WO2021172204A1 - キャップ化rnaの製造方法 - Google Patents

キャップ化rnaの製造方法 Download PDF

Info

Publication number
WO2021172204A1
WO2021172204A1 PCT/JP2021/006360 JP2021006360W WO2021172204A1 WO 2021172204 A1 WO2021172204 A1 WO 2021172204A1 JP 2021006360 W JP2021006360 W JP 2021006360W WO 2021172204 A1 WO2021172204 A1 WO 2021172204A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
rna
compound
cap
shows
Prior art date
Application number
PCT/JP2021/006360
Other languages
English (en)
French (fr)
Inventor
阿部 洋
康明 木村
奈保子 阿部
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to EP21761932.9A priority Critical patent/EP4112630A4/en
Priority to CN202180017057.0A priority patent/CN115175916A/zh
Priority to US17/802,680 priority patent/US20230097172A1/en
Priority to JP2022503335A priority patent/JPWO2021172204A1/ja
Publication of WO2021172204A1 publication Critical patent/WO2021172204A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides

Definitions

  • the present invention relates to a method for producing capped RNA having a cap structure at the 5'end.
  • a 5'cap structure in which 7-methylguanylic acid is 5'-5'bonded to the 5'end via a triphosphate bond is known.
  • the cap structure is known to promote the translation of mRNA, and it is required to efficiently introduce the cap structure into mRNA in order to efficiently synthesize the target protein in a protein expression system or the like.
  • FIG. 16 is a conceptual diagram showing this conventional cap introduction method. In this method, RNA diphosphorylated by transcriptional synthesis or chemical synthesis with a CAP-forming enzyme is prepared, and a cap structure is further introduced into the 5'end by the CAP-forming enzyme.
  • Non-Patent Document 2 a method of enzymatically methylating guanine by solid-phase synthesis and activation of monophosphate is also known (see, for example, Non-Patent Document 2).
  • an imidazole group is introduced into the monophosphate group at the 5'end of RNA, and a diphosphate group such as GDP (guanindiphosphate) is reacted with this to form a CAP structure at the 5'end of RNA.
  • GDP guanindiphosphate
  • Non-Patent Document 3 Another method is also known (see, for example, Non-Patent Document 3).
  • an imidazole group is introduced into the triphosphate group at the 5'end of RNA by solid phase synthesis, and a monophosphate group such as GMP (guanine phosphate) is reacted with this to form a CAP structure at the 5'end of RNA. It has been introduced.
  • An object of the present invention is to provide a method for producing a capped RNA capable of chemically introducing a cap structure into RNA by a simple operation.
  • the present inventors have conducted extensive research to solve the above problems. As a result, an activated cap compound in which a diphosphate compound having a cap structure was activated with imidazole was used, and this was reacted with RNA monophosphate under predetermined conditions to chemically cap the 5'end of RNA.
  • the present invention was completed by finding that it can be introduced.
  • the present invention is a method for producing a capped RNA in which the 5'end is cap-modified, and the activated cap compound represented by the following formula (1) and monophosphorus with the 5'end monophosphorylated. It is a method for producing capped RNA, which comprises reacting with acid RNA. (Here, L indicates a leaving group.)
  • the activated cap compound is a compound represented by the following formula (2).
  • the activated cap compound and the monophosphate RNA with a heteroaromatic compound, a metal salt, and the presence of a solvent.
  • the metal salt is a calcium salt.
  • reaction temperature is preferably in the range of 30 to 60 ° C.
  • reaction time is preferably in the range of 1 to 25 hours.
  • the solvent is an organic solvent containing water in the range of 0 to 20% by weight.
  • the concentration of the activated cap compound is preferably in the range of 5 to 30 mM.
  • the heteroaromatic compound is 2-nitroimidazole and / or 1-methylimidazole.
  • the method for producing a capped RNA of the present invention is a method for introducing a cap at the 5'end in an RNA molecule such as mRNA, that is, for producing a capped RNA in which the 5'end is a cap-modified RNA. This is the method.
  • FIG. 1 shows an outline of a method for producing a capped RNA of the present invention.
  • an activated cap compound represented by the following formula (1) and a monophosphate RNA having a 5'end monophosphorylated are prepared. (Here, L indicates a leaving group.)
  • the activation cap compound represented by the above formula (1) is preferably a compound represented by the following formula (2).
  • the activated cap compound of the following formula (2) is a compound in which a diphosphate compound having a cap structure is activated with an imidazole of a leaving group L, and is a compound in which imidazole is bound to a diphosphate compound of 7-methylguanylic acid. ..
  • Examples of the leaving group L of the formula (1) include heteroaromatic ring compounds such as pyrazoles, oxazoles, thiazoles, pyridines, pyrimidines, pyrazines and triazines, in addition to the above-mentioned imidazole group. Can be done.
  • heteroaromatic ring compounds such as pyrazoles, oxazoles, thiazoles, pyridines, pyrimidines, pyrazines and triazines, in addition to the above-mentioned imidazole group. Can be done.
  • the activated cap compound of the formula (2) can be synthesized by the method of diphosphorylation of guanosine and subsequent dehydration condensation with imidazole. Specifically, it can be synthesized by the scheme described in the examples described later. The outline is that first phosphorylation of the 5'position of ribose of guanosine is performed to synthesize guanosine monophosphate (guanosine-5'-phosphate), and then imidazole is reacted to bind imidazole to a phosphate group.
  • triethanolamine phosphate or the like is reacted to synthesize guanosine diphosphate, and iodomethane or the like is further reacted to methylate the 7-position of the base.
  • the imidazole is reacted to bind the imidazole to the phosphate group.
  • the monophosphate RNA whose 5'end is monophosphorylated is a target compound to which the above-mentioned activation cap compound binds.
  • 5'monophosphate RNA is synthesized by removing pyrophosphate from 5'triphosphate RNA using RNA 5'pyrophosphohydrolase (RppH) or by chemical solid phase synthesis. be able to.
  • RppH RNA 5'pyrophosphohydrolase
  • Examples of the counter salt of monophosphate RNA include tetraalkylammonium salt, trialkyl acetate salt, sodium acetate salt and the like. In particular, it is possible to improve the reactivity by changing the counter cation of phosphoric acid to an organic salt.
  • the activated cap compound and the monophosphate RNA are mixed with a heteroaromatic compound, at least one metal salt selected from the group consisting of calcium salt and zinc salt, magnesium salt, nickel salt and copper salt, and the like.
  • a heteroaromatic compound at least one metal salt selected from the group consisting of calcium salt and zinc salt, magnesium salt, nickel salt and copper salt, and the like.
  • the reaction is carried out in the presence of a solvent.
  • an imidazole compound having an imidazole group is preferable.
  • the imidazole compound include N-alkylimidazole in which an alkyl group is bonded to nitrogen of imidazole, and in particular, a compound having 1 to 5 carbon atoms can be mentioned as the alkyl group.
  • N-alkylimidazole include 1-methylimidazole, 1-ethylimidazole, 1-propylimidazole, 4-methylimidazole, 1-methyl-1H-imidazole-2-carboxylate, and 1-methylimidazole-4-.
  • Examples thereof include carboxylate, 5-chloro-1-methyl-4-nitroimidazole, 2-hydroxymethyl-1-methylimidazole and the like. Of these N-alkylimidazoles, 1-methylimidazole is preferable from the viewpoint of high cap-introducing activity.
  • Examples of the imidazole compound include imidazoles other than N-alkylimidazole, and examples thereof include 1- (2-hydroxyethyl) imidazole and 2-nitroimidazole. Of these imidazole compounds, 2-nitroimidazole is particularly preferable from the viewpoint of high cap-introducing activity.
  • the metal salt is selected from the group consisting of calcium salt, zinc salt, magnesium salt, nickel salt and copper salt, and may be a mixture thereof (for example, calcium salt and zinc salt).
  • Examples of the calcium salt include calcium chloride (CaCl 2 ) and calcium hydroxide (Ca (OH) 2 ).
  • Examples of the zinc salt include zinc chloride (ZnCl 2 ). Of these, CaCl 2 is particularly preferable from the viewpoint of high cap-introducing activity.
  • Examples of the solvent include water and organic solvents.
  • Examples of the organic solvent include dimethyl sulfoxide (DMSO), acetone, acetonitrile, tetrahydrofuran (THF), dioxane, methylethylketone, N, N-dimethylformamide (DMF), 1-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF). , Methanol, ethanol and the like.
  • DMSO dimethyl sulfoxide
  • the solvent is preferably an organic solvent containing water in the range of 0 to 20% by weight, preferably in the range of 1 to 10% by weight, from the viewpoint of high cap-introducing activity. Is more preferable.
  • the concentration of the activated cap compound in the reaction solution is preferably in the range of 5 to 30 mM.
  • the concentration of the heteroaromatic compound in the reaction solution is preferably in the range of 0.5 to 20 mM, more preferably 5 to 15 mM, and particularly preferably 10 mM.
  • the concentration of the metal salt in the reaction solution is preferably in the range of 0.5 to 10 mM.
  • the reaction conditions can be set as appropriate, but for example, the reaction temperature is preferably in the range of 30 to 60 ° C, preferably in the range of 35 to 40 ° C, and particularly preferably 37 ° C.
  • the reaction time is in the range of 1 to 25 hours, preferably in the range of 5 to 15 hours, and particularly preferably in the range of 9 hours. Within these conditions, the cap-introducing activity is high, and the cap structure can be efficiently introduced into mRNA.
