WO2021174624A1 - 一种交流伺服加载测试系统 - Google Patents

一种交流伺服加载测试系统 Download PDF

Info

Publication number
WO2021174624A1
WO2021174624A1 PCT/CN2020/082882 CN2020082882W WO2021174624A1 WO 2021174624 A1 WO2021174624 A1 WO 2021174624A1 CN 2020082882 W CN2020082882 W CN 2020082882W WO 2021174624 A1 WO2021174624 A1 WO 2021174624A1
Authority
WO
WIPO (PCT)
Prior art keywords
servo
loading
tested
alternating current
test system
Prior art date
Application number
PCT/CN2020/082882
Other languages
English (en)
French (fr)
Inventor
黄卫
赵勇军
童文邹
Original Assignee
浙江禾川科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江禾川科技股份有限公司 filed Critical 浙江禾川科技股份有限公司
Publication of WO2021174624A1 publication Critical patent/WO2021174624A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Definitions

  • the invention relates to the field of servo testing, in particular to an AC servo loading test system.
  • the servo motor can control the speed and position accuracy very accurately, and can convert the voltage signal into torque and speed to drive the control object.
  • the rotor speed of the servo motor is controlled by the input signal and can respond quickly.
  • it In the automatic control system, it is used as an actuator, and has the characteristics of small electromechanical time constant, high linearity, and small starting current.
  • the signal is converted into the angular displacement or angular velocity output on the motor shaft, which makes it more and more occupy an important place in the development of high-precision technology.
  • AC servo motor drive applications are also very common.
  • the AC servo drive In the R&D phase, the AC servo drive needs to be tested to verify the load capacity and temperature rise of the servo drive; in the production phase, the AC servo drive needs to be loaded with the finished product to detect the yield of the product.
  • most AC servo loading systems adopt dual-motor pair-to-drag energy feedback loading system, which is composed of servo motor pair-to-drag device, tested AC servo, test AC servo, torque sensor, energy feedback device, and industrial computer.
  • the system can send the regenerative electric energy of the test motor to the grid through the energy feedback device, which has a certain energy-saving effect; but the system has high cost and the energy feedback to the grid has problems of harmonic pollution and low power factor, resulting in the final energy The feedback rate is low.
  • the purpose of the present invention is to provide an AC servo loading test system to solve the problems of high cost, complex structure and low energy feedback efficiency of the loading servo in the prior art.
  • the present invention provides an AC servo loading test system, which includes a servo towing platform, a loading AC servo and a loading control platform;
  • the servo-to-drag platform is used for fixing the AC servo under test and the loading AC servo;
  • the tested AC servo is coaxially connected with the loading AC servo;
  • the loading AC servo is connected to the power input terminal of the AC servo under test through a DC bus;
  • the loading control platform is used to control the tested AC servo and the loading AC servo.
  • the loading control platform is a control platform that controls the tested AC servo and the loading AC servo through a processor.
  • the tested AC servo and the loading AC servo include identification codes
  • the loading control platform includes a scanner configured to scan the identification code identifier and send servo parameter information corresponding to the identification code identifier to the processor;
  • the logic controller determines the corresponding test procedure according to the servo parameter information.
  • the identification code mark is a two-dimensional code mark.
  • the scanner is a code scanning gun.
  • the processor is a programmable logic controller.
  • the code scanning gun is connected to the programmable logic controller through an RS232 serial port.
  • the loading control platform further includes a man-machine interface.
  • the loading control platform further includes an alarm module
  • the alarm module is used to receive the alarm signal sent by the tested AC servo and/or the loaded AC servo, and make the man-machine interface display alarm information.
  • the tested AC servo and the loading AC servo are multi-axis integrated AC servos.
  • the AC servo loading test system includes a servo towing platform, a loading AC servo and a loading control platform; the servo towing platform is used to fix the tested AC servo and the loading AC servo; the tested AC The servo is coaxially connected with the loading AC servo; the loading AC servo is connected to the power input terminal of the tested AC servo through a DC bus; the loading control platform is used to control the tested AC servo and the Load the AC servo.
  • the present invention removes the energy feedback unit commonly used in the prior art, leads the DC bus of the loaded AC servo, and directly connects it to the input end of the AC power supply of the AC servo under test, which can effectively transfer the loaded AC servo
  • the harmonic pollution caused by the connection of the external network through the energy feedback unit is successfully avoided and the energy loss is reduced. While improving the energy feedback efficiency, it effectively reduces the test system Installation cost.
