WO2021174438A1 - 雾化器以及电子雾化装置 - Google Patents

雾化器以及电子雾化装置 Download PDF

Info

Publication number
WO2021174438A1
WO2021174438A1 PCT/CN2020/077743 CN2020077743W WO2021174438A1 WO 2021174438 A1 WO2021174438 A1 WO 2021174438A1 CN 2020077743 W CN2020077743 W CN 2020077743W WO 2021174438 A1 WO2021174438 A1 WO 2021174438A1
Authority
WO
WIPO (PCT)
Prior art keywords
air flow
flow channel
air
junction
channel
Prior art date
Application number
PCT/CN2020/077743
Other languages
English (en)
French (fr)
Inventor
雷桂林
龚博学
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to EP20922599.4A priority Critical patent/EP4115754A4/en
Priority to PCT/CN2020/077743 priority patent/WO2021174438A1/zh
Publication of WO2021174438A1 publication Critical patent/WO2021174438A1/zh
Priority to US17/823,270 priority patent/US20220408828A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • This application relates to the technical field of electronic atomization devices, in particular to an atomizer and an electronic atomization device.
  • the main technical problem to be solved by this application is to provide an atomizer and an electronic atomization device, which can alleviate the liquid leakage of the atomizer and the electronic atomization device.
  • the atomizer includes a first air inlet and a first air outlet.
  • the atomizer also includes a first airflow channel, the first airflow channel is respectively connected to the first air inlet and the first air outlet, and the first airflow channel is provided with an atomization component.
  • the atomizer also includes a second air flow channel. Two ends of the second air flow channel respectively intersect with the first air flow channel to form a first junction and a second junction, wherein the first junction is located between the first air outlet and the atomizing assembly In between, the second junction is located between the first air inlet and the atomization assembly.
  • the atomizer also includes a capillary liquid absorption structure, and the capillary liquid absorption structure is connected with the second air flow channel.
  • the first air outlet takes a suction action
  • the effusion in the first air flow channel near the second junction enters the second air flow channel through the second junction and is absorbed by the capillary liquid absorption structure.
  • the capillary liquid absorption structure includes a plurality of capillary grooves, and the plurality of capillary grooves are arranged at intervals along the extending direction of the second air flow channel and communicate with the second air flow channel, wherein the capillary grooves relatively close to the second junction are preferred It is used to absorb and store the effluent that enters the second air flow channel.
  • the first airflow channel includes an air outlet channel and an atomization cavity
  • the air outlet channel communicates with the atomization cavity and the first air outlet
  • the atomization cavity also communicates with the first air inlet
  • the first junction is located at The air outlet channel and the second intersection are arranged in the atomization cavity, wherein an atomization component is arranged in the atomization cavity.
  • the air pressure of the second air flow channel is lower than the air pressure of the atomization chamber, and the air pressure of the second air flow channel is greater than the air pressure of the air outlet channel.
  • the volume of the accommodating space in the second air flow channel and the capillary liquid absorption structure is smaller than the volume of the accommodating space in the atomization cavity.
  • the cross-sectional area of the air outlet channel is smaller than the cross-sectional area of the atomization cavity.
  • the atomizer further includes an anti-leakage cavity, the second airflow channel and the capillary liquid absorption structure are provided in the anti-leakage cavity, and the anti-leakage cavity is separated from the first airflow channel. , And the leak-proof liquid cavity is connected to the first air flow channel through the first junction and the second junction respectively.
  • the atomizer further includes a housing and an anti-leakage element.
  • the anti-leakage element is arranged in the housing, and at least part of the first air flow channel is arranged in the anti-leakage element and is arranged in the anti-leakage element.
  • An atomization component is arranged in the first air flow channel in the liquid leakage element.
  • the leak-proof element is provided with a vacancy, the inner wall of the leak-proof element of the vacant part and the inner wall of the housing surround the first air flow channel formed in the leak-proof element, and the outer wall of the leak-proof element surrounds the inner wall of the housing A second air flow channel is formed, and the capillary liquid absorption structure is arranged in a space surrounded by the outer wall of the anti-leakage element and the inner wall of the housing.
  • a dam is provided on the outer wall of the anti-leakage element, and the dam abuts against the inner wall of the shell.
  • the dam is used to separate the first air passage and the second air passage, and the dam corresponds to the Part of the first communication groove is provided so that the first air passage and the second air passage intersect to form a first intersection, and the part of the dam corresponding to the second intersection is provided with a second communication groove, so that the first air passage and the second air passage The intersection forms the second intersection.
  • the capillary liquid absorption structure includes a plurality of capillary grooves, and the outer wall of the anti-leakage element is provided with a plurality of fins surrounding the outer circumference of the first air flow channel, and the fins abut against the inner wall of the housing and are adjacent to each other. Capillary grooves are formed between the fins.
  • the electronic atomization device includes a first air inlet and a first air outlet.
  • the electronic atomization device further includes a first airflow channel, the first airflow channel is respectively connected to the first air inlet and the first air outlet, and the first airflow channel is provided with an atomizing component.
  • the electronic atomization device also includes a second airflow channel. Both ends of the second airflow channel intersect with the first airflow channel to form a first junction and a second junction.
  • the first junction is located at the first air outlet and the atomizer. Between the components, the second junction is located between the first air inlet and the atomizing component.
  • the electronic atomization device also includes a capillary liquid absorption structure, and the capillary liquid absorption structure is connected to the second air flow channel.
  • the first air outlet takes a suction action
  • the effusion in the first air flow channel near the second junction enters the second air flow channel through the second junction and is absorbed by the capillary liquid absorption structure.
  • the capillary liquid absorption structure includes a plurality of capillary grooves, and the plurality of capillary grooves are arranged at intervals along the extending direction of the second air flow channel and communicate with the second air flow channel, wherein the capillary grooves relatively close to the second junction are preferred It is used to absorb and store the effluent that enters the second air flow channel.
  • the first airflow channel includes an air outlet channel and an atomization cavity
  • the air outlet channel communicates with the atomization cavity and the first air outlet
  • the atomization cavity also communicates with the first air inlet
  • the first junction is located at The air outlet channel and the second intersection are arranged in the atomization cavity, wherein an atomization component is arranged in the atomization cavity.
  • the air pressure of the second air flow channel is lower than the air pressure of the atomization chamber, and the air pressure of the second air flow channel is greater than the air pressure of the air outlet channel.
  • the volume of the accommodating space in the second air flow channel and the capillary liquid absorption structure is smaller than the volume of the accommodating space in the atomization cavity.
  • the cross-sectional area of the air outlet channel is smaller than the cross-sectional area of the atomization cavity.
  • the atomizer further includes an anti-leakage cavity, the second airflow channel and the capillary liquid absorption structure are provided in the anti-leakage cavity, and the anti-leakage cavity is separated from the first airflow channel. , And the leak-proof liquid cavity is connected to the first air flow channel through the first junction and the second junction respectively.
  • the electronic atomization device further includes a housing and an anti-leakage element.
  • the anti-leakage element is arranged in the housing, and at least a part of the first air flow channel is arranged in the anti-leakage element and is arranged in the
  • the first air flow channel in the anti-leakage element is provided with an atomization component; the inside of the anti-leakage element is provided with a vacant part, and the inner wall of the anti-leakage element of the vacant part and the inner wall of the housing surround the inner wall of the anti-leakage element.
  • the outer wall of the anti-leakage element and the inner wall of the housing form a second air flow channel, and the capillary liquid absorption structure is arranged in the space formed by the outer wall of the anti-leakage element and the inner wall of the housing.
  • a dam is provided on the outer wall of the anti-leakage element, and the dam abuts against the inner wall of the shell.
  • the dam is used to separate the first air passage and the second air passage, and the dam corresponds to the Part of the first communication groove is provided so that the first air passage and the second air passage intersect to form a first intersection, and the part of the dam corresponding to the second intersection is provided with a second communication groove, so that the first air passage and the second air passage The intersection forms the second intersection.
  • the capillary liquid absorption structure includes a plurality of capillary grooves, and the outer wall of the anti-leakage element is provided with a plurality of fins surrounding the outer circumference of the first air flow channel, and the fins abut against the inner wall of the housing and are adjacent to each other. Capillary grooves are formed between the fins.
  • the present application provides an atomizer and an electronic atomization device.
  • the two ends of the second air flow channel of the atomizer and the electronic atomization device respectively intersect with the first air flow channel to form a first junction and a second junction, wherein the first junction is located between the first air outlet and the atomization assembly
  • the second junction is located between the first air inlet and the atomizing assembly. That is, the first junction is closer to the first air outlet than the second junction.
  • the air flow from the first air inlet to the first air outlet will be generated in the first air channel, and the air pressure of the first air channel at the first confluence will be less than The air pressure of the second air channel at the first junction, and the air pressure of the first air channel at the second junction is greater than the air pressure of the second air channel at the second junction.
  • the pressure difference between the first air flow channel and the second air flow channel at the second junction will drive the effusion in the first air flow channel near the second junction to enter the second air flow channel through the second junction and be absorbed by the capillary structure Absorption to reduce the accumulation of liquid in the first air flow channel, which is beneficial to alleviate the leakage of the atomizer and the electronic atomization device, thereby improving the user experience and reducing the penetration of the aerosol matrix into the electronic atomization device The risk of damage to the host caused by the host.
  • Fig. 1 is a schematic diagram of the structure of the first embodiment of the atomizer of the present application
  • FIG. 2 is a schematic diagram of the structure of the second embodiment of the atomizer of the present application.
  • FIG. 3 is a schematic cross-sectional structure diagram of the atomizer shown in FIG. 2;
  • FIG. 4 is a schematic structural diagram of an embodiment of the liquid leakage prevention element of the present application.
  • Fig. 5 is a schematic diagram of a prior art atomizer in a state where the user sucks a different number of mouths;
  • Fig. 6 is a schematic diagram of the atomizer of the present application in a state where the user sucks a different number of mouths;
  • FIG. 7 is a schematic structural diagram of an embodiment of the electronic atomization device of the present application.
  • FIG. 8 is a schematic structural diagram of another embodiment of the electronic atomization device of the present application.
  • FIG. 1 is a schematic structural diagram of a first embodiment of an atomizer according to the present application.
  • an embodiment of the present application provides an atomizer 1.
  • the atomizer 1 includes a first air inlet 11 and a first air outlet 12.
  • the atomizer 1 further includes a first air flow channel 13, the first air flow channel 13 communicates with the first air inlet 11 and the first air outlet 12 respectively, and an atomization assembly 14 is provided in the first air channel 13.
  • the atomizer 1 further includes a second air flow channel 151. Both ends of the second air flow channel 151 and the first air flow channel 13 respectively intersect to form a first junction 1511 and a second junction 1512, wherein the first junction 1511 is located at the first junction 1511 and the second junction 1512.
  • the atomizer 1 further includes a capillary liquid absorption structure 152, and the capillary liquid absorption structure 152 is connected to the second air flow channel 151.