  • the present invention will be specifically described based on examples, but these do not limit the object of the present invention. Further, in the following examples, the “%” display is based on mass (mass percent) unless otherwise specified.
  • the generation conditions are as follows. ⁇ Column: DEAE Sephatax ⁇ Elution: A) MQ B) 1.5M TEAB Buffer + 10% ACN ⁇ Gradient: 0-10min B cone. 0% 10-210min B cone. 0-100% 210-240min B cone. 100% 240min-B conc. 0% ⁇ Flow rate: 5 ml / min ⁇ Detection: 260nm
  • Example 1 Examination of temperature conditions Examination was conducted at room temperature, 37 ° C (Example 1-1), and 55 ° C (Example 1-2).
  • (1) Experimental item RNA, activation cap compound, and CaCl 2 were mixed in required amounts. The solution was dried by a centrifugal evaporator. anh. DMSO was added and incubated at room temperature (rt), 37 ° C or 55 ° C, over night. The reaction was quenched by desalting with Amicon (3K). The reaction efficiency was analyzed by gel electrophoresis. The result is shown in FIG. In this figure, (a) shows the concentration of each component in the reaction solution, (b) shows the result of electrophoresis, and (c) shows the yield.
  • Experimental Example 2 (Example 2): Examination of MCl 2 As Lewis acids, NiCl 2 (Reference Example 2-1), ZnCl 2 (Reference Example 2-2), CaCl 2 , (Example 2-1), MgCl 2 A total of six metal salts (Example 2-2), CuCl 2 , (Reference Example 2-3), and FeCl 2 (Reference Example 2-4) were examined.
  • (1) Experimental item RNA, activation cap compound, and MCl 2 were mixed in required amounts. The solution was dried by a centrifugal evaporator. anh. DMSO was added and the mixture was incubated at 55 ° C. for 17 hours. The reaction was quenched by desalting with Amicon (3K).
  • the reaction efficiency was analyzed by gel electrophoresis. The result is shown in FIG. In this figure, (a) shows the concentration of each component in the reaction solution, (b) shows the result of electrophoresis, and (c) shows the yield. (2) Results It was found that CaCl 2 (Example 2-1) and MgCl 2 (Example 2-2) improved the reaction efficiency.
  • Experimental Example 5 Nucleic acid concentration examination It was investigated whether the nucleic acid concentration affects the reaction efficiency.
  • (1) Experimental item RNA, activation cap compound, and CaCl 2 were mixed in required amounts. The solution was dried by a centrifugal evaporator. 1-Methylimidazole, anh. The required amount of each DMSO was added, and the mixture was incubated at 55 ° C. for 3 hours. The reaction was quenched by desalting with Amicon (3K). The reaction efficiency was analyzed by gel electrophoresis. The result is shown in FIG. In this figure, (a) shows the concentration of each component in the reaction solution, (b) shows the result of electrophoresis, and (c) shows the yield. (2) Results It was found that the nucleic acid concentration did not significantly affect the reaction efficiency.
  • Experimental Example 6 Examination in the presence of water The reaction efficiency in the presence of water was investigated.
  • (1) Experimental section (lane 1 (Example 6-1), lane 2 (Example 6-2)) RNA, activation cap compound, and CaCl 2 were mixed in required amounts.
  • the solution was dried by a centrifugal evaporator.
  • the reaction was quenched by desalting with Amicon (3K).
  • the reaction efficiency was analyzed by gel electrophoresis.
  • Experimental Example 7 Examination of concentration of CaCl 2 It was investigated whether the salt concentration affects the reaction efficiency.
  • (1) Experimental items The activated cap compound and CaCl 2 were mixed in the required amounts. The solution was dried by a centrifugal evaporator. 1-Methylimidazole, anh. Required amounts of DMSO and RNA were added, respectively, and the mixture was incubated at 55 ° C. for 3 hours. The reaction was quenched by desalting with Amicon (3K). The reaction efficiency was analyzed by gel electrophoresis. The result is shown in FIG. In this figure, (a) shows the concentration of each component in the reaction solution, (b) shows the result of electrophoresis, and (c) shows the yield. (2) Results It was found that a certain amount of salt concentration is required to proceed with the reaction with high efficiency, but the efficiency decreases in the case of high concentration.
  • Experimental Example 8 (Example 8): Examination of concentration of activated cap compound It was investigated whether the concentration of activated cap compound affects the reaction efficiency.
  • Experimental Example 9 (Example 9): Examination of the reagent to be added last Under the conditions of "6.
  • Experimental Example 6 (Example 6): Examination in the presence of water", the reaction efficiency due to the difference in the reagent added last is determined. investigated.
  • Rane1 5'-PO RNA
  • lane2 activated cap compound
  • lane3 CaCl 2 are added last, respectively.
  • (1) Experimental section (lane 1) The activation cap compound, CaCl 2 , (lane 2) RNA, CaCl 2 , (lane 3) RNA, and the activation cap compound were mixed in required amounts. The solution was dried by a centrifugal evaporator. 1-Methylimidazole, anh.
  • Experimental Example 10 (Example 10): Examination of reaction time The reaction solution was sampled every 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and 20 hours from the start of the reaction. The change in yield with reaction time was investigated. The reaction conditions were incubated at 55 ° C. In the case of 1-methylimidazole (+), the reaction time was 1 hour and the reaction was almost progressing. Therefore, the reaction solution was prepared at shorter time intervals (10, 20, 30, 40, 50, 60, 90, 120 minutes). Was sampled and the difference in reaction efficiency was examined. (1) Experimental items RNA and CaCl 2 were mixed in required amounts. The solution was dried by a centrifugal evaporator. 1-Methylimidazole (+ only), anh.
  • Experimental Example 11 Reaction study in aqueous solution In the study of "3.
  • Experimental Example 3 (Example 3): Addition of 1-methylimidazole and reaction time study", it is necessary to add an activator.
  • the reactions of CaCl 2 and MgCl 2 in which high yields were obtained were examined in an aqueous solution.
  • the reaction conditions were 55 ° C. and incubated at overnight.
  • (1) Experimental item RNA, activation cap compound, MCl 2 , and solvent were mixed so that the final concentration was as shown in the table of FIG. 12 (a). Incubated at 55 ° C. over night.
  • Experimental Example 12 Examination of salt concentration (Mg) The effect of MgCl 2 concentration in the MQ solvent was examined. The concentration was examined at 4 points of 5, 10, 20, and 30 mM. The reaction conditions were incubated at 55 ° C., overnight. (1) Experimental section RNA, activation cap compound, CaCl 2 and MQ were mixed in required amounts so that the final concentration was as shown in the table of FIG. 13 (a). Incubated at 55 ° C. over night. The reaction was quenched by desalting with Amicon (3K). The reaction efficiency was analyzed by gel electrophoresis. The result is shown in FIG.
  • Experimental Example 13 Examination of salt concentration (Ca) The effect of CaCl 2 concentration in the MQ solvent was investigated. Concentrations were examined at 7 points of 5, 10, 20, 30, 45, 60 and 90 mM. The reaction conditions were incubated at 55 ° C., overnight. (1) Experimental section RNA, activation cap compound, CaCl 2 and MQ were mixed in the required amounts so that the final concentration was as shown in the table of FIG. 14 (a). Incubated at 55 ° C. over night. The reaction was quenched by desalting with Amicon (3K). The reaction efficiency was analyzed by gel electrophoresis. The result is shown in FIG.
  • Experimental Example 14 Examination of reaction time The reaction time was examined under MQ solvent conditions. The reaction solution was sampled every 1.0, 2.0, 3.0, 15, 40, and 70 hours from the start of the reaction, and the change in yield with the reaction time was examined. The reaction conditions were incubated at 55 ° C. (1) Experimental section RNA, activation cap compound, CaCl 2 and MQ were mixed in the required amounts so that the final concentration was as shown in the table of FIG. 15 (a). Incubated at 55 ° C. The reaction was quenched by desalting with Amicon (3K). The reaction efficiency was analyzed by gel electrophoresis. The result is shown in FIG.
  • Experimental Example 16 Screening of additive concentration, temperature, and reaction time 2-nitroimidazole was used as an additive, and a CAP conversion reaction was carried out at various concentrations, reaction temperatures, and reaction times. The reaction conditions are as shown in FIG. 18 (b).
  • the reaction conditions are as shown in FIG. 18 (b).
  • (1) Experimental section The outline of the experiment is as shown in FIG. 18 (a).
  • the final concentration was RNA 10 ⁇ M, CaCl 2 10 mM, m 7 Gpp-Im 10 mM, and imidazole derivative 0 to 50 mM.
  • the reaction solution was incubated at each temperature (37 or 55 ° C.) for 3-23 hours, a portion of the reaction solution was mixed with 2xreading buffer and analyzed by gel electrophoresis (10% acrylamide, 7.5 urea). The result of electrophoresis is shown in FIG. 18 (c).
  • Experimental Example 17 Evaluation of effect of RNA counter salt
  • the RNA counter salt was subjected to a CAP conversion reaction using various salts.
  • the evaluated salts are shown in FIG. 19 (b) as K440'A and the like.
  • (1) Experimental section The outline of the experiment is as shown in FIG. 19 (a).
  • Tetraethylammonium salt (NET 4 Cl) and sodium acetate salt (NaOAc) were used as counter salts.
  • [Cap conversion reaction] The RNA solution and the CaCl 2 solution were added to the Eppendorf tube, and water was removed by a lyophilizer.
  • m 7 Gpp-Im a DMSO solution of the imidazole derivative and DMSO for concentration adjustment were added.
  • the final concentrations were RNA 10 ⁇ M, CaCl 2 10 mM, m 7 Gpp-Im 10 mM, and 2-nitroimidazole 10 mM.
  • the reaction solution was incubated at 37 ° C. for 9 hours, a part of the reaction solution was mixed with 2xreading buffer and analyzed by gel electrophoresis (10% acrylamide, 7.5 urea). The result of electrophoresis is shown in FIG. 19 (c).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Saccharide Compounds (AREA)