  • FIG. 1 is a schematic structural diagram of a specific implementation of the AC servo loading test system provided by the present invention
  • FIG. 2 is a schematic structural diagram of another specific implementation of the AC servo loading test system provided by the present invention.
  • FIG. 3 is a schematic structural diagram of another specific implementation of the AC servo loading test system provided by the present invention.
  • FIG. 4 is a schematic circuit diagram of another specific implementation of the AC servo loading test system provided by the present invention.
  • the core of the present invention is to provide an AC servo loading test system.
  • a structural schematic diagram of a specific embodiment of the system is shown in Figure 1, which is referred to as specific embodiment 1. It includes a servo-to-drag platform 100, a loading AC servo 300 and a loading Control platform 400;
  • the servo-to-drag platform 100 is used to fix the AC servo 200 under test and the load AC servo 300;
  • the tested AC servo 200 is coaxially connected with the loading AC servo 300;
  • the loading AC servo 300 is connected to the power input terminal of the AC servo 200 under test through a DC bus 302;
  • the loading control platform 400 is used to control the tested AC servo 200 and the loading AC servo 300.
  • the loading control platform 400 also includes a man-machine interface.
  • tested AC servo 200 is not a part of the AC servo loading test system provided by the present invention, and this application only introduces the tested AC servo 200 for more intuitive and convenient description.
  • the loading control platform 400 further includes an alarm module; the alarm module is used to receive the alarm signals sent by the tested AC servo 200 and the loading AC servo 300, and enable the man-machine interface Display alarm information to remind the staff in time to avoid accidents.
  • tested AC servo 200 and the loading AC servo 300 are multi-axis integrated AC servos.
  • the AC servo loading test system includes a servo towing platform 100, a loading AC servo 300 and a loading control platform 400; the servo towing platform 100 is used to fix the tested AC servo 200 and the loading AC servo 300
  • the tested AC servo 200 is coaxially connected with the loading AC servo 300; the loading AC servo 300 is connected to the power input end of the tested AC servo 200 through a DC bus 302; the loading control platform 400 is used To control the tested AC servo 200 and the loading AC servo 300.
  • the present invention removes the energy feedback unit commonly used in the prior art, leads the DC bus 302 of the loaded AC servo 300, and directly connects it to the input end of the AC power supply of the AC servo 200 under test, which can effectively connect the
  • the AC servo 300 is loaded to feed back the regenerative energy in the towing test, successfully avoiding the harmonic pollution caused by connecting the external network through the energy feedback unit and reducing the energy loss. While improving the energy feedback efficiency, it effectively reduces The installation cost of the test system is reduced.
  • the control mode of the loading control platform 400 is further restricted, and the second embodiment is obtained.
  • the schematic diagram of the structure is shown in FIG. Loading control platform 400;
  • the servo-to-drag platform 100 is used to fix the AC servo 200 under test and the load AC servo 300;
  • the tested AC servo 200 is coaxially connected with the loading AC servo 300;
  • the loading AC servo 300 is connected to the power input terminal of the AC servo 200 under test through a DC bus 302;
  • the loading control platform 400 is used to control the tested AC servo 200 and the loading AC servo 300;
  • the loading control platform 400 is a control platform that controls the tested AC servo 200 and the loading AC servo 300 through a processor 410.
  • control mode of the loading control platform 400 is specifically limited in this specific embodiment, and the rest of the structure is the same as the above specific embodiment, and will not be repeated here.
  • the loading control platform 400 is controlled by the processor 410, and the AC servo loading test process can be performed by the processor 410, and the control program implements the power-on and power-on of the AC servo 200 under test.
  • the processor 410 is a programmable logic controller.
  • Programmable logic controller is a kind of digital operation electronic system specially designed for application in industrial environment. It uses a programmable memory to store instructions for operations such as logic operations, sequence control, timing, counting and arithmetic operations, and control various types of mechanical equipment or production through digital or analog input and output. process. It has high versatility, strong compatibility, easy operation, convenient use on different platforms and subsequent adjustments, and improves work efficiency in disguise.
  • the control method of the loading control platform 400 is further limited, and the third embodiment is obtained.