  • the effusion in the first airflow channel 13 close to the second junction 1512 enters the second airflow channel 151 through the second junction 1512 and is absorbed by the capillary liquid absorption structure 152. This will be explained in detail below.
  • the atomizer 1 is an element for atomizing an aerosol substrate in an electronic atomization device.
  • the electronic atomization device to which the atomizer 1 of this embodiment is applied may be an electronic cigarette or the like, and the atomizer 1 is used to atomize e-liquid (ie, aerosol matrix) for the user to inhale.
  • the electronic atomization device using the atomizer 1 of this embodiment is not limited to the product form of the electronic cigarette.
  • the atomizer 1 of the electronic atomization device can also be used for atomization. Medicinal liquid, etc., the atomized medicinal liquid is for the user to inhale to assist the user in medical treatment, etc.
  • the product form of the electronic atomization device applying the atomizer 1 of this embodiment is an electronic cigarette for illustration, which is only needed for discussion, and is not limited by this.
  • the atomizer 1 includes a first air inlet 11 and a first air outlet 12, and a first air flow channel 13 communicating with the first air inlet 11 and the first air outlet 12, respectively.
  • the first air outlet 12 takes a sucking action, and the outside air enters the first air flow channel 13 from the first air inlet 11 and flows to the first air outlet 12 along the first air flow channel 13.
  • an atomization assembly 14 is provided in the first air flow channel 13.
  • the atomizing component 14 is the element used for atomizing the aerosol substrate in the atomizer 1.
  • the air entering the first airflow channel 13 from the first air inlet 11 will carry the aerosol matrix atomized by the atomizing assembly 14 to the first air outlet 12 and output from the first air outlet 12. For users to smoke.
  • the atomization component 14 is preferably a porous heating element, which absorbs the aerosol matrix by capillary force and generates heat to atomize the aerosol matrix.
  • the atomization component 14 may be a porous ceramic heating element, etc., and a heating film may be further provided at the bottom thereof.
  • the atomization component 14 may also be a design in which fiber cotton and heating wire are matched, which is not limited herein.
  • the atomizer 1 also includes a second air flow channel 151.
  • the second airflow channel 151 is separated from the first airflow channel 13, and two ends of the second airflow channel 151 respectively intersect with the first airflow channel 13 to form a first junction 1511 and a second junction 1512.
  • the atomizer 1 further includes a capillary liquid absorption structure 152, which is connected to the second air flow channel 151, and is used for absorbing the liquid that enters the second air flow channel 151.
  • the aerosol matrix absorbed by the atomization assembly 14 will inevitably remain in the first air flow channel 13.
  • the temperature of the atomized aerosol substrate is relatively high, the temperature of the inner wall of the first air flow channel 13 is relatively low, and the temperature of the atomized aerosol substrate will drop sharply when contacting the inner wall of the first air channel 13 and condense.
  • the aerosol matrix will remain in the first air flow channel 13. Therefore, the above-mentioned factors may cause the aerosol matrix to remain in the first air flow channel 13, that is, to form an accumulation of liquid.
  • it will inevitably leak to the outside of the atomizer 1.
  • the second air flow channel 151 is designed in this embodiment.
  • the first intersection 1511 is located between the first air outlet 12 and the atomization assembly 14, and the second intersection 1512 is located between the first air inlet 11 and the atomization assembly 14.
  • the first junction 1511 is closer to the first air outlet 12 than the second junction 1512. .
  • the first air flow channel 13 will generate an air flow from the first air inlet 11 to the first air outlet 12, and the first air channel 13 is at the first intersection.
  • the air pressure at the location 1511 will be lower than the air pressure of the second air channel 151 at the first junction 1511, and the air pressure of the first air channel 13 at the second junction 1512 will be greater than the air pressure of the second air channel 151 at the second junction 1512. Therefore, the pressure difference between the first airflow channel 13 and the second airflow channel 151 at the second junction 1512 will drive the effusion in the first airflow channel 13 near the second junction 1512 into the second airflow channel through the second junction 1512 151 is also absorbed by the capillary liquid absorption structure 152, thereby reducing the accumulation of liquid in the first air flow channel 13, thereby helping to alleviate the leakage of the atomizer 1 and improve the user experience.
  • the outside air enters the first air flow channel 13 from the first air inlet 11, and the first air flow channel 13 will flow from the first air inlet 11 to the
  • the air flow from the first air outlet 12 and the part of the air entering the first air channel 13 from the first air inlet 11 will flow into the second air channel 151 from the second junction 1512, and the air in the second air channel 151 will flow from the first air channel 151.
  • a junction 1511 converges to the first air flow channel 13 to form a complete air flow path, as shown by the dotted arrow in FIG. 1.
  • the first air flow channel 13 and the second air flow channel 151 of the second junction 1512 will generate a pressure difference, and thus will drive the first air flow channel 13
  • the effusion flows into the second air flow channel 151 through the second junction 1512.
  • the air pressure in the first airflow channel 13 is about one standard atmospheric pressure, about 101.325kPa, which is the same as the second airflow channel 151.
  • the difference in air pressure is not obvious.
  • the second air flow channel 151 absorbs the amount of liquid accumulated in the first air flow channel 13 to be relatively limited.
  • the second air flow channel 151 of the present embodiment is used to cooperate with the capillary liquid absorption structure 152 to absorb the liquid accumulation in the first air flow channel 13 and is not a cavity for storing the aerosol matrix of the atomizer 1.
  • the atomizer 1 is usually designed with an e-liquid cavity for storing e-liquid (ie, aerosol matrix).
  • the first air inlet 11 and the first air outlet 12 of the atomizer 1 of this embodiment can be arranged at intervals along a straight line, that is, the atomizer 1 of this embodiment adopts a straight liquid design.
  • the atomizer 1 can also be designed in other forms than the straight liquid type, which is not limited here.
  • the second air flow channel 151 is connected to the capillary liquid absorption structure 152 for absorbing the liquid that enters the second air flow channel 151 from the second junction 1512.
  • the capillary liquid absorption structure 152 includes a plurality of capillary grooves 1521, and the capillary grooves 1521 can absorb and store the effusion entering the second air flow channel 151 from the second junction 1512 by capillary force, as shown in FIG. 1.
  • a number of capillary grooves 1521 are sequentially spaced along the extending direction of the second air flow channel 151 and communicate with the second air flow channel 151, wherein the capillary grooves 1521 relatively close to the second junction 1512 are preferentially used for absorbing and storing into the second air flow channel 151 ⁇ effusion.
  • the capillary groove 1521 it will be described below.
  • the first airflow channel 13 includes an air outlet channel 131 and an atomization cavity 132, wherein the atomization cavity 132 is provided with an atomization assembly 14.
  • the air outlet channel 131 communicates with the atomization cavity 132 and the first air outlet 12, and the atomization cavity 132 also communicates with the first air inlet 11.
  • the first air outlet 12, the air outlet channel 131, the atomization cavity 132, and the first air inlet 11 are connected in sequence.
  • the cross-sectional area of the air outlet channel 131 is smaller than the cross-sectional area of the atomization cavity 132.
  • the cross-sectional area of the air outlet channel 131 is small, the air flow velocity in the air outlet channel 131 is large, and the air pressure is correspondingly low . It is beneficial to increase the pressure difference between the air outlet channel 131 and the atomization cavity 132, so that the atomized aerosol matrix can be better provided to the user for inhalation.
  • the cross-sections of the air outlet channel 131 and the atomization cavity 132 are perpendicular to their respective extension directions, and the extension direction of the air outlet channel 131 is defined as the direction extending from the atomization cavity 132 to the first air outlet 12.
  • the atomization cavity 132 The extending direction of is defined as the direction extending from the first air inlet 11 to the air outlet 131.
  • the extension directions of the air outlet channel 131 and the atomization cavity 132 are both from the first air inlet 11 to the first air outlet 12.
  • the first junction 1511 is provided in the air outlet channel 131
  • the second junction 1512 is provided in the atomization cavity 132.
  • Air will flow into the air outlet channel 131 through the first junction 1511, and the air pressure of the atomization chamber 132 is greater than the air pressure of the second air channel 151, and the air in the atomization cavity 132 will flow into the second air channel 151 through the second junction 1512.
  • the first junction 1511 and the second junction 1512 can also be both located in the outlet channel 131, or both located in the atomization chamber 132, as long as the first junction 1511 is closer to the first junction 1511 than the second junction 1512.
  • the air outlet 12 can realize the design of alleviating the liquid leakage of the atomizer 1 in the embodiment of the present application.
  • the second junction 1512 is located at the bottom of the atomization cavity 132, so that the liquid accumulation at the bottom of the atomization cavity 132 can be absorbed by the capillary liquid absorption structure 152 along the second air flow channel 151 when sucked.
  • the air pressure in the atomization chamber 132 is P1
  • the air pressure in the air outlet channel 131 is P2
  • the second air flow The air pressure in the channel 151 is P3, where P1>P3>P2.
  • the air pressure of the atomization cavity 132 is greater than the air pressure of the second air flow channel 151, and the pressure difference between the atomization cavity 132 of the second junction 1512 and the second air flow channel 151 will drive the accumulation of liquid in the atomization cavity 132 near the second junction 1512 It enters the second air flow channel 151 through the second junction 1512 and is absorbed by the capillary liquid absorption structure 152.
  • the volume of the accommodating space in the second air flow channel 151 and the capillary liquid absorption structure 152 is smaller than the volume of the accommodating space in the atomization cavity 132.
  • the accommodating space is defined as the space of the cavity for storing air and aerosol matrix.
  • the volume of the accommodating space in the second airflow channel 151 and the capillary liquid absorption structure 152 is relatively small.
  • the second airflow channel 151 and the capillary liquid absorption structure 152 have a faster air flow rate and a correspondingly lower air pressure, which is beneficial to increase the pressure difference between the second air flow channel 151 and the atomization cavity 132, that is, increase the liquid accumulation in the atomization cavity 132.
  • the force entering the second air flow channel 151 is further conducive to reducing the liquid accumulation in the first air flow channel 13, especially reducing the liquid accumulation at the bottom of the atomization cavity 132, thereby alleviating the leakage of the atomizer 1 and improving the user's Use experience.
  • the second air flow channel 151 is separated from the first air flow channel 13. Specifically, the second air flow channel 151 is separated from the air outlet channel 131 and the atomization cavity 132, and the second air channel 151 communicates with the air outlet channel 131 and the atomization cavity 132 through the first junction 1511 and the second junction 1512.
  • the separate arrangement is beneficial to ensure the pressure difference between the second air flow channel 151 and the air outlet channel 131 and the atomization cavity 132, and ensure that there is sufficient pressure difference to drive the liquid accumulation in the atomization cavity 132 into the second air flow channel 151, and also It can ensure the formation of the above-mentioned complete air flow path.
  • a partition 16 may be provided between the second air flow channel 151 and the first air flow channel 13, as shown in FIG. 1, to realize the separation of the second air flow channel 151 and the first air flow channel 13, which will not be done here. limited.
  • the atomizer 1 may further include an anti-leakage cavity 15.
  • the second air flow channel 151 and the capillary liquid absorption structure 152 are provided in the anti-leakage cavity 15, and the anti-leakage cavity 15 and the first airflow
  • the channels 13 are arranged separately, and the leak-proof liquid cavity 15 is connected to the first air flow channel 13 through the first junction 1511 and the second junction 1512 respectively.
  • the second air flow channel 151 and the capillary liquid absorption structure 152 can also be integrated in the atomizer 1 instead of being additionally designed in the atomizer 1 as described above.
  • the anti-leakage cavity 15 is further provided with a second air flow channel 151 and a capillary liquid absorption structure 152 in the anti-leakage cavity 15, which will be described below.