Abstract

5'末端がキャップ修飾されたRNAであるキャップ化RNAの製造方法であって、下記式(1)で示される活性化キャップ化合物と、5'末端がモノリン酸化されたモノリン酸RNAとを反応させることを特徴とするキャップ化RNAの製造方法である。(ここで、Lは脱離基を示す。) ここで、前記活性化キャップ化合物が下記式(2)で示される化合物であることが好ましい。

Description

キャップ化RNAの製造方法
 本発明は、5’末端にキャップ構造を有するキャップ化RNAの製造方法に関する。
 真核生物のmRNAなどでは、5’末端に三リン酸結合を介して7-メチルグアニル酸が5’-5’結合した5’キャップ構造が知られている。キャップ構造は、mRNAの翻訳を促進することが知られており、タンパク質発現系などで目的タンパク質を効率的に合成するためにmRNAにキャップ構造を効率的に導入することが求められている。
 mRNAの合成には、酵素による転写法とアミダイト法による化学合成法があるが、後者はmRNA医薬において必須とされる化学修飾(mRNAの安定性・翻訳能向上に寄与)を自在に導入できる点で大いに優位性がある。一方、化学合成したmRNAに対して、キャップ構造を容易に導入できる手法は存在しない。唯一、化学合成において5’末端をジリン酸化した後、酵素的にキャップを導入する手法が知られている(例えば、非特許文献1)。図16は、この従来のキャップ導入方法を示す概念図である。この方法では、CAP化酵素による転写合成又は化学合成によりジリン酸化したRNAを用意し、これにさらにCAP化酵素によって5’末端にキャップ構造を導入している。
 また、CAP化の他の方法として、固相合成かつモノリン酸の活性化で、グアニンのメチル化を酵素で行う方法も知られている(例えば、非特許文献2参照)。本文献の方法によれば、RNAの5’末端のモノリン酸基にイミダゾール基を導入し、これにGDP(グアニンジリン酸)などのジリン酸基を反応させることで、RNAの5’末端にCAP構造を導入している。
 さらに、別の方法も知られている(例えば、非特許文献3参照)。この方法も固相合成によりRNAの5’末端のトリリン酸基にイミダゾール基を導入し、これにGMP(グアニンリン酸)などのモノリン酸基を反応させることで、RNAの5’末端にCAP構造を導入している。
"Synthesis and biological activity of artificial mRNA prepared with novel phosphorylating reagents" Seigo Nagata, Tomohiro Hamasaki, Koichi Uetake, Hirofumi Masuda, Kazuchika Takagaki, Natsuhisa Oka, Takeshi Wada, Tadaaki Ohgi, Junichi Yano, Nucleic Acids Research, 2010, 38, 7845 "Practical Synthesis of Cap-4 RNA, Josef Leiter, et.al, ChemBioChem 2020 "Chemical Synthesis of U1 snRNA Derivatives"、Akihiro Ohkubo et.al, Organic Letter2013
 上記の従来の方法では、ジリン酸化の効率が安定しない点や、キャップ化酵素を用いているため定量的に合成することが難しい点などから、工業的応用には適さない。このため、比較的簡易な操作でRNAの5’末端に化学的にキャップを導入する手法が求められていた。
 本発明の目的は、簡易な操作でRNAに化学的にキャップ構造を導入することが可能なキャップ化RNAの製造方法を提供することにある。
 本発明者らは、上記問題を解決すべく鋭意研究を重ねた。その結果、キャップ構造のジリン酸体をイミダゾールで活性化した活性化キャップ化合物を使用し、これを所定の条件下でモノリン酸RNAと反応させることで、RNAの5’末端に化学的にキャップ構造を導入できることを見出し、本発明を完成させた。
 すなわち、本発明は、5’末端がキャップ修飾されたRNAであるキャップ化RNAの製造方法であって、下記式(1)で示される活性化キャップ化合物と、5’末端がモノリン酸化されたモノリン酸RNAとを反応させることを特徴とするキャップ化RNAの製造方法である。
Figure JPOXMLDOC01-appb-C000003
(ここで、Lは脱離基を示す。)
 この場合において、前記活性化キャップ化合物が下記式(2)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 また、前記活性化キャップ化合物と、前記モノリン酸RNAとを、ヘテロ芳香族化合物と、金属塩と、溶媒の存在下で反応させることが好ましい。
 この場合において、前記金属塩がカルシウム塩であることが好ましい。
 さらにこの場合、反応温度が30~60℃の範囲内であることが好ましい。
 さらにこの場合、反応時間が1~25時間の範囲内であることが好ましい。
 さらにこの場合、前記溶媒が0~20重量%の範囲内の水を含む有機溶媒であることが好ましい。
 さらにこの場合、前記活性化キャップ化合物の濃度が5~30mMの範囲内であることが好ましい。
 さらにこの場合、前記ヘテロ芳香族化合物が2-ニトロイミダゾール及び/又は1-メチルイミダゾールであることが好ましい。
 本発明によれば、簡易な操作でRNAに化学的にキャップ構造を導入することが可能となる。
本発明のキャップ化RNAの製造方法の概略を示す図である。 実施例における実験例1の結果を示す図である。 実施例における実験例2の結果を示す図である。 実施例における実験例3の結果を示す図である。 実施例における実験例4の結果を示す図である。 実施例における実験例5の結果を示す図である。 実施例における実験例6の結果を示す図である。 実施例における実験例7の結果を示す図である。 実施例における実験例8の結果を示す図である。 実施例における実験例9の結果を示す図である。 実施例における実験例10の結果を示す図である。 実施例における実験例11の結果を示す図である。 実施例における実験例12の結果を示す図である。 実施例における実験例13の結果を示す図である。 実施例における実験例14の結果を示す図である。 従来の酵素によるキャップRNAの製造方法の概略を示す図である。 実施例における実験例15の結果を示す図である。 実施例における実験例16の結果を示す図である。 実施例における実験例17の結果を示す図である。
 以下、本発明のキャップ化RNAの製造方法について説明する。本発明のキャップ化RNAの製造方法は、mRNAなどのRNA分子において、5’末端にキャップを導入するための方法、すなわち、5’末端がキャップ修飾されたRNAであるキャップ化RNAを製造するための方法である。図1は、本発明のキャップ化RNAの製造方法の概略を示している。
 本発明の方法では、まず、下記式(1)で示される活性化キャップ化合物と、5’末端がモノリン酸化されたモノリン酸RNAと、を用意する。
Figure JPOXMLDOC01-appb-C000005
(ここで、Lは脱離基を示す。)
 ここで、上記式(1)で示される活性化キャップ化合物としては、下記式(2)で示される化合物であることが好ましい。下記式(2)の活性化キャップ化合物は、キャップ構造のジリン酸体を脱離基Lのイミダゾールで活性化した化合物であり、7-メチルグアニル酸のジリン酸体にイミダゾールが結合した化合物である。
Figure JPOXMLDOC01-appb-C000006
 式(1)の脱離基Lとしては、上記のイミダゾール基のほかに、ピラゾール類、オキサゾール類、チアゾール類、ピリジン類、ピリミジン類、ピラジン類、トリアジン類などのヘテロ芳香環化合物などを挙げることができる。
 式(2)の活性化キャップ化合物は、グアノシンのジリン酸化、続くイミダゾールとの脱水縮合の方法で合成することができる。具体的には、後述する実施例に記載したスキームで合成することができる。その概要は、まずグアノシンのリボースの5’位をリン酸化してグアノシン一リン酸(グアノシン-5’-リン酸)を合成し、次にイミダゾールを反応させてリン酸基にイミダゾールを結合させる。続いて、リン酸トリエタノールアミンなどを反応させてグアノシン二リン酸を合成し、更にヨードメタンなどを反応させて塩基の7位をメチル化する。最後に、イミダゾールを反応させてリン酸基にイミダゾールを結合させる。