  • the schematic diagram of the structure is shown in FIG. Loading control platform 400;
  • the servo-to-drag platform 100 is used to fix the AC servo 200 under test and the load AC servo 300;
  • the tested AC servo 200 is coaxially connected with the loading AC servo 300;
  • the loading AC servo 300 is connected to the power input terminal of the AC servo 200 under test through a DC bus 302;
  • the loading control platform 400 is used to control the tested AC servo 200 and the loading AC servo 300;
  • the loading control platform 400 is a control platform that controls the tested AC servo 200 and the loading AC servo 300 through the processor 410;
  • the tested AC servo 200 and the loading AC servo 300 include identification codes
  • the loading control platform 400 includes a scanner 420 configured to scan the identification code identifier and send the servo parameter information corresponding to the identification code identifier to the processor 410;
  • the logic controller determines the corresponding test procedure according to the servo parameter information.
  • the two-dimensional identification code is set for the tested AC servo 200 and the loading AC servo 300 to identify the model and parameters of the corresponding AC servo.
  • the loading control platform 400 can pass
  • the scanner 420 directly reads the parameters of the AC servo, which is convenient for calling different preset test procedures for the AC servo of different model parameters, eliminating the need for workers to manually check the AC servo model parameters and select the corresponding test procedure. The trouble of setting the corresponding test parameters improves the test efficiency.
  • the identification code mark is a two-dimensional code mark
  • the scanner 420 is a code scanning gun.
  • the code scanning gun is connected to the programmable logic controller through an RS232 serial port.
  • the system includes a servo motor towing platform, a tested AC servo, a multi-axis integrated load AC servo, and a loading control platform.
  • the servo motor towing platform includes three groups of tested motors M1, M2, M3, and loading motors M4, M4, and M4.
  • Multi-axis integrated loading AC servo includes 3 groups of AC servo modules S1, S2, S3 with different power; loading control platform includes scanning gun, PLC (programmable logic controller), touch screen HMI, Hall current detection board , UT61D digital multimeter, relay control board, relay K4.
  • the servo motor drag platform M1 and M4 are coaxially connected, M2 and M5 are coaxially connected, and M3 and M6 are coaxially connected; the tested motors M1, M2, and M3 pass through the relay control board with one of three functions.
  • the Hall current detection board is connected to the AC servo under test; the loading motors M4, M5, M6 are connected to a multi-axis integrated loading AC servo amplifier, and the multi-axis integrated loading AC servo includes three different types of S1, S2, and S3.
  • the power servo module is loaded with the DC bus of the AC servo and led out as the power input of the AC servo under test. Furthermore, the motors M1, M2, and M3 select 200W, 750W, 2KW, and the multi-axis integrated load AC servo power modules S1, S2, S3 select 200W, 750W, 2KW, and the tested AC servo can choose any of 200W, 750W, 2KW.
  • the relay control board includes 3 groups of relays K1, K2, K3, and the PLC controls K1, K2, and K3 through the relay output 2.
  • the working process of the AC servo loading test system mentioned above is to scan the QR code of the tested AC servo with a scanner.
  • the QR code information is transmitted to the PLC via RS232 communication, and the QR code information contains the power information of the tested AC servo model.
  • PLC outputs the control signal according to the parsed model power information and selects the only one of K1, K2, and K3 to be turned on through PLC relay output 2 to realize the automatic matching and connection of the tested AC servo amplifier and the motors in M1, M2, and M3.
  • the PLC controls the power-on of the AC servo under test through the PLC relay output 1.
  • the PLC sets the tested AC servo to work in speed mode through RS485, and the multi-axis integrated load AC servo works in torque mode; the loaded AC motor in torque mode is used as the load of the tested AC servo, load AC
  • the energy generated by the motor is fed back to the AC servo under test through the DC bus; the current of the AC servo under test is converted into a serial data transmission only PLC through the Hall current detection board and UT61D multimeter.
  • the PLC is processed, it is sent to the HMI as the under test in the loading process.
  • the PLC will unload the loaded AC servo through RS485, and control the loaded AC servo IO to stop the loaded AC servo; the PLC will stop the tested AC servo by controlling the tested AC servo IO, and finally it will be tested
  • the parameters of the AC servo are restored to the factory settings.
  • the alarm signal of the tested AC servo and the alarm signal of the loaded AC servo are connected to the PLC through IO. If an alarm occurs, the touch screen HMI will display the alarm information, and the PLC will control the test to be interrupted until the alarm is removed and reset. carry out testing.