  • both ends of the second air flow channel intersect with the first air flow channel to form a first junction and a second junction, wherein the first junction is located at the first air outlet Between the atomization component and the atomization component, the second junction is located between the first air inlet and the atomization component. That is, the first junction is closer to the first air outlet than the second junction.
  • the air flow from the first air inlet to the first air outlet will be generated in the first air channel, and the air pressure of the first air channel at the first confluence will be less than The air pressure of the second air channel at the first junction, and the air pressure of the first air channel at the second junction is greater than the air pressure of the second air channel at the second junction.
  • the pressure difference between the first air flow channel and the second air flow channel at the second junction will drive the effusion in the first air flow channel near the second junction to enter the second air flow channel through the second junction and be absorbed by the capillary structure Absorption, to reduce the accumulation of liquid in the first air flow channel, especially to reduce the accumulation of liquid at the bottom of the atomization cavity, which is beneficial to alleviate the leakage of the atomizer and the electronic atomization device, thereby improving the user experience and reducing The risk of damage to the host due to the penetration of the aerosol matrix into the host of the electronic atomization device.
  • FIG. 2 is a schematic structural diagram of a second embodiment of the atomizer of the present application
  • FIG. 3 is a schematic cross-sectional structure diagram of the atomizer shown in FIG. Example structure diagram.
  • the atomizer 1 is as described in the above embodiment, and it has a first air inlet 11 and a first air outlet 12, and a first air flow channel communicating with the first air inlet 11 and the first air outlet 12 13.
  • the atomizer 1 further includes a housing 17, and the first air inlet 11 and the first air outlet 12 are opened on the housing 17.
  • the atomizer 1 further includes an anti-leakage element 18, the anti-leakage element 18 is provided in the housing 17, at least a part of the first air flow channel 13 is provided in the anti-leakage element 18, and the first of the anti-leakage element 18 is An atomization assembly 14 is provided in the air flow channel 13.
  • the atomization component 14 has been described in the above-mentioned embodiment, and will not be repeated here.
  • the anti-leakage element 18 has a second air inlet 181 and a second air outlet 182, and the first air flow channel 13 in the anti-leakage element 18 communicates with the second air inlet 181 and the second air outlet, respectively 182, as shown in Figure 4.
  • the second air outlet 182 is connected to the first air outlet 12 through the part of the first air flow channel 13 outside the leakage prevention element 18, as shown in FIG. 3.
  • the second air inlet 181 is connected to the first air inlet 11 through the part of the first air flow channel 13 outside the liquid leakage prevention element 18, so that the first air flow channels 13 in the liquid leakage prevention element 18 are connected to the first air flow channel 13 respectively.
  • the housing 17 of the atomizer 1 is also provided with a liquid storage cavity 19 for storing the aerosol matrix to be atomized.
  • the liquid storage cavity 19 is adjacent to and surrounds the outer circumference of the first air flow channel 13 between the first air outlet 12 and the second air outlet 182.
  • the liquid storage cavity 19 communicates with the anti-leakage element 18 and further communicates with the atomization assembly 14 in the anti-leakage element 18, so that the aerosol matrix in the liquid storage cavity 19 can receive the heating and atomization of the atomization assembly 14 ,As shown in Figure 3.
  • a void 183 is provided inside the anti-leakage element 18.
  • the inner wall of the anti-leakage element 18 of the cavity 183 and the inner wall of the housing 17 surround the first air flow channel 13 provided in the anti-leakage element 18, and the outer wall of the anti-leakage element 18 and the inner wall of the housing 17 enclose a second Airflow channel 151.
  • the capillary liquid absorption structure 152 is provided in the space surrounded by the outer wall of the liquid leakage prevention element 18 and the inner wall of the housing 17, as shown in FIG. 4, in which the housing 17 is omitted in FIG.
  • the vacant portion 183 of the anti-leakage element 18 has a shell structure independent of the housing 17, and can also surround the first airflow channel 13 formed in the anti-leakage element 18. It does not need to be realized by the inner wall of the housing 17.
  • the part of the anti-leakage element 18 in the second air flow channel 151 can also have a housing structure independent of the housing 17, which can also enclose the second air flow channel 151 as the outer wall of the anti-leakage element 18, where Not limited.
  • the outer wall of the liquid leakage prevention element 18 is provided with a dam 184, the dam 184 abuts the inner wall of the housing 17, the dam 184 is used to separate the second air flow channel 151 and the first air flow channel 13, so as to realize the second air flow channel 151 And the first airflow channel 13 separately.
  • the part of the dam 184 corresponding to the first junction 1511 is provided with a first communication groove 185, so that the first air flow channel 13 and the second air flow channel 151 intersect to form a first junction 1511.
  • the part of the dam 184 corresponding to the second junction 1512 is provided with a second communication groove 186, so that the first air flow channel 13 and the second air flow channel 151 intersect to form a second junction 1512.
  • the second communicating groove 186 may also be a groove body similar to a capillary groove, which also absorbs liquid accumulation in the first air flow channel 13 through capillary force.
  • FIG. 4 shows that the atomization cavity 132 of the first air flow channel 13 and a part of the air outlet channel 131 are provided in the liquid leakage prevention element 18.
  • the first communication groove 185 is provided corresponding to the air outlet channel 131 in the anti-leakage element 18, and the second communication groove 186 is provided corresponding to the atomization cavity 132 in the anti-leakage element 18.
  • FIG. 4 also shows that the second air flow channel 151 and the capillary liquid absorption structure 152 are respectively provided on opposite sides of the first air flow channel 13 in the liquid leakage prevention element 18. Further, the second air flow channel 151 and the capillary liquid absorption structure 152 on both sides of the first air flow channel 13 in the liquid leakage prevention element 18 are preferably arranged in mirror symmetry. Further, the liquid leakage prevention element 18 has a first junction 1511 and a second junction 1512 on both sides in the predetermined direction, and the liquid leakage prevention element 18 has a corresponding first junction 1511 on both sides of the predetermined direction. A first communication groove 185 and a second communication groove 186 are provided at the second junction 1512.
  • the first air flow channel 13 in the anti-leakage element 18 penetrates the anti-leakage element 18 in a predetermined direction, and is respectively communicated with the second air flow channels 151 on both sides of the predetermined direction.
  • the predetermined direction (shown by arrow X in FIG. 4) is perpendicular to the relative direction of the second air flow passage 151 on both sides of the first air flow passage 13 in the anti-leakage element 18 (shown by arrow Y in FIG. 4), and It is perpendicular to the extension direction of the first air flow channel 13 in the anti-leakage element 18 (as shown by the arrow Z in FIG. 4).
  • the outer wall of the anti-leakage element 18 is provided with a number of capillary grooves 1521 surrounding the outer periphery of the first air flow channel 13.
  • the capillary grooves 1521 can absorb and store the second air flow from the second junction 1512 by capillary force. Fluid accumulation in the channel 151.
  • the outer wall of the anti-leakage element 18 is provided with a plurality of fins 1522 surrounding the outer circumference of the first air flow channel 13, and a capillary groove 1521 is formed between adjacent fins 1522.
  • the fin 1522 abuts against the inner wall of the housing 17 to ensure that the capillary groove 1521 can absorb and store the effusion through capillary force.
  • the several capillary grooves 1521 are spaced apart from each other along the extending direction of the second air flow channel 151 and are parallel to each other. Wherein, after the capillary groove 1521 relatively close to the second junction 1512 is filled with effusion, the capillary groove 1521 relatively far away from the second junction 1512 continues to absorb the effusion until the storage amount of the effusion in the several capillary grooves 1521 Reach saturation. And when the storage capacity of the effusion in the capillary grooves 1521 reaches saturation, you can choose to disassemble the anti-leakage element 18 for cleaning for reuse, or you can choose to replace the atomizer 1 with a new one, which is not limited here. .
  • the part of the anti-leakage element 18 where the second air flow channel 151 and the capillary liquid absorption structure 152 are located can be a detachable structure, so that the second air flow channel 151 and the capillary liquid absorption structure 152 can be easily assembled into an anti-leakage structure.
  • the leakage element 18 can also facilitate the cleaning of the anti-leakage element 18 as described above.
  • the part of the anti-leakage element 18 where the second air flow channel 151 and the capillary liquid absorption structure 152 are located and the original anti-leakage element 18 can also be an integral structure and cannot be disassembled and assembled here. Not limited.
  • FIG. 5 shows the liquid accumulation in the first airflow channel 31 when the number of user suction ports of the conventional atomizer 3 reaches 60, 90, and 120
  • Fig. 6 shows the case of the atomizer 1 of this embodiment when the user pumps.
  • the number of suction ports reaches 60, 90, and 120
  • the liquid accumulation in the first airflow channel 13 is shown
  • FIG. 6 also shows that the atomizer 1 in this embodiment has 60, 90, and 120 suction ports.
  • the capillary absorbing structure 152 absorbs fluid accumulation. It can be seen that the situation of liquid accumulation in the first air flow channel 13 of the atomizer 1 of this embodiment is significantly improved.
  • the part where the first air flow channel communicates with the first junction is close to the part where the first air flow channel communicates with the second junction in the extending direction of the first air flow channel.
  • the first air outlet In this way, when the user inhales, the airflow from the first air inlet to the first air outlet will be generated in the first airflow channel, and the air pressure of the part where the first airflow channel communicates with the second junction is greater than that of the second airflow
  • the air pressure at the second junction of the channel that is, there is a pressure difference on both sides of the second junction, and the pressure difference on both sides of the second junction will drive the effusion in the first air flow channel to flow into the second air flow channel through the second junction It is absorbed by the capillary liquid absorption structure to reduce the accumulation of liquid in the first air flow channel, especially to reduce the accumulation of liquid at the bottom of the atomization cavity, thereby helping to alleviate the leakage of the atomizer and improve the user experience.
  • FIG. 7 is a schematic structural diagram of an embodiment of an electronic atomization device of the present application.
  • the electronic atomization device includes a host 2 and an atomizer 1.
  • the host 2 is electrically connected to the atomizer 1 for supplying power to the atomizer 1, and controls the atomizer 1 to work when the user inhales ,
  • the aerosol matrix is atomized to form an aerosol for the user to inhale.
  • the atomizer 1 has been described in detail in the above-mentioned embodiment, and will not be repeated here.
  • FIG. 8 is a schematic structural diagram of another embodiment of the electronic atomization device of the present application.
  • the atomizer may also be integrated into the electronic atomization device, that is, the electronic atomization device itself includes the first air inlet 11 and the first air outlet 12.
  • the electronic atomization device further includes a first airflow channel 13 which is connected to the first air inlet 11 and the first air outlet 12 respectively, and an atomization assembly 14 is provided in the first airflow channel 13.
  • the electronic atomization device also includes a second airflow channel 151. The two ends of the second airflow channel 151 intersect with the first airflow channel 13 to form a first junction 1511 and a second junction 1512, wherein the first junction 1511 is located at the first junction 1511 and the second junction 1512.
  • the electronic atomization device further includes a capillary liquid absorption structure 152, and the capillary liquid absorption structure 152 is connected to the second air flow channel 151.
  • the first air outlet 12 takes a suction action
  • the effusion in the first airflow channel 13 close to the second junction 1512 enters the second airflow channel 151 through the second junction 1512 and is absorbed by the capillary liquid absorption structure 152.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or Integral; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.
  • connection may be a fixed connection or a detachable connection, or Integral; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