 5’末端がモノリン酸化されたモノリン酸RNAは、上記の活性化キャップ化合物が結合する標的化合物である。5’モノリン酸RNAは、5’トリリン酸RNAをRNA 5’ピロホスホヒドロラーゼ(RppH)を使用して5’トリリン酸RNAからピロリン酸を除去する方法や、化学的固相合成法などで合成することができる。モノリン酸RNAのカウンター塩としては、テトラアルキルアンモニウム塩、トリアルキル酢酸塩、酢酸ナトリウム塩などを挙げることができる。特に、リン酸のカウンターカチオンを有機塩にすることで、反応性を向上することが可能である。
 次に、この活性化キャップ化合物とモノリン酸RNAとを、ヘテロ芳香族化合物と、カルシウム塩及び亜鉛塩、マグネシウム塩、ニッケル塩及び銅塩からなる群より選択される少なくとも1種類の金属塩と、溶媒の存在下で反応させる。
 ヘテロ芳香族化合物としては、イミダゾール基を有するイミダゾール化合物が好ましい。イミダゾール化合物としては、イミダゾールの窒素にアルキル基が結合したN―アルキルイミダゾールを挙げることができ、特にアルキル基として炭素数1~5の化合物を挙げることができる。N―アルキルイミダゾールとしては、例えば、1-メチルイミダゾール、1-エチルイミダゾール、1-プロピルイミダゾール、4-メチルイミダゾール、1-メチル-1H-イミダゾール-2-カルボン酸塩、1-メチルイミダゾール-4-カルボン酸塩、5-クロロ-1-メチル-4-ニトロイミダゾール、2-ヒドロキシメチルー1-メチルイミダゾールなどを挙げることができる。これらN―アルキルイミダゾールのうち、キャップ導入活性の高さの点から、1-メチルイミダゾールが好ましい。また、イミダゾール化合物としては、N―アルキルイミダゾール以外のイミダゾール類を挙げることができ、1-(2-ヒドロキシエチル)イミダゾール、2-ニトロイミダゾールなどを挙げることができる。これらのイミダゾール化合物のうち、キャップ導入活性の高さの点から、2-ニトロイミダゾールが特に好ましい。
 金属塩としては、カルシウム塩、亜鉛塩、マグネシウム塩、ニッケル塩、銅塩からなる群より選択され、これらの混合物(例えば、カルシウム塩と亜鉛塩)であってもよい。カルシウム塩としては、塩化カルシウム(CaCl)、水酸化カルシウム(Ca(OH))などを挙げることができる。亜鉛塩としては、塩化亜鉛(ZnCl)などを挙げることができる。これらのうち、キャップ導入活性の高さの点から、CaClが特に好ましい。
 溶媒としては、水、有機溶媒を挙げることができる。有機溶媒としては、ジメチルスルホキシド(DMSO)、アセトン、アセトニトリル、テトラヒドロフラン(THF)、ジオキサン、メチルエチルケトン、N,N-ジメチルホルムアミド(DMF)、1-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、メタノール、エタノールなどを挙げることができる。これらのうち、有機塩等の溶解性の高さの点から、ジメチルスルホキシド(DMSO)が好ましい。有機溶媒を主溶媒とすることで、副反応であるキャップ化試薬の加水分解を抑制でき、高効率なキャップ化反応が可能となる。溶媒としては、キャップ導入活性の高さの点から、0~20重量%の範囲内の水を含む有機溶媒であることが好ましく、1~10重量%の範囲内の水を含む有機溶媒であることがより好ましい。
 反応液中の活性化キャップ化合物の濃度は、5~30mMの範囲内であることが好ましい。反応液中のヘテロ芳香族化合物の濃度は、0.5~20mMの範囲内であることが好ましく、5~15mMであることがより好ましく、10mMであることが特に好ましい。反応液中の金属塩の濃度は、0.5~10mMの範囲内であることが好ましい。反応条件は適宜設定することができるが、例えば、反応温度は30~60℃の範囲内であり、35~40℃の範囲内であることが好ましく、37℃であることが特に好ましい。また、反応時間は1~25時間の範囲内であり、5~15時間の範囲内であることが好ましく、9時間であることが特に好ましい。これらの条件の範囲内では、キャップ導入活性が高く、効率的にキャップ構造をmRNAに導入することができる。
 以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明の目的を限定するものではない。また、以下の実施例において「%」表示は特に規定しない限り質量基準(質量パ-セント)である。
 以下のスキームに基づいて活性化キャップ化合物(化合物13)を合成した。図中のパーセンテージは収率である。
Figure JPOXMLDOC01-appb-C000007
(1)化合物9の合成
 グアノシン(748mg、2.64mmol、1.0eq.)をリン酸トリメチル(7.0mL)に懸濁させた。-10℃で撹拌しながら塩化ホスホニル(743μL、7.92mmol、3.0eq.)を滴下し、-10℃で20時間攪拌した。1M TBAE Bufferを加え、反応をクエンチした。溶液を濃縮したのち、DEAE-sephadaxにより精製した。フラクションを回収、濃縮し、白色固体(TEA塩)を得た。
(2)化合物10の合成
 化合物9(1.63g、4.48mmol、1.0eq.TEA salt)、イミダゾール(3.67g、53.9mmol、12eq.)、2,2’-ジチオジピリジン(3.30g、14.9mmol、3.3eq.)を脱水DMSO(10mL)に溶かした後、TEA(1.90mL、13.5mmol、3.0eq)、PhP(3.74g、14.2mmol、3.2eq)を加えて、室温で18時間攪拌した。dry acetone(80mL)に溶かした過塩素酸ナトリウム(2.04g、16.6mmol、3.7eq.)を加え、4℃で静置した。析出した固体を吸引ろ過、dry, cold acetoneにより洗浄した。得られた固体を真空下で乾固させ、白色粉末(Na塩)を得た。
(3)化合物11の合成
 化合物10(500mg、1.21mmol、1.0eq.)を脱水DMSO(8.0mL)に懸濁させた。室温で撹拌しながら塩化亜鉛(849mg、6.23mmol、5.1eq.)、トリエチルアミンリン酸塩(1.0g、5.02mmol、4.1eq.、脱水DMSO aq.)を加え、室温で16時間攪拌した。1M TBAE Bufferを加え、反応をクエンチした。生じた沈殿を吸引ろ過により取り除き、溶液を濃縮した。DEAE-sephadaxにより精製した。フラクションを回収、濃縮し、白色固体(TEA塩)を得た。
(4)化合物12の合成
 化合物11(100mg、0.226mmol、1.0eq.TEA salt)を脱水DMSO(3.0mL)に溶かした。よう化メチル(90μL、1.42mmol、6.3eq.)を室温で加え、18時間攪拌した。1M TBAE Bufferを加え、反応をクエンチした。ジエチルエーテルと分液し、水槽を回収、濃縮した。DEAE-sephadaxにより精製した。フラクションを回収、濃縮し、白色固体(TEA塩)を得た。
(5)化合物13の合成
 化合物12(20mg、43.7μmol、1.0eq.TEA salt)、イミダゾール(46.6mg、0.685mmol、15eq.)、2,2’-ジチオジピリジン(61.3mg、0.685mmol、6.0eq.)を脱水DMSO(400μL)に溶かした後、TEA(18.0μL、0.129mmol、3.0eq)、PhP(57.7mg、0.220mmol、5.0eq)を加えて、室温で4.0時間攪拌した。dry acetone(3.6mL)に溶かした過塩素酸ナトリウム(68.2mg、0.606mmol、14eq.)を加え、4℃で静置した。析出した固体を吸引ろ過、dry, cold acetoneにより洗浄した。得られた固体を真空下で乾固させ、白色粉末(Na塩)を得た。
 生成条件は以下のとおりである。
・Column:
 DEAE Sephadax
・Eluent:
 A)MQ
 B)1.5M TEAB Buffer+10%ACN
・Gradient:
 0-10min B conc. 0%
 10-210min B conc. 0-100%
 210-240min B conc. 100%
 240min- B conc. 0%
・Flow rate:
 5ml/min
・Detection:
 260nm
1.実験例1(実施例1):温度条件検討