Abstract

一种交流伺服加载测试系统,包括伺服对拖平台(100)、加载交流伺服(300)、被测交流伺服(200)及加载控制平台(400);伺服对拖平台(100)用于固定被测交流伺服(200)及加载交流伺服(300);被测交流伺服(200)与加载交流伺服(300)同轴连接;加载交流伺服(300)通过引出其直流母线(302)连接至被测交流伺服(200)的电源输入端;加载控制平台(400)用于控制被测交流伺服(200)与加载交流伺服(300)。通过去除现有技术中常用的能量反馈单元,将加载交流伺服(300)的直流母线(302)引出,直接连接到被测交流伺服(200)的交流电源的输入端,成功避免了通过能量反馈单元连接外网带来的有谐波污染、减少了能量损耗,在提升能量回馈效率的同时,有效降低了测试系统的安装成本。

Description

一种交流伺服加载测试系统
本申请要求于2020年03月03日提交中国专利局、申请号为202010139591.6、发明名称为“一种交流伺服加载测试系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及伺服测试领域,特别是涉及一种交流伺服加载测试系统。
背景技术
伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、启动电流较小等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出,这使得它越来越多的在高精尖技术的发展中占据重要的一席之地。
而在工业自动化领域,交流伺服电机驱动应用也非常普遍。在研发阶段交流伺服驱动器需要进行加载测试,以验证伺服驱动器的带载能力和温升情况;在生产阶段交流伺服驱动器需要进行成品加载测试,以检测产品的良品率。目前大多数交流伺服加载系统采用双电机对拖式能量回馈加载系统,该系统由伺服电机对拖装置、被测交流伺服、陪测交流伺服、扭矩传感器、能量回馈装置、工控机组成。该系统可以将陪测电机的再生电能经能量反馈装置送给电网,有一定的节能效果;但是该系统的造价成本高且能量回馈给电网有谐波污染、功率因数低的问题,导致最后能量回馈率较低。
因此,如何解决现有技术中测试系统成本过高、结构复杂且加载伺服能量回馈效率低的缺陷,是本领域技术人员亟待解决的问题。
发明内容
本发明的目的是提供一种交流伺服加载测试系统,以解决现有技术中测试系统成本过高、结构复杂且加载伺服能量回馈效率低的问题。
为解决上述技术问题,本发明提供一种交流伺服加载测试系统,包括伺服对拖平台、加载交流伺服及加载控制平台;
所述伺服对拖平台用于固定被测交流伺服及所述加载交流伺服;
所述被测交流伺服与所述加载交流伺服同轴连接;
所述加载交流伺服通过引出直流母线连接至所述被测交流伺服的电源输入端;
所述加载控制平台用于控制所述被测交流伺服与所述加载交流伺服。
可选地,在所述的交流伺服加载测试系统中,所述加载控制平台为通过处理器控制所述被测交流伺服与所述加载交流伺服的控制平台。
可选地,在所述的交流伺服加载测试系统中,所述被测交流伺服及所述加载交流伺服包括识别码标识;
所述加载控制平台包括扫描器,所述扫描器用于扫描所述识别码标识,并将所述识别码标识对应的伺服参数信息发送至所述处理器;
所述逻辑控制器根据所述伺服参数信息确定对应的测试流程。
可选地,在所述的交流伺服加载测试系统中,所述识别码标识为二维码标识。
可选地,在所述的交流伺服加载测试系统中,所述扫描器为扫码枪。
可选地,在所述的交流伺服加载测试系统中,所述处理器为可编程逻辑控制器。
可选地,在所述的交流伺服加载测试系统中,所述扫码枪通过RS232串口与所述可编程逻辑控制器相连。
可选地,在所述的交流伺服加载测试系统中,所述加载控制平台还包括人机界面。
可选地,在所述的交流伺服加载测试系统中,所述加载控制平台还包括警报模块;
所述警报模块用于接收所述被测交流伺服和/或所述加载交流伺服发送的警报信号,并使所述人机界面显示警报信息。
可选地,在所述的交流伺服加载测试系统中,所述被测交流伺服及所述加载交流伺服为多轴一体式交流伺服。