一种雾化器(1)以及电子雾化装置,雾化器(1)以及电子雾化装置的第一交汇处(1511)位于第一出气口(12)与雾化组件(14)之间,第二交汇处(1512)位于第一进气口(11)与雾化组件(14)之间。当第一出气口(12)发生抽吸动作时,第一气流通道(13)中会产生自第一进气口(11)流向第一出气口(12)的气流,第一气流通道(13)在第二交汇处(1512)的气压会大于第二气流通道(151)在第二交汇处(1512)的气压。因此,第二交汇处(1512)的第一气流通道(13)和第二气流通道(151)的压差会驱使第一气流通道(13)内靠近第二交汇处(1512)的积液通过第二交汇处(1512)进入第二气流通道(151)并被毛细吸液结构(152)吸收,能够缓解雾化器(1)以及电子雾化装置漏液的情况。

Description

雾化器以及电子雾化装置 【技术领域】
本申请涉及电子雾化装置技术领域,特别是涉及一种雾化器以及电子雾化装置。
【背景技术】
传统诸如电子烟等电子雾化装置通常设计有雾化器,雾化器能够雾化其内存储的气溶胶基质以供用户吸食。然而,传统雾化器通常存在漏液现象。雾化器内的气溶胶基质(例如烟油等)容易从雾化器的底部泄漏到壳体外。泄漏到壳体外的气溶胶基质一方面对用户的使用体验造成不良影响,另一方面气溶胶基质容易渗透到电子雾化装置的主机(即电池端),进而损坏主机内的电路、零件等,严重者将会导致主机报废。
【申请内容】
有鉴于此,本申请主要解决的技术问题是提供一种雾化器以及电子雾化装置,能够缓解雾化器以及电子雾化装置漏液的情况。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种雾化器。该雾化器包括第一进气口和第一出气口。该雾化器还包括第一气流通道,第一气流通道分别连通第一进气口和第一出气口,第一气流通道内设有雾化组件。该雾化器还包括第二气流通道,第二气流通道的两端分别与第一气流通道交汇形成第一交汇处和第二交汇处,其中第一交汇处位于第一出气口与雾化组件之间,第二交汇处位于第一进气口与雾化组件之间。该雾化器还包括毛细吸液结构,毛细吸液结构与第二气流通道连接。当第一出气口发生抽吸动作时,第一气流通道内靠近第二交汇处的积液通过第二交汇处进入第二气流通道并被毛细吸液结构吸收。
在本申请的一实施例中,毛细吸液结构包括若干毛细槽,若干毛细槽沿第二气流通道的延伸方向依次间隔设置且连通第二气流通道,其中相对靠近第二交汇处的毛细槽优先用于吸收并存储进入第二气流通道的积液。
在本申请的一实施例中,第一气流通道包括出气通道和雾化腔,出气通道连通雾化腔和第一出气口,雾化腔还连通第一进气口,第一交汇处设于出气通道,第二交汇处设于雾化腔,其中雾化腔内设有雾化组件。
在本申请的一实施例中,当第一出气口发生抽吸动作时,第二气流通道的气压小于雾化腔的气压,第二气流通道的气压大于出气通道的气压。
在本申请的一实施例中,第二气流通道和毛细吸液结构内的容置空间的体积小于雾化腔内的容置空间的体积。
在本申请的一实施例中,出气通道的横截面面积小于雾化腔的横截面面积。
在本申请的一实施例中,雾化器还包括防漏液腔体,第二气流通道和毛细吸液结构设于防漏液腔体中,防漏液腔体与第一气流通道分隔设置,并且防漏液腔体分别通过第一交汇处和第二交汇处与第一气流通道交汇连通。
在本申请的一实施例中,雾化器还包括壳体以及防漏液元件,防漏液元件设于壳体中,至少部分第一气流通道设于防漏液元件中,并且设于防漏液元件中的第一气流通道内设有雾化组件。防漏液元件内部设有空缺部,空缺部的防漏液元件内壁与壳体的内壁包围形成设于防漏液元件中的第一气流通道,防漏液元件的外壁与壳体的内壁包围形成第二气流通道,并且毛细吸液结构设于防漏液元件的外壁与壳体的内壁包围形成的空间中。
在本申请的一实施例中,防漏液元件的外壁上设有堤坝,堤坝抵接壳体的内壁,堤坝用于分隔第一气流通道和第二气流通道,并且堤坝对应第一交汇处的部分设有第一连通槽,使得第一气流通道与第二气流通道交汇形成第一交汇处,堤坝对应第二交汇处的部分设有第二连通槽,使得第一气流通道与第二气流通道交汇形成第二交汇处。
在本申请的一实施例中,毛细吸液结构包括若干毛细槽,防漏液元件的外壁设有围绕于第一气流通道外周的多个翅片,翅片抵接壳体的内壁,相邻的翅片之间形成毛细槽。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种电子雾化装置。该电子雾化装置包括第一进气口和第一出气口。该电子雾化装置还包括第一气流通道,第一气流通道分别连通第一进气口和第一出气口,第一气流 通道内设有雾化组件。该电子雾化装置还包括第二气流通道,第二气流通道的两端分别与第一气流通道交汇形成第一交汇处和第二交汇处,其中第一交汇处位于第一出气口与雾化组件之间,第二交汇处位于第一进气口与雾化组件之间。该电子雾化装置还包括毛细吸液结构,毛细吸液结构与第二气流通道连接。当第一出气口发生抽吸动作时,第一气流通道内靠近第二交汇处的积液通过第二交汇处进入第二气流通道并被毛细吸液结构吸收。
在本申请的一实施例中,毛细吸液结构包括若干毛细槽,若干毛细槽沿第二气流通道的延伸方向依次间隔设置且连通第二气流通道,其中相对靠近第二交汇处的毛细槽优先用于吸收并存储进入第二气流通道的积液。
在本申请的一实施例中,第一气流通道包括出气通道和雾化腔,出气通道连通雾化腔和第一出气口,雾化腔还连通第一进气口,第一交汇处设于出气通道,第二交汇处设于雾化腔,其中雾化腔内设有雾化组件。
在本申请的一实施例中,当第一出气口发生抽吸动作时,第二气流通道的气压小于雾化腔的气压,第二气流通道的气压大于出气通道的气压。
在本申请的一实施例中,第二气流通道和毛细吸液结构内的容置空间的体积小于雾化腔内的容置空间的体积。
在本申请的一实施例中,出气通道的横截面面积小于雾化腔的横截面面积。
在本申请的一实施例中,雾化器还包括防漏液腔体,第二气流通道和毛细吸液结构设于防漏液腔体中,防漏液腔体与第一气流通道分隔设置,并且防漏液腔体分别通过第一交汇处和第二交汇处与第一气流通道交汇连通。
在本申请的一实施例中,电子雾化装置还包括壳体以及防漏液元件,防漏液元件设于壳体中,至少部分第一气流通道设于防漏液元件中,并且设于防漏液元件中的第一气流通道内设有雾化组件;防漏液元件内部设有空缺部,空缺部的防漏液元件内壁与壳体的内壁包围形成设于防漏液元件中的第一气流通道,防漏液元件的外壁与壳体的内壁包围形成第二气流通道,并且毛细吸液结构设于防漏液元件的外壁与壳体的内壁包围形成的空间中。
在本申请的一实施例中,防漏液元件的外壁上设有堤坝,堤坝抵接壳体的内壁,堤坝用于分隔第一气流通道和第二气流通道,并且堤坝对应第一交汇处的部分设有第一连通槽,使得第一气流通道与第二气流通道交汇形成第一交汇处,堤坝对应第二交汇处的部分设有第二连通槽,使得第一气流通道与第二气流通道交汇形成第二交汇处。
在本申请的一实施例中,毛细吸液结构包括若干毛细槽,防漏液元件的外壁设有围绕于第一气流通道外周的多个翅片,翅片抵接壳体的内壁,相邻的翅片之间形成毛细槽。
本申请的有益效果是:区别于现有技术,本申请提供一种雾化器以及电子雾化装置。该雾化器以及电子雾化装置的第二气流通道的两端分别与第一气流通道交汇形成第一交汇处和第二交汇处,其中第一交汇处位于第一出气口与雾化组件之间,第二交汇处位于第一进气口与雾化组件之间。也就是说,第一交汇处相对第二交汇处靠近第一出气口。如此一来,当第一出气口发生抽吸动作时,第一气流通道中会产生自第一进气口流向第一出气口的气流,并且第一气流通道在第一交汇处的气压会小于第二气流通道在第一交汇处的气压,而第一气流通道在第二交汇处的气压会大于第二气流通道在第二交汇处的气压。因此,第二交汇处的第一气流通道和第二气流通道的压差会驱使第一气流通道内靠近第二交汇处的积液通过第二交汇处进入第二气流通道并被毛细吸液结构吸收,以减少第一气流通道内的积液,因而有利于缓解雾化器以及电子雾化装置漏液的情况,进而能够改善用户的使用体验以及降低因气溶胶基质渗透到电子雾化装置的主机而造成主机损坏的风险。
【附图说明】
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。此外,这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
图1是本申请雾化器第一实施例的结构示意图;
图2是本申请雾化器第二实施例的结构示意图;
图3是图2所示雾化器的剖面结构示意图;
图4是本申请防漏液元件一实施例的结构示意图;
图5是现有技术雾化器在用户抽吸不同口数的状态下的示意图;
图6是本申请雾化器在用户抽吸不同口数的状态下的示意图;
图7是本申请电子雾化装置一实施例的结构示意图;
图8是本申请电子雾化装置另一实施例的结构示意图。
【具体实施方式】
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请雾化器第一实施例的结构示意图。