 室温、37℃(実施例1-1)、55℃(実施例1-2)で検討した。
(1)実験項
 RNA、活性化キャップ化合物、CaClをそれぞれ必要量混合した。この溶液を遠心エバポレーターにより乾固させた。anh. DMSOを加え、室温(r.t.)、37℃又は55℃、over nightでインキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図2に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を示している。
(2)結果
 r.t.と37℃では、反応の進行は確認されなかった。55℃においては、低効率ではあるが反応の進行が確認された。モノリン酸活性化体の場合では、55℃において反応効率が20%程度改善したことがわかった。
2.実験例2(実施例2):MClの検討
 ルイス酸として、NiCl(参考例2-1)、ZnCl(参考例2-2)、CaCl、(実施例2-1)、MgCl(実施例2-2)、CuCl、(参考例2-3)、FeCl(参考例2-4)の計6つの金属塩を検討した。
(1)実験項
 RNA、活性化キャップ化合物、MClをそれぞれ必要量混合した。この溶液を遠心エバポレーターにより乾固させた。anh. DMSOを加え、55℃、17時間インキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図3に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を示している。
(2)結果
 CaCl(実施例2-1)、MgCl(実施例2-2)で反応効率が改善されたことがわかった。
3.実験例3(実施例3):1-メチルイミダゾールの添加、反応時間検討
 ZnCl、CaClについて、1-メチルイミダゾールを添加して反応を検討した。
(1)実験項
 RNA、活性化キャップ化合物、MClをそれぞれ必要量混合した。この溶液を遠心エバポレーターにより乾固させた。1-メチルイミダゾール、 anh. DMSOを加え、55℃、17時間インキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図4に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を、(d)は収率のグラフを示している。
(2)結果
 塩の種類を問わず1-メチルイミダゾールを添加することで全体として収率が向上したことがわかった。
4.実験例4(実施例4):1-メチルイミダゾールの濃度検討
 1-メチルイミダゾールの添加により反応効率が改善したため、その濃度条件を検討した。
(1)実験項
 RNA、活性化キャップ化合物、CaClをそれぞれ必要量混合した。この溶液を遠心エバポレーターにより乾固させた。1-メチルイミダゾール、anh.DMSO(無水ジメチルスルホキシド)をそれぞれ必要量加え、55℃、3時間インキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図5に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を示している。
(2)結果
 濃度変化は反応効率には影響しないことがわかった。
5.実験例5(実施例5):核酸の濃度検討
 反応効率に核酸濃度が影響するかを調べた。
(1)実験項
 RNA、活性化キャップ化合物、CaClをそれぞれ必要量混合した。この溶液を遠心エバポレーターにより乾固させた。1-メチルイミダゾール、anh.DMSOをそれぞれ必要量加え、55℃、3時間インキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図6に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を示している。
(2)結果
 核酸濃度は反応効率にあまり影響しないことがわかった。
6.実験例6(実施例6):水存在下での検討
 水存在下での反応効率を調べた。
(1)実験項(レーン1(実施例6-1)、レーン2(実施例6-2))
 RNA、活性化キャップ化合物、CaClをそれぞれ必要量混合した。この溶液を遠心エバポレーターにより乾固させた。1-メチルイミダゾール、各溶媒(anh.DMSO/MQ(超純水)=1/1 or anh.DMSO)をそれぞれ必要量加え、55℃、3時間インキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。
(2)実験項(レーン3(実施例6-3))
 活性化キャップ化合物、CaClをそれぞれ必要量混合した。この溶液を遠心エバポレーターにより乾固させた。1-メチルイミダゾール、anh.DMSO、RNAをそれぞれ必要量加え、55℃、3時間インキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図7に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を示している。
(3)結果
 レーン2をポジティブコントロールとし、他レーンを比較すると、50%MQの条件(レーン1)では反応効率が大きく減少しているが、約10%MQの条件(レーン3)では少し反応効率が向上していることがわかった。
7.実験例7(実施例7):CaClの濃度検討
 反応効率に塩濃度が影響するかを調べた。
(1)実験項
 活性化キャップ化合物、CaClをそれぞれ必要量混合した。この溶液を遠心エバポレーターにより乾固させた。1-メチルイミダゾール、anh.DMSO、RNAをそれぞれ必要量加え、55℃、3時間インキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図8に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を示している。
(2)結果
 反応を高効率に進める上では、ある程度の塩濃度が必要ではあるが、高濃度の場合では、効率が落ちることがわかった。
8.実験例8(実施例8):活性化キャップ化合物の濃度検討
 活性化キャップ化合物の濃度が反応効率に影響するかを調べた。
(1)実験項
 活性化キャップ化合物、CaClをそれぞれ必要量混合した。この溶液を遠心エバポレーターにより乾固させた。1-メチルイミダゾール、anh.DMSO、RNAをそれぞれ必要量加え、55℃、3時間インキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図9に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を示している。
(2)結果
 濃度が上がるにつれて、反応効率が向上しており、最もよいもの(20mM)で84%の収率を得た。
9.実験例9(実施例9):最後に入れる試薬の検討
 「6.実験例6(実施例6):水存在下での検討」の条件の下で、最後に加える試薬の違いによる反応効率を検討した。それぞれlane1:5’-PO RNA、lane2:活性化キャップ化合物、lane3:CaClを最後に加えている。
(1)実験項
 (lane1)活性化キャップ化合物、CaCl、(lane2)RNA、CaCl、(lane3)RNA、活性化キャップ化合物をそれぞれ必要量混合した。この溶液を遠心エバポレーターにより乾固させた。1-メチルイミダゾール、 anh. DMSO、(lane1)RNA、(lane2)活性化キャップ化合物、(lane3)CaClをそれぞれ必要量加え、55℃、3時間インキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図10に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を示している。
(2)結果
 どの試薬を最後に加えても反応効率には大きな影響はなかった。
10.実験例10(実施例10):反応時間の検討
 反応開始から1.0、2.0、3.0、4.0、5.0、6.0、20時間ごとに反応液をサンプリングし、反応時間による収率の変化を調べた。反応条件は、55℃でインキュベートした。1-メチルイミダゾール(+)の場合では、反応時間が1時間でほとんど反応が進行していたため、更に短い時間間隔(10、20、30、40、50、60、90、120分)で反応液をサンプリングし、反応効率の差を調べた。
(1)実験項