本发明所提供的交流伺服加载测试系统,包括伺服对拖平台、加载交 流伺服及加载控制平台;所述伺服对拖平台用于固定被测交流伺服及所述加载交流伺服;所述被测交流伺服与所述加载交流伺服同轴连接;所述加载交流伺服通过引出直流母线连接至所述被测交流伺服的电源输入端;所述加载控制平台用于控制所述被测交流伺服与所述加载交流伺服。本发明通过去除现有技术中常用的能量反馈单元,将所述加载交流伺服的直流母线引出,直接连接到所述被测交流伺服的交流电源的输入端,可以有效地将所述加载交流伺服在对拖测试中的再生能量进行回馈,成功避免了通过所述能量反馈单元连接外网带来的有谐波污染及减少了能量损耗,在提升能量回馈效率的同时,有效降低了测试系统的安装成本。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的交流伺服加载测试系统的一种具体实施方式的结构示意图;
图2为本发明提供的交流伺服加载测试系统的另一种具体实施方式的结构示意图;
图3为本发明提供的交流伺服加载测试系统的又一种具体实施方式的结构示意图;
图4为本发明提供的交流伺服加载测试系统的还一种具体实施方式的电路示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的核心是提供一种交流伺服加载测试系统,其一种具体实施方 式的结构示意图如图1所示,称其为具体实施方式一,包括伺服对拖平台100、加载交流伺服300及加载控制平台400;
所述伺服对拖平台100用于固定被测交流伺服200及所述加载交流伺服300;
所述被测交流伺服200与所述加载交流伺服300同轴连接;
所述加载交流伺服300通过引出直流母线302连接至所述被测交流伺服200的电源输入端;
所述加载控制平台400用于控制所述被测交流伺服200与所述加载交流伺服300。
另外,所述加载控制平台400还包括人机界面。
需要注意的是,所述被测交流伺服200不是本发明提供的交流伺服加载测试系统的一部分,本申请仅为说明更直观方便才引入所述测交流伺服200。
作为一种优选方案,所述加载控制平台400还包括警报模块;所述警报模块用于接收所述被测交流伺服200和所述加载交流伺服300发送的警报信号,并使所述人机界面显示警报信息,以便对工作人员及时发出提醒,避免事故的发生。
还有,所述被测交流伺服200及所述加载交流伺服300为多轴一体式交流伺服。
本发明所提供的交流伺服加载测试系统,包括伺服对拖平台100、加载交流伺服300及加载控制平台400;所述伺服对拖平台100用于固定被测交流伺服200及所述加载交流伺服300;所述被测交流伺服200与所述加载交流伺服300同轴连接;所述加载交流伺服300通过直流母线302连接至所述被测交流伺服200的电源输入端;所述加载控制平台400用于控制所述被测交流伺服200与所述加载交流伺服300。本发明通过去除现有技术中常用的能量反馈单元,将所述加载交流伺服300的直流母线302引出,直接连接到所述被测交流伺服200的交流电源的输入端,可以有效地将所述加载交流伺服300在对拖测试中的再生能量进行回馈,成功避免了通过所述能量反馈单元连接外网带来的有谐波污染及减少了能量损耗,在提升能量回馈效率的同时,有效降低了测试系统的安装成本。
在具体实施方式一的基础上,进一步对所述加载控制平台400的控制方式做限定,得到具体实施方式二,其结构示意图如图2所示,包括伺服对拖平台100、加载交流伺服300及加载控制平台400;
所述伺服对拖平台100用于固定被测交流伺服200及所述加载交流伺服300;
所述被测交流伺服200与所述加载交流伺服300同轴连接;
所述加载交流伺服300通过直流母线302连接至所述被测交流伺服200的电源输入端;
所述加载控制平台400用于控制所述被测交流伺服200与所述加载交流伺服300;
所述加载控制平台400为通过处理器410控制所述被测交流伺服200与所述加载交流伺服300的控制平台。