为解决现有技术中的雾化器以及电子雾化装置漏液严重的技术问题,本申请的一实施例提供一种雾化器1。该雾化器1包括第一进气口11和第一出气口12。该雾化器1还包括第一气流通道13,第一气流通道13分别连通第一进气口11和第一出气口12,第一气流通道13内设有雾化组件14。该雾化器1还包括第二气流通道151,第二气流通道151的两端分别与第一气流通道13交汇形成第一交汇处1511和第二交汇处1512,其中第一交汇处1511位于第一出气口12与雾化组件14之间,第二交汇处1512位于第一进气口11与雾化组件14之间。该雾化器1还包括毛细吸液结构152,毛细吸液结构152与第二气流通道151连接。当第一出气口12发生抽吸动作时,第一气流通道13内靠近第二交汇处1512的积液通过第二交汇处1512进入第二气流通道151并被毛细吸液结构152吸收。以下进行详细阐述。
在一实施例中,雾化器1为电子雾化装置中用于雾化气溶胶基质的元件。应用本实施例雾化器1的电子雾化装置可以是电子烟等,其雾化器1则用于雾化烟油(即气溶胶基质),以供用户吸食。当然,在本申请的其它实施例中,应用本实施例雾化器1的电子雾化装置并不局限于电子烟的产品形态,例如电子雾化装置的雾化器1还可以用于雾化药液等,雾化后的药液供用户吸食,以辅助用户的药物治疗等。下文以应用本实施例雾化器1的电子雾化装置的产品形态为电子烟为例进行阐述,仅为论述需要,并非因此造成限定。
具体地,雾化器1包括第一进气口11和第一出气口12以及分别连通第一 进气口11和第一出气口12的第一气流通道13。当用户抽吸时,即第一出气口12发生抽吸动作,外界的空气从第一进气口11进入第一气流通道13,并沿第一气流通道13流向第一出气口12。
进一步地,第一气流通道13内设有雾化组件14。雾化组件14即为雾化器1中用于雾化气溶胶基质的元件。用户抽吸时,从第一进气口11进入第一气流通道13的空气会携带经雾化组件14雾化后的气溶胶基质流向第一出气口12,并从第一出气口12输出,以供用户吸食。
可选地,雾化组件14优选为多孔发热体,其通过毛细作用力吸收气溶胶基质并产热以雾化气溶胶基质。优选地,雾化组件14可以是多孔陶瓷发热体等,其底部还可以进一步设置发热膜。当然,在本申请的其它实施例中,雾化组件14还可以是纤维棉和发热丝搭配的设计,在此不做限定。
雾化器1还包括第二气流通道151。第二气流通道151与第一气流通道13分隔设置,并且第二气流通道151的两端分别与第一气流通道13交汇形成第一交汇处1511和第二交汇处1512。
雾化器1还包括毛细吸液结构152,毛细吸液结构152与第二气流通道151连接,用于吸收进入第二气流通道151的积液。
由于雾化组件14设计于第一气流通道13中,雾化组件14所吸收的气溶胶基质难免会残留于第一气流通道13。并且,由于雾化后的气溶胶基质温度较高,第一气流通道13内壁的温度较低,雾化后的气溶胶基质接触到第一气流通道13内壁其温度会骤降而冷凝,冷凝后的气溶胶基质会残留于第一气流通道13。因此,上述因素会导致气溶胶基质残留于第一气流通道13,即形成积液。而当第一气流通道13中积液过多时,难免地会泄漏至雾化器1外部。
有鉴于此,本实施例设计第二气流通道151。其中,第一交汇处1511位于第一出气口12与雾化组件14之间,第二交汇处1512位于第一进气口11与雾化组件14之间。也就是说,第一交汇处1511相对第二交汇处1512靠近第一出气口12。。如此一来,当第一出气口12发生抽吸动作时,第一气流通道13中会产生自第一进气口11流向第一出气口12的气流,并且第一气流通道13在第一交汇处1511的气压会小于第二气流通道151在第一交汇处1511的气压,而第一气流通道13在第二交汇处1512的气压会大于第二气流通道151在第二交汇处1512的气压。因此,第二交汇处1512的第一气流通道13和第二气流通道151的压差会驱使第一气流通道13内靠近第二交汇处1512的积液通过第二交汇处 1512进入第二气流通道151并被毛细吸液结构152吸收,从而减少第一气流通道13内的积液,因而有利于缓解雾化器1漏液的情况以及改善用户的使用体验。
需要说明的是,当第一出气口12发生抽吸动作时,外界的空气从第一进气口11进入第一气流通道13,第一气流通道13中会产生自第一进气口11流向第一出气口12的气流,同时从第一进气口11进入第一气流通道13的空气部分会从第二交汇处1512流入第二气流通道151,第二气流通道151内的空气会从第一交汇处1511汇流至第一气流通道13,形成完整的气流通路,如图1中虚线箭头所示。也就是说,当第一出气口12发生抽吸动作时,第二交汇处1512的第一气流通道13和第二气流通道151才会产生压差,因而才会驱使第一气流通道13内的积液通过第二交汇处1512流入第二气流通道151。而在第一出气口12未发生抽吸动作的情况下,即用户未抽吸时,第一气流通道13内的气压约为一个标准大气压,约为101.325kPa,其与第二气流通道151二者气压差异不明显,此时第二气流通道151吸收第一气流通道13中积液的量较为有限。
并且,本实施例第二气流通道151用于配合毛细吸液结构152吸收第一气流通道13中的积液,并不是雾化器1用于存储气溶胶基质的腔体。例如上述电子烟产品形态的电子雾化装置,其雾化器1内通常设计有烟油腔用以存储烟油(即气溶胶基质)。
本实施例的雾化器1的第一进气口11和第一出气口12可以沿一直线方向间隔设置,即本实施例的雾化器1采用直液式的设计。当然,在本申请的其它实施例中,雾化器1也可以采用除直液式之外的其它形式的设计,在此不做限定。
在一实施例中,第二气流通道151连接毛细吸液结构152,用于吸收自第二交汇处1512进入第二气流通道151的积液。
进一步地,毛细吸液结构152包括若干毛细槽1521,毛细槽1521能够通过毛细作用力吸收并存储自第二交汇处1512进入第二气流通道151的积液,如图1所示。并且,若干毛细槽1521沿第二气流通道151的延伸方向依次间隔设置且连通第二气流通道151,其中相对靠近第二交汇处1512的毛细槽1521优先用于吸收并存储进入第二气流通道151的积液。至于毛细槽1521的具体结构设计实现,将在下文进行阐述。
请继续参阅图1。在一实施例中,第一气流通道13包括出气通道131和雾化腔132,其中雾化腔132内设有雾化组件14。出气通道131连通雾化腔132 和第一出气口12,雾化腔132还连通第一进气口11。也就是说,第一出气口12、出气通道131、雾化腔132以及第一进气口11依次连通。
出气通道131的横截面面积小于雾化腔132的横截面面积。当第一气流通道13中产生自第一进气口11流向第一出气口12的气流时,出气通道131的横截面面积较小,出气通道131内的气流流速较大,对应地气压较低,有利于增大出气通道131和雾化腔132之间的压差,以便于雾化后的气溶胶基质更好地提供给用户吸食。
其中,出气通道131和雾化腔132二者的横截面垂直于各自的延伸方向,并且出气通道131的延伸方向定义为自雾化腔132延伸至第一出气口12的方向,雾化腔132的延伸方向定义为自第一进气口11延伸至出气通道131的方向。举例而言,如图1所示的直液式的雾化器1,其出气通道131和雾化腔132的延伸方向均为自第一进气口11至第一出气口12的方向。
并且,第一交汇处1511设于出气通道131,第二交汇处1512设于雾化腔132。如此一来,当第一气流通道13中产生自第一进气口11流向第一出气口12的气流时,出气通道131的气压小于第二气流通道151的气压,第二气流通道151内的空气会通过第一交汇处1511流入出气通道131,而雾化腔132的气压大于第二气流通道151的气压,雾化腔132内的空气会通过第二交汇处1512流入第二气流通道151,形成上述完整的气流通路。
当然,在本申请的其它实施例中,由于当第一出气口12发生抽吸动作时,第一气流通道13中产生自第一进气口11流向第一出气口12的气流,因此在自第一进气口11至第一出气口12的方向上,第一气流通道13中的气压表现为逐渐减小。有鉴于此,第一交汇处1511和第二交汇处1512也可以均设于出气通道131,或是均设于雾化腔132,只要保证第一交汇处1511相对第二交汇处1512靠近第一出气口12,即可实现本申请实施例实现缓解雾化器1漏液情况的设计。在一个优选实施例中,第二交汇处1512位于雾化腔132底部,从而使雾化腔132底部的积液可以在抽吸时顺着第二气流通道151被毛细吸液结构152吸收。
具体地,当第一气流通道13中产生自第一进气口11流向第一出气口12的气流时,雾化腔132内的气压为P1,出气通道131内的气压为P2,第二气流通道151内的气压为P3,其中P1>P3>P2。
雾化腔132的气压大于第二气流通道151的气压,第二交汇处1512的雾化腔132和第二气流通道151的压差会驱使雾化腔132内靠近第二交汇处1512的 积液通过第二交汇处1512进入第二气流通道151,并被毛细吸液结构152吸收。
在一实施例中,第二气流通道151和毛细吸液结构152内的容置空间的体积小于雾化腔132内的容置空间的体积。其中,容置空间定义为腔体用于存储空气以及气溶胶基质的空间。第二气流通道151和毛细吸液结构152内的容置空间的体积较小,当第一气流通道13中产生自第一进气口11流向第一出气口12的气流时,第二气流通道151和毛细吸液结构152内的气流流速较快,对应地气压较小,有利于增大第二气流通道151和雾化腔132的压差,即增大驱使雾化腔132内的积液进入第二气流通道151的作用力,进一步有利于减少第一气流通道13内的积液,特别是减少雾化腔132底部的积液,进而缓解雾化器1漏液的情况以及改善用户的使用体验。