 RNA、CaClをそれぞれ必要量混合した。この溶液を遠心エバポレーターにより乾固させた。1-メチルイミダゾール(+のみ)、anh.DMSO、活性化キャップ化合物をそれぞれ必要量加え、55℃でインキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図11に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を示している。
(2)結果
 反応は、2~3時間でおおよそ完了しており、over nightで反応させることで僅かに収率が向上した。1-メチルイミダゾール(-)の場合では、反応速度に大きな差が生まれた。
11.実験例11(実施例11):水溶液中での反応検討
 「3.実験例3(実施例3):1-メチルイミダゾールの添加、反応時間検討
」の検討で、活性化剤の添加を必要とせず高収率を得たCaCl、MgClについて、水溶液中での反応を検討した。溶媒として、MQ及び10mM HEPES Buffer(pH=7.4)を用いた。反応条件は55℃、overnightでインキュベートした。
(1)実験項
 終濃度が図12(a)の表のようになるように、RNA、活性化キャップ化合物、MCl、solventを混合した。55℃、overnightでインキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図12に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を示している。
(2)結果
 溶媒としてMQを用いた場合には、高効率で反応が進行することが確認された。ただ、バンド強度が低くなっていることから、RNAの加水分解も同様に進行した可能性がある。
12.実験例12(実施例12):塩濃度の検討(Mg)
 MQ溶媒中でMgCl濃度の影響を検討した。濃度は5、10、20、30mMの4点で検討した。反応条件は、55℃、overnightでインキュベートした。
(1)実験項
 終濃度が図13(a)の表のようになるように、RNA、活性化キャップ化合物、CaCl、MQを必要量混合した。55℃、overnightでインキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図13に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を、(d)は収率のグラフを示している。
(2)結果
 MgCl濃度は反応効率に大きな影響は与えなかった。
13.実験例13(実施例13):塩濃度の検討(Ca)
 MQ溶媒中でCaCl濃度の影響を検討した。濃度は5、10、20、30、45、60、90mMの7点で検討した。反応条件は、55℃、overnightでインキュベートした。
(1)実験項
 終濃度が図14(a)の表のようになるように、RNA、活性化キャップ化合物、CaCl、MQを必要量混合した。55℃、overnightでインキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図14に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率を、(d)は収率のグラフを示している。
(2)結果
 CaCl濃度は反応効率に大きく影響した。塩濃度が高くなると収率は高くなり、30mMで最大となった。過剰な塩濃度は加水分解を促進し、反応効率の低下につながった。
14.実験例14(実施例14):反応時間の検討
 MQ溶媒条件下で反応時間の検討を行った。反応開始から1.0、2.0、3.0、15、40、70時間ごとに反応液をサンプリングし、反応時間による収率の変化を検討した。反応条件は、55℃でインキュベートした。
(1)実験項
 終濃度が図15(a)の表のようになるように、RNA、活性化キャップ化合物、CaCl、MQを必要量混合した。55℃でインキュベートした。アミコン(3K)により脱塩し、反応をクエンチした。反応効率はゲル電気泳動により分析した。その結果を図15に示す。この図の(a)は反応溶液中の各成分の濃度を、(b)は電気泳動の結果を、(c)は収率のグラフを示している。
(2)結果
 時間経過とともに反応効率は向上したが、加水分解も大幅に促進されRNA量の減少につながっている。
15.実験例15(実施例14):添加剤(ヘテロ芳香族化合物)のスクリーニング
 添加剤であるヘテロ芳香族化合物について、種々のイミダゾール誘導体を使用してCAP化反応を行った。評価したイミダゾール誘導体は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000008
(1)実験項
 実験の概要は図17(a)に示すとおりである。
[イオン交換]
 20%(v/w)テトラエチルアンモニウムクロリド溶液を通し平衡化及びMQで洗浄した陽イオン交換樹脂カラム(Dowex 50Wx8)に、イソプロパノール沈殿で得られたRNAの溶液をロードし、MQで溶出した。A260吸光度を持つフラクションを回収し、テトラエチルアンモニウムクロリドに塩交換したRNA溶液を得た。
[cap化反応]
 エッペンドルフチューブに、イオン交換したRNA溶液(とCaCl溶液)を添加し、凍結乾燥機で水の除去を行った。mGpp-Im(活性化キャップ化合物)と、イミダゾール誘導体のDMSO溶液及び濃度調整のためのDMSOを添加した。最終濃度は、RNA 10μM、CaCl 10mM、mGpp-Im 10mM、イミダゾール誘導体 50mMとした。
 反応溶液を55度で3時間インキュベートし、反応溶液の一部を2xloading buffer(80%ホルムアミド、10mM EDTA in MQ)と混和し、ゲル電気泳動で解析した(10% acrylamide、7.5M urea)。電気泳動の結果を図17(c)に示す。
(2)結果
 この結果から、2-ニトロイミダゾール(化合物F)が、CaCl有り(+)で収率が最も高かった(収率=98%)。したがって、添加剤としては、2-ニトロイミダゾールが最適であることがわかった。
16.実験例16(実施例15):添加剤濃度、温度、反応時間のスクリーニング
 添加剤として2-ニトロイミダゾールを使用し、種々の濃度、反応温度、反応時間でCAP化反応を行った。反応条件は図18(b)に示したとおりである。
(1)実験項
 実験の概要は図18(a)に示すとおりである。
[cap化反応]
 エッペンドルフチューブに、イオン交換したRNA溶液とCaCl溶液を添加し、凍結乾燥機で水の除去を行った。m7Gpp-Imと、イミダゾール誘導体のDMSO溶液及び濃度調整のためのDMSOを添加した。
 最終濃度は、RNA 10μM、CaCl 10mM、mGpp-Im 10mM、イミダゾール誘導体 0~50mMとした。 
反応溶液を各温度(37 or 55 ℃)で3-23時間インキュベートし、反応溶液の一部を2xloading bufferと混和し、ゲル電気泳動で解析した(10% acrylamide、7.5M urea)。電気泳動の結果を図18(c)に示す。
(2)結果
 この結果から、lane5の条件(濃度10mM、反応温度37℃、反応時間9時間)が最適であることがわかった。
17.実験例17(実施例16):RNAのカウンター塩の効果の評価
 RNAのカウンター塩について、種々の塩を使用してCAP化反応を行った。評価した塩は、図19(b)にK440’A等として示している。
(1)実験項
 実験の概要は図19(a)に示すとおりである。カウンター塩として、テトラエチルアンモニウム塩(NEtCl)、酢酸ナトリウム塩(NaOAc)を使用した。
[cap化反応]
 エッペンドルフチューブに、RNA溶液とCaCl溶液を添加し、凍結乾燥機で水の除去を行った。mGpp-Imと、イミダゾール誘導体のDMSO溶液及び濃度調整のためのDMSOを添加した。
 最終濃度は、RNA 10μM、CaCl 10mM、mGpp-Im 10mM、2-ニトロイミダゾール 10mMとした。
 反応溶液を37℃で9時間インキュベートし、反応溶液の一部を2xloading bufferと混和し、ゲル電気泳動で解析した(10% acrylamide、7.5M urea)。電気泳動の結果を図19(c)に示す。
(2)結果
 この結果から、テトラエチルアンモニウム塩、酢酸ナトリウム塩のどちらでも反応性は変わらないことがわかった。