本具体实施方式与上述具体实施方式的不同之处在于,本具体实施方式中具体限定了所述加载控制平台400的控制方式,其余结构均与上述具体实施方式相同,在此不再展开赘述。
本具体实施方式中限定了所述加载控制平台400经由所述处理器410控制,可由所述处理器410进行所述交流伺服加载测试的流程,控制程序实现所述被测交流伺服200上电、运行、加载、所述被测交流伺服200三相电流监测、卸载、停机、下电,实现整个过程的自动化,缩短单次测试的时间,提高批量测试的效率。
更进一步地,所述处理器410为可编程逻辑控制器。可编程逻辑控制器是种专门为在工业环境下应用而设计的数字运算操作电子系统。它采用一种可编程的存储器,在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,通过数字式或模拟式的输入输出来控制各种类型的机械设备或生产过程。其泛用性高,兼容性强,易于操作,便于不同平台上的使用及后续调整,变相提高了工作效率。
在具体实施方式二的基础上,进一步对所述加载控制平台400的控制方式做限定,得到具体实施方式三,其结构示意图如图3所示,包括伺服 对拖平台100、加载交流伺服300及加载控制平台400;
所述伺服对拖平台100用于固定被测交流伺服200及所述加载交流伺服300;
所述被测交流伺服200与所述加载交流伺服300同轴连接;
所述加载交流伺服300通过直流母线302连接至所述被测交流伺服200的电源输入端;
所述加载控制平台400用于控制所述被测交流伺服200与所述加载交流伺服300;
所述加载控制平台400为通过处理器410控制所述被测交流伺服200与所述加载交流伺服300的控制平台;
所述被测交流伺服200及所述加载交流伺服300包括识别码标识;
所述加载控制平台400包括扫描器420,所述扫描器420用于扫描所述识别码标识,并将所述识别码标识对应的伺服参数信息发送至所述处理器410;
所述逻辑控制器根据所述伺服参数信息确定对应的测试流程。
本具体实施方式与上述具体实施方式的不同之处在于,本具体实施方式中为交流伺服增设了识别码标识,相应地为系统增设了扫描所述识别码标识的扫描器420,其余结构均与上述具体实施方式相同,在此不再展开赘述。
本具体实施方式中为所述被测交流伺服200及所述加载交流伺服300设置了所述识别码二维码,用于标识对应的交流伺服的型号及参数,所述加载控制平台400可通过所述扫描器420直接对交流伺服的参数进行读取,方便针对不同型号参数的交流伺服调用不同的预设测试程序,省去了工作人员手动查看交流伺服型号参数并挑选对应的测试程序。设定对应的测试参数的麻烦,提高了测试效率。
特别的,所述识别码标识为二维码标识,所述扫描器420为扫码枪。
更进一步地,所述扫码枪通过RS232串口与所述可编程逻辑控制器相连。
下面举一例本申请提供的交流伺服加载测试系统,其电路结构图如图4所示,需要注意的是,图中的单轴被测交流伺服放大器及所述被测电机 均为被测交流伺服的一部分,而图中多轴一体式加载交流伺服放大器及加载电机均为加载交流伺服的一部分。该系统包括伺服电机对拖平台、被测交流伺服、多轴一体式加载交流伺服、加载控制平台,伺服电机对拖平台包括3组不同功率的被测电机M1、M2、M3,加载电机M4、M5、M6;多轴一体式加载交流伺服包括3组不同功率的交流伺服模块S1、S2、S3;加载控制平台包括扫描枪、PLC(可编程逻辑控制器)、触摸屏HMI、霍尔电流检测板、UT61D数字万用表、继电器控制板、继电器K4。所述伺服电机对拖平台M1与M4同轴连接,M2与M5同轴连接,M3与M6同轴连接;所述被测电机M1、M2、M3通过三选一功能的继电器控制板后,经过霍尔电流检测板连接至被测交流伺服;所述加载电机M4、M5、M6连接至多轴一体式的加载交流伺服放大器,所述多轴一体式加载交流伺服包括S1、S2、S3三个不同功率的伺服模块,加载交流伺服的直流母线引出作为被测交流伺服的电源输入。进一步地,电机M1、M2、M3选择200W、750W、2KW,多轴一体式加载交流伺服功率模块S1、S2、S3选择200W、750W、2KW,被测交流伺服可任意选择200W、750W、2KW中地一种。所述继电器控制板包括3组继电器K1、K2、K3,PLC通过继电器输出2控制K1、K2、K3。
