2021174795A1 (zh) 2021-09-10

Family

ID=77523960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113619 WO2021174795A1 (zh) 2020-03-06 2020-09-04 电场极化气体吸附系统

Country Status (2)

Country Link
CN (1) CN113350983A (zh)
WO (1) WO2021174795A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506813A (zh) * 2022-03-01 2022-05-17 中能氢储(北京)能源工程研究院有限责任公司 一种石墨烯储氢装置及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873943B (zh) * 2022-05-20 2022-12-13 青岛理工大学 一种纳米二氧化钛/生物炭复合材料及其制备方法和应用
CN115355444B (zh) * 2022-09-08 2023-05-19 燕山大学 一种高效储存甲烷气体的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113673A (en) * 1998-09-16 2000-09-05 Materials And Electrochemical Research (Mer) Corporation Gas storage using fullerene based adsorbents
CN1378521A (zh) * 1999-09-09 2002-11-06 索尼株式会社 储氢碳素物、其制备方法以及电池与燃料电池
CN1829655A (zh) * 2003-06-10 2006-09-06 通用电气公司 场辅助气体储存材料和包含它的燃料电池
CN101118969A (zh) * 2007-09-28 2008-02-06 清华大学 耦合储氢单元的燃料电池
CN101351679A (zh) * 2006-02-21 2009-01-21 海恰尔能源公司 等离子辅助的储氢和气体吸附方法与设备
CN101679023A (zh) * 2007-03-06 2010-03-24 塞拉姆氢技术公司 储氢方法和单元
CN102280631A (zh) * 2011-07-14 2011-12-14 辽宁石油化工大学 一种电致伸缩可逆储氢方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113673A (en) * 1998-09-16 2000-09-05 Materials And Electrochemical Research (Mer) Corporation Gas storage using fullerene based adsorbents
CN1378521A (zh) * 1999-09-09 2002-11-06 索尼株式会社 储氢碳素物、其制备方法以及电池与燃料电池
CN1829655A (zh) * 2003-06-10 2006-09-06 通用电气公司 场辅助气体储存材料和包含它的燃料电池
CN101351679A (zh) * 2006-02-21 2009-01-21 海恰尔能源公司 等离子辅助的储氢和气体吸附方法与设备
CN101679023A (zh) * 2007-03-06 2010-03-24 塞拉姆氢技术公司 储氢方法和单元
CN101118969A (zh) * 2007-09-28 2008-02-06 清华大学 耦合储氢单元的燃料电池
CN102280631A (zh) * 2011-07-14 2011-12-14 辽宁石油化工大学 一种电致伸缩可逆储氢方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506813A (zh) * 2022-03-01 2022-05-17 中能氢储(北京)能源工程研究院有限责任公司 一种石墨烯储氢装置及其控制方法

Also Published As

Publication number Publication date
CN113350983A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2021174795A1 (zh) 电场极化气体吸附系统
Miyaoka et al. Highly purified hydrogen production from ammonia for PEM fuel cell
JP4467014B2 (ja) 水素ガス貯蔵タンクおよび貯蔵材
CN101351679B (zh) 等离子辅助的储氢和气体吸附方法与设备
US5985008A (en) Sorbent-based fluid storage and dispensing system with high efficiency sorbent medium
JP2010531961A5 (zh)
WO2001037973A1 (en) Gas storage using fullerene based adsorbents
KR100308706B1 (ko) 오존 저장/회수 방법 및 그의 시스템
Yuksel et al. A Density Functional Theory study of molecular hydrogen adsorption on Mg site in OFF type zeolite cluster
WO2023083072A1 (zh) 一种低温吸附精制高纯、超纯气体的方法
US20080003470A1 (en) Hydrogen storage process and apparatus therefor
WO2000053971A1 (fr) Procede de stockage de gaz naturel par adsorption et agent adsorbant associe
US20180073816A1 (en) High-thermal conductivity adsorbents for rapid absorption of heat pulses and a pressure-cascade burst desorption system using the same
WO2005120715A2 (en) Electrostatic switch for hydrogen storage and release from hydrogen storage media
Gao et al. “H 2 sponge”: pressure as a means for reversible high-capacity hydrogen storage in nanoporous Ca-intercalated covalent organic frameworks
US20060191409A1 (en) Electrostatic switch for hydrogen storage and release from hydrogen storage media
RU2283453C2 (ru) Емкость для хранения водорода и способ аккумулирования водорода
JP2001220101A (ja) 水素吸蔵方法及び水素吸蔵装置
CN100391827C (zh) 场辅助气体储存材料和包含它的燃料电池
CN201140984Y (zh) 多元材料储氢装置
JP5982314B2 (ja) 水素酸素発生装置及び水素酸素発生装置の操作方法
Martin Water-vapor sorption on kaolinite: Hysteresis
CN206988814U (zh) 一种增加氧气储存量的氧气罐
CN212855190U (zh) 一种医用制氧系统的排氮装置
KR20090131186A (ko) 나노 기공성 물질, 상기 나노 기공성 물질의 제조방법 및이를 이용한 수소저장장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923390

Country of ref document: EP

Kind code of ref document: A1