并且,第二气流通道151与第一气流通道13分隔设置。具体地,第二气流通道151分别与出气通道131和雾化腔132分隔设置,而第二气流通道151通过第一交汇处1511和第二交汇处1512与出气通道131和雾化腔132连通。分隔设置有利于保证第二气流通道151与出气通道131和雾化腔132之间的压差,保证具有足够的压差以驱使雾化腔132内的积液进入第二气流通道151,并且还能够保证上述完整气流通路的形成。
可选地,第二气流通道151与第一气流通道13之间可以设有隔断16,如图1所示,以实现第二气流通道151与第一气流通道13的分隔设置,在此不做限定。
需要说明的是,雾化器1还可以包括防漏液腔体15,第二气流通道151和毛细吸液结构152设于防漏液腔体15中,防漏液腔体15与第一气流通道13分隔设置,并且防漏液腔体15分别通过第一交汇处1511和第二交汇处1512与第一气流通道13交汇连通。
当然,在本申请的其它实施例中,第二气流通道151和毛细吸液结构152也可以采用一体成型于雾化器1的设计,而并非如上文所述在雾化器1中额外设计一防漏液腔体15,进而在防漏液腔体15中设置第二气流通道151和毛细吸液结构152,将在下文阐述。
综上所述,本申请所提供的雾化器,其第二气流通道的两端分别与第一气流通道交汇形成第一交汇处和第二交汇处,其中第一交汇处位于第一出气口与雾化组件之间,第二交汇处位于第一进气口与雾化组件之间。也就是说,第一交汇处相对第二交汇处靠近第一出气口。如此一来,当第一出气口发生抽吸动 作时,第一气流通道中会产生自第一进气口流向第一出气口的气流,并且第一气流通道在第一交汇处的气压会小于第二气流通道在第一交汇处的气压,而第一气流通道在第二交汇处的气压会大于第二气流通道在第二交汇处的气压。因此,第二交汇处的第一气流通道和第二气流通道的压差会驱使第一气流通道内靠近第二交汇处的积液通过第二交汇处进入第二气流通道并被毛细吸液结构吸收,以减少第一气流通道内的积液,特别是减少雾化腔底部的积液,因而有利于缓解雾化器以及电子雾化装置漏液的情况,进而能够改善用户的使用体验以及降低因气溶胶基质渗透到电子雾化装置的主机而造成主机损坏的风险。
请参阅图2至图4,图2是本申请雾化器第二实施例的结构示意图,图3是图2所示雾化器的剖面结构示意图,图4是本申请防漏液元件一实施例的结构示意图。
在一实施例中,雾化器1正如上述实施例所述,其具有第一进气口11和第一出气口12以及连通第一进气口11和第一出气口12的第一气流通道13。雾化器1还包括有壳体17,第一进气口11和第一出气口12开设于壳体17上。
雾化器1还包括防漏液元件18,防漏液元件18设于壳体17中,至少部分第一气流通道13设于防漏液元件18中,并且防漏液元件18中的第一气流通道13内设有雾化组件14。其中雾化组件14已在上述实施例中阐述,在此就不再赘述。
在一实施例中,防漏液元件18具有第二进气口181和第二出气口182,防漏液元件18中的第一气流通道13分别连通第二进气口181和第二出气口182,如图4所示。第二出气口182通过第一气流通道13处于防漏液元件18外的部分连通至第一出气口12,如图3所示。同理,第二进气口181通过第一气流通道13处于防漏液元件18外的部分连通至第一进气口11,进而使得防漏液元件18中的第一气流通道13分别连通第一进气口11和第一出气口12。
进一步地,雾化器1的壳体17内还设有储液腔体19,用于存储待雾化的气溶胶基质。优选地,储液腔体19邻接且围绕于第一出气口12和第二出气口182之间的第一气流通道13的外周。储液腔体19连通防漏液元件18,并进一步连通至防漏液元件18内的雾化组件14,使得储液腔体19内的气溶胶基质能够接受到雾化组件14的加热雾化,如图3所示。
在一实施例中,防漏液元件18内部设有空缺部183。空缺部183的防漏液元件18内壁与壳体17的内壁包围形成设于防漏液元件18中的第一气流通道13, 防漏液元件18的外壁与壳体17的内壁包围形成第二气流通道151。并且,毛细吸液结构152设于防漏液元件18的外壁与壳体17的内壁包围形成的空间中,如图4所示,其中图4省略了壳体17。
当然,在本申请的其它实施例中,防漏液元件18的空缺部183具有独立于壳体17的壳体结构,同样能够包围形成设于防漏液元件18中的第一气流通道13,而不需要借助壳体17的内壁实现。同理,防漏液元件18处于第二气流通道151的部分也可以具有独立于壳体17的壳体结构,其与防漏液元件18的外壁同样能够包围形成第二气流通道151,在此不做限定。
请继续参阅图4。进一步地,防漏液元件18的外壁上设有堤坝184,堤坝184抵接壳体17的内壁,堤坝184用于分隔第二气流通道151和第一气流通道13,以实现第二气流通道151和第一气流通道13的分隔设置。并且堤坝184对应第一交汇处1511的部分设有第一连通槽185,使得第一气流通道13与第二气流通道151交汇形成第一交汇处1511。堤坝184对应第二交汇处1512的部分设有第二连通槽186,使得第一气流通道13与第二气流通道151交汇形成第二交汇处1512。其中,第二连通槽186也可以是类似毛细槽的槽体,同样通过毛细作用力吸收第一气流通道13内的积液。
图4展示了第一气流通道13的雾化腔132和部分出气通道131设于防漏液元件18中的情况。第一连通槽185对应防漏液元件18中的出气通道131设置,第二连通槽186对应防漏液元件18中的雾化腔132设置。
并且图4还展示了防漏液元件18中的第一气流通道13的相对两侧分别设有第二气流通道151和毛细吸液结构152。进一步地,防漏液元件18中的第一气流通道13两侧的第二气流通道151和毛细吸液结构152优选为镜像对称设置。进一步地,防漏液元件18在预定方向上的两侧分别具有第一交汇处1511和第二交汇处1512,并且防漏液元件18在预定方向上的两侧分别具有对应第一交汇处1511和第二交汇处1512设置的第一连通槽185和第二连通槽186。防漏液元件18中的第一气流通道13沿预定方向贯穿防漏液元件18,进而分别与预定方向上两侧的第二气流通道151连通。其中,预定方向(如图4中箭头X所示)垂直于防漏液元件18中的第一气流通道13两侧第二气流通道151的相对方向(如图4中箭头Y所示),并且垂直于防漏液元件18中的第一气流通道13的延伸方向(如图4中箭头Z所示)。
请继续参阅图4。在一实施例中,防漏液元件18的外壁设有围绕于第一气 流通道13外周的若干毛细槽1521,毛细槽1521能够通过毛细作用力吸收并存储自第二交汇处1512进入第二气流通道151的积液。
具体地,防漏液元件18的外壁设有围绕于第一气流通道13外周的多个翅片1522,相邻的翅片1522之间形成毛细槽1521。并且,翅片1522抵接壳体17的内壁,以保证毛细槽1521能够通过毛细作用力吸收并存储积液。
进一步地,该若干毛细槽1521沿第二气流通道151的延伸方向彼此间隔设置且相互平行。其中,待相对靠近第二交汇处1512的毛细槽1521中吸满积液后,由相对远离第二交汇处1512的毛细槽1521继续吸收积液,直至该若干毛细槽1521中积液的存储量达到饱和。并且当该若干毛细槽1521中积液的存储量达到饱和后,可以选择拆卸下防漏液元件18进行清洗,以便再次使用,亦或是选择更换新的雾化器1,在此不做限定。
需要说明的是,第二气流通道151和毛细吸液结构152所处的防漏液元件18部分可以是可拆卸结构,如此能够方便地将第二气流通道151和毛细吸液结构152组装成防漏液元件18,也可以方便上文所述的对防漏液元件18进行清洗。当然,在本申请的其它实施例中,第二气流通道151和毛细吸液结构152所处的防漏液元件18部分与原防漏液元件18也可以为一体结构,不可拆装,在此不做限定。
请参阅图5和图6。图5展示了传统雾化器3在用户抽吸口数达到60口、90口以及120口时第一气流通道31内积液的情况,而图6展示了本实施例雾化器1在用户抽吸口数达到60口、90口以及120口时第一气流通道13内积液的情况,并且图6还展示了本实施例雾化器1在用户抽吸口数达到60口、90口以及120口时毛细吸液结构152吸收积液的情况。由此可见,本实施例的雾化器1其第一气流通道13内积液的情况得到明显改善。
综上所述,本申请所提供的雾化器,其第一气流通道与第一交汇处连通的部分在第一气流通道的延伸方向上相对第一气流通道与第二交汇处连通的部分靠近第一出气口。如此一来,当用户抽吸时,第一气流通道中会产生自第一进气口流向第一出气口的气流,并且第一气流通道与第二交汇处连通的部分的气压大于第二气流通道的第二交汇处处的气压,即第二交汇处两侧存在压差,并且第二交汇处两侧的压差会驱使第一气流通道内的积液通过第二交汇处流入第二气流通道并被毛细吸液结构吸收,以减少第一气流通道内的积液,特别是减少雾化腔底部的积液,因而有利于缓解雾化器漏液的情况以及改善用户的使用 体验。
请参阅图7,图7是本申请电子雾化装置一实施例的结构示意图。
在一实施例中,电子雾化装置包括主机2以及雾化器1,主机2电性连接雾化器1,用于向雾化器1供电,并且在用户抽吸时控制雾化器1工作,雾化气溶胶基质,以形成气雾供用户吸食。其中,雾化器1已在上述实施例中详细阐述,在此就不再赘述。
请参阅图8,图8是本申请电子雾化装置另一实施例的结构示意图。