上述交流伺服加载测试系统的工作流程为通过扫描枪扫描被测交流伺服的二维码,二维码信息经RS232通讯传输给PLC,该二维码信息中包含被测交流伺服的机型功率信息;PLC根据解析出来的机型功率信息输出控制信号经PLC继电器输出2选择K1、K2、K3中的唯一一个接通,实现被测交流伺服放大器与M1、M2、M3中的电机自动匹配连接。PLC通过PLC继电器输出1控制被测交流伺服的上电。上电后PLC通过RS485设定被测交流伺服工作在速度模式下,多轴一体式加载交流伺服工作在转矩模式下;转矩模式下的加载交流电机作为被测交流伺服的负载,加载交流电机发电的能量经直流母线回馈给被测交流伺服;被测交流伺服的电流经过霍尔电流检测板、UT61D万用表转换成串行数据传输只PLC,PLC处理后送至HMI作为加载过程的被测交流伺服三相电流监控;加载时间结束后,PLC通过RS485将加载交流伺服卸载,控制加载交流伺服IO使加载交流伺服停机;PLC通过控制被测交流伺服IO使被测交流停机,最后将被测交流 伺服的参数恢复至出厂设置。
整个测试过程中,被测交流伺服的报警信号、加载交流伺服的报警信号通过IO接至PLC,若发生报警,触摸屏HMI会显示报警信息,PLC将控制测试中断,直至报警解除,复位后才可进行测试。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明所提供的交流伺服加载测试系统进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种交流伺服加载测试系统,其特征在于,包括伺服对拖平台、加载交流伺服及加载控制平台;
    所述伺服对拖平台用于固定被测交流伺服及所述加载交流伺服;
    所述被测交流伺服与所述加载交流伺服同轴连接;
    所述加载交流伺服通过引出直流母线连接至所述被测交流伺服的电源输入端;
    所述加载控制平台用于控制所述被测交流伺服与所述加载交流伺服。
  2. 如权利要求1所述的交流伺服加载测试系统,其特征在于,所述加载控制平台为通过处理器控制所述被测交流伺服与所述加载交流伺服的控制平台。
  3. 如权利要2所述的交流伺服加载测试系统,其特征在于,所述被测交流伺服及所述加载交流伺服包括识别码标识;
    所述加载控制平台包括扫描器,所述扫描器用于扫描所述识别码标识,并将所述识别码标识对应的伺服参数信息发送至所述处理器;
    所述处理器根据所述伺服参数信息确定对应的测试流程。
  4. 如权利要3所述的交流伺服加载测试系统,其特征在于,所述识别码标识为二维码标识。
  5. 如权利要4所述的交流伺服加载测试系统,其特征在于,所述扫描器为扫码枪。
  6. 如权利要5所述的交流伺服加载测试系统,其特征在于,所述处理器为可编程逻辑控制器。
  7. 如权利要6所述的交流伺服加载测试系统,其特征在于,所述扫码枪通过RS232串口与所述可编程逻辑控制器相连。
  8. 如权利要1所述的交流伺服加载测试系统,其特征在于,所述加载控制平台还包括人机界面。
  9. 如权利要8所述的交流伺服加载测试系统,其特征在于,所述加载控制平台还包括警报模块;
    所述警报模块用于接收所述被测交流伺服和/或所述加载交流伺服发送的警报信号,并使所述人机界面显示警报信息。
  10. 如权利要1至9任一项所述的交流伺服加载测试系统,其特征在于,所述被测交流伺服及所述加载交流伺服为多轴一体式交流伺服。
PCT/CN2020/082882 2020-03-03 2020-04-02 一种交流伺服加载测试系统 WO2021174624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010139591.6 2020-03-03
CN202010139591.6A CN111273171A (zh) 2020-03-03 2020-03-03 一种交流伺服加载测试系统