Claims (9)

  1.  5’末端がキャップ修飾されたRNAであるキャップ化RNAの製造方法であって、
     下記式(1)で示される活性化キャップ化合物と、5’末端がモノリン酸化されたモノリン酸RNAとを反応させることを特徴とするキャップ化RNAの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (ここで、Lは脱離基を示す。)
  2.  前記活性化キャップ化合物が下記式(2)で示される化合物であることを特徴とする請求項1に記載のキャップ化RNAの製造方法。
    Figure JPOXMLDOC01-appb-C000002
  3.  前記活性化キャップ化合物と、前記モノリン酸RNAとを、ヘテロ芳香族化合物と、金属塩と、溶媒の存在下で反応させることを特徴とする請求項1に記載のキャップ化RNAの製造方法。
  4.  前記金属塩がカルシウム塩であることを特徴とする請求項3に記載のキャップ化RNAの製造方法。
  5.  反応温度が30~60℃の範囲内であることを特徴とする請求項1に記載のキャップ化RNAの製造方法。
  6.  反応時間が1~25時間の範囲内であることを特徴とする請求項1に記載のキャップ化RNAの製造方法。
  7.  前記溶媒が0~20重量%の範囲内の水を含む有機溶媒であることを特徴とする請求項3に記載のキャップ化RNAの製造方法。
  8.  前記活性化キャップ化合物の濃度が5~30mMの範囲内であることを特徴とする請求項1に記載のキャップ化RNAの製造方法。
  9.  前記ヘテロ芳香族化合物が1-メチルイミダゾールであることを特徴とする請求項3に記載のキャップ化RNAの製造方法。
PCT/JP2021/006360 2020-02-28 2021-02-19 キャップ化rnaの製造方法 WO2021172204A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21761932.9A EP4112630A4 (en) 2020-02-28 2021-02-19 PROCEDURE FOR PRODUCTION OF CAPPED RNA
CN202180017057.0A CN115175916A (zh) 2020-02-28 2021-02-19 加帽rna的制造方法
US17/802,680 US20230097172A1 (en) 2020-02-28 2021-02-19 Method for Producing Capped RNA
JP2022503335A JPWO2021172204A1 (ja) 2020-02-28 2021-02-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-032889 2020-02-28
JP2020032889 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021172204A1 true WO2021172204A1 (ja) 2021-09-02