在替代实施例中,雾化器也可以一体集成于电子雾化装置,即电子雾化装置自身就包括第一进气口11和第一出气口12。该电子雾化装置还包括第一气流通道13,第一气流通道13分别连通第一进气口11和第一出气口12,第一气流通道13内设有雾化组件14。该电子雾化装置还包括第二气流通道151,第二气流通道151的两端分别与第一气流通道13交汇形成第一交汇处1511和第二交汇处1512,其中第一交汇处1511位于第一出气口12与雾化组件14之间,第二交汇处1512位于第一进气口11与雾化组件14之间。该电子雾化装置还包括毛细吸液结构152,毛细吸液结构152与第二气流通道151连接。当第一出气口12发生抽吸动作时,第一气流通道13内靠近第二交汇处1512的积液通过第二交汇处1512进入第二气流通道151并被毛细吸液结构152吸收。其具体已在上述实施例中详细阐述,在此就不再赘述。
此外,在本申请中,除非另有明确的规定和限定,术语“相连”、“连接”、“层叠”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种雾化器,其中,所述雾化器包括:
    第一进气口;
    第一出气口;
    第一气流通道,所述第一气流通道分别连通所述第一进气口和所述第一出气口,所述第一气流通道内设有雾化组件;
    第二气流通道,所述第二气流通道的两端分别与所述第一气流通道交汇形成第一交汇处和第二交汇处,其中所述第一交汇处位于所述第一出气口与所述雾化组件之间,所述第二交汇处位于所述第一进气口与所述雾化组件之间;
    毛细吸液结构,与所述第二气流通道连接;
    当所述第一出气口发生抽吸动作时,所述第一气流通道内靠近所述第二交汇处的积液通过所述第二交汇处进入所述第二气流通道并被所述毛细吸液结构吸收。
  2. 根据权利要求1所述的雾化器,其中,所述毛细吸液结构包括若干毛细槽,所述若干毛细槽沿所述第二气流通道的延伸方向依次间隔设置且连通所述第二气流通道,其中相对靠近所述第二交汇处的所述毛细槽优先用于吸收并存储进入所述第二气流通道的积液。
  3. 根据权利要求1所述的雾化器,其中,所述第一气流通道包括出气通道和雾化腔,所述出气通道连通所述雾化腔和所述第一出气口,所述雾化腔还连通所述第一进气口,所述第一交汇处设于所述出气通道,所述第二交汇处设于所述雾化腔,其中所述雾化腔内设有所述雾化组件。
  4. 根据权利要求3所述的雾化器,其中,当所述第一出气口发生抽吸动作时,所述第二气流通道的气压小于所述雾化腔的气压,所述第二气流通道的气压大于所述出气通道的气压。
  5. 根据权利要求3所述的雾化器,其中,所述第二气流通道和所述毛细吸液结构内的容置空间的体积小于所述雾化腔内的容置空间的体积。
  6. 根据权利要求3所述的雾化器,其中,所述出气通道的横截面面积小于所述雾化腔的横截面面积。
  7. 根据权利要求1所述的雾化器,其中,所述雾化器还包括防漏液腔体,所述第二气流通道和所述毛细吸液结构设于所述防漏液腔体中,所述防漏液腔 体与所述第一气流通道分隔设置,并且所述防漏液腔体分别通过所述第一交汇处和所述第二交汇处与所述第一气流通道交汇连通。
  8. 根据权利要求1所述的雾化器,其中,所述雾化器还包括壳体以及防漏液元件,所述防漏液元件设于所述壳体中,至少部分所述第一气流通道设于所述防漏液元件中,并且设于所述防漏液元件中的所述第一气流通道内设有所述雾化组件;
    所述防漏液元件内部设有空缺部,所述空缺部的所述防漏液元件内壁与所述壳体的内壁包围形成设于所述防漏液元件中的所述第一气流通道,所述防漏液元件的外壁与所述壳体的内壁包围形成所述第二气流通道,并且所述毛细吸液结构设于所述防漏液元件的外壁与所述壳体的内壁包围形成的空间中。
  9. 根据权利要求8所述的雾化器,其中,所述防漏液元件的外壁上设有堤坝,所述堤坝抵接所述壳体的内壁,所述堤坝用于分隔所述第一气流通道和所述第二气流通道,并且所述堤坝对应所述第一交汇处的部分设有第一连通槽,使得所述第一气流通道与所述第二气流通道交汇形成所述第一交汇处,所述堤坝对应所述第二交汇处的部分设有第二连通槽,使得所述第一气流通道与所述第二气流通道交汇形成所述第二交汇处。
  10. 根据权利要求8所述的雾化器,其中,所述毛细吸液结构包括若干毛细槽,所述防漏液元件的外壁设有围绕于所述第一气流通道外周的多个翅片,所述翅片抵接所述壳体的内壁,相邻的所述翅片之间形成所述毛细槽。
  11. 一种电子雾化装置,其中,所述电子雾化装置包括:
    第一进气口;
    第一出气口;
    第一气流通道,所述第一气流通道分别连通所述第一进气口和所述第一出气口,所述第一气流通道内设有雾化组件;
    第二气流通道,所述第二气流通道的两端分别与所述第一气流通道交汇形成第一交汇处和第二交汇处,其中所述第一交汇处位于所述第一出气口与所述雾化组件之间,所述第二交汇处位于所述第一进气口与所述雾化组件之间;
    毛细吸液结构,与所述第二气流通道连接;
    当所述第一出气口发生抽吸动作时,所述第一气流通道内靠近所述第二交汇处的积液通过所述第二交汇处进入所述第二气流通道并被所述毛细吸液结构吸收。
  12. 根据权利要求11所述的电子雾化装置,其中,所述毛细吸液结构包括若干毛细槽,所述若干毛细槽沿所述第二气流通道的延伸方向依次间隔设置且连通所述第二气流通道,其中相对靠近所述第二交汇处的所述毛细槽优先用于吸收并存储进入所述第二气流通道的积液。
  13. 根据权利要求11所述的电子雾化装置,其中,所述第一气流通道包括出气通道和雾化腔,所述出气通道连通所述雾化腔和所述第一出气口,所述雾化腔还连通所述第一进气口,所述第一交汇处设于所述出气通道,所述第二交汇处设于所述雾化腔,其中所述雾化腔内设有所述雾化组件。
  14. 根据权利要求13所述的电子雾化装置,其中,当所述第一出气口发生抽吸动作时,所述第二气流通道的气压小于所述雾化腔的气压,所述第二气流通道的气压大于所述出气通道的气压。
  15. 根据权利要求13所述的电子雾化装置,其中,所述第二气流通道和所述毛细吸液结构内的容置空间的体积小于所述雾化腔内的容置空间的体积。
  16. 根据权利要求13所述的电子雾化装置,其中,所述出气通道的横截面面积小于所述雾化腔的横截面面积。
  17. 根据权利要求11所述的电子雾化装置,其中,所述雾化器还包括防漏液腔体,所述第二气流通道和所述毛细吸液结构设于所述防漏液腔体中,所述防漏液腔体与所述第一气流通道分隔设置,并且所述防漏液腔体分别通过所述第一交汇处和所述第二交汇处与所述第一气流通道交汇连通。
  18. 根据权利要求11所述的电子雾化装置,其中,所述电子雾化装置还包括壳体以及防漏液元件,所述防漏液元件设于所述壳体中,至少部分所述第一气流通道设于所述防漏液元件中,并且设于所述防漏液元件中的所述第一气流通道内设有所述雾化组件;
    所述防漏液元件内部设有空缺部,所述空缺部的所述防漏液元件内壁与所述壳体的内壁包围形成设于所述防漏液元件中的所述第一气流通道,所述防漏液元件的外壁与所述壳体的内壁包围形成所述第二气流通道,并且所述毛细吸液结构设于所述防漏液元件的外壁与所述壳体的内壁包围形成的空间中。
  19. 根据权利要求18所述的电子雾化装置,其中,所述防漏液元件的外壁上设有堤坝,所述堤坝抵接所述壳体的内壁,所述堤坝用于分隔所述第一气流通道和所述第二气流通道,并且所述堤坝对应所述第一交汇处的部分设有第一连通槽,使得所述第一气流通道与所述第二气流通道交汇形成所述第一交汇处, 所述堤坝对应所述第二交汇处的部分设有第二连通槽,使得所述第一气流通道与所述第二气流通道交汇形成所述第二交汇处。
  20. 根据权利要求18所述的电子雾化装置,其中,所述毛细吸液结构包括若干毛细槽,所述防漏液元件的外壁设有围绕于所述第一气流通道外周的多个翅片,所述翅片抵接所述壳体的内壁,相邻的所述翅片之间形成所述毛细槽。
PCT/CN2020/077743 2020-03-04 2020-03-04 雾化器以及电子雾化装置 WO2021174438A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20922599.4A EP4115754A4 (en) 2020-03-04 2020-03-04 ATOMIZER AND ELECTRONIC ATOMIZING DEVICE
PCT/CN2020/077743 WO2021174438A1 (zh) 2020-03-04 2020-03-04 雾化器以及电子雾化装置
US17/823,270 US20220408828A1 (en) 2020-03-04 2022-08-30 Atomizer and electronic atomization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077743 WO2021174438A1 (zh) 2020-03-04 2020-03-04 雾化器以及电子雾化装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/823,270 Continuation US20220408828A1 (en) 2020-03-04 2022-08-30 Atomizer and electronic atomization device