Publications (1)

Publication Number Publication Date
WO2021174624A1 true WO2021174624A1 (zh) 2021-09-10

Family

ID=70997506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082882 WO2021174624A1 (zh) 2020-03-03 2020-04-02 一种交流伺服加载测试系统

Country Status (2)

Country Link
CN (1) CN111273171A (zh)
WO (1) WO2021174624A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114942360A (zh) * 2022-06-10 2022-08-26 南京艾龙自动化装备有限公司 一种基于200v或400v电压的v90伺服控制器用自动测试机构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114942362A (zh) * 2022-07-25 2022-08-26 深圳众城卓越科技有限公司 伺服驱动器一拖三老化测试一体化系统及测试方法
CN114994533B (zh) * 2022-08-04 2022-11-01 深圳众城卓越科技有限公司 对拖机组自动加载测试系统及测试方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623104A (en) * 1995-03-10 1997-04-22 Toyota Jidosha Kabushiki Kaisha Apparatus for testing power performance of electric motor for electric vehicle
CN102645632A (zh) * 2012-04-01 2012-08-22 南京航空航天大学 一种永磁同步电机无角度传感器效率测试系统及控制方法
CN202837504U (zh) * 2012-09-04 2013-03-27 宁波菲仕运动控制技术有限公司 一种交流伺服电机测试系统
CN103163460A (zh) * 2013-02-05 2013-06-19 安徽中家智锐科技有限公司 用于电机测试的电机对拖平台
CN107102262A (zh) * 2017-04-28 2017-08-29 华中科技大学 一种直线电机性能测试装置及其控制方法
US20180076753A1 (en) * 2016-09-15 2018-03-15 Schweitzer Engineering Laboratories, Inc. Systems and methods for motor slip calculation using shaft-mounted sensors
CN108845260A (zh) * 2018-08-31 2018-11-20 重庆顺心仪器设备有限公司 一种基于变频控制技术的电机加载试验台
CN109255413A (zh) * 2018-11-05 2019-01-22 格力电器(武汉)有限公司 测试参数调取系统和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209432969U (zh) * 2018-12-28 2019-09-24 东莞市德玛电子有限公司 一种马达定子测试治具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623104A (en) * 1995-03-10 1997-04-22 Toyota Jidosha Kabushiki Kaisha Apparatus for testing power performance of electric motor for electric vehicle
CN102645632A (zh) * 2012-04-01 2012-08-22 南京航空航天大学 一种永磁同步电机无角度传感器效率测试系统及控制方法
CN202837504U (zh) * 2012-09-04 2013-03-27 宁波菲仕运动控制技术有限公司 一种交流伺服电机测试系统
CN103163460A (zh) * 2013-02-05 2013-06-19 安徽中家智锐科技有限公司 用于电机测试的电机对拖平台
US20180076753A1 (en) * 2016-09-15 2018-03-15 Schweitzer Engineering Laboratories, Inc. Systems and methods for motor slip calculation using shaft-mounted sensors
CN107102262A (zh) * 2017-04-28 2017-08-29 华中科技大学 一种直线电机性能测试装置及其控制方法
CN108845260A (zh) * 2018-08-31 2018-11-20 重庆顺心仪器设备有限公司 一种基于变频控制技术的电机加载试验台
CN109255413A (zh) * 2018-11-05 2019-01-22 格力电器(武汉)有限公司 测试参数调取系统和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114942360A (zh) * 2022-06-10 2022-08-26 南京艾龙自动化装备有限公司 一种基于200v或400v电压的v90伺服控制器用自动测试机构
CN114942360B (zh) * 2022-06-10 2024-03-29 南京艾龙自动化装备有限公司 一种基于200v或400v电压的v90伺服控制器用自动测试机构

Also Published As

Publication number Publication date
CN111273171A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2021174624A1 (zh) 一种交流伺服加载测试系统
CN107817781B (zh) 应用于星载多功能平台电子单机的通用测试设备
CN104626151B (zh) 一种机械手晶圆定心装置及方法
CN203720327U (zh) 一种伺服电机测试系统
CN106502212B (zh) 一种激光数控机床的集成数控系统
CN204666719U (zh) 一种用于风力发电机组电动变桨距系统的功率测试装置
CN105182233A (zh) 汽车空调总成电机检测系统
CN104216328A (zh) 传感器自动测试系统
CN104796055A (zh) 一种触屏控制与驱动一体化的4轴步进电机闭环控制系统
CN202433505U (zh) 一种飞机启动发电机的自动检测系统
CN206460293U (zh) 一种弹夹式上下料机构及其控制装置
CN105955202A (zh) 一种基于网络的经济型嵌入式五轴数控系统及其控制方法
CN103823182A (zh) 一种伺服电机测试系统
CN115308664B (zh) 霍尔电流传感器的校准装置及方法
CN110673572A (zh) 一种用户可编程的通用工业控制器装置
Kaur et al. Monitoring and controlling of continue furnace line using PLC and SCADA
CN110524155A (zh) 一种用于焊接机器人系统的远程实时监控系统
CN111752260A (zh) 一种电机控制器下线自动化测试系统及方法
CN210108416U (zh) 一种嵌入式复合型传感器
CN203720649U (zh) 一种电机制动器自动测试系统
CN113432634A (zh) 编码器与电机的匹配测试设备及其方法
CN212030198U (zh) 一种用于感应电炉的熔炼管理系统
CN203117389U (zh) 塑壳断路器智能检测控制系统
CN219676479U (zh) 一种舞台机械吊杆类设备pid同步定位控制系统
CN112332745A (zh) 一种新能源汽车电机控制器三相电流检测控制系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923555

Country of ref document: EP

Kind code of ref document: A1