Family

ID=77491875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006360 WO2021172204A1 (ja) 2020-02-28 2021-02-19 キャップ化rnaの製造方法

Country Status (5)

Country Link
US (1) US20230097172A1 (ja)
EP (1) EP4112630A4 (ja)
JP (1) JPWO2021172204A1 (ja)
CN (1) CN115175916A (ja)
WO (1) WO2021172204A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167276A1 (ja) * 2022-03-04 2023-09-07 国立研究開発法人科学技術振興機構 キャップ化rna及びその製造方法並びにタンパク質の製造装置及びタンパク質の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017053297A1 (en) * 2015-09-21 2017-03-30 Trilink Biotechnologies, Inc. Compositions and methods for synthesizing 5'-capped rnas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017053297A1 (en) * 2015-09-21 2017-03-30 Trilink Biotechnologies, Inc. Compositions and methods for synthesizing 5'-capped rnas

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AKIHIRO OHKUBO ET AL.: "Chemical Synthesis of U1 snRNA Derivatives", ORGANIC LETTER, 2013
HIROAKI SAWAI, WAKAI HIROMICHI, NAKAMURA-OZAKI AKIKO: "Synthesis and reactions of nucleoside 5'-diphosphate imidazolide", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 64, no. 16, 1 August 1999 (1999-08-01), pages 5836 - 5840, XP055331109, ISSN: 0022-3263, DOI: 10.1021/jo990286u *
JANUSZ STĘPIŃSKI, JACEK JEMIELITY, MAGDALENA LEWDOROWICZ, MARZENA JANKOWSKA-ANYSZKA AND EDWARD DARŻYNKIEWICZ: "Catalytic efficiency of divalent metal salts in dinucleoside 5', 5'-triphosphate bond formation", COLLECTION SYMPOSIUM SERIES, vol. 5, 30 November 2001 (2001-11-30), pages 154 - 158, XP009530607, ISBN: 80-86241-16-5, DOI: 10.1135/css 200205154 *
JOSEF LEITER ET AL.: "Practical Synthesis of Cap-4 RNA", CHEMBIOCHEM, 2020
See also references of EP4112630A4
SEIGO NAGATATOMOHIRO HAMASAKIKOICHI UETAKEHIROFUMI MASUDAKAZUCHIKA TAKAGAKINATSUHISA OKATAKESHI WADATADAAKI OHGIJUNICHI YANO: "Synthesis and biological activity of artificial mRNA prepared with novel phosphorylating reagents", NUCLEIC ACIDS RESEARCH, vol. 38, 2010, pages 7845, XP055074797, DOI: 10.1093/nar/gkq638

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167276A1 (ja) * 2022-03-04 2023-09-07 国立研究開発法人科学技術振興機構 キャップ化rna及びその製造方法並びにタンパク質の製造装置及びタンパク質の製造方法

Also Published As

Publication number Publication date
US20230097172A1 (en) 2023-03-30
EP4112630A1 (en) 2023-01-04
JPWO2021172204A1 (ja) 2021-09-02
CN115175916A (zh) 2022-10-11
EP4112630A4 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
JP5715560B2 (ja) mRNA CAP類似体
CA2659595C (en) Process for producing di(pyrimidine nucleoside 5'-)polyphosphate
CA1223831A (en) Modified nucleotides, methods of preparing and utilizing and compositions containing the same
US11208428B2 (en) Method for producing P1,P4-di(uridine 5′-) tetraphosphate
US6320035B1 (en) C-nucleoside derivatives and their use in the detection of nucleic acids
VictoriaáBerberian Rapid synthesis of nucleotide pyrophosphate linkages in a ball mill
WO2021172204A1 (ja) キャップ化rnaの製造方法
CA2215176C (en) C-nucleoside derivatives and their use in the detection of nucleic acids
EP0521923B1 (en) Process for producing nucleosides, and analogs therof
CN105111265A (zh) 一种使用“一锅法”标记修饰生物大分子的方法
JP3247685B2 (ja) ジウリジンテトラホスフェート又はその塩の結晶及びその製造法、並びに該化合物の製造法
JP3421666B2 (ja) ジヌクレオチド結晶
Jankowska-Anyszka et al. Synthesis of a new class of ribose functionalized dinucleotide cap analogues for biophysical studies on interaction of cap-binding proteins with the 5′ end of mRNA
CN103193843B (zh) 由全保护核苷磷酰胺中间体通过酸催化合成核苷三磷酸和核苷二磷酸的方法
JP2021505601A (ja) カングレロール四ナトリウムの調製方法
Appy et al. Supported Synthesis of Adenosine Nucleotides and Derivatives on a Benzene‐Centered Tripodal Soluble Support
US20140256928A1 (en) Protecting group for indole group, nucleic acid-synthesizing amidite and nucleic acid-synthesizing method
US20060240529A1 (en) Process for the preparation of fludarabine phosphate from 2-fluoroadenine and fludarabine phosphate salts with amines or ammonia
RU2036903C1 (ru) Азидонафталин-1-сульфонилгидразины в качестве полупродуктов для получения трилитиевых солей (1`r, 5`r) -3`-аза-1` -(2-амино -1,6-дигидро-6-оксопуринил-9) -3`-дезокси-3`- (азидонафталин-1-сульфамидо) -гексопиранозил -6`- трифосфатов - специфических фотоактивируемых необратимых ингибиторов рнк-полимеразы
JPS6043079B2 (ja) シチジン二リン酸コリンの製造方法
CA3200390A1 (en) Dna-encoded compound library and screening method thereof
Medžiūnė The synthesis and applications of oligonucleotide-modified nucleotides
RU2278869C2 (ru) Новые субстраты концевой дезоксинуклеотидилтрансферазы
JPH027597B2 (ja)
CN113061126A (zh) 基于卤素中间体的索拉非尼光亲和探针分子的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021761932

Country of ref document: EP

Effective date: 20220928