Publications (1)

Publication Number Publication Date
WO2021174438A1 true WO2021174438A1 (zh) 2021-09-10

Family

ID=77613883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077743 WO2021174438A1 (zh) 2020-03-04 2020-03-04 雾化器以及电子雾化装置

Country Status (3)

Country Link
US (1) US20220408828A1 (zh)
EP (1) EP4115754A4 (zh)
WO (1) WO2021174438A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114046579A (zh) * 2021-10-25 2022-02-15 佛山市南海科日超声电子有限公司 一种阵列式微孔智能加湿装置
WO2023045585A1 (zh) * 2021-09-22 2023-03-30 常州市派腾电子技术服务有限公司 雾化器及气溶胶发生装置
WO2023060867A1 (zh) * 2021-10-12 2023-04-20 深圳易佳特科技有限公司 雾化器及电子烟

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019485A1 (en) * 2016-07-25 2018-02-01 Philip Morris Products S.A. Cartridge for an aerosol-generating system with heater protection
WO2018161254A1 (zh) * 2017-03-07 2018-09-13 昂纳自动化技术(深圳)有限公司 电子烟防漏液装置
US20180360116A1 (en) * 2017-05-24 2018-12-20 Hauni Maschinenbau Gmbh Evaporator unit for an inhaler and method for controlling an evaporator unit
CN110025053A (zh) * 2019-05-28 2019-07-19 深圳市达耀电子有限公司 双气道电子烟及其烟弹
CN209732620U (zh) * 2019-04-09 2019-12-06 东莞市合中川电子科技有限公司 一种防漏油雾化器底座、雾化器及抽吸装置
CN110613171A (zh) * 2019-09-30 2019-12-27 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
CN110613172A (zh) * 2019-09-30 2019-12-27 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
CN110638101A (zh) * 2019-09-30 2020-01-03 深圳麦克韦尔科技有限公司 一种雾化器及电子雾化装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160001725U (ko) * 2014-11-13 2016-05-23 신장진 역류 방지 구조를 갖는 전자담배
CN205456063U (zh) * 2016-01-29 2016-08-17 深圳市合元科技有限公司 电子烟雾化器和电子烟
GB2576298B (en) * 2018-06-29 2022-06-22 Nicoventures Trading Ltd Vapour Provision Device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019485A1 (en) * 2016-07-25 2018-02-01 Philip Morris Products S.A. Cartridge for an aerosol-generating system with heater protection
WO2018161254A1 (zh) * 2017-03-07 2018-09-13 昂纳自动化技术(深圳)有限公司 电子烟防漏液装置
US20180360116A1 (en) * 2017-05-24 2018-12-20 Hauni Maschinenbau Gmbh Evaporator unit for an inhaler and method for controlling an evaporator unit
CN209732620U (zh) * 2019-04-09 2019-12-06 东莞市合中川电子科技有限公司 一种防漏油雾化器底座、雾化器及抽吸装置
CN110025053A (zh) * 2019-05-28 2019-07-19 深圳市达耀电子有限公司 双气道电子烟及其烟弹
CN110613171A (zh) * 2019-09-30 2019-12-27 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
CN110613172A (zh) * 2019-09-30 2019-12-27 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
CN110638101A (zh) * 2019-09-30 2020-01-03 深圳麦克韦尔科技有限公司 一种雾化器及电子雾化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4115754A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023045585A1 (zh) * 2021-09-22 2023-03-30 常州市派腾电子技术服务有限公司 雾化器及气溶胶发生装置
WO2023060867A1 (zh) * 2021-10-12 2023-04-20 深圳易佳特科技有限公司 雾化器及电子烟
CN114046579A (zh) * 2021-10-25 2022-02-15 佛山市南海科日超声电子有限公司 一种阵列式微孔智能加湿装置
CN114046579B (zh) * 2021-10-25 2022-11-18 佛山市南海科日超声电子有限公司 一种阵列式微孔智能加湿装置

Also Published As

Publication number Publication date
EP4115754A1 (en) 2023-01-11
EP4115754A4 (en) 2023-04-05
US20220408828A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2021174438A1 (zh) 雾化器以及电子雾化装置
CN215381432U (zh) 电子雾化装置及其雾化器和气液平衡元件
CN212185111U (zh) 雾化器以及电子雾化装置
CN116076793A (zh) 电子雾化装置及其雾化器
WO2021062883A1 (zh) 一种雾化器及电子雾化装置
WO2017139963A1 (zh) 电子雾化装置
WO2022100367A1 (zh) 一种防止堵孔的双气道装置及气溶胶产生装置
WO2021062781A1 (zh) 一种电子雾化装置及其雾化器
CN111329115A (zh) 雾化器以及电子雾化装置
WO2023045585A1 (zh) 雾化器及气溶胶发生装置
WO2019144308A1 (zh) 电子烟及其雾化器
WO2021062779A1 (zh) 一种电子雾化装置及其雾化器
WO2023124213A1 (zh) 一种雾化器及电子雾化装置
WO2024051168A1 (zh) 一种雾化组件及雾化装置
WO2022151965A1 (zh) 电子雾化装置及其雾化器和雾化组件
WO2022040935A1 (zh) 电子雾化装置
WO2022100171A1 (zh) 雾化器及气溶胶发生装置
CN114158774A (zh) 电子雾化装置及雾化器
WO2024119758A1 (zh) 雾化器及气溶胶生成装置
CN219323170U (zh) 雾化器及电子雾化装置
CN218418397U (zh) 电子雾化装置及其雾化器
CN217523946U (zh) 电子雾化装置及雾化器
CN215775525U (zh) 电子烟雾化组件及电子烟
WO2022100341A1 (zh) 雾化器和医疗雾化装置
CN215347019U (zh) 一种雾化器及气溶胶生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020922599

Country of ref document: EP

Effective date: 20221004